The Stokes–Einstein–Sutherland Equation at the Nanoscale Revisited

The Stokes–Einstein–Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid viscosity, temperature, and the boundary condition for the particle‐solvent interface. It is assumed that it relies on the separation of...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 6; pp. e2304670 - n/a
Main Authors Baer, Andreas, Wawra, Simon E., Bielmeier, Kristina, Uttinger, Maximilian J., Smith, David M., Peukert, Wolfgang, Walter, Johannes, Smith, Ana‐Sunčana
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2024
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202304670

Cover

Abstract The Stokes–Einstein–Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid viscosity, temperature, and the boundary condition for the particle‐solvent interface. It is assumed that it relies on the separation of scales between the particle and the solvent, hence it is expected to break down for diffusive transport on the molecular scale. This assumption is however challenged by a number of experimental studies showing a remarkably small, if any, violation, while simulations systematically report the opposite. To understand these discrepancies, analytical ultracentrifugation experiments are combined with molecular simulations, both performed at unprecedented accuracies, to study the transport of buckminsterfullerene C60 in toluene at infinite dilution. This system is demonstrated to clearly violate the conditions of slow momentum relaxation. Yet, through a linear response to a constant force, the SES equation can be recovered in the long time limit with no more than 4% uncertainty both in experiments and in simulations. This nonetheless requires partial slip on the particle interface, extracted consistently from all the data. These results, thus, resolve a long‐standing discussion on the validity and limits of the SES equation at the molecular scale. The Stokes–Einstein–Sutherland equation relates a particle's diffusion coefficient to its size. Statistical physics postulated the break down for particles comparable in size to the surrounding fluid molecules. Retrieving Stokes' friction coefficient in proper non‐equilibrium conditions, both experiments and simulations are shown to reproduce the correct Stokes–Einstein–Sutherland equation when relaxing the stick boundary conditions at the particle‐solvent interface.
AbstractList The Stokes–Einstein–Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid viscosity, temperature, and the boundary condition for the particle‐solvent interface. It is assumed that it relies on the separation of scales between the particle and the solvent, hence it is expected to break down for diffusive transport on the molecular scale. This assumption is however challenged by a number of experimental studies showing a remarkably small, if any, violation, while simulations systematically report the opposite. To understand these discrepancies, analytical ultracentrifugation experiments are combined with molecular simulations, both performed at unprecedented accuracies, to study the transport of buckminsterfullerene C60 in toluene at infinite dilution. This system is demonstrated to clearly violate the conditions of slow momentum relaxation. Yet, through a linear response to a constant force, the SES equation can be recovered in the long time limit with no more than 4% uncertainty both in experiments and in simulations. This nonetheless requires partial slip on the particle interface, extracted consistently from all the data. These results, thus, resolve a long‐standing discussion on the validity and limits of the SES equation at the molecular scale.
The Stokes–Einstein–Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid viscosity, temperature, and the boundary condition for the particle‐solvent interface. It is assumed that it relies on the separation of scales between the particle and the solvent, hence it is expected to break down for diffusive transport on the molecular scale. This assumption is however challenged by a number of experimental studies showing a remarkably small, if any, violation, while simulations systematically report the opposite. To understand these discrepancies, analytical ultracentrifugation experiments are combined with molecular simulations, both performed at unprecedented accuracies, to study the transport of buckminsterfullerene C 60 in toluene at infinite dilution. This system is demonstrated to clearly violate the conditions of slow momentum relaxation. Yet, through a linear response to a constant force, the SES equation can be recovered in the long time limit with no more than 4% uncertainty both in experiments and in simulations. This nonetheless requires partial slip on the particle interface, extracted consistently from all the data. These results, thus, resolve a long‐standing discussion on the validity and limits of the SES equation at the molecular scale.
The Stokes-Einstein-Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid viscosity, temperature, and the boundary condition for the particle-solvent interface. It is assumed that it relies on the separation of scales between the particle and the solvent, hence it is expected to break down for diffusive transport on the molecular scale. This assumption is however challenged by a number of experimental studies showing a remarkably small, if any, violation, while simulations systematically report the opposite. To understand these discrepancies, analytical ultracentrifugation experiments are combined with molecular simulations, both performed at unprecedented accuracies, to study the transport of buckminsterfullerene C in toluene at infinite dilution. This system is demonstrated to clearly violate the conditions of slow momentum relaxation. Yet, through a linear response to a constant force, the SES equation can be recovered in the long time limit with no more than 4% uncertainty both in experiments and in simulations. This nonetheless requires partial slip on the particle interface, extracted consistently from all the data. These results, thus, resolve a long-standing discussion on the validity and limits of the SES equation at the molecular scale.
The Stokes-Einstein-Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid viscosity, temperature, and the boundary condition for the particle-solvent interface. It is assumed that it relies on the separation of scales between the particle and the solvent, hence it is expected to break down for diffusive transport on the molecular scale. This assumption is however challenged by a number of experimental studies showing a remarkably small, if any, violation, while simulations systematically report the opposite. To understand these discrepancies, analytical ultracentrifugation experiments are combined with molecular simulations, both performed at unprecedented accuracies, to study the transport of buckminsterfullerene C60 in toluene at infinite dilution. This system is demonstrated to clearly violate the conditions of slow momentum relaxation. Yet, through a linear response to a constant force, the SES equation can be recovered in the long time limit with no more than 4% uncertainty both in experiments and in simulations. This nonetheless requires partial slip on the particle interface, extracted consistently from all the data. These results, thus, resolve a long-standing discussion on the validity and limits of the SES equation at the molecular scale.The Stokes-Einstein-Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid viscosity, temperature, and the boundary condition for the particle-solvent interface. It is assumed that it relies on the separation of scales between the particle and the solvent, hence it is expected to break down for diffusive transport on the molecular scale. This assumption is however challenged by a number of experimental studies showing a remarkably small, if any, violation, while simulations systematically report the opposite. To understand these discrepancies, analytical ultracentrifugation experiments are combined with molecular simulations, both performed at unprecedented accuracies, to study the transport of buckminsterfullerene C60 in toluene at infinite dilution. This system is demonstrated to clearly violate the conditions of slow momentum relaxation. Yet, through a linear response to a constant force, the SES equation can be recovered in the long time limit with no more than 4% uncertainty both in experiments and in simulations. This nonetheless requires partial slip on the particle interface, extracted consistently from all the data. These results, thus, resolve a long-standing discussion on the validity and limits of the SES equation at the molecular scale.
The Stokes–Einstein–Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid viscosity, temperature, and the boundary condition for the particle‐solvent interface. It is assumed that it relies on the separation of scales between the particle and the solvent, hence it is expected to break down for diffusive transport on the molecular scale. This assumption is however challenged by a number of experimental studies showing a remarkably small, if any, violation, while simulations systematically report the opposite. To understand these discrepancies, analytical ultracentrifugation experiments are combined with molecular simulations, both performed at unprecedented accuracies, to study the transport of buckminsterfullerene C60 in toluene at infinite dilution. This system is demonstrated to clearly violate the conditions of slow momentum relaxation. Yet, through a linear response to a constant force, the SES equation can be recovered in the long time limit with no more than 4% uncertainty both in experiments and in simulations. This nonetheless requires partial slip on the particle interface, extracted consistently from all the data. These results, thus, resolve a long‐standing discussion on the validity and limits of the SES equation at the molecular scale. The Stokes–Einstein–Sutherland equation relates a particle's diffusion coefficient to its size. Statistical physics postulated the break down for particles comparable in size to the surrounding fluid molecules. Retrieving Stokes' friction coefficient in proper non‐equilibrium conditions, both experiments and simulations are shown to reproduce the correct Stokes–Einstein–Sutherland equation when relaxing the stick boundary conditions at the particle‐solvent interface.
Author Bielmeier, Kristina
Wawra, Simon E.
Walter, Johannes
Baer, Andreas
Smith, David M.
Smith, Ana‐Sunčana
Uttinger, Maximilian J.
Peukert, Wolfgang
Author_xml – sequence: 1
  givenname: Andreas
  orcidid: 0000-0001-7943-8846
  surname: Baer
  fullname: Baer, Andreas
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg
– sequence: 2
  givenname: Simon E.
  surname: Wawra
  fullname: Wawra, Simon E.
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg
– sequence: 3
  givenname: Kristina
  surname: Bielmeier
  fullname: Bielmeier, Kristina
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg
– sequence: 4
  givenname: Maximilian J.
  surname: Uttinger
  fullname: Uttinger, Maximilian J.
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg
– sequence: 5
  givenname: David M.
  orcidid: 0000-0002-5578-2551
  surname: Smith
  fullname: Smith, David M.
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg
– sequence: 6
  givenname: Wolfgang
  orcidid: 0000-0002-2847-107X
  surname: Peukert
  fullname: Peukert, Wolfgang
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg
– sequence: 7
  givenname: Johannes
  orcidid: 0000-0002-5457-4232
  surname: Walter
  fullname: Walter, Johannes
  email: johannes.walter@fau.de
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg
– sequence: 8
  givenname: Ana‐Sunčana
  orcidid: 0000-0002-0835-0086
  surname: Smith
  fullname: Smith, Ana‐Sunčana
  email: smith@physik.fau.de
  organization: Group of Computational Life Sciences, Ruđer Bošković Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37806757$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9Kw0AQhxdR1FavHiXgxUvq7G6STY4itQpRwdbzskkmdGuaaHaj9OY7-AI-i4_ik5j-sUJBPO2wfN_MML8O2S6rEgk5otCjAOzMTIuix4Bx8AIBW2SfBpS7Qcii7XVNYY90jJkAcMo8sUv2uAghEL7YJ4PRGJ2hrR7RfL2993VpLOqyLYeNHWNdqDJz-s-NsroqPz-Uddpf51aVlUlVgc49vmijLWYHZCdXhcHD1dslD5f90cWVG98Nri_OYzf1KAc3yYKcqwy4QJ5wzCMfRQBJnig_YBRSypMImafyhOVCqMzzI5Fmua_CCHlGKe-S02Xfp7p6btBYOdUmxaJdFKvGSBYKL-QBBb9FTzbQSdXUZbudZBHj1AexoI5XVJNMMZNPtZ6qeiZ_TtQCvSWQ1pUxNeZrhIKcZyDnGch1Bq3gbQiptosD2lrp4m8tWmqvusDZP0Pk8CaOf91v19ueBA
CitedBy_id crossref_primary_10_1007_s42247_024_00914_8
crossref_primary_10_1016_j_electacta_2024_145443
crossref_primary_10_1021_acsnano_4c15470
crossref_primary_10_1063_5_0189490
crossref_primary_10_1063_5_0232651
crossref_primary_10_1063_5_0238119
crossref_primary_10_1021_acsearthspacechem_4c00285
crossref_primary_10_1016_j_colsurfa_2025_136115
crossref_primary_10_1063_5_0235456
crossref_primary_10_1016_j_cis_2025_103402
crossref_primary_10_1021_acs_langmuir_4c05290
crossref_primary_10_1021_acs_nanolett_3c05100
crossref_primary_10_1021_acsnano_3c10935
Cites_doi 10.1016/S0006-3495(00)76713-0
10.1016/S0009-2614(99)00266-3
10.1070/PU1978v021n07ABEH005665
10.1038/351632a0
10.1016/j.carbon.2004.03.022
10.1063/1.1610442
10.1038/348621a0
10.1021/ct3000876
10.1021/acs.jpclett.8b02703
10.1002/andp.19063261405
10.1103/PhysRevE.100.012126
10.1088/0953-8984/10/45/005
10.1103/PhysRevE.80.061204
10.1063/1.1563593
10.1016/B978-012221820-0/50003-4
10.1093/bioinformatics/btt055
10.1021/ja9621760
10.1016/j.powtec.2018.08.008
10.1016/j.jcis.2013.01.005
10.1093/oso/9780195140187.001.0001
10.1021/jp0477147
10.1021/ar00015a011
10.1063/1.464599
10.1063/1.1725558
10.1063/1.1928233
10.1007/978-4-431-55985-6
10.1002/jcc.20291
10.1038/347354a0
10.1103/PhysRevE.63.011205
10.1143/JPSJ.12.570
10.1021/jp064364a
10.1021/ja00008a068
10.1021/nl070192x
10.1098/rspa.1924.0100
10.1063/1.465445
10.1002/andp.19053220806
10.1143/PTP.33.423
10.1021/jp037185r
10.1143/JPSJ.12.1203
10.1063/1.1700722
10.1080/14786440509463331
10.1039/ft9949003039
10.1201/b19028
10.1063/1.4922941
10.1126/science.254.5030.408
10.1021/nn503205k
10.1021/ja01136a059
10.1007/BF02188673
10.1021/ct700301q
10.1146/annurev.pc.16.100165.000435
10.1016/S0009-2614(00)01290-2
10.1063/1.1673845
10.1016/j.softx.2015.06.001
10.1103/PhysRevE.68.061206
10.1007/s008940100045
10.1098/rspa.1910.0024
10.1103/PhysRevLett.66.2911
10.1021/ja953467w
10.1063/1.1740082
10.1016/j.molliq.2022.120636
10.1016/0010-4655(95)00042-E
10.1063/1.4795498
10.1021/jz100944k
10.1126/science.254.5030.410
10.1002/pol.1955.120168102
10.1103/PhysRevA.44.6677
10.1038/ncomms1338
10.1021/acs.jced.5b00609
10.1063/1.1724117
ContentType Journal Article
Copyright 2023 The Authors. Small published by Wiley‐VCH GmbH
2023 The Authors. Small published by Wiley-VCH GmbH.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Small published by Wiley‐VCH GmbH
– notice: 2023 The Authors. Small published by Wiley-VCH GmbH.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202304670
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 37806757
10_1002_smll_202304670
SMLL202304670
Genre article
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: INST 90‐1123‐1 FUGG; 416229255
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 416229255
– fundername: Deutsche Forschungsgemeinschaft
  grantid: INST 90-1123-1 FUGG
GroupedDBID ---
05W
0R~
123
1L6
1OC
24P
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
SV3
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
LH4
ID FETCH-LOGICAL-c4130-bd6f3ad037e3b3ef95e760bfba56210c13b9e24afb2f77ad4597cdf5a89e3d113
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 05 07:25:27 EDT 2025
Tue Aug 12 18:11:38 EDT 2025
Thu Apr 03 07:07:50 EDT 2025
Tue Jul 01 02:54:44 EDT 2025
Thu Apr 24 22:55:50 EDT 2025
Wed Jan 22 16:16:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords boundary condition
analytical ultracentrifugation
Green-Kubo formalism
Stokes-Einstein-Sutherland equation
molecular dynamics
Language English
License Attribution
2023 The Authors. Small published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4130-bd6f3ad037e3b3ef95e760bfba56210c13b9e24afb2f77ad4597cdf5a89e3d113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2847-107X
0000-0002-5457-4232
0000-0002-0835-0086
0000-0001-7943-8846
0000-0002-5578-2551
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202304670
PMID 37806757
PQID 2923150705
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2874836105
proquest_journals_2923150705
pubmed_primary_37806757
crossref_primary_10_1002_smll_202304670
crossref_citationtrail_10_1002_smll_202304670
wiley_primary_10_1002_smll_202304670_SMLL202304670
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1991; 351
2013; 29
2017; 7
2003; 119
1990; 347
2003; 118
1991; 113
1990; 348
2009; 80
2006; 35
2015; 142
1952; 74
1851; 9
2008; 4
2005; 26
1965; 16
1908; 147
1908; 146
1964; 40
1957; 12
1952; 20
1955; 16
2018; 9
2010; 1
2001
2018; 339
1978; 21
1991; 44
2007; 7
2013; 396
2014; 8
1998; 10
2022; 368
2001; 334
1994; 76
1906; 326
2015; 1
2004; 42
1965; 33
2011; 2
1994; 90
1995; 91
1991; 254
1954; 22
2000; 63
2006; 110
1996
1970; 53
1905; 9
1924; 106
2004; 108
1999; 303
2019; 100
1909; 18
2015; 1‐2
1905; 322
2015; 60
2001; 7
2000; 78
1991; 66
1993; 99
2013; 138
1993; 98
2003; 68
2016
1992; 25
2014
1996; 118
2012; 8
1910; 83
1946; 14
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Brown R. (e_1_2_9_1_1) 2015
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
Perrin J. (e_1_2_9_7_1) 1908; 147
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Perrin J. (e_1_2_9_6_1) 1908; 147
Perrin J. (e_1_2_9_5_1) 1908; 146
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
Perrin J. (e_1_2_9_8_1) 1909; 18
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
Stokes G. G. (e_1_2_9_37_1) 1851; 9
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
Daldrop J. O. (e_1_2_9_48_1) 2017; 7
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 118
  start-page: 1777
  year: 1996
  publication-title: J. Am. Chem. Soc.
– volume: 138
  year: 2013
  publication-title: J. Chem. Phys.
– volume: 2
  start-page: 335
  year: 2011
  publication-title: Nat. Commun.
– volume: 16
  start-page: 67
  year: 1965
  publication-title: Annu. Rev. Phys. Chem.
– volume: 326
  start-page: 756
  year: 1906
  publication-title: Ann. Phys.
– volume: 351
  start-page: 632
  year: 1991
  publication-title: Nature
– volume: 7
  start-page: 1276
  year: 2007
  publication-title: Nano Lett.
– volume: 8
  start-page: 3637
  year: 2012
  publication-title: J. Chem. Theory Comput.
– volume: 4
  start-page: 435
  year: 2008
  publication-title: J. Chem. Theory Comput.
– volume: 98
  start-page: 574
  year: 1993
  publication-title: J. Chem. Phys.
– volume: 76
  start-page: 505
  year: 1994
  publication-title: J. Statist. Phys.
– volume: 147
  start-page: 530
  year: 1908
  publication-title: C. R. Acad. Sci. Paris
– year: 2001
– volume: 322
  start-page: 549
  year: 1905
  publication-title: Ann. Phys.
– volume: 100
  year: 2019
  publication-title: Phys. Rev. E
– volume: 119
  start-page: 8062
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 35
  year: 2006
  publication-title: J. Phys. Chem. Ref. Data
– volume: 74
  start-page: 4155
  year: 1952
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 5
  year: 1909
  publication-title: Ann. Chim. Phys.
– volume: 334
  start-page: 337
  year: 2001
  publication-title: Chem. Phys. Lett.
– year: 2014
– volume: 118
  start-page: 7888
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 99
  start-page: 6983
  year: 1993
  publication-title: J. Chem. Phys.
– volume: 83
  start-page: 357
  year: 1910
  publication-title: Proc. R. Soc. London A.
– volume: 9
  start-page: 781
  year: 1905
  publication-title: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
– volume: 1
  start-page: 2903
  year: 2010
  publication-title: J. Phys. Chem. Lett.
– volume: 108
  start-page: 6767
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 29
  start-page: 845
  year: 2013
  publication-title: Bioinformatics
– volume: 90
  start-page: 3039
  year: 1994
  publication-title: J. Chem. Soc., Faraday Trans.
– volume: 339
  start-page: 264
  year: 2018
  publication-title: Powder Technol.
– volume: 254
  start-page: 410
  year: 1991
  publication-title: Science
– volume: 10
  year: 1998
  publication-title: J. Phys.: Condens. Matter
– volume: 7
  start-page: 306
  year: 2001
  publication-title: Mol. Model. Annu.
– volume: 7
  year: 2017
  publication-title: Phys. Rev. X
– volume: 1‐2
  start-page: 19
  year: 2015
  publication-title: SoftwareX
– volume: 113
  start-page: 3190
  year: 1991
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 6345
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 66
  start-page: 2911
  year: 1991
  publication-title: Phys. Rev. Lett.
– volume: 80
  year: 2009
  publication-title: Phys. Rev. E
– volume: 12
  start-page: 1203
  year: 1957
  publication-title: J. Phys. Soc. Jpn.
– volume: 348
  start-page: 621
  year: 1990
  publication-title: Nature
– volume: 26
  start-page: 1701
  year: 2005
  publication-title: J. Comp. Chem.
– volume: 68
  year: 2003
  publication-title: Phys. Rev. E
– volume: 78
  start-page: 1606
  year: 2000
  publication-title: Biophys. J.
– volume: 8
  start-page: 8871
  year: 2014
  publication-title: ACS Nano
– volume: 147
  start-page: 475
  year: 1908
  publication-title: C. R. Acad. Sci. Paris
– volume: 396
  start-page: 53
  year: 2013
  publication-title: J. Colloid Interface Sci.
– volume: 106
  start-page: 724
  year: 1924
  publication-title: Proc. R. Soc. London A.
– volume: 60
  start-page: 3621
  year: 2015
  publication-title: J. Chem. Eng. Data
– volume: 142
  year: 2015
  publication-title: J. Chem. Phys.
– volume: 40
  start-page: 2527
  year: 1964
  publication-title: J. Chem. Phys.
– volume: 20
  start-page: 1281
  year: 1952
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 8
  year: 1851
  publication-title: Trans. Cambridge Philos. Soc.
– volume: 14
  start-page: 180
  year: 1946
  publication-title: J. Chem. Phys.
– volume: 25
  start-page: 169
  year: 1992
  publication-title: Acc. Chem. Res.
– volume: 1
  start-page: 463
  year: 2015
  end-page: 486
– year: 2016
– volume: 118
  year: 1996
  publication-title: J. Am. Chem. Soc.
– volume: 91
  start-page: 43
  year: 1995
  publication-title: Comput. Phys. Commun.
– volume: 16
  start-page: 19
  year: 1955
  publication-title: J. Polym. Sci.
– volume: 110
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 108
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 347
  start-page: 354
  year: 1990
  publication-title: Nature
– volume: 146
  start-page: 967
  year: 1908
  publication-title: C. R. Acad. Sci. Paris
– start-page: 60
  year: 1996
  end-page: 79
– volume: 44
  start-page: 6677
  year: 1991
  publication-title: Phys. Rev. A
– volume: 254
  start-page: 408
  year: 1991
  publication-title: Science
– volume: 63
  year: 2000
  publication-title: Phys. Rev. E
– volume: 12
  start-page: 570
  year: 1957
  publication-title: J. Phys. Soc. Jpn.
– volume: 33
  start-page: 423
  year: 1965
  publication-title: Prog. Theor. Phys.
– volume: 22
  start-page: 398
  year: 1954
  publication-title: J. Chem. Phys.
– volume: 303
  start-page: 583
  year: 1999
  publication-title: Chem. Phys. Lett.
– volume: 21
  start-page: 566
  year: 1978
  publication-title: Soviet Phys.‐Usp.
– volume: 53
  start-page: 3813
  year: 1970
  publication-title: J. Chem. Phys.
– volume: 42
  start-page: 1907
  year: 2004
  publication-title: Carbon
– volume: 368
  year: 2022
  publication-title: J. Mol. Liq.
– volume: 7
  year: 2017
  ident: e_1_2_9_48_1
  publication-title: Phys. Rev. X
– volume: 18
  start-page: 5
  year: 1909
  ident: e_1_2_9_8_1
  publication-title: Ann. Chim. Phys.
– ident: e_1_2_9_10_1
  doi: 10.1016/S0006-3495(00)76713-0
– ident: e_1_2_9_29_1
  doi: 10.1016/S0009-2614(99)00266-3
– ident: e_1_2_9_60_1
  doi: 10.1070/PU1978v021n07ABEH005665
– ident: e_1_2_9_24_1
  doi: 10.1038/351632a0
– ident: e_1_2_9_25_1
  doi: 10.1016/j.carbon.2004.03.022
– ident: e_1_2_9_33_1
  doi: 10.1063/1.1610442
– ident: e_1_2_9_70_1
  doi: 10.1038/348621a0
– ident: e_1_2_9_53_1
  doi: 10.1021/ct3000876
– ident: e_1_2_9_20_1
  doi: 10.1021/acs.jpclett.8b02703
– volume: 147
  start-page: 530
  year: 1908
  ident: e_1_2_9_7_1
  publication-title: C. R. Acad. Sci. Paris
– ident: e_1_2_9_4_1
  doi: 10.1002/andp.19063261405
– ident: e_1_2_9_16_1
– ident: e_1_2_9_46_1
  doi: 10.1103/PhysRevE.100.012126
– ident: e_1_2_9_28_1
  doi: 10.1088/0953-8984/10/45/005
– ident: e_1_2_9_35_1
  doi: 10.1103/PhysRevE.80.061204
– volume: 9
  start-page: 8
  year: 1851
  ident: e_1_2_9_37_1
  publication-title: Trans. Cambridge Philos. Soc.
– ident: e_1_2_9_32_1
  doi: 10.1063/1.1563593
– ident: e_1_2_9_21_1
  doi: 10.1016/B978-012221820-0/50003-4
– ident: e_1_2_9_54_1
  doi: 10.1093/bioinformatics/btt055
– ident: e_1_2_9_56_1
  doi: 10.1021/ja9621760
– ident: e_1_2_9_13_1
  doi: 10.1016/j.powtec.2018.08.008
– ident: e_1_2_9_12_1
  doi: 10.1016/j.jcis.2013.01.005
– ident: e_1_2_9_45_1
  doi: 10.1093/oso/9780195140187.001.0001
– ident: e_1_2_9_59_1
  doi: 10.1021/jp0477147
– ident: e_1_2_9_67_1
  doi: 10.1021/ar00015a011
– ident: e_1_2_9_15_1
  doi: 10.1063/1.464599
– ident: e_1_2_9_43_1
  doi: 10.1063/1.1725558
– ident: e_1_2_9_65_1
  doi: 10.1063/1.1928233
– ident: e_1_2_9_64_1
  doi: 10.1007/978-4-431-55985-6
– ident: e_1_2_9_49_1
  doi: 10.1002/jcc.20291
– ident: e_1_2_9_69_1
  doi: 10.1038/347354a0
– ident: e_1_2_9_30_1
  doi: 10.1103/PhysRevE.63.011205
– volume: 147
  start-page: 475
  year: 1908
  ident: e_1_2_9_6_1
  publication-title: C. R. Acad. Sci. Paris
– ident: e_1_2_9_41_1
  doi: 10.1143/JPSJ.12.570
– ident: e_1_2_9_11_1
  doi: 10.1021/jp064364a
– ident: e_1_2_9_66_1
  doi: 10.1021/ja00008a068
– ident: e_1_2_9_73_1
  doi: 10.1021/nl070192x
– ident: e_1_2_9_9_1
  doi: 10.1098/rspa.1924.0100
– ident: e_1_2_9_58_1
  doi: 10.1063/1.465445
– ident: e_1_2_9_2_1
  doi: 10.1002/andp.19053220806
– ident: e_1_2_9_44_1
  doi: 10.1143/PTP.33.423
– ident: e_1_2_9_34_1
  doi: 10.1021/jp037185r
– ident: e_1_2_9_42_1
  doi: 10.1143/JPSJ.12.1203
– ident: e_1_2_9_39_1
  doi: 10.1063/1.1700722
– ident: e_1_2_9_3_1
  doi: 10.1080/14786440509463331
– ident: e_1_2_9_27_1
  doi: 10.1039/ft9949003039
– ident: e_1_2_9_63_1
  doi: 10.1201/b19028
– ident: e_1_2_9_61_1
  doi: 10.1063/1.4922941
– ident: e_1_2_9_23_1
  doi: 10.1126/science.254.5030.408
– ident: e_1_2_9_62_1
  doi: 10.1021/nn503205k
– ident: e_1_2_9_74_1
  doi: 10.1021/ja01136a059
– ident: e_1_2_9_47_1
  doi: 10.1007/BF02188673
– start-page: 463
  volume-title: Cambridge Library Collection ‐ Botany and Horticulture
  year: 2015
  ident: e_1_2_9_1_1
– ident: e_1_2_9_52_1
  doi: 10.1021/ct700301q
– ident: e_1_2_9_14_1
  doi: 10.1146/annurev.pc.16.100165.000435
– ident: e_1_2_9_31_1
  doi: 10.1016/S0009-2614(00)01290-2
– ident: e_1_2_9_36_1
  doi: 10.1063/1.1673845
– ident: e_1_2_9_55_1
  doi: 10.1016/j.softx.2015.06.001
– ident: e_1_2_9_72_1
  doi: 10.1103/PhysRevE.68.061206
– ident: e_1_2_9_51_1
  doi: 10.1007/s008940100045
– ident: e_1_2_9_77_1
  doi: 10.1098/rspa.1910.0024
– ident: e_1_2_9_68_1
  doi: 10.1103/PhysRevLett.66.2911
– ident: e_1_2_9_19_1
  doi: 10.1021/ja953467w
– ident: e_1_2_9_40_1
  doi: 10.1063/1.1740082
– ident: e_1_2_9_57_1
  doi: 10.1016/j.molliq.2022.120636
– ident: e_1_2_9_50_1
  doi: 10.1016/0010-4655(95)00042-E
– ident: e_1_2_9_71_1
  doi: 10.1063/1.4795498
– ident: e_1_2_9_78_1
  doi: 10.1021/jz100944k
– ident: e_1_2_9_22_1
  doi: 10.1126/science.254.5030.410
– ident: e_1_2_9_75_1
  doi: 10.1002/pol.1955.120168102
– ident: e_1_2_9_76_1
  doi: 10.1103/PhysRevA.44.6677
– ident: e_1_2_9_26_1
– ident: e_1_2_9_17_1
  doi: 10.1038/ncomms1338
– ident: e_1_2_9_18_1
  doi: 10.1021/acs.jced.5b00609
– volume: 146
  start-page: 967
  year: 1908
  ident: e_1_2_9_5_1
  publication-title: C. R. Acad. Sci. Paris
– ident: e_1_2_9_38_1
  doi: 10.1063/1.1724117
SSID ssj0031247
Score 2.5248382
Snippet The Stokes–Einstein–Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid...
The Stokes-Einstein-Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid...
The Stokes–Einstein–Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid...
The Stokes-Einstein-Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2304670
SubjectTerms analytical ultracentrifugation
boundary condition
Boundary conditions
Buckminsterfullerene
Diffusion coefficient
Dilution
Green–Kubo formalism
molecular dynamics
Simulation
Solvents
Stokes–Einstein–Sutherland equation
Toluene
Title The Stokes–Einstein–Sutherland Equation at the Nanoscale Revisited
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202304670
https://www.ncbi.nlm.nih.gov/pubmed/37806757
https://www.proquest.com/docview/2923150705
https://www.proquest.com/docview/2874836105
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4VTuXAT6Gw5UephMTJYMdOnBwrWEAVrRALErfIdmwJAVlospee-g68AM_Co_AkHSebwIJQpXKKk4wVx57xfOOfzwCbhllHE2FImktLhJOCpNRyYjjXWjmWSFMvkP0ZH56J7-fR-bNd_A0_RDfg5i2j7q-9gStd7jyRhpbXV37qwA9qxtIH7YzHnjx_76Tjj-LovOrTVdBnEU-81bI20nBnMvukV3oFNSeRa-169udAtYVuVpxcbo8qvW1-v-BzfM9fzcPsGJcG3xpFWoAPtvgEM8_YChfhAFUqGFTDS1s-_rnrXyCwtBcFJgejdtNw0L9tqMMf7lUV4NMAe-9hiXpgg5N6HzsC3CU42--f7h6S8TkMxHgXR3QeO65yyqXlmluXRlbGVDutEDwxahjXqQ2Fcjp0UqpcYJBichepJLU8Z4x_huliWNgVCEzEtKRWK4xihNAMEzRyUlODF65ND0jbDpkZk5T7szKusoZeOcx8BWVdBfVgq5O_aeg53pRca5s1G5tpmYUe3iIiplEPvnav0cD8rIkq7HCEMokUCUeUiTLLjTp0n-Iy8RGX7EFYN-o_ypANfhwddXdf_ifTKnzEtGjWja_BdPVrZNcRFlV6A6ZCcbxRG8BfGQ4ISQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD6axgXsgp_9QKFsmTSJK29O7NTJJYJ23db2ou0k7iLbsaWpJQGa3nDFO_ACPAuPwpNwnDRh3YQmbVdxHEdx7HN8vmMffwY40r6xNOKaxKkwhFvBSUwNI5oxpaT1I6HLANlRp3_Jzz-FdTSh2wtT8UM0E25OM8rx2im4m5A--ccauvg8d2sHblazI9Brf8QRbTj_6-O4YZBiaL7K81XQahFHvVXzNtLgZP39dbt0C2yuY9fS-PSegaqrXcWczI6XhTrW328wOj7ov57D0xU09d5XsvQCNky2DVvXCAt34BSlypsU-cws_vz42b1CbGmuMkxOlvW-Ya_7tWIP__1LFh7mejiA5wsUBeONy63siHF34bLXnX7ok9VRDEQ7K0dU2rFMppQJwxQzNg6N6FBllUT85FPtMxWbgEurAiuETDn6KTq1oYxiw1LfZ3uwmeWZeQWeDn0lqFESHRnOlY8JGlqhqMYLU7oFpO6IRK94yt1xGfOkYlgOEtdASdNALXjXlP9SMXT8t2S77tdkpamLJHAIF-WGhi04bB6jjrmFE5mZfIllIsEjhkATy7ys5KH5FBORc7pEC4KyV--oQzIZDgbN3ev7vHQAj_vT4SAZnI0u3sATzOdVGHkbNotvS_MWUVKh9ks9-AtinwuR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD6aNmkaF2zjt1uBICHtyp0TO3FyiUZLgVKhlUm9i2zHlqaVtFvTm13xDrzAnoVH4Uk4TprQbpqQ4CqOc6I49jk-3_HPZ4A32jeWxlyTJBOGcCs4SahhRDOmlLR-LHS5QHYY9c_4x3E4XtnFX_FDNANuzjLK_toZ-Cyzx39IQ-ffJm7qwA1qRgKD9i0eIZxwsOi0IZBi6L3K41XQaRHHvFXTNtLgeP39dbd0B2uuQ9fS9_R2QdalrpacXHQWhero61uEjv_zW3vwcAlMvbeVJu3DhskfwYMVusLH8B51yhsV0wsz__X9R_cckaU5zzE5WtS7hr3uZcUd_vNGFh7meth9T-eoCMY7LTeyI8J9Ame97teTPlkexEC083FEZZFlMqNMGKaYsUloRESVVRLRk0-1z1RiAi6tCqwQMuMYpejMhjJODMt8nz2FzXyam-fg6dBXgholMYzhXPmYoKEVimq8MKVbQOp2SPWSpdwdljFJK37lIHUVlDYV1IKjRn5W8XPcK9mumzVd2uk8DRy-RUhMwxa8bh6jhblpE5mb6QJlYsFjhjATZZ5V6tB8ionYhVyiBUHZqH8pQzr6PBg0dwf_8tIr2P7yrpcOPgw_HcIOZvNqDXkbNourhXmBEKlQL0sr-A06EgpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Stokes-Einstein-Sutherland+Equation%C2%A0at+the+Nanoscale+Revisited&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Baer%2C+Andreas&rft.au=Wawra%2C+Simon+E&rft.au=Bielmeier%2C+Kristina&rft.au=Uttinger%2C+Maximilian+J&rft.date=2024-02-01&rft.eissn=1613-6829&rft.volume=20&rft.issue=6&rft.spage=e2304670&rft_id=info:doi/10.1002%2Fsmll.202304670&rft_id=info%3Apmid%2F37806757&rft.externalDocID=37806757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon