The Stokes–Einstein–Sutherland Equation at the Nanoscale Revisited
The Stokes–Einstein–Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid viscosity, temperature, and the boundary condition for the particle‐solvent interface. It is assumed that it relies on the separation of...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 6; pp. e2304670 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.202304670 |
Cover
Abstract | The Stokes–Einstein–Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid viscosity, temperature, and the boundary condition for the particle‐solvent interface. It is assumed that it relies on the separation of scales between the particle and the solvent, hence it is expected to break down for diffusive transport on the molecular scale. This assumption is however challenged by a number of experimental studies showing a remarkably small, if any, violation, while simulations systematically report the opposite. To understand these discrepancies, analytical ultracentrifugation experiments are combined with molecular simulations, both performed at unprecedented accuracies, to study the transport of buckminsterfullerene C60 in toluene at infinite dilution. This system is demonstrated to clearly violate the conditions of slow momentum relaxation. Yet, through a linear response to a constant force, the SES equation can be recovered in the long time limit with no more than 4% uncertainty both in experiments and in simulations. This nonetheless requires partial slip on the particle interface, extracted consistently from all the data. These results, thus, resolve a long‐standing discussion on the validity and limits of the SES equation at the molecular scale.
The Stokes–Einstein–Sutherland equation relates a particle's diffusion coefficient to its size. Statistical physics postulated the break down for particles comparable in size to the surrounding fluid molecules. Retrieving Stokes' friction coefficient in proper non‐equilibrium conditions, both experiments and simulations are shown to reproduce the correct Stokes–Einstein–Sutherland equation when relaxing the stick boundary conditions at the particle‐solvent interface. |
---|---|
AbstractList | The Stokes–Einstein–Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid viscosity, temperature, and the boundary condition for the particle‐solvent interface. It is assumed that it relies on the separation of scales between the particle and the solvent, hence it is expected to break down for diffusive transport on the molecular scale. This assumption is however challenged by a number of experimental studies showing a remarkably small, if any, violation, while simulations systematically report the opposite. To understand these discrepancies, analytical ultracentrifugation experiments are combined with molecular simulations, both performed at unprecedented accuracies, to study the transport of buckminsterfullerene C60 in toluene at infinite dilution. This system is demonstrated to clearly violate the conditions of slow momentum relaxation. Yet, through a linear response to a constant force, the SES equation can be recovered in the long time limit with no more than 4% uncertainty both in experiments and in simulations. This nonetheless requires partial slip on the particle interface, extracted consistently from all the data. These results, thus, resolve a long‐standing discussion on the validity and limits of the SES equation at the molecular scale. The Stokes–Einstein–Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid viscosity, temperature, and the boundary condition for the particle‐solvent interface. It is assumed that it relies on the separation of scales between the particle and the solvent, hence it is expected to break down for diffusive transport on the molecular scale. This assumption is however challenged by a number of experimental studies showing a remarkably small, if any, violation, while simulations systematically report the opposite. To understand these discrepancies, analytical ultracentrifugation experiments are combined with molecular simulations, both performed at unprecedented accuracies, to study the transport of buckminsterfullerene C 60 in toluene at infinite dilution. This system is demonstrated to clearly violate the conditions of slow momentum relaxation. Yet, through a linear response to a constant force, the SES equation can be recovered in the long time limit with no more than 4% uncertainty both in experiments and in simulations. This nonetheless requires partial slip on the particle interface, extracted consistently from all the data. These results, thus, resolve a long‐standing discussion on the validity and limits of the SES equation at the molecular scale. The Stokes-Einstein-Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid viscosity, temperature, and the boundary condition for the particle-solvent interface. It is assumed that it relies on the separation of scales between the particle and the solvent, hence it is expected to break down for diffusive transport on the molecular scale. This assumption is however challenged by a number of experimental studies showing a remarkably small, if any, violation, while simulations systematically report the opposite. To understand these discrepancies, analytical ultracentrifugation experiments are combined with molecular simulations, both performed at unprecedented accuracies, to study the transport of buckminsterfullerene C in toluene at infinite dilution. This system is demonstrated to clearly violate the conditions of slow momentum relaxation. Yet, through a linear response to a constant force, the SES equation can be recovered in the long time limit with no more than 4% uncertainty both in experiments and in simulations. This nonetheless requires partial slip on the particle interface, extracted consistently from all the data. These results, thus, resolve a long-standing discussion on the validity and limits of the SES equation at the molecular scale. The Stokes-Einstein-Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid viscosity, temperature, and the boundary condition for the particle-solvent interface. It is assumed that it relies on the separation of scales between the particle and the solvent, hence it is expected to break down for diffusive transport on the molecular scale. This assumption is however challenged by a number of experimental studies showing a remarkably small, if any, violation, while simulations systematically report the opposite. To understand these discrepancies, analytical ultracentrifugation experiments are combined with molecular simulations, both performed at unprecedented accuracies, to study the transport of buckminsterfullerene C60 in toluene at infinite dilution. This system is demonstrated to clearly violate the conditions of slow momentum relaxation. Yet, through a linear response to a constant force, the SES equation can be recovered in the long time limit with no more than 4% uncertainty both in experiments and in simulations. This nonetheless requires partial slip on the particle interface, extracted consistently from all the data. These results, thus, resolve a long-standing discussion on the validity and limits of the SES equation at the molecular scale.The Stokes-Einstein-Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid viscosity, temperature, and the boundary condition for the particle-solvent interface. It is assumed that it relies on the separation of scales between the particle and the solvent, hence it is expected to break down for diffusive transport on the molecular scale. This assumption is however challenged by a number of experimental studies showing a remarkably small, if any, violation, while simulations systematically report the opposite. To understand these discrepancies, analytical ultracentrifugation experiments are combined with molecular simulations, both performed at unprecedented accuracies, to study the transport of buckminsterfullerene C60 in toluene at infinite dilution. This system is demonstrated to clearly violate the conditions of slow momentum relaxation. Yet, through a linear response to a constant force, the SES equation can be recovered in the long time limit with no more than 4% uncertainty both in experiments and in simulations. This nonetheless requires partial slip on the particle interface, extracted consistently from all the data. These results, thus, resolve a long-standing discussion on the validity and limits of the SES equation at the molecular scale. The Stokes–Einstein–Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid viscosity, temperature, and the boundary condition for the particle‐solvent interface. It is assumed that it relies on the separation of scales between the particle and the solvent, hence it is expected to break down for diffusive transport on the molecular scale. This assumption is however challenged by a number of experimental studies showing a remarkably small, if any, violation, while simulations systematically report the opposite. To understand these discrepancies, analytical ultracentrifugation experiments are combined with molecular simulations, both performed at unprecedented accuracies, to study the transport of buckminsterfullerene C60 in toluene at infinite dilution. This system is demonstrated to clearly violate the conditions of slow momentum relaxation. Yet, through a linear response to a constant force, the SES equation can be recovered in the long time limit with no more than 4% uncertainty both in experiments and in simulations. This nonetheless requires partial slip on the particle interface, extracted consistently from all the data. These results, thus, resolve a long‐standing discussion on the validity and limits of the SES equation at the molecular scale. The Stokes–Einstein–Sutherland equation relates a particle's diffusion coefficient to its size. Statistical physics postulated the break down for particles comparable in size to the surrounding fluid molecules. Retrieving Stokes' friction coefficient in proper non‐equilibrium conditions, both experiments and simulations are shown to reproduce the correct Stokes–Einstein–Sutherland equation when relaxing the stick boundary conditions at the particle‐solvent interface. |
Author | Bielmeier, Kristina Wawra, Simon E. Walter, Johannes Baer, Andreas Smith, David M. Smith, Ana‐Sunčana Uttinger, Maximilian J. Peukert, Wolfgang |
Author_xml | – sequence: 1 givenname: Andreas orcidid: 0000-0001-7943-8846 surname: Baer fullname: Baer, Andreas organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg – sequence: 2 givenname: Simon E. surname: Wawra fullname: Wawra, Simon E. organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg – sequence: 3 givenname: Kristina surname: Bielmeier fullname: Bielmeier, Kristina organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg – sequence: 4 givenname: Maximilian J. surname: Uttinger fullname: Uttinger, Maximilian J. organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg – sequence: 5 givenname: David M. orcidid: 0000-0002-5578-2551 surname: Smith fullname: Smith, David M. organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg – sequence: 6 givenname: Wolfgang orcidid: 0000-0002-2847-107X surname: Peukert fullname: Peukert, Wolfgang organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg – sequence: 7 givenname: Johannes orcidid: 0000-0002-5457-4232 surname: Walter fullname: Walter, Johannes email: johannes.walter@fau.de organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg – sequence: 8 givenname: Ana‐Sunčana orcidid: 0000-0002-0835-0086 surname: Smith fullname: Smith, Ana‐Sunčana email: smith@physik.fau.de organization: Group of Computational Life Sciences, Ruđer Bošković Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37806757$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9Kw0AQhxdR1FavHiXgxUvq7G6STY4itQpRwdbzskkmdGuaaHaj9OY7-AI-i4_ik5j-sUJBPO2wfN_MML8O2S6rEgk5otCjAOzMTIuix4Bx8AIBW2SfBpS7Qcii7XVNYY90jJkAcMo8sUv2uAghEL7YJ4PRGJ2hrR7RfL2993VpLOqyLYeNHWNdqDJz-s-NsroqPz-Uddpf51aVlUlVgc49vmijLWYHZCdXhcHD1dslD5f90cWVG98Nri_OYzf1KAc3yYKcqwy4QJ5wzCMfRQBJnig_YBRSypMImafyhOVCqMzzI5Fmua_CCHlGKe-S02Xfp7p6btBYOdUmxaJdFKvGSBYKL-QBBb9FTzbQSdXUZbudZBHj1AexoI5XVJNMMZNPtZ6qeiZ_TtQCvSWQ1pUxNeZrhIKcZyDnGch1Bq3gbQiptosD2lrp4m8tWmqvusDZP0Pk8CaOf91v19ueBA |
CitedBy_id | crossref_primary_10_1007_s42247_024_00914_8 crossref_primary_10_1016_j_electacta_2024_145443 crossref_primary_10_1021_acsnano_4c15470 crossref_primary_10_1063_5_0189490 crossref_primary_10_1063_5_0232651 crossref_primary_10_1063_5_0238119 crossref_primary_10_1021_acsearthspacechem_4c00285 crossref_primary_10_1016_j_colsurfa_2025_136115 crossref_primary_10_1063_5_0235456 crossref_primary_10_1016_j_cis_2025_103402 crossref_primary_10_1021_acs_langmuir_4c05290 crossref_primary_10_1021_acs_nanolett_3c05100 crossref_primary_10_1021_acsnano_3c10935 |
Cites_doi | 10.1016/S0006-3495(00)76713-0 10.1016/S0009-2614(99)00266-3 10.1070/PU1978v021n07ABEH005665 10.1038/351632a0 10.1016/j.carbon.2004.03.022 10.1063/1.1610442 10.1038/348621a0 10.1021/ct3000876 10.1021/acs.jpclett.8b02703 10.1002/andp.19063261405 10.1103/PhysRevE.100.012126 10.1088/0953-8984/10/45/005 10.1103/PhysRevE.80.061204 10.1063/1.1563593 10.1016/B978-012221820-0/50003-4 10.1093/bioinformatics/btt055 10.1021/ja9621760 10.1016/j.powtec.2018.08.008 10.1016/j.jcis.2013.01.005 10.1093/oso/9780195140187.001.0001 10.1021/jp0477147 10.1021/ar00015a011 10.1063/1.464599 10.1063/1.1725558 10.1063/1.1928233 10.1007/978-4-431-55985-6 10.1002/jcc.20291 10.1038/347354a0 10.1103/PhysRevE.63.011205 10.1143/JPSJ.12.570 10.1021/jp064364a 10.1021/ja00008a068 10.1021/nl070192x 10.1098/rspa.1924.0100 10.1063/1.465445 10.1002/andp.19053220806 10.1143/PTP.33.423 10.1021/jp037185r 10.1143/JPSJ.12.1203 10.1063/1.1700722 10.1080/14786440509463331 10.1039/ft9949003039 10.1201/b19028 10.1063/1.4922941 10.1126/science.254.5030.408 10.1021/nn503205k 10.1021/ja01136a059 10.1007/BF02188673 10.1021/ct700301q 10.1146/annurev.pc.16.100165.000435 10.1016/S0009-2614(00)01290-2 10.1063/1.1673845 10.1016/j.softx.2015.06.001 10.1103/PhysRevE.68.061206 10.1007/s008940100045 10.1098/rspa.1910.0024 10.1103/PhysRevLett.66.2911 10.1021/ja953467w 10.1063/1.1740082 10.1016/j.molliq.2022.120636 10.1016/0010-4655(95)00042-E 10.1063/1.4795498 10.1021/jz100944k 10.1126/science.254.5030.410 10.1002/pol.1955.120168102 10.1103/PhysRevA.44.6677 10.1038/ncomms1338 10.1021/acs.jced.5b00609 10.1063/1.1724117 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Small published by Wiley‐VCH GmbH 2023 The Authors. Small published by Wiley-VCH GmbH. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Small published by Wiley‐VCH GmbH – notice: 2023 The Authors. Small published by Wiley-VCH GmbH. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202304670 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 37806757 10_1002_smll_202304670 SMLL202304670 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: INST 90‐1123‐1 FUGG; 416229255 – fundername: Deutsche Forschungsgemeinschaft grantid: 416229255 – fundername: Deutsche Forschungsgemeinschaft grantid: INST 90-1123-1 FUGG |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 24P 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF SV3 NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 LH4 |
ID | FETCH-LOGICAL-c4130-bd6f3ad037e3b3ef95e760bfba56210c13b9e24afb2f77ad4597cdf5a89e3d113 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Sep 05 07:25:27 EDT 2025 Tue Aug 12 18:11:38 EDT 2025 Thu Apr 03 07:07:50 EDT 2025 Tue Jul 01 02:54:44 EDT 2025 Thu Apr 24 22:55:50 EDT 2025 Wed Jan 22 16:16:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | boundary condition analytical ultracentrifugation Green-Kubo formalism Stokes-Einstein-Sutherland equation molecular dynamics |
Language | English |
License | Attribution 2023 The Authors. Small published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4130-bd6f3ad037e3b3ef95e760bfba56210c13b9e24afb2f77ad4597cdf5a89e3d113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2847-107X 0000-0002-5457-4232 0000-0002-0835-0086 0000-0001-7943-8846 0000-0002-5578-2551 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202304670 |
PMID | 37806757 |
PQID | 2923150705 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2874836105 proquest_journals_2923150705 pubmed_primary_37806757 crossref_primary_10_1002_smll_202304670 crossref_citationtrail_10_1002_smll_202304670 wiley_primary_10_1002_smll_202304670_SMLL202304670 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1991; 351 2013; 29 2017; 7 2003; 119 1990; 347 2003; 118 1991; 113 1990; 348 2009; 80 2006; 35 2015; 142 1952; 74 1851; 9 2008; 4 2005; 26 1965; 16 1908; 147 1908; 146 1964; 40 1957; 12 1952; 20 1955; 16 2018; 9 2010; 1 2001 2018; 339 1978; 21 1991; 44 2007; 7 2013; 396 2014; 8 1998; 10 2022; 368 2001; 334 1994; 76 1906; 326 2015; 1 2004; 42 1965; 33 2011; 2 1994; 90 1995; 91 1991; 254 1954; 22 2000; 63 2006; 110 1996 1970; 53 1905; 9 1924; 106 2004; 108 1999; 303 2019; 100 1909; 18 2015; 1‐2 1905; 322 2015; 60 2001; 7 2000; 78 1991; 66 1993; 99 2013; 138 1993; 98 2003; 68 2016 1992; 25 2014 1996; 118 2012; 8 1910; 83 1946; 14 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Brown R. (e_1_2_9_1_1) 2015 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 Perrin J. (e_1_2_9_7_1) 1908; 147 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Perrin J. (e_1_2_9_6_1) 1908; 147 Perrin J. (e_1_2_9_5_1) 1908; 146 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 Perrin J. (e_1_2_9_8_1) 1909; 18 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 Stokes G. G. (e_1_2_9_37_1) 1851; 9 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 Daldrop J. O. (e_1_2_9_48_1) 2017; 7 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 118 start-page: 1777 year: 1996 publication-title: J. Am. Chem. Soc. – volume: 138 year: 2013 publication-title: J. Chem. Phys. – volume: 2 start-page: 335 year: 2011 publication-title: Nat. Commun. – volume: 16 start-page: 67 year: 1965 publication-title: Annu. Rev. Phys. Chem. – volume: 326 start-page: 756 year: 1906 publication-title: Ann. Phys. – volume: 351 start-page: 632 year: 1991 publication-title: Nature – volume: 7 start-page: 1276 year: 2007 publication-title: Nano Lett. – volume: 8 start-page: 3637 year: 2012 publication-title: J. Chem. Theory Comput. – volume: 4 start-page: 435 year: 2008 publication-title: J. Chem. Theory Comput. – volume: 98 start-page: 574 year: 1993 publication-title: J. Chem. Phys. – volume: 76 start-page: 505 year: 1994 publication-title: J. Statist. Phys. – volume: 147 start-page: 530 year: 1908 publication-title: C. R. Acad. Sci. Paris – year: 2001 – volume: 322 start-page: 549 year: 1905 publication-title: Ann. Phys. – volume: 100 year: 2019 publication-title: Phys. Rev. E – volume: 119 start-page: 8062 year: 2003 publication-title: J. Chem. Phys. – volume: 35 year: 2006 publication-title: J. Phys. Chem. Ref. Data – volume: 74 start-page: 4155 year: 1952 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 5 year: 1909 publication-title: Ann. Chim. Phys. – volume: 334 start-page: 337 year: 2001 publication-title: Chem. Phys. Lett. – year: 2014 – volume: 118 start-page: 7888 year: 2003 publication-title: J. Chem. Phys. – volume: 99 start-page: 6983 year: 1993 publication-title: J. Chem. Phys. – volume: 83 start-page: 357 year: 1910 publication-title: Proc. R. Soc. London A. – volume: 9 start-page: 781 year: 1905 publication-title: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science – volume: 1 start-page: 2903 year: 2010 publication-title: J. Phys. Chem. Lett. – volume: 108 start-page: 6767 year: 2004 publication-title: J. Phys. Chem. B – volume: 29 start-page: 845 year: 2013 publication-title: Bioinformatics – volume: 90 start-page: 3039 year: 1994 publication-title: J. Chem. Soc., Faraday Trans. – volume: 339 start-page: 264 year: 2018 publication-title: Powder Technol. – volume: 254 start-page: 410 year: 1991 publication-title: Science – volume: 10 year: 1998 publication-title: J. Phys.: Condens. Matter – volume: 7 start-page: 306 year: 2001 publication-title: Mol. Model. Annu. – volume: 7 year: 2017 publication-title: Phys. Rev. X – volume: 1‐2 start-page: 19 year: 2015 publication-title: SoftwareX – volume: 113 start-page: 3190 year: 1991 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 6345 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 66 start-page: 2911 year: 1991 publication-title: Phys. Rev. Lett. – volume: 80 year: 2009 publication-title: Phys. Rev. E – volume: 12 start-page: 1203 year: 1957 publication-title: J. Phys. Soc. Jpn. – volume: 348 start-page: 621 year: 1990 publication-title: Nature – volume: 26 start-page: 1701 year: 2005 publication-title: J. Comp. Chem. – volume: 68 year: 2003 publication-title: Phys. Rev. E – volume: 78 start-page: 1606 year: 2000 publication-title: Biophys. J. – volume: 8 start-page: 8871 year: 2014 publication-title: ACS Nano – volume: 147 start-page: 475 year: 1908 publication-title: C. R. Acad. Sci. Paris – volume: 396 start-page: 53 year: 2013 publication-title: J. Colloid Interface Sci. – volume: 106 start-page: 724 year: 1924 publication-title: Proc. R. Soc. London A. – volume: 60 start-page: 3621 year: 2015 publication-title: J. Chem. Eng. Data – volume: 142 year: 2015 publication-title: J. Chem. Phys. – volume: 40 start-page: 2527 year: 1964 publication-title: J. Chem. Phys. – volume: 20 start-page: 1281 year: 1952 publication-title: J. Chem. Phys. – volume: 9 start-page: 8 year: 1851 publication-title: Trans. Cambridge Philos. Soc. – volume: 14 start-page: 180 year: 1946 publication-title: J. Chem. Phys. – volume: 25 start-page: 169 year: 1992 publication-title: Acc. Chem. Res. – volume: 1 start-page: 463 year: 2015 end-page: 486 – year: 2016 – volume: 118 year: 1996 publication-title: J. Am. Chem. Soc. – volume: 91 start-page: 43 year: 1995 publication-title: Comput. Phys. Commun. – volume: 16 start-page: 19 year: 1955 publication-title: J. Polym. Sci. – volume: 110 year: 2006 publication-title: J. Phys. Chem. B – volume: 108 year: 2004 publication-title: J. Phys. Chem. B – volume: 347 start-page: 354 year: 1990 publication-title: Nature – volume: 146 start-page: 967 year: 1908 publication-title: C. R. Acad. Sci. Paris – start-page: 60 year: 1996 end-page: 79 – volume: 44 start-page: 6677 year: 1991 publication-title: Phys. Rev. A – volume: 254 start-page: 408 year: 1991 publication-title: Science – volume: 63 year: 2000 publication-title: Phys. Rev. E – volume: 12 start-page: 570 year: 1957 publication-title: J. Phys. Soc. Jpn. – volume: 33 start-page: 423 year: 1965 publication-title: Prog. Theor. Phys. – volume: 22 start-page: 398 year: 1954 publication-title: J. Chem. Phys. – volume: 303 start-page: 583 year: 1999 publication-title: Chem. Phys. Lett. – volume: 21 start-page: 566 year: 1978 publication-title: Soviet Phys.‐Usp. – volume: 53 start-page: 3813 year: 1970 publication-title: J. Chem. Phys. – volume: 42 start-page: 1907 year: 2004 publication-title: Carbon – volume: 368 year: 2022 publication-title: J. Mol. Liq. – volume: 7 year: 2017 ident: e_1_2_9_48_1 publication-title: Phys. Rev. X – volume: 18 start-page: 5 year: 1909 ident: e_1_2_9_8_1 publication-title: Ann. Chim. Phys. – ident: e_1_2_9_10_1 doi: 10.1016/S0006-3495(00)76713-0 – ident: e_1_2_9_29_1 doi: 10.1016/S0009-2614(99)00266-3 – ident: e_1_2_9_60_1 doi: 10.1070/PU1978v021n07ABEH005665 – ident: e_1_2_9_24_1 doi: 10.1038/351632a0 – ident: e_1_2_9_25_1 doi: 10.1016/j.carbon.2004.03.022 – ident: e_1_2_9_33_1 doi: 10.1063/1.1610442 – ident: e_1_2_9_70_1 doi: 10.1038/348621a0 – ident: e_1_2_9_53_1 doi: 10.1021/ct3000876 – ident: e_1_2_9_20_1 doi: 10.1021/acs.jpclett.8b02703 – volume: 147 start-page: 530 year: 1908 ident: e_1_2_9_7_1 publication-title: C. R. Acad. Sci. Paris – ident: e_1_2_9_4_1 doi: 10.1002/andp.19063261405 – ident: e_1_2_9_16_1 – ident: e_1_2_9_46_1 doi: 10.1103/PhysRevE.100.012126 – ident: e_1_2_9_28_1 doi: 10.1088/0953-8984/10/45/005 – ident: e_1_2_9_35_1 doi: 10.1103/PhysRevE.80.061204 – volume: 9 start-page: 8 year: 1851 ident: e_1_2_9_37_1 publication-title: Trans. Cambridge Philos. Soc. – ident: e_1_2_9_32_1 doi: 10.1063/1.1563593 – ident: e_1_2_9_21_1 doi: 10.1016/B978-012221820-0/50003-4 – ident: e_1_2_9_54_1 doi: 10.1093/bioinformatics/btt055 – ident: e_1_2_9_56_1 doi: 10.1021/ja9621760 – ident: e_1_2_9_13_1 doi: 10.1016/j.powtec.2018.08.008 – ident: e_1_2_9_12_1 doi: 10.1016/j.jcis.2013.01.005 – ident: e_1_2_9_45_1 doi: 10.1093/oso/9780195140187.001.0001 – ident: e_1_2_9_59_1 doi: 10.1021/jp0477147 – ident: e_1_2_9_67_1 doi: 10.1021/ar00015a011 – ident: e_1_2_9_15_1 doi: 10.1063/1.464599 – ident: e_1_2_9_43_1 doi: 10.1063/1.1725558 – ident: e_1_2_9_65_1 doi: 10.1063/1.1928233 – ident: e_1_2_9_64_1 doi: 10.1007/978-4-431-55985-6 – ident: e_1_2_9_49_1 doi: 10.1002/jcc.20291 – ident: e_1_2_9_69_1 doi: 10.1038/347354a0 – ident: e_1_2_9_30_1 doi: 10.1103/PhysRevE.63.011205 – volume: 147 start-page: 475 year: 1908 ident: e_1_2_9_6_1 publication-title: C. R. Acad. Sci. Paris – ident: e_1_2_9_41_1 doi: 10.1143/JPSJ.12.570 – ident: e_1_2_9_11_1 doi: 10.1021/jp064364a – ident: e_1_2_9_66_1 doi: 10.1021/ja00008a068 – ident: e_1_2_9_73_1 doi: 10.1021/nl070192x – ident: e_1_2_9_9_1 doi: 10.1098/rspa.1924.0100 – ident: e_1_2_9_58_1 doi: 10.1063/1.465445 – ident: e_1_2_9_2_1 doi: 10.1002/andp.19053220806 – ident: e_1_2_9_44_1 doi: 10.1143/PTP.33.423 – ident: e_1_2_9_34_1 doi: 10.1021/jp037185r – ident: e_1_2_9_42_1 doi: 10.1143/JPSJ.12.1203 – ident: e_1_2_9_39_1 doi: 10.1063/1.1700722 – ident: e_1_2_9_3_1 doi: 10.1080/14786440509463331 – ident: e_1_2_9_27_1 doi: 10.1039/ft9949003039 – ident: e_1_2_9_63_1 doi: 10.1201/b19028 – ident: e_1_2_9_61_1 doi: 10.1063/1.4922941 – ident: e_1_2_9_23_1 doi: 10.1126/science.254.5030.408 – ident: e_1_2_9_62_1 doi: 10.1021/nn503205k – ident: e_1_2_9_74_1 doi: 10.1021/ja01136a059 – ident: e_1_2_9_47_1 doi: 10.1007/BF02188673 – start-page: 463 volume-title: Cambridge Library Collection ‐ Botany and Horticulture year: 2015 ident: e_1_2_9_1_1 – ident: e_1_2_9_52_1 doi: 10.1021/ct700301q – ident: e_1_2_9_14_1 doi: 10.1146/annurev.pc.16.100165.000435 – ident: e_1_2_9_31_1 doi: 10.1016/S0009-2614(00)01290-2 – ident: e_1_2_9_36_1 doi: 10.1063/1.1673845 – ident: e_1_2_9_55_1 doi: 10.1016/j.softx.2015.06.001 – ident: e_1_2_9_72_1 doi: 10.1103/PhysRevE.68.061206 – ident: e_1_2_9_51_1 doi: 10.1007/s008940100045 – ident: e_1_2_9_77_1 doi: 10.1098/rspa.1910.0024 – ident: e_1_2_9_68_1 doi: 10.1103/PhysRevLett.66.2911 – ident: e_1_2_9_19_1 doi: 10.1021/ja953467w – ident: e_1_2_9_40_1 doi: 10.1063/1.1740082 – ident: e_1_2_9_57_1 doi: 10.1016/j.molliq.2022.120636 – ident: e_1_2_9_50_1 doi: 10.1016/0010-4655(95)00042-E – ident: e_1_2_9_71_1 doi: 10.1063/1.4795498 – ident: e_1_2_9_78_1 doi: 10.1021/jz100944k – ident: e_1_2_9_22_1 doi: 10.1126/science.254.5030.410 – ident: e_1_2_9_75_1 doi: 10.1002/pol.1955.120168102 – ident: e_1_2_9_76_1 doi: 10.1103/PhysRevA.44.6677 – ident: e_1_2_9_26_1 – ident: e_1_2_9_17_1 doi: 10.1038/ncomms1338 – ident: e_1_2_9_18_1 doi: 10.1021/acs.jced.5b00609 – volume: 146 start-page: 967 year: 1908 ident: e_1_2_9_5_1 publication-title: C. R. Acad. Sci. Paris – ident: e_1_2_9_38_1 doi: 10.1063/1.1724117 |
SSID | ssj0031247 |
Score | 2.5248382 |
Snippet | The Stokes–Einstein–Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid... The Stokes-Einstein-Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid... The Stokes–Einstein–Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid... The Stokes-Einstein-Sutherland (SES) equation is at the foundation of statistical physics, relating a particle's diffusion coefficient and size with the fluid... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2304670 |
SubjectTerms | analytical ultracentrifugation boundary condition Boundary conditions Buckminsterfullerene Diffusion coefficient Dilution Green–Kubo formalism molecular dynamics Simulation Solvents Stokes–Einstein–Sutherland equation Toluene |
Title | The Stokes–Einstein–Sutherland Equation at the Nanoscale Revisited |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202304670 https://www.ncbi.nlm.nih.gov/pubmed/37806757 https://www.proquest.com/docview/2923150705 https://www.proquest.com/docview/2874836105 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4VTuXAT6Gw5UephMTJYMdOnBwrWEAVrRALErfIdmwJAVlospee-g68AM_Co_AkHSebwIJQpXKKk4wVx57xfOOfzwCbhllHE2FImktLhJOCpNRyYjjXWjmWSFMvkP0ZH56J7-fR-bNd_A0_RDfg5i2j7q-9gStd7jyRhpbXV37qwA9qxtIH7YzHnjx_76Tjj-LovOrTVdBnEU-81bI20nBnMvukV3oFNSeRa-169udAtYVuVpxcbo8qvW1-v-BzfM9fzcPsGJcG3xpFWoAPtvgEM8_YChfhAFUqGFTDS1s-_rnrXyCwtBcFJgejdtNw0L9tqMMf7lUV4NMAe-9hiXpgg5N6HzsC3CU42--f7h6S8TkMxHgXR3QeO65yyqXlmluXRlbGVDutEDwxahjXqQ2Fcjp0UqpcYJBichepJLU8Z4x_huliWNgVCEzEtKRWK4xihNAMEzRyUlODF65ND0jbDpkZk5T7szKusoZeOcx8BWVdBfVgq5O_aeg53pRca5s1G5tpmYUe3iIiplEPvnav0cD8rIkq7HCEMokUCUeUiTLLjTp0n-Iy8RGX7EFYN-o_ypANfhwddXdf_ifTKnzEtGjWja_BdPVrZNcRFlV6A6ZCcbxRG8BfGQ4ISQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD6axgXsgp_9QKFsmTSJK29O7NTJJYJ23db2ou0k7iLbsaWpJQGa3nDFO_ACPAuPwpNwnDRh3YQmbVdxHEdx7HN8vmMffwY40r6xNOKaxKkwhFvBSUwNI5oxpaT1I6HLANlRp3_Jzz-FdTSh2wtT8UM0E25OM8rx2im4m5A--ccauvg8d2sHblazI9Brf8QRbTj_6-O4YZBiaL7K81XQahFHvVXzNtLgZP39dbt0C2yuY9fS-PSegaqrXcWczI6XhTrW328wOj7ov57D0xU09d5XsvQCNky2DVvXCAt34BSlypsU-cws_vz42b1CbGmuMkxOlvW-Ya_7tWIP__1LFh7mejiA5wsUBeONy63siHF34bLXnX7ok9VRDEQ7K0dU2rFMppQJwxQzNg6N6FBllUT85FPtMxWbgEurAiuETDn6KTq1oYxiw1LfZ3uwmeWZeQWeDn0lqFESHRnOlY8JGlqhqMYLU7oFpO6IRK94yt1xGfOkYlgOEtdASdNALXjXlP9SMXT8t2S77tdkpamLJHAIF-WGhi04bB6jjrmFE5mZfIllIsEjhkATy7ys5KH5FBORc7pEC4KyV--oQzIZDgbN3ev7vHQAj_vT4SAZnI0u3sATzOdVGHkbNotvS_MWUVKh9ks9-AtinwuR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD6aNmkaF2zjt1uBICHtyp0TO3FyiUZLgVKhlUm9i2zHlqaVtFvTm13xDrzAnoVH4Uk4TprQbpqQ4CqOc6I49jk-3_HPZ4A32jeWxlyTJBOGcCs4SahhRDOmlLR-LHS5QHYY9c_4x3E4XtnFX_FDNANuzjLK_toZ-Cyzx39IQ-ffJm7qwA1qRgKD9i0eIZxwsOi0IZBi6L3K41XQaRHHvFXTNtLgeP39dbd0B2uuQ9fS9_R2QdalrpacXHQWhero61uEjv_zW3vwcAlMvbeVJu3DhskfwYMVusLH8B51yhsV0wsz__X9R_cckaU5zzE5WtS7hr3uZcUd_vNGFh7meth9T-eoCMY7LTeyI8J9Ame97teTPlkexEC083FEZZFlMqNMGKaYsUloRESVVRLRk0-1z1RiAi6tCqwQMuMYpejMhjJODMt8nz2FzXyam-fg6dBXgholMYzhXPmYoKEVimq8MKVbQOp2SPWSpdwdljFJK37lIHUVlDYV1IKjRn5W8XPcK9mumzVd2uk8DRy-RUhMwxa8bh6jhblpE5mb6QJlYsFjhjATZZ5V6tB8ionYhVyiBUHZqH8pQzr6PBg0dwf_8tIr2P7yrpcOPgw_HcIOZvNqDXkbNourhXmBEKlQL0sr-A06EgpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Stokes-Einstein-Sutherland+Equation%C2%A0at+the+Nanoscale+Revisited&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Baer%2C+Andreas&rft.au=Wawra%2C+Simon+E&rft.au=Bielmeier%2C+Kristina&rft.au=Uttinger%2C+Maximilian+J&rft.date=2024-02-01&rft.eissn=1613-6829&rft.volume=20&rft.issue=6&rft.spage=e2304670&rft_id=info:doi/10.1002%2Fsmll.202304670&rft_id=info%3Apmid%2F37806757&rft.externalDocID=37806757 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |