Single Crystals Heterogeneity Impacts the Intrinsic and Extrinsic Properties of Metal–Organic Frameworks

At present, an enormous characterization gap exists between the study of the crystal structure of a material and its bulk properties. Individual particles falling within this gap cannot be fully characterized in a correlative manner by current methods. The authors address this problem by exploiting...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 3; pp. e2104530 - n/a
Main Authors Fuchs, Adrian, Mannhardt, Petra, Hirschle, Patrick, Wang, Haoze, Zaytseva, Irina, Ji, Zhe, Yaghi, Omar, Wuttke, Stefan, Ploetz, Evelyn
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract At present, an enormous characterization gap exists between the study of the crystal structure of a material and its bulk properties. Individual particles falling within this gap cannot be fully characterized in a correlative manner by current methods. The authors address this problem by exploiting the noninvasive nature of optical microscopy and spectroscopy for the correlative analysis of metal‐organic framework particles in situ. They probe the intrinsic as well as extrinsic properties in a correlated manner. The authors show that the crystal shape of MIL‐88A strongly impacts its optical absorption. Furthermore, the question of how homogeneously water is distributed and adsorbed within one of the most promising materials for harvesting water from humid air, MOF‐801, is addressed. The results demonstrate the considerable importance of the particle level and how it can affect the property of the material. The influence of heterogeneities in metal–organic frameworks (MOFs) can be enormous at the single‐particle level but is often neglected in characterization due to the lack of microscopes capable of correlated studies on the same crystals. The authors present an analysis platform for correlated, in situ spectroscopy and imaging named MOSAIC, and unveil new heterogeneity–property relations for two important MOF systems.
AbstractList Abstract At present, an enormous characterization gap exists between the study of the crystal structure of a material and its bulk properties. Individual particles falling within this gap cannot be fully characterized in a correlative manner by current methods. The authors address this problem by exploiting the noninvasive nature of optical microscopy and spectroscopy for the correlative analysis of metal‐organic framework particles in situ. They probe the intrinsic as well as extrinsic properties in a correlated manner. The authors show that the crystal shape of MIL‐88A strongly impacts its optical absorption. Furthermore, the question of how homogeneously water is distributed and adsorbed within one of the most promising materials for harvesting water from humid air, MOF‐801, is addressed. The results demonstrate the considerable importance of the particle level and how it can affect the property of the material.
At present, an enormous characterization gap exists between the study of the crystal structure of a material and its bulk properties. Individual particles falling within this gap cannot be fully characterized in a correlative manner by current methods. The authors address this problem by exploiting the noninvasive nature of optical microscopy and spectroscopy for the correlative analysis of metal-organic framework particles in situ. They probe the intrinsic as well as extrinsic properties in a correlated manner. The authors show that the crystal shape of MIL-88A strongly impacts its optical absorption. Furthermore, the question of how homogeneously water is distributed and adsorbed within one of the most promising materials for harvesting water from humid air, MOF-801, is addressed. The results demonstrate the considerable importance of the particle level and how it can affect the property of the material.
At present, an enormous characterization gap exists between the study of the crystal structure of a material and its bulk properties. Individual particles falling within this gap cannot be fully characterized in a correlative manner by current methods. The authors address this problem by exploiting the noninvasive nature of optical microscopy and spectroscopy for the correlative analysis of metal‐organic framework particles in situ. They probe the intrinsic as well as extrinsic properties in a correlated manner. The authors show that the crystal shape of MIL‐88A strongly impacts its optical absorption. Furthermore, the question of how homogeneously water is distributed and adsorbed within one of the most promising materials for harvesting water from humid air, MOF‐801, is addressed. The results demonstrate the considerable importance of the particle level and how it can affect the property of the material. The influence of heterogeneities in metal–organic frameworks (MOFs) can be enormous at the single‐particle level but is often neglected in characterization due to the lack of microscopes capable of correlated studies on the same crystals. The authors present an analysis platform for correlated, in situ spectroscopy and imaging named MOSAIC, and unveil new heterogeneity–property relations for two important MOF systems.
Author Ji, Zhe
Zaytseva, Irina
Wang, Haoze
Yaghi, Omar
Hirschle, Patrick
Wuttke, Stefan
Ploetz, Evelyn
Fuchs, Adrian
Mannhardt, Petra
Author_xml – sequence: 1
  givenname: Adrian
  surname: Fuchs
  fullname: Fuchs, Adrian
  organization: LMU Munich
– sequence: 2
  givenname: Petra
  surname: Mannhardt
  fullname: Mannhardt, Petra
  organization: LMU Munich
– sequence: 3
  givenname: Patrick
  surname: Hirschle
  fullname: Hirschle, Patrick
  organization: LMU Munich
– sequence: 4
  givenname: Haoze
  orcidid: 0000-0002-6961-6554
  surname: Wang
  fullname: Wang, Haoze
  organization: and Berkeley Global Science Institute
– sequence: 5
  givenname: Irina
  orcidid: 0000-0001-6949-756X
  surname: Zaytseva
  fullname: Zaytseva, Irina
  organization: LMU Munich
– sequence: 6
  givenname: Zhe
  orcidid: 0000-0002-8532-333X
  surname: Ji
  fullname: Ji, Zhe
  organization: Department of Chemistry, Stanford University
– sequence: 7
  givenname: Omar
  orcidid: 0000-0002-5611-3325
  surname: Yaghi
  fullname: Yaghi, Omar
  organization: King Abdulaziz City for Science and Technology
– sequence: 8
  givenname: Stefan
  orcidid: 0000-0002-6344-5782
  surname: Wuttke
  fullname: Wuttke, Stefan
  email: stefan.wuttke@bcmaterials.net
  organization: Basque Foundation for Science
– sequence: 9
  givenname: Evelyn
  orcidid: 0000-0003-0922-875X
  surname: Ploetz
  fullname: Ploetz, Evelyn
  email: evelyn.ploetz@lmu.de
  organization: LMU Munich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34806239$$D View this record in MEDLINE/PubMed
BookMark eNqFkctqGzEUhkVxqJ3LtssiyKabcY6uGS2NmzSGBBearAd55ow77ozkSGNS7_oOfcM8SWScONBNVwdxPn0S_39MBs47JOQTgzED4Be26uyYA2cglYAPZMQUZ5kEowZkBEaozGiZD8lxjCsAMBr0RzIUMgfNhRmR1Y_GLVuk07CNvW0jvcEeg1-iw6bf0lm3tmUfaf8T6cz1oXGxKal1Fb36_Xb6HvwaQ99gpL6md5g0z3_-zsPSurS9DrbDJx9-xVNyVKcX8Ox1npCH66v76U12O_82m05us1IyAZnlAiWAxkpIrWqsha6rGqqFFbmtdInKSqkrI3ipNBpc5GDFJTILeY5GMXFCvuy96-AfNxj7omtiiW1rHfpNLLgGyDljWiX0_B905TfBpd8lijO9y4snarynyuBjDFgX69B0NmwLBsWuhWLXQnFoIV34_KrdLDqsDvhb7Akwe-CpaXH7H10x-Xo3eZe_AKq9lxo
CitedBy_id crossref_primary_10_1002_eom2_12473
crossref_primary_10_1021_acs_langmuir_2c00816
crossref_primary_10_1016_j_jcis_2023_02_010
crossref_primary_10_3390_nano12234263
crossref_primary_10_1021_jacs_3c02902
crossref_primary_10_1002_cbic_202200005
crossref_primary_10_1016_j_xcrp_2023_101656
crossref_primary_10_1002_adfm_202310884
crossref_primary_10_1021_acsami_2c18510
crossref_primary_10_1038_s41578_024_00665_2
crossref_primary_10_1016_j_jcou_2022_102262
crossref_primary_10_1021_jacs_3c14778
crossref_primary_10_1002_anse_202300052
crossref_primary_10_3390_en16134950
crossref_primary_10_1002_adfm_202307518
crossref_primary_10_1016_j_jmst_2023_11_036
Cites_doi 10.1039/D0CC05470D
10.1039/c2cc15939b
10.1080/14786449908621276
10.1021/jacs.7b01660
10.3390/ma10030223
10.1021/nn505576p
10.1016/j.bpj.2018.02.035
10.1126/science.1230444
10.1021/jacs.1c04804
10.1364/OL.26.001341
10.1039/C9CP05082E
10.1016/j.aca.2016.08.024
10.1039/C6CS00395H
10.1039/C7CS00162B
10.1021/ja511381f
10.1002/anie.201205627
10.1021/acs.chemmater.6b01087
10.1038/s41467-018-04050-w
10.1039/D0SC00735H
10.1021/acsami.8b22002
10.1364/JOSAA.10.000343
10.1007/978-1-4939-7265-4_9
10.1039/C7TA00194K
10.1126/science.aam8743
10.2217/nnm-2018-0335
10.1021/acsnano.9b04224
10.1002/anie.200900339
10.1039/C4DT02582B
10.1002/anie.201706492
10.1016/j.chempr.2019.03.003
10.1002/adfm.201908292
10.1038/nmat2608
10.1016/j.ccr.2019.02.032
10.1002/adma.201907267
10.1126/sciadv.aat9180
10.1039/C5CS00396B
10.1021/acscentsci.0c00592
10.1002/9783527699827.ch37
10.1002/anie.200804785
10.1002/anie.201309295
10.1021/ja0675447
10.1021/ac303620y
10.1002/adfm.201907847
10.1016/j.inoche.2019.01.039
10.1021/ma951522f
10.1039/D0CS01059F
10.1126/sciadv.aat3198
10.1038/lsa.2014.60
10.1364/OE.26.010230
10.1038/nmeth.2019
10.1021/acs.jpclett.7b02104
10.1002/andp.19083300302
10.1002/jrs.1250110106
10.1002/anie.201000048
10.1038/s42004-020-00361-6
10.1126/science.aam7851
10.1021/jacs.0c08773
10.1021/ja108625z
10.1039/C9CC01363F
10.1002/anie.202011564
10.1021/acs.chemmater.9b03662
10.1002/adfm.201909062
10.1007/s11095-019-2589-4
10.1021/ja7113147
10.1016/j.jallcom.2020.157433
10.1038/s41598-020-57885-z
10.1016/j.drudis.2016.10.001
10.1038/s41598-021-86774-2
10.1002/9783527618156.ch3
10.1021/ja500330a
10.1002/adhm.201800022
10.1126/science.aag2472
10.1021/ic500434a
10.1039/D1TA01043C
10.1021/ja2088025
10.1039/C5DT04392A
10.1039/D0CS00635A
10.1186/s12859-017-1934-z
ContentType Journal Article
Copyright 2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH
2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202104530
DatabaseName Wiley Online Library Open Access
Wiley Online Library Free Content
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202104530
34806239
ADMA202104530
Genre article
Journal Article
GrantInformation_xml – fundername: Nanosystems Initiative Munich
– fundername: Center for NanoScience Munich
– fundername: Center for Integrated Protein Science Munich
– fundername: Deutsche Forschungsgemeinschaft
  funderid: PL 696/4‐1; WU 622/4‐1; Project‐ID 201269156 ‐ SFB1032 (B03)
– fundername: Deutsche Forschungsgemeinschaft
  grantid: Project-ID 201269156 - SFB1032 (B03)
– fundername: Deutsche Forschungsgemeinschaft
  grantid: PL 696/4-1
– fundername: Deutsche Forschungsgemeinschaft
  grantid: WU 622/4-1
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4130-a23e4006ed3465fef36fdf0dba38ad6ce5a446d932c56e9eb80a37e1a088e9513
IEDL.DBID 24P
ISSN 0935-9648
IngestDate Fri Aug 16 23:18:01 EDT 2024
Thu Oct 10 18:35:29 EDT 2024
Thu Sep 26 16:08:56 EDT 2024
Sat Sep 28 08:21:00 EDT 2024
Sat Aug 24 00:58:05 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords nonlinear imaging
particle level
metal-organic framework crystals
spectroscopy
heterogeneity
Language English
License Attribution
2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4130-a23e4006ed3465fef36fdf0dba38ad6ce5a446d932c56e9eb80a37e1a088e9513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6961-6554
0000-0002-6344-5782
0000-0003-0922-875X
0000-0002-8532-333X
0000-0002-5611-3325
0000-0001-6949-756X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202104530
PMID 34806239
PQID 2621609602
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_2600821165
proquest_journals_2621609602
crossref_primary_10_1002_adma_202104530
pubmed_primary_34806239
wiley_primary_10_1002_adma_202104530_ADMA202104530
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2019; 30
2012 2020 2017 2019 2021; 48 10 1663 14 11
2019 2010 2019; 36 9 388
2017 2018; 356 4
2019; 102
1899 1908 1890 1998; 47 330 44
2007 2020; 129 11
2001; 26
2020; 56
2016; 940
2021; 143
2020; 32
2014; 136
2018; 26
2020; 6
2018; 9
1996; 29
2020; 3
2013 2017; 52 139
2017 2020 2018 2010 2017 2008 2017 2015; 10 14 7 49 22 130 137
2020; 30
1947 2014 1993; 94 3 10
2012 2017; 9 18
2015; 44
2021 2016 2017 2017 2019 2016; 855 45 56 46 55 28
2009 2015 2009 2011 2017 2019 2014 2012 2021 2019 2014 2013 2021; 48 44 48 133 8 21 8 134 50 11 53 85 60
2018; 114
2016; 354
2020 2020; 49 30
2013 2014 2017 2019 2018 2020; 341 53 356 5 4 32
2017 2020; 5 142
2016; 45
1981; 11
e_1_2_9_31_1
e_1_2_9_10_1
e_1_2_9_12_1
e_1_2_9_33_1
Bohren C. F. (e_1_2_9_24_4) 1998
e_1_2_9_14_1
e_1_2_9_16_2
e_1_2_9_16_1
e_1_2_9_15_13
e_1_2_9_16_4
e_1_2_9_16_3
e_1_2_9_18_1
e_1_2_9_15_11
e_1_2_9_15_12
e_1_2_9_16_5
e_1_2_9_15_10
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_6_3
e_1_2_9_8_1
e_1_2_9_6_2
e_1_2_9_6_1
e_1_2_9_4_2
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_6_6
e_1_2_9_6_5
e_1_2_9_6_4
e_1_2_9_26_1
e_1_2_9_24_2
e_1_2_9_28_1
e_1_2_9_30_1
e_1_2_9_11_1
Lorenz L. (e_1_2_9_24_3) 1890; 44
e_1_2_9_34_1
e_1_2_9_34_2
e_1_2_9_11_3
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_11_2
e_1_2_9_15_9
e_1_2_9_15_8
e_1_2_9_11_5
e_1_2_9_13_3
e_1_2_9_15_1
e_1_2_9_11_4
e_1_2_9_13_2
e_1_2_9_11_7
e_1_2_9_13_5
e_1_2_9_15_3
e_1_2_9_17_1
e_1_2_9_11_6
e_1_2_9_13_4
e_1_2_9_15_2
e_1_2_9_15_5
e_1_2_9_19_1
e_1_2_9_11_8
e_1_2_9_13_6
e_1_2_9_15_4
e_1_2_9_15_7
e_1_2_9_19_3
e_1_2_9_15_6
e_1_2_9_19_2
e_1_2_9_21_1
e_1_2_9_23_2
e_1_2_9_7_1
e_1_2_9_5_1
Lewin L. (e_1_2_9_23_1) 1947; 94
e_1_2_9_3_2
e_1_2_9_3_1
e_1_2_9_1_2
e_1_2_9_1_1
e_1_2_9_9_2
e_1_2_9_9_1
e_1_2_9_23_3
e_1_2_9_25_1
e_1_2_9_27_2
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 3
  start-page: 99
  year: 2020
  publication-title: Commun. Chem.
– volume: 44
  start-page: 2047
  year: 2015
  publication-title: Dalton Trans..
– volume: 940
  start-page: 136
  year: 2016
  publication-title: Anal. Chim. Acta
– volume: 29
  start-page: 3839
  year: 1996
  publication-title: Macromolecules
– volume: 56
  year: 2020
  publication-title: Chem. Commun.
– volume: 45
  start-page: 4113
  year: 2016
  publication-title: Dalton Trans.
– volume: 32
  start-page: 2253
  year: 2020
  publication-title: Chem. Mater.
– volume: 26
  year: 2018
  publication-title: Opt. Express
– volume: 855 45 56 46 55 28
  start-page: 5408 4976 4873 3203
  year: 2021 2016 2017 2017 2019 2016
  publication-title: J. Alloys Compd. Chem. Soc. Rev. Angew. Chem., Int. Ed. Chem. Soc. Rev. Chem. Commun. Chem. Mater.
– volume: 6
  start-page: 1255
  year: 2020
  publication-title: ACS Cent. Sci.
– volume: 11
  start-page: 14
  year: 1981
  publication-title: J. Raman Spectrosc.
– volume: 26
  start-page: 1341
  year: 2001
  publication-title: Opt. Lett.
– volume: 10 14 7 49 22 130 137
  start-page: 223 28 6260 625 5763 979 1916
  year: 2017 2020 2018 2010 2017 2008 2017 2015
  publication-title: Materials ACS Nano Adv. Healthcare Mater. Angew. Chem., Int. Ed. Drug Discovery Today J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 47 330 44
  start-page: 375 377 135 57
  year: 1899 1908 1890 1998
  publication-title: London Edinburgh Dublin Philos. Mag. J. Sci. Ann. Phys. Eur. Phys. J H
– volume: 52 139
  start-page: 401 5906
  year: 2013 2017
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 49 30
  start-page: 6694
  year: 2020 2020
  publication-title: Chem. Soc. Rev. Adv. Funct. Mater.
– volume: 102
  start-page: 221
  year: 2019
  publication-title: Inorg. Chem. Commun.
– volume: 48 44 48 133 8 21 8 134 50 11 53 85 60
  start-page: 4910 7262 3525 2804 5325 1124 3519 2852 1972 1620
  year: 2009 2015 2009 2011 2017 2019 2014 2012 2021 2019 2014 2013 2021
  publication-title: Angew. Chem., Int. Ed. Chem. Soc. Rev. Angew. Chem., Int. Ed. J. Am. Chem. Soc. J. Phys. Chem. Lett. Phys. Chem. Chem. Phys. ACS Nano J. Am. Chem. Soc. Chem. Soc. Rev. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Anal. Chem. Angew. Chem., Int. Ed.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 94 3 10
  start-page: 65 343
  year: 1947 2014 1993
  publication-title: J. Inst. Electr. Eng., Part 3 Light Sci. Appl. J. Opt. Soc. Am. A
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 129 11
  start-page: 3612 4297
  year: 2007 2020
  publication-title: J. Am. Chem. Soc. Chem. Sci.
– volume: 5 142
  year: 2017 2020
  publication-title: J. Mater. Chem. A J. Am. Chem. Soc.
– volume: 36 9 388
  start-page: 53 172 202
  year: 2019 2010 2019
  publication-title: Pharm. Res. Nat. Mater. Coord. Chem. Rev.
– volume: 30
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 356 4
  start-page: 430
  year: 2017 2018
  publication-title: Science Sci. Adv.
– volume: 9
  start-page: 1647
  year: 2018
  publication-title: Nat. Commun.
– volume: 341 53 356 5 4 32
  start-page: 5881 624 1265
  year: 2013 2014 2017 2019 2018 2020
  publication-title: Science Inorg. Chem. Science Chem Sci. Adv. Adv. Mater.
– volume: 136
  start-page: 4369
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 9 18
  start-page: 676 529
  year: 2012 2017
  publication-title: Nat. Methods BMC Bioinformatics
– volume: 48 10 1663 14 11
  start-page: 1742 1122 105 1873 8067
  year: 2012 2020 2017 2019 2021
  publication-title: Chem. Commun. Sci. Rep. Methods Mol. Biol. Nanomedicine Sci. Rep.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 114
  start-page: 1518
  year: 2018
  publication-title: Biophys. J.
– volume: 354
  start-page: 846
  year: 2016
  publication-title: Science
– ident: e_1_2_9_14_1
  doi: 10.1039/D0CC05470D
– ident: e_1_2_9_16_1
  doi: 10.1039/c2cc15939b
– ident: e_1_2_9_24_1
  doi: 10.1080/14786449908621276
– ident: e_1_2_9_9_2
  doi: 10.1021/jacs.7b01660
– ident: e_1_2_9_11_1
  doi: 10.3390/ma10030223
– ident: e_1_2_9_15_7
  doi: 10.1021/nn505576p
– ident: e_1_2_9_33_1
  doi: 10.1016/j.bpj.2018.02.035
– ident: e_1_2_9_6_1
  doi: 10.1126/science.1230444
– ident: e_1_2_9_12_1
  doi: 10.1021/jacs.1c04804
– ident: e_1_2_9_17_1
  doi: 10.1364/OL.26.001341
– ident: e_1_2_9_15_6
  doi: 10.1039/C9CP05082E
– ident: e_1_2_9_20_1
  doi: 10.1016/j.aca.2016.08.024
– ident: e_1_2_9_13_2
  doi: 10.1039/C6CS00395H
– ident: e_1_2_9_13_4
  doi: 10.1039/C7CS00162B
– ident: e_1_2_9_11_8
  doi: 10.1021/ja511381f
– ident: e_1_2_9_9_1
  doi: 10.1002/anie.201205627
– ident: e_1_2_9_13_6
  doi: 10.1021/acs.chemmater.6b01087
– ident: e_1_2_9_10_1
  doi: 10.1038/s41467-018-04050-w
– ident: e_1_2_9_4_2
  doi: 10.1039/D0SC00735H
– ident: e_1_2_9_15_10
  doi: 10.1021/acsami.8b22002
– ident: e_1_2_9_23_3
  doi: 10.1364/JOSAA.10.000343
– ident: e_1_2_9_16_3
  doi: 10.1007/978-1-4939-7265-4_9
– ident: e_1_2_9_3_1
  doi: 10.1039/C7TA00194K
– ident: e_1_2_9_27_1
  doi: 10.1126/science.aam8743
– ident: e_1_2_9_16_4
  doi: 10.2217/nnm-2018-0335
– ident: e_1_2_9_11_2
  doi: 10.1021/acsnano.9b04224
– ident: e_1_2_9_15_1
  doi: 10.1002/anie.200900339
– ident: e_1_2_9_32_1
  doi: 10.1039/C4DT02582B
– ident: e_1_2_9_13_3
  doi: 10.1002/anie.201706492
– ident: e_1_2_9_6_4
  doi: 10.1016/j.chempr.2019.03.003
– ident: e_1_2_9_26_1
  doi: 10.1002/adfm.201908292
– ident: e_1_2_9_19_2
  doi: 10.1038/nmat2608
– ident: e_1_2_9_19_3
  doi: 10.1016/j.ccr.2019.02.032
– volume: 44
  start-page: 135
  year: 1890
  ident: e_1_2_9_24_3
  publication-title: Eur. Phys. J H
  contributor:
    fullname: Lorenz L.
– ident: e_1_2_9_6_6
  doi: 10.1002/adma.201907267
– ident: e_1_2_9_6_5
  doi: 10.1126/sciadv.aat9180
– volume: 94
  start-page: 65
  year: 1947
  ident: e_1_2_9_23_1
  publication-title: J. Inst. Electr. Eng., Part 3
  contributor:
    fullname: Lewin L.
– ident: e_1_2_9_15_2
  doi: 10.1039/C5CS00396B
– ident: e_1_2_9_5_1
  doi: 10.1021/acscentsci.0c00592
– ident: e_1_2_9_11_7
  doi: 10.1002/9783527699827.ch37
– ident: e_1_2_9_15_3
  doi: 10.1002/anie.200804785
– ident: e_1_2_9_15_11
  doi: 10.1002/anie.201309295
– ident: e_1_2_9_4_1
  doi: 10.1021/ja0675447
– ident: e_1_2_9_15_12
  doi: 10.1021/ac303620y
– ident: e_1_2_9_1_2
  doi: 10.1002/adfm.201907847
– ident: e_1_2_9_21_1
  doi: 10.1016/j.inoche.2019.01.039
– ident: e_1_2_9_30_1
  doi: 10.1021/ma951522f
– ident: e_1_2_9_15_9
  doi: 10.1039/D0CS01059F
– ident: e_1_2_9_27_2
  doi: 10.1126/sciadv.aat3198
– ident: e_1_2_9_23_2
  doi: 10.1038/lsa.2014.60
– ident: e_1_2_9_18_1
  doi: 10.1364/OE.26.010230
– ident: e_1_2_9_34_1
  doi: 10.1038/nmeth.2019
– ident: e_1_2_9_15_5
  doi: 10.1021/acs.jpclett.7b02104
– ident: e_1_2_9_24_2
  doi: 10.1002/andp.19083300302
– ident: e_1_2_9_31_1
  doi: 10.1002/jrs.1250110106
– ident: e_1_2_9_11_4
  doi: 10.1002/anie.201000048
– ident: e_1_2_9_2_1
  doi: 10.1038/s42004-020-00361-6
– ident: e_1_2_9_6_3
  doi: 10.1126/science.aam7851
– ident: e_1_2_9_3_2
  doi: 10.1021/jacs.0c08773
– ident: e_1_2_9_15_4
  doi: 10.1021/ja108625z
– ident: e_1_2_9_13_5
  doi: 10.1039/C9CC01363F
– ident: e_1_2_9_15_13
  doi: 10.1002/anie.202011564
– ident: e_1_2_9_22_1
  doi: 10.1021/acs.chemmater.9b03662
– ident: e_1_2_9_8_1
  doi: 10.1002/adfm.201909062
– ident: e_1_2_9_19_1
  doi: 10.1007/s11095-019-2589-4
– ident: e_1_2_9_11_6
  doi: 10.1021/ja7113147
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jallcom.2020.157433
– ident: e_1_2_9_16_2
  doi: 10.1038/s41598-020-57885-z
– ident: e_1_2_9_11_5
  doi: 10.1016/j.drudis.2016.10.001
– ident: e_1_2_9_16_5
  doi: 10.1038/s41598-021-86774-2
– start-page: 57
  volume-title: Absorption and Scattering of Light by Small Particles
  year: 1998
  ident: e_1_2_9_24_4
  doi: 10.1002/9783527618156.ch3
  contributor:
    fullname: Bohren C. F.
– ident: e_1_2_9_28_1
  doi: 10.1021/ja500330a
– ident: e_1_2_9_11_3
  doi: 10.1002/adhm.201800022
– ident: e_1_2_9_25_1
  doi: 10.1126/science.aag2472
– ident: e_1_2_9_6_2
  doi: 10.1021/ic500434a
– ident: e_1_2_9_7_1
  doi: 10.1039/D1TA01043C
– ident: e_1_2_9_15_8
  doi: 10.1021/ja2088025
– ident: e_1_2_9_29_1
  doi: 10.1039/C5DT04392A
– ident: e_1_2_9_1_1
  doi: 10.1039/D0CS00635A
– ident: e_1_2_9_34_2
  doi: 10.1186/s12859-017-1934-z
SSID ssj0009606
Score 2.525229
Snippet At present, an enormous characterization gap exists between the study of the crystal structure of a material and its bulk properties. Individual particles...
Abstract At present, an enormous characterization gap exists between the study of the crystal structure of a material and its bulk properties. Individual...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2104530
SubjectTerms Crystal structure
Heterogeneity
Materials science
Metal-organic frameworks
metal–organic framework crystals
nonlinear imaging
Optical microscopy
particle level
Single crystals
spectroscopy
Title Single Crystals Heterogeneity Impacts the Intrinsic and Extrinsic Properties of Metal–Organic Frameworks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202104530
https://www.ncbi.nlm.nih.gov/pubmed/34806239
https://www.proquest.com/docview/2621609602
https://search.proquest.com/docview/2600821165
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-wwFA7i3ehCvD6u1bkSQXBV7CRpJrMcHIdRGBEf4K6cNieLi3Qu0xGuO_-D_9Bf4kk6rQ4uLrhpCW2ach7Jd5KcL4wdpyIBgrUqzqGbxkprG5uu68UJEpxIUYIKuyonV3p8ry4f0odPWfw1P0Q74eY9I_TX3sEhr04_SEPBBt4gCllUKilo_0HYxni7Fur6g3ZXh9M1_Wpf3NfKNLSNiThdrr88LH3BmsvQNYw9o022sQCNfFBr-SdbwXKLrX-iEtxmf27p9oj8bPZMeO-x4mO_z2VK5oGEs_lFSIasOME9flHOqQ5ph0Np-fm_pnTt5-VnnmCVTx2fIH3m7eW1TtYs-KjZxVXtsPvR-d3ZOF6coxAXfoiKQUgkV9VopdKpQye1sy6xOUgDVheYAgWFlpBckWrsY24SkD3sAvVASAhM7rLVclriHuMAThjXzxNwVqFRubVA6i608T2D6EXspBFj9remy8hqYmSReYFnrcAj1mmknC3cpsqEFl3tlSYidtQ-JoP3qxhQ4vTJv-Nhi2cNitivWjttU1KZhPBcP2IiqOs__5ANhpNBW9r_TqUDtiZ8QkSYlOmw1fnsCX8TTJnnh8ES6Tq8Ee907-BR
link.rule.ids 315,786,790,1382,11589,27955,27956,46085,46327,46509,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5VcGg5ICgtDX81UqWeIrK2480eV8Bqt2URUkHqLXLi8QGhbLW7SHDjHXhDnoQZZxNYcajEKbISJ9GMx_5mPPMZ4EcqE0uwVseF7aSxNsbFWcd34wQJTqSorA5ZleNzM7zSv_6mTTYh18LU_BBtwI0tI8zXbOAckD56YQ21LhAHkc-iU0Ve-6pmNjgmd9YXL7y7Jhyvydt9cc_orOFtTOTRcv_ldekN2FzGrmHxGWzA-gI1in6t5k34gNVnWHvFJbgF13_ocoPieHpPgO9mJoac6DKh8YEEtMUoVEPOBOE9Marm1IfUI2zlxOld07rgwPyUGVbFxIsx0mueHh7ras1SDJo0rtkXuBqcXh4P48VBCnHJa1RspUKyVYNOkYw8emW884krrMqsMyWmlrxCR1CuTA32sMgSq7rYsTQFIUEw9RVWqkmF30BY62Xme0VivdOY6cI5S_ouTcZTg-xG8LMRY_6v5svIa2ZkmbPA81bgEew1Us4XdjPLpZEdw0qTERy2t2nE8zaGrXByy88wbmHaoAi2a-20n1I6SwjQ9SKQQV3_-Ye8fzLut62d93T6Dh-Hl-Oz_Gx0_nsXPkmujggRmj1YmU9vcZ8wy7w4CKPyGUcb4tA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pa9swFMcfo4OxHsa6rZ37axoMdjJxJFlxjqFJSLqlBLZAbka2ng6l2CVJob31f-h_2L-kT3LsNPRQ6MkIW7bR05M--vG-AvgV80gT1sow0-04lEqZMGnbThgh4USMQku_q3JyoUYzeT6P58-i-Ct9iGbCzXmGb6-dg18b29qIhmrjdYNoyCJjQYP291IRPjhtZzndyO4qf7qmW-0Lu0omtWxjxFvb-be7pResuY2uvu8ZfoZPa2hkvcrKe_AOiy-w-0xK8Ctc_qPLFbKzxR3x3tWSjdw-l5KqBxJns7EPhlwywj02LlaUh6zDdGHY4LZOTd28_MIJrLLSsgnSax7vH6pgzZwN611cy28wGw7-n43C9TkKYe66qFBzgeSqCo2QKrZohbLGRibTItFG5RhrGhQaIrk8VtjFLIm06GBbUwuERGBiH3aKssDvwLS2PLHdLNLWSExkZowmc-cqcS0D7wTwuy7G9LqSy0grYWSeugJPmwIP4Lgu5XTtNsuUK95Wzmg8gJ_NbarwbhVDF1jeuGcctjjVoAAOKus0nxIyiYjnugFwb65X_iHt9Se9JnX4lkw_4MO0P0z_ji_-HMFH7mIj_PzMMeysFjd4QsSyyk59pXwC8sHh-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Crystals+Heterogeneity+Impacts+the+Intrinsic+and+Extrinsic+Properties+of+Metal%E2%80%93Organic+Frameworks&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Fuchs%2C+Adrian&rft.au=Mannhardt%2C+Petra&rft.au=Hirschle%2C+Patrick&rft.au=Wang%2C+Haoze&rft.date=2022-01-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=3&rft_id=info:doi/10.1002%2Fadma.202104530&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202104530
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon