GOES-10 microphysical retrievals in marine warm clouds: Multi-instrument validation and daytime cycle over the southeast Pacific

The daytime evolution of warm cloud microphysical properties over the southeast Pacific during October–November 2008 is investigated with optical/infrared retrievals from the Tenth Geostationary Operational Environmental Satellite (GOES‐10) imager. GOES‐10 retrievals, produced at NASA Langley Resear...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Atmospheres Vol. 117; no. D19
Main Authors Painemal, David, Minnis, Patrick, Ayers, J. Kirk, O'Neill, Larry
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 16.10.2012
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The daytime evolution of warm cloud microphysical properties over the southeast Pacific during October–November 2008 is investigated with optical/infrared retrievals from the Tenth Geostationary Operational Environmental Satellite (GOES‐10) imager. GOES‐10 retrievals, produced at NASA Langley Research Center, are validated against in situ aircraft observations and with independent satellite observations. Comparisons with in situ observations reveal high linear correlations (r) for cloud effective radius (re) and optical thickness (τ) (r = 0.89 and 0.69 respectively); nevertheless, a GOES‐10 positive mean re bias of 2.3 μm is apparent, and consistent with other previously reported satellite biases. Smaller biases are found for liquid water path (LWP) and an adiabatic‐based cloud droplet number concentration (Nd), both variables derived by combining re and τ.In addition, GOES‐10 observations are well correlated with their Moderate Resolution Imaging Spectroradiometer (MODIS) counterparts, but with smaller biases and root‐mean‐square errors for the Aqua satellite passes, arguably associated with a better calibrated MODIS‐Aqua instrument relative to MODIS‐Terra. Furthermore, the excellent agreement between GOES‐10 LWP and microwave‐based satellite retrievals, especially at high solar zenith angles (>60°), provide further evidence of the utility of using GOES‐10 retrievals to represent the daytime cloud cycle. In terms of the daytime cycle, GOES‐10 observations show an afternoon minimum in LWP and an increase thereafter, consistent with satellite microwave climatologies. Theτ cycle explains most of the LWP variance with both variables in phase, minima near noon along the coast, and a 13:30–14:00 local solar time (LST) minimum offshore. In contrast, re is not exactly in phase with LWP and τ, having a minimum approximately at 12:30 LST throughout the domain. A unique feature is a striking re maximum along the coast at 16:15 LST, concomitant with a faster τ recovery. An explanation for a coastal reafternoon maximum is lacking although this is consistent with an enhancement of the updraft velocity reported in previous modeling studies. Finally, the GOES‐derived Nd (Nd ∝ τ1/2 re−5/2) shows a complex daytime cycle with maxima at 7:15 and 13:15 LST. While the first maximum is driven by large τ, the second one is mainly explained by a minimum in re. Key Points GOES retrievals are consistent with in situ and other satellite observations Optical thickness shows a diurnal and semidiurnal cycle Effective radius shows a minimum near noon
AbstractList The daytime evolution of warm cloud microphysical properties over the southeast Pacific during October–November 2008 is investigated with optical/infrared retrievals from the Tenth Geostationary Operational Environmental Satellite (GOES‐10) imager. GOES‐10 retrievals, produced at NASA Langley Research Center, are validated against in situ aircraft observations and with independent satellite observations. Comparisons with in situ observations reveal high linear correlations (r) for cloud effective radius (re) and optical thickness (τ) (r = 0.89 and 0.69 respectively); nevertheless, a GOES‐10 positive mean re bias of 2.3 μm is apparent, and consistent with other previously reported satellite biases. Smaller biases are found for liquid water path (LWP) and an adiabatic‐based cloud droplet number concentration (Nd), both variables derived by combining re and τ.In addition, GOES‐10 observations are well correlated with their Moderate Resolution Imaging Spectroradiometer (MODIS) counterparts, but with smaller biases and root‐mean‐square errors for the Aqua satellite passes, arguably associated with a better calibrated MODIS‐Aqua instrument relative to MODIS‐Terra. Furthermore, the excellent agreement between GOES‐10 LWP and microwave‐based satellite retrievals, especially at high solar zenith angles (>60°), provide further evidence of the utility of using GOES‐10 retrievals to represent the daytime cloud cycle. In terms of the daytime cycle, GOES‐10 observations show an afternoon minimum in LWP and an increase thereafter, consistent with satellite microwave climatologies. Theτ cycle explains most of the LWP variance with both variables in phase, minima near noon along the coast, and a 13:30–14:00 local solar time (LST) minimum offshore. In contrast, re is not exactly in phase with LWP and τ, having a minimum approximately at 12:30 LST throughout the domain. A unique feature is a striking re maximum along the coast at 16:15 LST, concomitant with a faster τ recovery. An explanation for a coastal reafternoon maximum is lacking although this is consistent with an enhancement of the updraft velocity reported in previous modeling studies. Finally, the GOES‐derived Nd (Nd ∝ τ1/2 re−5/2) shows a complex daytime cycle with maxima at 7:15 and 13:15 LST. While the first maximum is driven by large τ, the second one is mainly explained by a minimum in re. Key Points GOES retrievals are consistent with in situ and other satellite observations Optical thickness shows a diurnal and semidiurnal cycle Effective radius shows a minimum near noon
The daytime evolution of warm cloud microphysical properties over the southeast Pacific during October–November 2008 is investigated with optical/infrared retrievals from the Tenth Geostationary Operational Environmental Satellite (GOES‐10) imager. GOES‐10 retrievals, produced at NASA Langley Research Center, are validated against in situ aircraft observations and with independent satellite observations. Comparisons with in situ observations reveal high linear correlations (r) for cloud effective radius (r e ) and optical thickness ( τ ) (r = 0.89 and 0.69 respectively); nevertheless, a GOES‐10 positive mean r e bias of 2.3 μ m is apparent, and consistent with other previously reported satellite biases. Smaller biases are found for liquid water path (LWP) and an adiabatic‐based cloud droplet number concentration (N d ), both variables derived by combining r e and τ. In addition, GOES‐10 observations are well correlated with their Moderate Resolution Imaging Spectroradiometer (MODIS) counterparts, but with smaller biases and root‐mean‐square errors for the Aqua satellite passes, arguably associated with a better calibrated MODIS‐Aqua instrument relative to MODIS‐Terra. Furthermore, the excellent agreement between GOES‐10 LWP and microwave‐based satellite retrievals, especially at high solar zenith angles (>60°), provide further evidence of the utility of using GOES‐10 retrievals to represent the daytime cloud cycle. In terms of the daytime cycle, GOES‐10 observations show an afternoon minimum in LWP and an increase thereafter, consistent with satellite microwave climatologies. The τ cycle explains most of the LWP variance with both variables in phase, minima near noon along the coast, and a 13:30–14:00 local solar time (LST) minimum offshore. In contrast, r e is not exactly in phase with LWP and τ , having a minimum approximately at 12:30 LST throughout the domain. A unique feature is a striking r e maximum along the coast at 16:15 LST, concomitant with a faster τ recovery. An explanation for a coastal r e afternoon maximum is lacking although this is consistent with an enhancement of the updraft velocity reported in previous modeling studies. Finally, the GOES‐derived N d ( N d ∝ τ 1/2 r e −5/2 ) shows a complex daytime cycle with maxima at 7:15 and 13:15 LST. While the first maximum is driven by large τ , the second one is mainly explained by a minimum in r e . Key Points GOES retrievals are consistent with in situ and other satellite observations Optical thickness shows a diurnal and semidiurnal cycle Effective radius shows a minimum near noon
The daytime evolution of warm cloud microphysical properties over the southeast Pacific during OctoberNovember 2008 is investigated with optical/infrared retrievals from the Tenth Geostationary Operational Environmental Satellite (GOES-10) imager. GOES-10 retrievals, produced at NASA Langley Research Center, are validated against in situ aircraft observations and with independent satellite observations. Comparisons with in situ observations reveal high linear correlations (r) for cloud effective radius (re) and optical thickness () (r = 0.89 and 0.69 respectively); nevertheless, a GOES-10 positive mean re bias of 2.3 m is apparent, and consistent with other previously reported satellite biases. Smaller biases are found for liquid water path (LWP) and an adiabatic-based cloud droplet number concentration (Nd), both variables derived by combining re and . In addition, GOES-10 observations are well correlated with their Moderate Resolution Imaging Spectroradiometer (MODIS) counterparts, but with smaller biases and root-mean-square errors for the Aqua satellite passes, arguably associated with a better calibrated MODIS-Aqua instrument relative to MODIS-Terra. Furthermore, the excellent agreement between GOES-10 LWP and microwave-based satellite retrievals, especially at high solar zenith angles (>60°), provide further evidence of the utility of using GOES-10 retrievals to represent the daytime cloud cycle. In terms of the daytime cycle, GOES-10 observations show an afternoon minimum in LWP and an increase thereafter, consistent with satellite microwave climatologies. The cycle explains most of the LWP variance with both variables in phase, minima near noon along the coast, and a 13:3014:00 local solar time (LST) minimum offshore. In contrast, re is not exactly in phase with LWP and , having a minimum approximately at 12:30 LST throughout the domain. A unique feature is a striking re maximum along the coast at 16:15 LST, concomitant with a faster recovery. An explanation for a coastal re afternoon maximum is lacking although this is consistent with an enhancement of the updraft velocity reported in previous modeling studies. Finally, the GOES-derived Nd (Nd 1/2 re5/2) shows a complex daytime cycle with maxima at 7:15 and 13:15 LST. While the first maximum is driven by large , the second one is mainly explained by a minimum in re.
Author Painemal, David
Minnis, Patrick
Ayers, J. Kirk
O'Neill, Larry
Author_xml – sequence: 1
  givenname: David
  surname: Painemal
  fullname: Painemal, David
  email: david.painemal@nasa.gov, david.painemal@nasa.gov
  organization: NASA Langley Research Center, Hampton, Virginia, USA
– sequence: 2
  givenname: Patrick
  surname: Minnis
  fullname: Minnis, Patrick
  organization: NASA Langley Research Center, Hampton, Virginia, USA
– sequence: 3
  givenname: J. Kirk
  surname: Ayers
  fullname: Ayers, J. Kirk
  organization: Sciences System and Applications Inc., Hampton, Virginia, USA
– sequence: 4
  givenname: Larry
  surname: O'Neill
  fullname: O'Neill, Larry
  organization: College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26580214$$DView record in Pascal Francis
BookMark eNp9kEFPFTEUhRuDiU9g5w9oYtw52tvpdFp3BnCUoBBUSNw0fW0nFGc6j7YDzs6fTskjxJV3czbfOffe8xLthCk4hF4BeQeEyveUAD0-JNAKSp-hFYWGV5QSuoNWBJioCKXtC7Sf0jUpwxrOCKzQ3-706HsFBI_exGlztSRv9ICjy9G7Wz0k7AMedfTB4TsdR2yGabbpA_46D9lXPqQc59GFjAvsrc5-ClgHi61esh8dNosZHJ5uXcT5yuE0zUV0yvhMG997s4ee92WN23_UXfTz09GPg8_VyWn35eDjSWUY1KTiDqypxVqvG2mlbLTh1lhLhNWSrQUlumaGS8mI5j1thNHMCL6WveStBEbrXfR6m7uJ083sUlbX0xxDWakAoBYSWk4K9XZLlTJSiq5Xm-jL-4sCoh5qVv_WXPA3j6E6ldr6qIPx6clDeSMIBVa4esvd-cEt_81Ux935IRTbwzHV1uVTdn-eXDr-Vryt20ZdfuvUxeWvC-i6VtH6Huv_nLg
CitedBy_id crossref_primary_10_1073_pnas_1922502117
crossref_primary_10_1175_AMSMONOGRAPHS_D_18_0009_1
crossref_primary_10_1175_MWR_D_12_00238_1
crossref_primary_10_1016_j_atmosres_2012_08_017
crossref_primary_10_5194_amt_7_887_2014
crossref_primary_10_1109_TGRS_2020_2990955
crossref_primary_10_5194_acp_17_5155_2017
crossref_primary_10_5194_acp_13_6305_2013
crossref_primary_10_3390_atmos13010077
crossref_primary_10_1002_2015JD023175
crossref_primary_10_1088_1748_9326_10_10_104005
crossref_primary_10_1109_TGRS_2020_3027017
crossref_primary_10_1002_2016JD025771
crossref_primary_10_1002_2016GL069061
crossref_primary_10_5194_acp_15_5325_2015
crossref_primary_10_1016_j_jqsrt_2014_09_009
crossref_primary_10_5194_acp_13_2507_2013
crossref_primary_10_5194_acp_18_13283_2018
crossref_primary_10_1002_2014JD021962
crossref_primary_10_1175_JAMC_D_14_0243_1
crossref_primary_10_5194_acp_13_9997_2013
crossref_primary_10_1002_jgrd_50683
crossref_primary_10_1029_2018JD028579
crossref_primary_10_1175_MWR_D_14_00266_1
crossref_primary_10_5194_acp_24_4591_2024
crossref_primary_10_1029_2018JD028911
crossref_primary_10_1109_TGRS_2020_3008866
crossref_primary_10_5194_acp_18_14623_2018
crossref_primary_10_1002_2016JD025763
crossref_primary_10_5194_acp_22_12113_2022
crossref_primary_10_1029_2018GL078880
crossref_primary_10_1073_pnas_1205877109
crossref_primary_10_1175_JAS_D_12_0325_1
crossref_primary_10_1175_WAF_D_18_0112_1
Cites_doi 10.1109/TGRS.2011.2144602
10.1175/1520‐0469(1994)051<2434:TAOFSC>2.0.CO;2
10.1029/2007GL030625
10.1029/2005GL023851
10.1029/2009JD012662
10.1029/2010GL044094
10.1002/qj.451
10.1175/1520‐0442(1993)006<1587:TSCOLS>2.0.CO;2
10.1029/2005JD006097
10.1175/1520‐0450(1992)031<0317:SCPDFS>2.0.CO;2
10.5194/acp‐11‐421‐2011
10.1029/2002GL015371
10.1029/2011JD016216
10.1175/1520‐0442(1995)008<1795:AOSODV>2.0.CO;2
10.1029/2006GL028713
10.1175/2009JAMC2230.1
10.1109/TGRS.2011.2144601
10.1029/2011JD016155
10.1029/96JC01751
10.1175/2007JCLI1958.1
10.5194/acpd‐11‐31159‐2011
10.1175/1520-0442(1995)008<1638:SDOSCM>2.0.CO;2
10.1175/2007JAMC1635.1
10.1029/2011JD017120
10.1175/2008JCLI2479.1
10.1029/1999GL900346
10.56236/RSS-af
10.1029/2007JD009654
10.5194/acp‐11‐9943‐2011
10.1029/2007JD008438
10.1175/1520‐0450(1984)023<1012:DVORCA>2.0.CO;2
10.1175/1520‐0426(2002)019<1233:RCOOAR>2.0.CO;2
10.1175/2008JAS2451.1
10.1029/2005JD006668
10.1175/1520‐0442(1994)007<0465:NGSOED>2.0.CO;2
10.1080/01431160903369634
10.5194/acp‐11‐627‐2011
10.1175/1520‐0450(1998)037<0572:TIMFTC>2.0.CO;2
10.1175/2007JTECHA1021.1
10.1109/TGRS.2002.808301
10.1175/1520‐0442(2004)017<1699:TDCICA>2.0.CO;2
10.1109/TGRS.2008.2001351
10.1029/2006JD007547
10.1117/12.800344
10.1175/2009JCLI2708.1
10.1038/nature03174
10.1029/JD094iD02p02303
10.5194/acp‐10‐4491‐2010
10.5194/acp‐10‐6255‐2010
ContentType Journal Article
Copyright 2012. American Geophysical Union. All Rights Reserved.
2015 INIST-CNRS
Copyright American Geophysical Union 2012
Copyright_xml – notice: 2012. American Geophysical Union. All Rights Reserved.
– notice: 2015 INIST-CNRS
– notice: Copyright American Geophysical Union 2012
DBID BSCLL
IQODW
AAYXX
CITATION
3V.
7TG
7UA
7XB
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
DOI 10.1029/2012JD017822
DatabaseName Istex
Pascal-Francis
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
2169-8996
EndPage n/a
ExternalDocumentID 2794432471
10_1029_2012JD017822
26580214
JGRD18020
ark_67375_WNG_VWZV1GG7_2
Genre article
Feature
GeographicLocations South Pacific
Pacific Ocean
Southeast Pacific
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WXSBR
XSW
~OA
~~A
AITYG
WIN
08R
IQODW
AAYXX
CITATION
05W
0R~
33P
3V.
50Y
52M
5VS
702
7TG
7UA
7XB
8-1
8FD
8FG
8FK
A00
AAESR
AAIHA
AASGY
AAZKR
ABJCF
ACIWK
ACPOU
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AFKRA
AFRAH
AIURR
ARAPS
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
C1K
CCPQU
DPXWK
EBS
F1W
FEDTE
FR3
H8D
H96
HGLYW
HVGLF
HZ~
K6-
KL.
KR7
L.G
L6V
L7M
LEEKS
LK5
M7R
M7S
MBDVC
MY~
O9-
P2W
P62
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PROAC
PTHSS
PYCSY
Q9U
R.K
SUPJJ
WBKPD
WYJ
ID FETCH-LOGICAL-c4130-6e1dc38bab59d995ac6dcdd08da94b820a34c69940a6f258ca4c86b9f96791423
IEDL.DBID BENPR
ISSN 0148-0227
2169-897X
IngestDate Wed Aug 28 13:33:50 EDT 2024
Fri Aug 23 04:10:50 EDT 2024
Sun Oct 22 16:09:24 EDT 2023
Sat Aug 24 00:56:09 EDT 2024
Wed Jan 17 05:02:45 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue D19
Keywords microwaves
Climatology
Solar zenithal distance
Bias
cycles
Warm cloud
Variance
Mean square error
instruments
Optical thickness
Water cloud
Validation
GOES satellites
droplets
NASA
Satellite observation
concentration
in situ
offshore
Liquid water path
Effective radius
correlation
Aircraft observation
Aqua satellite
Comparative study
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4130-6e1dc38bab59d995ac6dcdd08da94b820a34c69940a6f258ca4c86b9f96791423
Notes istex:83BA70331B774E534B11DE231A53C6A75C31F830
ArticleID:2012JD017822
Tab-delimited Table 1a.Tab-delimited Table 1b.Tab-delimited Table 2.Tab-delimited Table 3.
ark:/67375/WNG-VWZV1GG7-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2012JD017822
PQID 1113891760
PQPubID 54657
PageCount 13
ParticipantIDs proquest_journals_1113891760
crossref_primary_10_1029_2012JD017822
pascalfrancis_primary_26580214
wiley_primary_10_1029_2012JD017822_JGRD18020
istex_primary_ark_67375_WNG_VWZV1GG7_2
PublicationCentury 2000
PublicationDate 16 October 2012
PublicationDateYYYYMMDD 2012-10-16
PublicationDate_xml – month: 10
  year: 2012
  text: 16 October 2012
  day: 16
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: Washington
PublicationTitle Journal of Geophysical Research: Atmospheres
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Minnis, P., et al. (2008b), Near-real time cloud retrievals from operational and research meteorological satellites, Proc. SPIE Int. Soc. Opt. Eng., 7107, 710703, doi:10.1117/12.800344.
Wood, R., M. Kohler, R. Bennartz, and C. O'Dell (2009), The diurnal cycle of surface divergence over the global oceans, Q. J. R. Meteorol. Soc., 135, 1484-1493, doi:10.1002/qj.451.
Hilburn, K. A., and F. J. Wentz (2008), Intercalibrated passive microwave rain products from the Unified Microwave Ocean Retrieval Algorithm (UMORA), J. Appl. Meteorol. Climatol., 47, 778-794, doi:10.1175/2007JAMC1635.1.
Kato, S., L. M. Hinkelman, and A. Cheng (2006), Estimate of satellite-derived cloud optical thickness and effective radius errors and their effect on computed domain-averaged irradiances, J. Geophys. Res., 111, D17201, doi:10.1029/2005JD006668.
Minnis, P. (1989), Viewing zenith angle dependence of cloudiness determined from coincident GOES East and GOES West data, J. Geophys. Res., 94(D2), 2303-2320, doi:10.1029/JD094iD02p02303.
Wood, R., C. S. Bretherton, and D. L. Hartmann (2002), Diurnal cycle of liquid water path over the subtropical and tropical oceans, Geophys. Res. Lett., 29(23), 2092, doi:10.1029/2002GL015371.
O'Dell, C. W., F. J. Wentz, and R. Bennartz (2008), Cloud liquid water path from satellite-based passive microwave observations: A new climatology over the global oceans, J. Clim., 21, 1721-1739, doi:10.1175/2007JCLI1958.1.
Zuidema, P., D. Painemal, S. deSzoeke, and C. Fairall (2009), Stratocumulus cloud top estimates and their climatic implications, J. Clim., 22, 4652-4666, doi:10.1175/2009JCLI2708.1.
Horváth, Á., and C. Gentemann (2007), Cloud-fraction-dependent bias in satellite liquid water path retrievals of shallow, non-precipitating marine clouds, Geophys. Res. Lett., 34, L22806, doi:10.1029/2007GL030625.
Wentz, F. (1997), A well-calibrated ocean algorithm for Special Sensor Microwave/Imager, J. Geophys. Res., 102, 8703-8718, doi:10.1029/96JC01751.
Zheng, X., et al. (2011), Observations of the boundary layer, cloud, and aerosol variability in the southeast Pacific near-coastal marine stratocumulus during VOCALS-REx, Atmos. Chem. Phys., 11, 9943-9959, doi:10.5194/acp-11-9943-2011.
Borg, L. A., and R. Bennartz (2007), Vertical structure of stratiform marine boundary layer clouds and its impact on cloud albedo, Geophys. Res. Lett., 34, L05807, doi:10.1029/2006GL028713.
Hannay, C., D. L. Williamson, J. J. Hack, J. T. Kiehl, J. G. Olson, S. A. Klein, C. S. Bretherton, and M. Köhler (2009), Evaluation of forecasted southeast Pacific stratocumulus in the NCAR, GFDL, and ECMWF models, J. Clim., 22, 2871-2889, doi:10.1175/2008JCLI2479.1.
Minnis, P., et al. (2012), CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part II: Examples of average results and comparisons with other data, IEEE Trans. Geosci. Remote Sens., doi:10.1109/TGRS.2011.2144602, in press.
Platnick, S., and L. Oreopoulos (2008), Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 1. Theoretical analysis and examples from MODIS, J. Geophys. Res., 113, D14S20, doi:10.1029/2007JD009654.
Minnis, P., L. Nguyen, D. R. Doelling, D. F. Young, W. F. Miller, and D. P. Kratz (2002), Rapid calibration of operational and research meteorological satellite imagers, Part I: Evaluation of research satellite visible channels as references, J. Atmos. Oceanic Technol., 19, 1233-1249, doi:10.1175/1520-0426(2002)019<1233:RCOOAR>2.0.CO;2.
Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider (1994), The albedo of fractal stratocumulus clouds, J. Atmos. Sci., 51, 2434-2455, doi:10.1175/1520-0469(1994)051<2434:TAOFSC>2.0.CO;2.
Han, Q. Y., W. B. Rossow, and A. A. Lacis (1994), Near-global survey of effective droplet radii in liquid water clouds using ISCCP data, J. Clim., 7, 465-497, doi:10.1175/1520-0442(1994)007<0465:NGSOED>2.0.CO;2.
Klein, S. A., and D. L. Hartmann (1993), The seasonal cycle of low stratiform clouds, J. Clim., 6, 1587-1606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.
Minnis, P., P. W. Heck, D. F. Young, C. W. Fairall, and J. B. Snider (1992), Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE, J. Appl. Meteorol., 31, 317-339, doi:10.1175/1520-0450(1992)031<0317:SCPDFS>2.0.CO;2.
Sandu, I., J.-L. Brenguier, O. Geoffroy, O. Thouron, and V. Masson (2008), Aerosol impacts on the diurnal cycle of marine stratocumulus, J. Atmos. Sci., 65, 2705-2718, doi:10.1175/2008JAS2451.1.
Wood, R., et al. (2011), The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex): Goals, platforms, and field operations, Atmos. Chem. Phys., 11, 627-654, doi:10.5194/acp-11-627-2011.
Oku, Y., M. Kajino, and H. Ishikawa (2010), Estimation of the cloud effective particle radius using MTSAT-1R data, Int. J. Remote Sens., 31(20), 5439-5447, doi:10.1080/01431160903369634.
Painemal, D., and P. Minnis (2012), On the dependence of albedo on cloud microphysics over marine stratocumulus clouds regimes determined from CERES data, J. Geophys. Res., 117, D06203, doi:10.1029/2011JD017120.
Painemal, D., and P. Zuidema (2011), Assessment of MODIS cloud effective radius and optical thickness retrievals over the southeast Pacific with VOCALS-Rex in situ measurements, J. Geophys. Res., 116, D24206, doi:10.1029/2011JD016155.
Platnick, S., M. King, S. Ackerman, W. Menzel, B. Baum, J. Riedi, and R. Frey (2003), The MODIS cloud products: Algorithms and examples from Terra, IEEE Trans. Geosci. Remote Sens., 41, 459-473, doi:10.1109/TGRS.2002.808301.
Bennartz, R. (2007), Global assessment of marine boundary layer cloud droplet number concentration from satellite, J. Geophys. Res., 112, D02201, doi:10.1029/2006JD007547.
Zuidema, P., and D. L. Hartmann (1995), Satellite determination of stratus cloud microphysical properties, J. Clim., 8, 1638-1656.
Minnis, P., and E. F. Harrison (1984), Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data, Part II: November 1978 cloud distributions, J. Clim. Appl. Meteorol., 23, 1012-1031, doi:10.1175/1520-0450(1984)023<1012:DVORCA>2.0.CO;2.
Wang, S., L. W. O'Neill, Q. Jiang, S. P. deSzoeke, X. Hong, H. Jin, W. T. Thompson, and X. Zheng (2011), A regional real-time forecast of marine boundary layers during VOCALS-REx, Atmos. Chem. Phys., 11, 421-437, doi:10.5194/acp-11-421-2011.
Rahn, D. A., and R. Garreaud (2010), Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx-Part 1: Mean structure and diurnal cycle, Atmos. Chem. Phys., 10, 4491-4506, doi:10.5194/acp-10-4491-2010.
Zhang, Z., and S. Platnick (2011), An assessment of differences between cloud effective particle radius retrievals for marine water clouds from three MODIS spectral bands, J. Geophys. Res., 116, D20215, doi:10.1029/2011JD016216.
Minnis, P., et al. (2011), CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data. Part I: Algorithms, IEEE Trans. Geosci. Remote Sens., 49(11), 4374-4400, doi:10.1109/TGRS.2011.2144601.
Minnis, P., et al. (2008a), Cloud detection in non-polar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data, IEEE Trans. Geosci. Remote Sens., 46, 3857-3884, doi:10.1109/TGRS.2008.2001351.
Dong, X., P. Minnis, B. Xi, S. Sun-Mack, and Y. Chen (2008), Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM Southern Great Plains site, J. Geophys. Res., 113, D03204, doi:10.1029/2007JD008438.
Greenwald, T. J., and S. A. Christopher (1999), Daytime variation of marine stratocumulus microphysical properties as observed from geostationary satellite, Geophys. Res. Lett., 26(12), 1723-1726, doi:10.1029/1999GL900346.
Matsui, T., H. Masunaga, S. M. Kreidenweis, R. A. Pielke Sr., W.-K. Tao, M. Chin, and Y. J. Kaufman (2006), Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle, J. Geophys. Res., 111, D17204, doi:10.1029/2005JD006097.
Ackerman, A., M. Kirkpatrick, D. Stevens, and O. Toon (2004), The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014-1017, doi:10.1038/nature03174.
Seethala, C., and Á. Horváth (2010), Global assessment of AMSR-E and MODIS cloud liquid water path retrievals in warm oceanic clouds, J. Geophys. Res., 115, D13202, doi:10.1029/2009JD012662.
Garreaud, R. D., and R. Muñoz (2004), The diurnal cycle of circulation and cloudiness over the subtropical southeast Pacific: A modeling study, J. Clim., 17, 1699-1710, doi:10.1175/1520-0442(2004)017<1699:TDCICA>2.0.CO;2.
Bony, S., and J.-L. Dufresne (2005), Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models, Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.
Painemal, D., R. Garreaud, J. Rutllant, and P. Zuidema (2010), Southeast Pacific stratocumulus: High-frequency variability and mesoscale structures over San Félix Island, J. Appl. Meteorol. Climatol., 49, 463-477, doi:10.1175/2009JAMC2230.1.
Di Girolamo, L., L. Liang, and S. Platnick (2010), A global view of one-dimensional solar radiative transfer through oceanic water clouds, Geophys. Res. Lett., 37, L18809, doi:10.1029/2010GL044094.
O'Neill, L. W., S. Wang, and Q. Jiang (2011), Satellite climatology of cloud liquid water path over the Southeast Pacific between 2002 and 2009, Atmos. Chem. Phys. Discuss., 11, 31,159-31,206, doi:10.5194/acpd-11-31159-2011.
Rozendaal, M., C. Leovy, and S. Klein (1995), An observational study of diurnal variations of marine stratiform cloud, J. Clim., 8, 1795-1809, doi:10.1175/1520-0442(1995)008<1795:AOSODV>2.0.CO;2.
Young, D. F., P. Minnis, G. G. Gibson, D. R. Doelling, and T. Wong (1998), Temporal interpolation methods for the clouds and Earth's Radiant Energy System (CERES) Experiment, J. Appl. Meteorol., 37, 572-590, doi:10.1175/1520-0450(1998)037<0572:TIMFTC>2.0.CO;2.
Painemal, D., and P. Zuidema (2010), Microphy
2011; 116
2009; 22
2010; 10
2010; 31
2010; 37
2002; 19
2012
2010
1999; 26
1984; 23
2011; 11
2009; 135
1992; 31
2007; 34
2006; 111
1995; 8
1993; 6
2008; 7107
1997; 102
1998; 37
2007; 112
1989; 94
2010; 49
2002; 29
2004; 432
2000
2004; 17
2010; 115
2008; 47
2008; 25
2005; 32
2008; 46
2008; 21
2008; 65
2008; 113
2011; 49
2012; 117
2003; 41
1994; 51
1994; 7
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 8
  start-page: 1795
  year: 1995
  end-page: 1809
  article-title: An observational study of diurnal variations of marine stratiform cloud
  publication-title: J. Clim.
– volume: 22
  start-page: 2871
  year: 2009
  end-page: 2889
  article-title: Evaluation of forecasted southeast Pacific stratocumulus in the NCAR, GFDL, and ECMWF models
  publication-title: J. Clim.
– volume: 6
  start-page: 1587
  year: 1993
  end-page: 1606
  article-title: The seasonal cycle of low stratiform clouds
  publication-title: J. Clim.
– year: 2012
  article-title: CERES Edition‐2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part II: Examples of average results and comparisons with other data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 116
  year: 2011
  article-title: Assessment of MODIS cloud effective radius and optical thickness retrievals over the southeast Pacific with VOCALS‐Rex in situ measurements
  publication-title: J. Geophys. Res.
– volume: 21
  start-page: 1721
  year: 2008
  end-page: 1739
  article-title: Cloud liquid water path from satellite‐based passive microwave observations: A new climatology over the global oceans
  publication-title: J. Clim.
– volume: 34
  year: 2007
  article-title: Cloud‐fraction‐dependent bias in satellite liquid water path retrievals of shallow, non‐precipitating marine clouds
  publication-title: Geophys. Res. Lett.
– volume: 111
  year: 2006
  article-title: Estimate of satellite‐derived cloud optical thickness and effective radius errors and their effect on computed domain‐averaged irradiances
  publication-title: J. Geophys. Res.
– volume: 11
  start-page: 9943
  year: 2011
  end-page: 9959
  article-title: Observations of the boundary layer, cloud, and aerosol variability in the southeast Pacific near‐coastal marine stratocumulus during VOCALS‐REx
  publication-title: Atmos. Chem. Phys.
– volume: 37
  year: 2010
  article-title: A global view of one‐dimensional solar radiative transfer through oceanic water clouds
  publication-title: Geophys. Res. Lett.
– volume: 113
  year: 2008
  article-title: Comparison of CERES‐MODIS stratus cloud properties with ground‐based measurements at the DOE ARM Southern Great Plains site
  publication-title: J. Geophys. Res.
– volume: 41
  start-page: 459
  year: 2003
  end-page: 473
  article-title: The MODIS cloud products: Algorithms and examples from Terra
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 10
  start-page: 4491
  year: 2010
  end-page: 4506
  article-title: Marine boundary layer over the subtropical southeast Pacific during VOCALS‐REx–Part 1: Mean structure and diurnal cycle
  publication-title: Atmos. Chem. Phys.
– volume: 34
  year: 2007
  article-title: Vertical structure of stratiform marine boundary layer clouds and its impact on cloud albedo
  publication-title: Geophys. Res. Lett.
– volume: 65
  start-page: 2705
  year: 2008
  end-page: 2718
  article-title: Aerosol impacts on the diurnal cycle of marine stratocumulus
  publication-title: J. Atmos. Sci.
– volume: 102
  start-page: 8703
  year: 1997
  end-page: 8718
  article-title: A well‐calibrated ocean algorithm for Special Sensor Microwave/Imager
  publication-title: J. Geophys. Res.
– volume: 47
  start-page: 778
  year: 2008
  end-page: 794
  article-title: Intercalibrated passive microwave rain products from the Unified Microwave Ocean Retrieval Algorithm (UMORA)
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 94
  start-page: 2303
  issue: D2
  year: 1989
  end-page: 2320
  article-title: Viewing zenith angle dependence of cloudiness determined from coincident GOES East and GOES West data
  publication-title: J. Geophys. Res.
– volume: 29
  issue: 23
  year: 2002
  article-title: Diurnal cycle of liquid water path over the subtropical and tropical oceans
  publication-title: Geophys. Res. Lett.
– volume: 10
  start-page: 6255
  year: 2010
  end-page: 6269
  article-title: Microphysical variability in southeast Pacific Stratocumulus clouds: Synoptic conditions and radiative response
  publication-title: Atmos. Chem. Phys.
– volume: 49
  start-page: 463
  year: 2010
  end-page: 477
  article-title: Southeast Pacific stratocumulus: High‐frequency variability and mesoscale structures over San Félix Island
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 19
  start-page: 1233
  year: 2002
  end-page: 1249
  article-title: Rapid calibration of operational and research meteorological satellite imagers, Part I: Evaluation of research satellite visible channels as references
  publication-title: J. Atmos. Oceanic Technol.
– volume: 113
  year: 2008
  article-title: Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 1. Theoretical analysis and examples from MODIS
  publication-title: J. Geophys. Res.
– volume: 112
  year: 2007
  article-title: Global assessment of marine boundary layer cloud droplet number concentration from satellite
  publication-title: J. Geophys. Res.
– volume: 25
  start-page: 385
  year: 2008
  end-page: 400
  article-title: Assessment of the visible channel calibrations of the VIRS on TRMM and MODIS on Aqua and Terra
  publication-title: J. Atmos. Oceanic Technol.
– volume: 115
  year: 2010
  article-title: Global assessment of AMSR‐E and MODIS cloud liquid water path retrievals in warm oceanic clouds
  publication-title: J. Geophys. Res.
– volume: 23
  start-page: 1012
  year: 1984
  end-page: 1031
  article-title: Diurnal variability of regional cloud and clear‐sky radiative parameters derived from GOES data, Part II: November 1978 cloud distributions
  publication-title: J. Clim. Appl. Meteorol.
– volume: 37
  start-page: 572
  year: 1998
  end-page: 590
  article-title: Temporal interpolation methods for the clouds and Earth's Radiant Energy System (CERES) Experiment
  publication-title: J. Appl. Meteorol.
– volume: 111
  year: 2006
  article-title: Satellite‐based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle
  publication-title: J. Geophys. Res.
– year: 2000
– volume: 31
  start-page: 5439
  issue: 20
  year: 2010
  end-page: 5447
  article-title: Estimation of the cloud effective particle radius using MTSAT‐1R data
  publication-title: Int. J. Remote Sens.
– volume: 46
  start-page: 3857
  year: 2008
  end-page: 3884
  article-title: Cloud detection in non‐polar regions for CERES using TRMM VIRS and Terra and Aqua MODIS data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 11
  start-page: 31,159
  year: 2011
  end-page: 31,206
  article-title: Satellite climatology of cloud liquid water path over the Southeast Pacific between 2002 and 2009
  publication-title: Atmos. Chem. Phys. Discuss.
– volume: 117
  year: 2012
  article-title: On the dependence of albedo on cloud microphysics over marine stratocumulus clouds regimes determined from CERES data
  publication-title: J. Geophys. Res.
– volume: 7107
  year: 2008
  article-title: Near‐real time cloud retrievals from operational and research meteorological satellites
  publication-title: Proc. SPIE Int. Soc. Opt. Eng.
– volume: 11
  start-page: 627
  year: 2011
  end-page: 654
  article-title: The VAMOS Ocean‐Cloud‐Atmosphere‐Land Study Regional Experiment (VOCALS‐Rex): Goals, platforms, and field operations
  publication-title: Atmos. Chem. Phys.
– year: 2010
– volume: 31
  start-page: 317
  year: 1992
  end-page: 339
  article-title: Stratocumulus cloud properties derived from simultaneous satellite and island‐based instrumentation during FIRE
  publication-title: J. Appl. Meteorol.
– volume: 22
  start-page: 4652
  year: 2009
  end-page: 4666
  article-title: Stratocumulus cloud top estimates and their climatic implications
  publication-title: J. Clim.
– volume: 32
  year: 2005
  article-title: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models
  publication-title: Geophys. Res. Lett.
– volume: 26
  start-page: 1723
  issue: 12
  year: 1999
  end-page: 1726
  article-title: Daytime variation of marine stratocumulus microphysical properties as observed from geostationary satellite
  publication-title: Geophys. Res. Lett.
– volume: 8
  start-page: 1638
  year: 1995
  end-page: 1656
  article-title: Satellite determination of stratus cloud microphysical properties
  publication-title: J. Clim.
– volume: 11
  start-page: 421
  year: 2011
  end-page: 437
  article-title: A regional real‐time forecast of marine boundary layers during VOCALS‐REx
  publication-title: Atmos. Chem. Phys.
– volume: 51
  start-page: 2434
  year: 1994
  end-page: 2455
  article-title: The albedo of fractal stratocumulus clouds
  publication-title: J. Atmos. Sci.
– volume: 49
  start-page: 4374
  issue: 11
  year: 2011
  end-page: 4400
  article-title: CERES Edition‐2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data. Part I: Algorithms
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 135
  start-page: 1484
  year: 2009
  end-page: 1493
  article-title: The diurnal cycle of surface divergence over the global oceans
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 432
  start-page: 1014
  year: 2004
  end-page: 1017
  article-title: The impact of humidity above stratiform clouds on indirect aerosol climate forcing
  publication-title: Nature
– volume: 116
  year: 2011
  article-title: An assessment of differences between cloud effective particle radius retrievals for marine water clouds from three MODIS spectral bands
  publication-title: J. Geophys. Res.
– volume: 17
  start-page: 1699
  year: 2004
  end-page: 1710
  article-title: The diurnal cycle of circulation and cloudiness over the subtropical southeast Pacific: A modeling study
  publication-title: J. Clim.
– volume: 7
  start-page: 465
  year: 1994
  end-page: 497
  article-title: Near‐global survey of effective droplet radii in liquid water clouds using ISCCP data
  publication-title: J. Clim.
– ident: e_1_2_8_27_1
  doi: 10.1109/TGRS.2011.2144602
– ident: e_1_2_8_6_1
  doi: 10.1175/1520‐0469(1994)051<2434:TAOFSC>2.0.CO;2
– ident: e_1_2_8_14_1
  doi: 10.1029/2007GL030625
– ident: e_1_2_8_4_1
  doi: 10.1029/2005GL023851
– ident: e_1_2_8_40_1
  doi: 10.1029/2009JD012662
– ident: e_1_2_8_7_1
  doi: 10.1029/2010GL044094
– ident: e_1_2_8_45_1
  doi: 10.1002/qj.451
– ident: e_1_2_8_16_1
  doi: 10.1175/1520‐0442(1993)006<1587:TSCOLS>2.0.CO;2
– ident: e_1_2_8_17_1
  doi: 10.1029/2005JD006097
– ident: e_1_2_8_20_1
  doi: 10.1175/1520‐0450(1992)031<0317:SCPDFS>2.0.CO;2
– ident: e_1_2_8_41_1
  doi: 10.5194/acp‐11‐421‐2011
– ident: e_1_2_8_44_1
  doi: 10.1029/2002GL015371
– ident: e_1_2_8_48_1
  doi: 10.1029/2011JD016216
– ident: e_1_2_8_38_1
  doi: 10.1175/1520‐0442(1995)008<1795:AOSODV>2.0.CO;2
– ident: e_1_2_8_5_1
  doi: 10.1029/2006GL028713
– ident: e_1_2_8_34_1
  doi: 10.1175/2009JAMC2230.1
– ident: e_1_2_8_26_1
  doi: 10.1109/TGRS.2011.2144601
– ident: e_1_2_8_33_1
  doi: 10.1029/2011JD016155
– ident: e_1_2_8_42_1
  doi: 10.1029/96JC01751
– ident: e_1_2_8_28_1
  doi: 10.1175/2007JCLI1958.1
– ident: e_1_2_8_30_1
  doi: 10.5194/acpd‐11‐31159‐2011
– ident: e_1_2_8_50_1
  doi: 10.1175/1520-0442(1995)008<1638:SDOSCM>2.0.CO;2
– ident: e_1_2_8_13_1
  doi: 10.1175/2007JAMC1635.1
– ident: e_1_2_8_31_1
  doi: 10.1029/2011JD017120
– ident: e_1_2_8_12_1
  doi: 10.1175/2008JCLI2479.1
– ident: e_1_2_8_10_1
  doi: 10.1029/1999GL900346
– ident: e_1_2_8_43_1
  doi: 10.56236/RSS-af
– ident: e_1_2_8_35_1
  doi: 10.1029/2007JD009654
– ident: e_1_2_8_49_1
  doi: 10.5194/acp‐11‐9943‐2011
– ident: e_1_2_8_8_1
  doi: 10.1029/2007JD008438
– ident: e_1_2_8_19_1
  doi: 10.1175/1520‐0450(1984)023<1012:DVORCA>2.0.CO;2
– ident: e_1_2_8_21_1
  doi: 10.1175/1520‐0426(2002)019<1233:RCOOAR>2.0.CO;2
– ident: e_1_2_8_39_1
  doi: 10.1175/2008JAS2451.1
– ident: e_1_2_8_15_1
  doi: 10.1029/2005JD006668
– ident: e_1_2_8_11_1
  doi: 10.1175/1520‐0442(1994)007<0465:NGSOED>2.0.CO;2
– ident: e_1_2_8_29_1
  doi: 10.1080/01431160903369634
– ident: e_1_2_8_25_1
– ident: e_1_2_8_46_1
  doi: 10.5194/acp‐11‐627‐2011
– ident: e_1_2_8_47_1
  doi: 10.1175/1520‐0450(1998)037<0572:TIMFTC>2.0.CO;2
– ident: e_1_2_8_24_1
  doi: 10.1175/2007JTECHA1021.1
– ident: e_1_2_8_36_1
  doi: 10.1109/TGRS.2002.808301
– ident: e_1_2_8_9_1
  doi: 10.1175/1520‐0442(2004)017<1699:TDCICA>2.0.CO;2
– ident: e_1_2_8_22_1
  doi: 10.1109/TGRS.2008.2001351
– ident: e_1_2_8_3_1
  doi: 10.1029/2006JD007547
– ident: e_1_2_8_23_1
  doi: 10.1117/12.800344
– ident: e_1_2_8_51_1
  doi: 10.1175/2009JCLI2708.1
– ident: e_1_2_8_2_1
  doi: 10.1038/nature03174
– ident: e_1_2_8_18_1
  doi: 10.1029/JD094iD02p02303
– ident: e_1_2_8_37_1
  doi: 10.5194/acp‐10‐4491‐2010
– ident: e_1_2_8_32_1
  doi: 10.5194/acp‐10‐6255‐2010
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
ssj0000803454
Score 2.2773402
Snippet The daytime evolution of warm cloud microphysical properties over the southeast Pacific during October–November 2008 is investigated with optical/infrared...
The daytime evolution of warm cloud microphysical properties over the southeast Pacific during OctoberNovember 2008 is investigated with optical/infrared...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Atmospheric boundary layer
Atmospheric sciences
Climate science
cloud daytime cycle
Clouds
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geophysics
GOES-10
Radiation
Remote sensing
satellite validation
southeast Pacific
stratocumulus
Title GOES-10 microphysical retrievals in marine warm clouds: Multi-instrument validation and daytime cycle over the southeast Pacific
URI https://api.istex.fr/ark:/67375/WNG-VWZV1GG7-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JD017822
https://www.proquest.com/docview/1113891760/abstract/
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLa29cIF8VMURvUOsBNWE8dx7F0QbG2qSitosK3iEvlHIlWsadcMwW786fi5aVkvO0ZyIsuf7ffl-fP7CHknLauYY4La1FSUu8RRrStDU-FXubbCyJDvOJuI0QUfT9PpHhlt7sKgrHKzJ4aN2i0s5sj7aIku_b-FiPraYBbA3vY_Lm8o-kfhOWtrprFPOizmeGDb-TyYfD3f5ls8M0p4MEVjsVBUqmza6uAjpvo-DLLxKVrVM7YToTo42H9QMakbP2jV2u1ih47eJ7UhKg2fkMctnYRPa_yfkr2yfka6Z54JL1YhYQ5HcHI987Q0PD0nf_Mvg29-V4Q5KvGWLUqwCsZaftY1MKthrvFOIPzWqznY68Uv1xxDuKlLZ6HgLGYUwTeerQ2ZQNcOnL5Dn3qwd74jgMJQ8NwSGrToQ38gaOV_L8jFcPD9ZERbFwZqMcBRUcbOJtJokyqnVOoBdNa5SDqtuPEEQifcCqV4pEXFUmk1t1IYVSmRqdiztZfkoF7U5SsCiSqlVa7iTDMuZGoybmKlS2c5T7RgXfJ-M_LFcl1sowiH5EwV9xHqkqMAy7aRXv1EgVqWFleTvLi8-nEZ53lW-Ia9Hdy2LzBPvLBaXJccboAs2sXbFP-nWpd8COA-2JtinJ-fYiG96PXDX3tDHuF7GPlicUgOPF7lW09pbk2P7Mth3mvn7D_ervWK
link.rule.ids 315,786,790,12792,21416,27957,27958,33408,33779,43635,43840,74392,74659
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagPcAF8RQLpfgAPWGR9Xq9NheE2mZDaIIEfURcLD92pYhmE7Ig6I2fzoyzCc2lx5W8luVv7Pk8Hs9HyCvlec0Dl8znrmYiZIFZWzuWS1jl1kunYrxjNJaDMzGc5JMu4NZ2aZXrPTFu1GHuMUb-FiXRFZwtZO_94gdD1Si8Xe0kNG6TXZGB68SX4v1yE2MBNpSJKITGU6mZ0sWky33vcQ3H_pQPj1CenvMtr7SLE_wHsyRtCxNVrxQutijodSIbPVH_PrnXUUj6YYX5A3Krah6SZATsd76MQXJ6QA8vp0BF49cj8rf8fPwVdkI6w-y7RYcMXUYxLbC0lk4bOrP4DpD-tssZ9ZfzX6F9R-PrXDaNRWYxikih8XQlwkRtE2iwV6hNT_0VDIRiMigFPklblOVDTSDapfw9Jmf949PDAeuUF5hHp8ZklQafKWddroPWOYAWfAg9FawWDkiDzYSXWouelTXPlbfCK-l0rWWhU2BoT8hOM2-qp4RmulJeh1pwy4VUuSuES7Wtghcis5In5PV65s1iVWDDxItxrs11hBJyEGHZNLLL75iUVuTmYlya84tv52lZFgYa7m_htvmBA9nCCnEJ2VsDaboF25r_5pWQNxHcG0djhuWXIyye13t2c28vyZ3B6ejEnHwcf3pO7mIf6PlSuUd2ALvqBVCan24_2u0_yyrycQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLVglRAviE8RGMMPsCesJo7j2LwgWNuMwso02FbtxfJHIlWsHzQg2Bs_nWvXLevLHiM5luVz7Xtyc-yD0CthaUMd5cQWpiHM5Y5o3RhScFjl2nIjQr3jaMQPT9lwXIyj_qmNssr1nhg2aje3vkbe9ZboAr4teNptoiziuDd4t_hBvIOU_9Ma7TRuo07JeAER3vnQHx2fbCouwI1yFmzRaMYlEbIcRyV8SmUXEiEd9rxZPaVbOarjp_uP10zqFqatWfldbBHS67Q25KXBfXQvEkr8fhUBD9CtevYQJUfAhefLUDLH-_jgcgLENDw9Qn-rL_2vsC_iqdfiLSJOeBmstSDuWjyZ4an2pwLxb72cYns5_-Xatzic1SWTcOWsryliaDxZWTJhPXPY6SvvVI_tFQwEe2koBnaJW2_S5x2CcBQAPkang_63g0MSfRiI9SmO8DpzNhdGm0I6KQuA0FnnUuG0ZAYohM6Z5VKyVPOGFsJqZgU3spG8lBnwtSdoZzaf1U8RzmUtrHQNo5oyLgpTMpNJXTvLWK45TdDr9cyrxeq6DRV-k1OpriOUoP0Ay6aRXn73ErWyUOejSp2dX5xlVVUqaLi3hdvmBQrUy98Xl6DdNZAqLt9W_Q-2BL0J4N44GjWsTnr-Kr302c29vUR3IGjV54-jT8_RXd-FT4MZ30U7AF39AvjNT7MXA_cfhRf4FA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GOES-10+microphysical+retrievals+in+marine+warm+clouds%3A+Multi-instrument+validation+and+daytime+cycle+over+the+southeast+Pacific&rft.jtitle=Journal+of+Geophysical+Research%3A+Atmospheres&rft.au=Painemal%2C+David&rft.au=Minnis%2C+Patrick&rft.au=Ayers%2C+J.+Kirk&rft.au=O%27Neill%2C+Larry&rft.date=2012-10-16&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=117&rft.issue=D19&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2012JD017822&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_VWZV1GG7_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon