Lychee Surface Defect Detection Based on Deep Convolutional Neural Networks with GAN-Based Data Augmentation

The performance of fruit surface defect detection is easily affected by factors such as noisy background and foliage occlusion. In this study, we choose lychee as a fruit type to investigate its surface quality. Lychees are hard to preserve and have to be stored at low temperatures to keep fresh. Ad...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 11; no. 8; p. 1500
Main Authors Wang, Chenglong, Xiao, Zhifeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The performance of fruit surface defect detection is easily affected by factors such as noisy background and foliage occlusion. In this study, we choose lychee as a fruit type to investigate its surface quality. Lychees are hard to preserve and have to be stored at low temperatures to keep fresh. Additionally, the surface of lychees is subject to scratches and cracks during harvesting/processing. To explore the feasibility of the automation of defective surface detection for lychees, we build a dataset with 3743 samples divided into three categories, namely, mature, defects, and rot. The original dataset suffers an imbalanced distribution issue. To address it, we adopt a transformer-based generative adversarial network (GAN) as a means of data augmentation that can effectively enhance the original training set with more and diverse samples to rebalance the three categories. In addition, we investigate three deep convolutional neural network (DCNN) models, including SSD-MobileNet V2, Faster RCNN-ResNet50, and Faster RCNN-Inception-ResNet V2, trained under different settings for an extensive comparison study. The results show that all three models demonstrate consistent performance gains in mean average precision (mAP), with the application of GAN-based augmentation. The rebalanced dataset also reduces the inter-category discrepancy, allowing a DCNN model to be trained equally across categories. In addition, the qualitative results show that models trained under the augmented setting can better identify the critical regions and the object boundary, leading to gains in mAP. Lastly, we conclude that the most cost-effective model, SSD-MobileNet V2, presents a comparable mAP (91.81%) and a superior inference speed (102 FPS), suitable for real-time detection in industrial-level applications.
AbstractList The performance of fruit surface defect detection is easily affected by factors such as noisy background and foliage occlusion. In this study, we choose lychee as a fruit type to investigate its surface quality. Lychees are hard to preserve and have to be stored at low temperatures to keep fresh. Additionally, the surface of lychees is subject to scratches and cracks during harvesting/processing. To explore the feasibility of the automation of defective surface detection for lychees, we build a dataset with 3743 samples divided into three categories, namely, mature, defects, and rot. The original dataset suffers an imbalanced distribution issue. To address it, we adopt a transformer-based generative adversarial network (GAN) as a means of data augmentation that can effectively enhance the original training set with more and diverse samples to rebalance the three categories. In addition, we investigate three deep convolutional neural network (DCNN) models, including SSD-MobileNet V2, Faster RCNN-ResNet50, and Faster RCNN-Inception-ResNet V2, trained under different settings for an extensive comparison study. The results show that all three models demonstrate consistent performance gains in mean average precision (mAP), with the application of GAN-based augmentation. The rebalanced dataset also reduces the inter-category discrepancy, allowing a DCNN model to be trained equally across categories. In addition, the qualitative results show that models trained under the augmented setting can better identify the critical regions and the object boundary, leading to gains in mAP. Lastly, we conclude that the most cost-effective model, SSD-MobileNet V2, presents a comparable mAP (91.81%) and a superior inference speed (102 FPS), suitable for real-time detection in industrial-level applications.
Author Wang, Chenglong
Xiao, Zhifeng
Author_xml – sequence: 1
  givenname: Chenglong
  orcidid: 0000-0003-2460-4442
  surname: Wang
  fullname: Wang, Chenglong
– sequence: 2
  givenname: Zhifeng
  orcidid: 0000-0003-3327-8108
  surname: Xiao
  fullname: Xiao, Zhifeng
BookMark eNp1kc1v1DAQxS3USpRt7xwjceESsOOP2MdlF0qlVTm0nK2JM9lmycaL7VDtf4-3AQmthC9v5Pm9J3vmDbkY_YiEvGX0A-eGfoRt8KPfHxmjmklKX5Grita8FNzIi3_q1-Qmxh3NxzCuaX1Fhs3RPSEWD1PowGGxxg5dypKy9H4sPkHEtsjFGvFQrPz4yw_TqQNDcY9TeJH07MOPWDz36am4Xd6Xs2kNCYrltN3jmOBkuSaXHQwRb_7ognz_8vlx9bXcfLu9Wy03pROsSmUnNVLjKtE2utOycdwwhMop3hihFKOsbrsaVKNblVHBKe9Aa1E3lDVGIl-Quzm39bCzh9DvIRyth96-XPiwtRBS7wa0XFTIOK-NbGuhhdC6NYBIleZNBbm1IO_nrEPwPyeMye776HAYYEQ_RVsprrjJ7-AZfXeG7vwU8qAyJZWQVMj6FKhmygUfY8DOun4eTwrQD5ZRe9qpPd9pNtIz49-f_dfyGwxSpuk
CitedBy_id crossref_primary_10_3390_agronomy13122866
crossref_primary_10_3390_agriculture14030452
crossref_primary_10_1007_s41666_024_00182_5
crossref_primary_10_1049_ipr2_13084
crossref_primary_10_1007_s00170_022_09356_0
crossref_primary_10_1109_ACCESS_2024_3505989
crossref_primary_10_3390_math10224351
crossref_primary_10_3390_pr12122817
crossref_primary_10_1016_j_compag_2024_109182
crossref_primary_10_3390_agriculture11121190
crossref_primary_10_1051_itmconf_20257003017
crossref_primary_10_1109_ACCESS_2021_3107498
crossref_primary_10_3390_s23198160
crossref_primary_10_34133_plantphenomics_0258
crossref_primary_10_1016_j_ecoinf_2023_102361
crossref_primary_10_1016_j_postharvbio_2023_112576
crossref_primary_10_3390_s23073686
crossref_primary_10_3390_s22020414
crossref_primary_10_3390_s22145141
crossref_primary_10_1016_j_atech_2022_100123
crossref_primary_10_1016_j_energy_2023_129654
crossref_primary_10_3390_agriculture13040878
crossref_primary_10_3390_machines12040276
crossref_primary_10_3934_mbe_2024272
crossref_primary_10_3390_agronomy13092435
crossref_primary_10_1109_ACCESS_2022_3217227
crossref_primary_10_1155_2023_2024237
crossref_primary_10_3390_agriculture14071046
crossref_primary_10_1007_s12393_024_09385_3
crossref_primary_10_1007_s10994_023_06498_4
crossref_primary_10_1007_s11042_023_17341_2
crossref_primary_10_3390_agronomy11112328
crossref_primary_10_1016_j_compag_2022_107208
crossref_primary_10_1111_1541_4337_70054
Cites_doi 10.1016/j.ifacol.2019.12.484
10.1109/ICCSCE.2017.8284412
10.1609/aaai.v31i1.11231
10.1016/j.biosystemseng.2019.12.003
10.1080/00207543.2019.1662133
10.1109/CVPR.2014.81
10.3390/s20236993
10.1007/978-3-030-01240-3_44
10.1016/j.cviu.2019.102897
10.1109/ISBI.2018.8363678
10.1016/j.media.2019.101552
10.1109/TPAMI.2016.2577031
10.1109/EMBC.2019.8857905
10.1111/jfpe.13586
10.1109/TMI.2019.2901750
10.1002/rob.21918
10.1109/CVPR.2018.00474
10.3390/app8091575
10.1109/CVPR.2015.7298594
10.1109/ICCV.2015.169
10.1016/j.media.2017.07.005
10.1007/s42452-019-1393-4
10.1016/j.neucom.2018.09.013
10.1109/TIM.2019.2915404
10.1109/ICICTA.2017.33
10.1155/2019/7630926
10.1016/j.neucom.2015.09.116
10.1109/TPAMI.2021.3059968
10.1016/j.camwa.2011.11.019
10.1007/s11947-021-02653-8
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7S9
L.6
DOA
DOI 10.3390/agronomy11081500
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Agricultural Science Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_342e133795d7484488d9aee0683b2ae1
10_3390_agronomy11081500
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
KQ8
M0K
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
ITC
PUEGO
ID FETCH-LOGICAL-c412t-f58e09c24db8f85bc391ea2c63b94661017df7a6b8d658e4303fa8847b01b95e3
IEDL.DBID DOA
ISSN 2073-4395
IngestDate Wed Aug 27 01:26:55 EDT 2025
Fri Jul 11 09:57:28 EDT 2025
Mon Jun 30 11:20:16 EDT 2025
Tue Jul 01 03:20:09 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-f58e09c24db8f85bc391ea2c63b94661017df7a6b8d658e4303fa8847b01b95e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3327-8108
0000-0003-2460-4442
OpenAccessLink https://doaj.org/article/342e133795d7484488d9aee0683b2ae1
PQID 2564504571
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_342e133795d7484488d9aee0683b2ae1
proquest_miscellaneous_2636396583
proquest_journals_2564504571
crossref_citationtrail_10_3390_agronomy11081500
crossref_primary_10_3390_agronomy11081500
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhou (ref_2) 2012; 28
Litjens (ref_8) 2017; 42
Guo (ref_12) 2016; 187
ref_14
ref_36
ref_35
ref_34
Ren (ref_6) 2016; 39
ref_31
Siddiqi (ref_15) 2019; 1
He (ref_13) 2019; 69
Grigorescu (ref_11) 2020; 37
ref_17
ref_39
Zhu (ref_18) 2021; 44
ref_38
ref_37
Dar (ref_30) 2019; 38
Diamant (ref_28) 2018; 321
Kusiak (ref_33) 2020; 58
Razmjooy (ref_1) 2012; 63
ref_25
Figueroa (ref_21) 2020; 190
ref_24
ref_22
ref_43
ref_20
ref_42
ref_41
ref_40
ref_29
ref_27
Xie (ref_5) 2019; 52
Xie (ref_19) 2021; 14
ref_26
Wang (ref_3) 2014; 30
ref_9
Tian (ref_23) 2019; 2019
Yi (ref_32) 2019; 58
ref_4
Chen (ref_10) 2020; 192
ref_7
Kayaalp (ref_16) 2020; 3
References_xml – volume: 52
  start-page: 24
  year: 2019
  ident: ref_5
  article-title: Research on carrot surface defect detection methods based on machine vision
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.12.484
– ident: ref_20
  doi: 10.1109/ICCSCE.2017.8284412
– ident: ref_43
  doi: 10.1609/aaai.v31i1.11231
– ident: ref_24
– volume: 190
  start-page: 131
  year: 2020
  ident: ref_21
  article-title: Computer vision based detection of external defects on tomatoes using deep learning
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2019.12.003
– ident: ref_34
– volume: 58
  start-page: 1594
  year: 2020
  ident: ref_33
  article-title: Convolutional and generative adversarial neural networks in manufacturing
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2019.1662133
– ident: ref_40
  doi: 10.1109/CVPR.2014.81
– ident: ref_22
  doi: 10.3390/s20236993
– ident: ref_26
  doi: 10.1007/978-3-030-01240-3_44
– ident: ref_37
– ident: ref_35
– volume: 192
  start-page: 102897
  year: 2020
  ident: ref_10
  article-title: Monocular human pose estimation: A survey of deep learning-based methods
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2019.102897
– ident: ref_31
  doi: 10.1109/ISBI.2018.8363678
– volume: 58
  start-page: 101552
  year: 2019
  ident: ref_32
  article-title: Generative adversarial network in medical imaging: A review
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101552
– volume: 39
  start-page: 1137
  year: 2016
  ident: ref_6
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 30
  start-page: 245
  year: 2014
  ident: ref_3
  article-title: Machine vision detecting potato mechanical damage based on manifold learning algorithm
  publication-title: Trans. Chin. Soc. Agric. Eng.
– ident: ref_27
  doi: 10.1109/EMBC.2019.8857905
– volume: 3
  start-page: 112
  year: 2020
  ident: ref_16
  article-title: Classification of robust and rotten apples by deep learning algorithm
  publication-title: Sak. Univ. J. Comput. Inf. Sci.
– ident: ref_25
– volume: 44
  start-page: e13586
  year: 2021
  ident: ref_18
  article-title: Identifying carrot appearance quality by an improved dense CapNet
  publication-title: J. Food Process. Eng.
  doi: 10.1111/jfpe.13586
– ident: ref_29
– volume: 38
  start-page: 2375
  year: 2019
  ident: ref_30
  article-title: Image synthesis in multi-contrast MRI with conditional generative adversarial networks
  publication-title: IEEE Trans. Med Imaging
  doi: 10.1109/TMI.2019.2901750
– volume: 37
  start-page: 362
  year: 2020
  ident: ref_11
  article-title: A survey of deep learning techniques for autonomous driving
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21918
– ident: ref_39
  doi: 10.1109/CVPR.2018.00474
– ident: ref_41
– ident: ref_14
  doi: 10.3390/app8091575
– ident: ref_42
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_7
  doi: 10.1109/ICCV.2015.169
– volume: 42
  start-page: 60
  year: 2017
  ident: ref_8
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 1
  start-page: 1
  year: 2019
  ident: ref_15
  article-title: Automated apple defect detection using state-of-the-art object detection techniques
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-1393-4
– volume: 321
  start-page: 321
  year: 2018
  ident: ref_28
  article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.013
– ident: ref_38
– ident: ref_17
– ident: ref_36
– volume: 69
  start-page: 1493
  year: 2019
  ident: ref_13
  article-title: An end-to-end steel surface defect detection approach via fusing multiple hierarchical features
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2915404
– ident: ref_4
  doi: 10.1109/ICICTA.2017.33
– volume: 2019
  start-page: 7630926
  year: 2019
  ident: ref_23
  article-title: Detection of apple lesions in orchards based on deep learning methods of cyclegan and yolov3-dense
  publication-title: J. Sens.
  doi: 10.1155/2019/7630926
– volume: 28
  start-page: 178
  year: 2012
  ident: ref_2
  article-title: Automatic detecting and grading method of potatoes based on machine vision
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 187
  start-page: 27
  year: 2016
  ident: ref_12
  article-title: Deep learning for visual understanding: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
– ident: ref_9
  doi: 10.1109/TPAMI.2021.3059968
– volume: 63
  start-page: 268
  year: 2012
  ident: ref_1
  article-title: A real-time mathematical computer method for potato inspection using machine vision
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.11.019
– volume: 14
  start-page: 1361
  year: 2021
  ident: ref_19
  article-title: Recognition of Defective Carrots Based on Deep Learning and Transfer Learning
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-021-02653-8
SSID ssj0000913807
Score 2.3858764
Snippet The performance of fruit surface defect detection is easily affected by factors such as noisy background and foliage occlusion. In this study, we choose lychee...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1500
SubjectTerms agronomy
Artificial neural networks
Automation
Background noise
Categories
cost effectiveness
Data augmentation
data collection
Datasets
deep convolutional neural network
Deep learning
Defects
Design
Faster RCNN
Foliage
Fruits
generative adversarial network
Generative adversarial networks
leaves
litchis
Low temperature
lychee
Neural networks
Occlusion
Rot
SSD
surface defect detection
Surface defects
Surface properties
surface quality
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvcCh4inSFmQkLhys7MPeeE8oaVoqBBECKvW28mOcS9kNm01_PzOOE1Qq9bSrXduH8bw985mxDyYUQSHnCK0KLyTaOKGd9MIZKb3yRgdJ3cjfFtXllfxyra5Twm2dyip3OjEqat85ypGPC4I9Qf9jkn9a_RF0axSdrqYrNB6zQ1TBGoOvw9n54vuPfZaFUC91NtmeT5YY34_Nso_dAlT-js5QdsceRdj-e1o5mpqLZ-wo-Yh8ut3U5-wRtC_Y0-myTzgZ8JLdfEW9BcB_bvpgHPA5UFkGPoZYWtXyGVonz_FlDrDiZ117m3gMFyZAjviIFeBrTrlY_nm6ENtJczMYPt0sf6e2pPYVu7o4_3V2KdLFCcLJvBhEUBqy2hXSWx20sq6sczCFq0pLcPIkhT5MTGW1x80BiWYsGI12yma5rRWUr9lB27XwhnFA-ZXaKSsxdNGmtlUVLLp5gVpyg7cjNt6Rr3EJVZwut7hpMLoggjf_E3zEPu5nrLaIGg-MndGO7McRFnb80PXLJolWU8oCMNKe1MoTMCpqJF8bgKzSpS0M5CN2utvPJgnouvnHTiP2fv8bRYvOS0wL3QbHVCX6b0ih8vjhJU7Yk4JKXWJd4Ck7GPoNvEVfZbDvEkP-BYYE6rs
  priority: 102
  providerName: ProQuest
Title Lychee Surface Defect Detection Based on Deep Convolutional Neural Networks with GAN-Based Data Augmentation
URI https://www.proquest.com/docview/2564504571
https://www.proquest.com/docview/2636396583
https://doaj.org/article/342e133795d7484488d9aee0683b2ae1
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JT-swELYQXOCAHpso8JCRuHCI2jp26hxbyiIEFWKRuEVexr1AWpX0_f4344SKRYILJ0exHVmzeGbimc-MHZsggkLJSbQSPpFo4xLtpE-ckdIrb3SQVI18M8ouH-XVk3p6d9UX5YTV8MA14dqpFIBxVC9XnmAvUd58bgA6mU6tMBADH7R574KpuAfnXUJSr88lU4zr22Y8i1UClPaOTlDngx2KcP1fduNoYs7_sPXGN-T9ek0bbAnKTbbWH88afAzYYs_XuF8B8Pv5LBgHfAiUjoFNFVOqSj5Aq-Q5PgwBpvx0Uv5rZAs_TEAcsYmZ36-c_sHyi_4oqScNTWV4fz5-acqRym32eH72cHqZNBcmJE52RZUEpaGTOyG91UEr69K8C0a4LLUEI0_a50PPZFZ7ZApINF_BaLRPttO1uYJ0hy2XkxJ2GQfUW6mdshJDFm1ym2XBonsXqBQ3eNti7TfyFa5BE6dLLZ4LjCqI4MVngrfYyWLGtEbS-GbsgDiyGEcY2PEFSkbRSEbxk2S02MEbP4tGMV8LQeg56Mb2sPto0Y0qReckpoTJHMdkKfptSKF07zfWsc9WBSXCxKzBA7ZczebwFz2Zyh6ylcHZ6PbuMArvf7mi8oQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAcEE-RUmCR4MDBir1eO-sDQknTktI0QtBKvZl9zOZS7NRxQPwpfiMzthMESL31tJa9u7JmZ-exO_MNY6-1Fz5BzglUIlwgUccFykoXWC2lS5xWXlI28uk8nZ7LjxfJxQ77tcmFobDKjUxsBLUrLZ2RDwTBnqD9MYzeL68CqhpFt6ubEhotW5zAzx_osq3eHU9wfd8IcXR4djANuqoCgZWRqAOfKAgzK6QzyqvE2DiLQAubxoaw1olFnR_q1CiHfw4SZbzXCoW4CSOTJRDjvLfYrozRlemx3fHh_NPn7akOoWyqcNjeh8ZxFg70omqyEyjcHo2v8C_915QJ-E8LNKrt6D6719mkfNQy0QO2A8VDdne0qDpcDnjELmcoJwH4l3XltQU-AQoDwaZuQrkKPkZt6Dg-TACW_KAsvnc8jRMTAEjTNBHnK05nv_zDaB60gya61ny0Xnzr0qCKx-z8Rkj6hPWKsoCnjAPKC6lsYiS6SkpnJk29QbPSUwqwd6bPBhvy5bZDMadiGpc5ejNE8PxfgvfZ2-2IZYvgcU3fMa3Ith9hbzcvymqRd1s5j6UA9OyHWeIIiBUloMs0QJiq2AgNUZ_tb9Yz7wTCKv_Dvn32avsZtzLdz-gCyjX2SWO0F5FC8d71U7xkt6dnp7N8djw_ecbuCAqzaWIS91mvrtbwHO2k2rzomJOzrze9H34D2vAnJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQDzFQgEjwYFDtInjJM4Bod2mS0vLqgIq9Zba8XgvJVmyWRB_jV_HTB6LAKm3nhwltqWMx_OwZ75h7JV2wkXIOZ6KhPUk6jhPFdJ6hZbSRlYrJykb-eMiPjyTH86j8x32a8iFobDKQSa2gtpWBZ2RTwTBnqD9kQQT14dFnGbzd6tvHlWQopvWoZxGxyLH8PMHum_rt0cZrvVrIeYHX_YPvb7CgFfIQDSeixT4aSGkNcqpyBRhGoAWRRwawl0ndrUu0bFRFv8CJMp7pxUKdOMHJo0gxHlvsN0EvSJ_xHZnB4vTT9sTHkLcVH7S3Y2GYepP9LJuMxUo9B4NMf8vXdiWDPhPI7Rqbn6X3entUz7tGOoe24HyPrs9XdY9Rgc8YJcnKDMB-OdN7XQBPAMKCcGmacO6Sj5DzWg5PmQAK75fld97_saJCQykbdro8zWnc2D-frrwukGZbjSfbpZf-5So8iE7uxaSPmKjsirhMeOAskOqIjIS3SalUxPHzqCJ6Sgd2FkzZpOBfHnRI5pTYY3LHD0bInj-L8HH7M12xKpD87ii74xWZNuPcLjbF1W9zPttnYdSAHr5SRpZAmVFaWhTDeDHKjRCQzBme8N65r1wWOd_WHnMXm4_47amuxpdQrXBPnGItiNSKHxy9RQv2E3cB_nJ0eL4KbslKOKmDU_cY6Om3sAzNJka87znTc4urns7_AZhZytc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lychee+Surface+Defect+Detection+Based+on+Deep+Convolutional+Neural+Networks+with+GAN-Based+Data+Augmentation&rft.jtitle=Agronomy+%28Basel%29&rft.au=Wang%2C+Chenglong&rft.au=Xiao%2C+Zhifeng&rft.date=2021-08-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=11&rft.issue=8&rft_id=info:doi/10.3390%2Fagronomy11081500&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon