Lychee Surface Defect Detection Based on Deep Convolutional Neural Networks with GAN-Based Data Augmentation
The performance of fruit surface defect detection is easily affected by factors such as noisy background and foliage occlusion. In this study, we choose lychee as a fruit type to investigate its surface quality. Lychees are hard to preserve and have to be stored at low temperatures to keep fresh. Ad...
Saved in:
Published in | Agronomy (Basel) Vol. 11; no. 8; p. 1500 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The performance of fruit surface defect detection is easily affected by factors such as noisy background and foliage occlusion. In this study, we choose lychee as a fruit type to investigate its surface quality. Lychees are hard to preserve and have to be stored at low temperatures to keep fresh. Additionally, the surface of lychees is subject to scratches and cracks during harvesting/processing. To explore the feasibility of the automation of defective surface detection for lychees, we build a dataset with 3743 samples divided into three categories, namely, mature, defects, and rot. The original dataset suffers an imbalanced distribution issue. To address it, we adopt a transformer-based generative adversarial network (GAN) as a means of data augmentation that can effectively enhance the original training set with more and diverse samples to rebalance the three categories. In addition, we investigate three deep convolutional neural network (DCNN) models, including SSD-MobileNet V2, Faster RCNN-ResNet50, and Faster RCNN-Inception-ResNet V2, trained under different settings for an extensive comparison study. The results show that all three models demonstrate consistent performance gains in mean average precision (mAP), with the application of GAN-based augmentation. The rebalanced dataset also reduces the inter-category discrepancy, allowing a DCNN model to be trained equally across categories. In addition, the qualitative results show that models trained under the augmented setting can better identify the critical regions and the object boundary, leading to gains in mAP. Lastly, we conclude that the most cost-effective model, SSD-MobileNet V2, presents a comparable mAP (91.81%) and a superior inference speed (102 FPS), suitable for real-time detection in industrial-level applications. |
---|---|
AbstractList | The performance of fruit surface defect detection is easily affected by factors such as noisy background and foliage occlusion. In this study, we choose lychee as a fruit type to investigate its surface quality. Lychees are hard to preserve and have to be stored at low temperatures to keep fresh. Additionally, the surface of lychees is subject to scratches and cracks during harvesting/processing. To explore the feasibility of the automation of defective surface detection for lychees, we build a dataset with 3743 samples divided into three categories, namely, mature, defects, and rot. The original dataset suffers an imbalanced distribution issue. To address it, we adopt a transformer-based generative adversarial network (GAN) as a means of data augmentation that can effectively enhance the original training set with more and diverse samples to rebalance the three categories. In addition, we investigate three deep convolutional neural network (DCNN) models, including SSD-MobileNet V2, Faster RCNN-ResNet50, and Faster RCNN-Inception-ResNet V2, trained under different settings for an extensive comparison study. The results show that all three models demonstrate consistent performance gains in mean average precision (mAP), with the application of GAN-based augmentation. The rebalanced dataset also reduces the inter-category discrepancy, allowing a DCNN model to be trained equally across categories. In addition, the qualitative results show that models trained under the augmented setting can better identify the critical regions and the object boundary, leading to gains in mAP. Lastly, we conclude that the most cost-effective model, SSD-MobileNet V2, presents a comparable mAP (91.81%) and a superior inference speed (102 FPS), suitable for real-time detection in industrial-level applications. |
Author | Wang, Chenglong Xiao, Zhifeng |
Author_xml | – sequence: 1 givenname: Chenglong orcidid: 0000-0003-2460-4442 surname: Wang fullname: Wang, Chenglong – sequence: 2 givenname: Zhifeng orcidid: 0000-0003-3327-8108 surname: Xiao fullname: Xiao, Zhifeng |
BookMark | eNp1kc1v1DAQxS3USpRt7xwjceESsOOP2MdlF0qlVTm0nK2JM9lmycaL7VDtf4-3AQmthC9v5Pm9J3vmDbkY_YiEvGX0A-eGfoRt8KPfHxmjmklKX5Grita8FNzIi3_q1-Qmxh3NxzCuaX1Fhs3RPSEWD1PowGGxxg5dypKy9H4sPkHEtsjFGvFQrPz4yw_TqQNDcY9TeJH07MOPWDz36am4Xd6Xs2kNCYrltN3jmOBkuSaXHQwRb_7ognz_8vlx9bXcfLu9Wy03pROsSmUnNVLjKtE2utOycdwwhMop3hihFKOsbrsaVKNblVHBKe9Aa1E3lDVGIl-Quzm39bCzh9DvIRyth96-XPiwtRBS7wa0XFTIOK-NbGuhhdC6NYBIleZNBbm1IO_nrEPwPyeMye776HAYYEQ_RVsprrjJ7-AZfXeG7vwU8qAyJZWQVMj6FKhmygUfY8DOun4eTwrQD5ZRe9qpPd9pNtIz49-f_dfyGwxSpuk |
CitedBy_id | crossref_primary_10_3390_agronomy13122866 crossref_primary_10_3390_agriculture14030452 crossref_primary_10_1007_s41666_024_00182_5 crossref_primary_10_1049_ipr2_13084 crossref_primary_10_1007_s00170_022_09356_0 crossref_primary_10_1109_ACCESS_2024_3505989 crossref_primary_10_3390_math10224351 crossref_primary_10_3390_pr12122817 crossref_primary_10_1016_j_compag_2024_109182 crossref_primary_10_3390_agriculture11121190 crossref_primary_10_1051_itmconf_20257003017 crossref_primary_10_1109_ACCESS_2021_3107498 crossref_primary_10_3390_s23198160 crossref_primary_10_34133_plantphenomics_0258 crossref_primary_10_1016_j_ecoinf_2023_102361 crossref_primary_10_1016_j_postharvbio_2023_112576 crossref_primary_10_3390_s23073686 crossref_primary_10_3390_s22020414 crossref_primary_10_3390_s22145141 crossref_primary_10_1016_j_atech_2022_100123 crossref_primary_10_1016_j_energy_2023_129654 crossref_primary_10_3390_agriculture13040878 crossref_primary_10_3390_machines12040276 crossref_primary_10_3934_mbe_2024272 crossref_primary_10_3390_agronomy13092435 crossref_primary_10_1109_ACCESS_2022_3217227 crossref_primary_10_1155_2023_2024237 crossref_primary_10_3390_agriculture14071046 crossref_primary_10_1007_s12393_024_09385_3 crossref_primary_10_1007_s10994_023_06498_4 crossref_primary_10_1007_s11042_023_17341_2 crossref_primary_10_3390_agronomy11112328 crossref_primary_10_1016_j_compag_2022_107208 crossref_primary_10_1111_1541_4337_70054 |
Cites_doi | 10.1016/j.ifacol.2019.12.484 10.1109/ICCSCE.2017.8284412 10.1609/aaai.v31i1.11231 10.1016/j.biosystemseng.2019.12.003 10.1080/00207543.2019.1662133 10.1109/CVPR.2014.81 10.3390/s20236993 10.1007/978-3-030-01240-3_44 10.1016/j.cviu.2019.102897 10.1109/ISBI.2018.8363678 10.1016/j.media.2019.101552 10.1109/TPAMI.2016.2577031 10.1109/EMBC.2019.8857905 10.1111/jfpe.13586 10.1109/TMI.2019.2901750 10.1002/rob.21918 10.1109/CVPR.2018.00474 10.3390/app8091575 10.1109/CVPR.2015.7298594 10.1109/ICCV.2015.169 10.1016/j.media.2017.07.005 10.1007/s42452-019-1393-4 10.1016/j.neucom.2018.09.013 10.1109/TIM.2019.2915404 10.1109/ICICTA.2017.33 10.1155/2019/7630926 10.1016/j.neucom.2015.09.116 10.1109/TPAMI.2021.3059968 10.1016/j.camwa.2011.11.019 10.1007/s11947-021-02653-8 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI 7S9 L.6 DOA |
DOI | 10.3390/agronomy11081500 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2073-4395 |
ExternalDocumentID | oai_doaj_org_article_342e133795d7484488d9aee0683b2ae1 10_3390_agronomy11081500 |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO KQ8 M0K MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PROAC PYCSY 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 ITC PUEGO |
ID | FETCH-LOGICAL-c412t-f58e09c24db8f85bc391ea2c63b94661017df7a6b8d658e4303fa8847b01b95e3 |
IEDL.DBID | DOA |
ISSN | 2073-4395 |
IngestDate | Wed Aug 27 01:26:55 EDT 2025 Fri Jul 11 09:57:28 EDT 2025 Mon Jun 30 11:20:16 EDT 2025 Tue Jul 01 03:20:09 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-f58e09c24db8f85bc391ea2c63b94661017df7a6b8d658e4303fa8847b01b95e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3327-8108 0000-0003-2460-4442 |
OpenAccessLink | https://doaj.org/article/342e133795d7484488d9aee0683b2ae1 |
PQID | 2564504571 |
PQPubID | 2032440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_342e133795d7484488d9aee0683b2ae1 proquest_miscellaneous_2636396583 proquest_journals_2564504571 crossref_citationtrail_10_3390_agronomy11081500 crossref_primary_10_3390_agronomy11081500 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agronomy (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhou (ref_2) 2012; 28 Litjens (ref_8) 2017; 42 Guo (ref_12) 2016; 187 ref_14 ref_36 ref_35 ref_34 Ren (ref_6) 2016; 39 ref_31 Siddiqi (ref_15) 2019; 1 He (ref_13) 2019; 69 Grigorescu (ref_11) 2020; 37 ref_17 ref_39 Zhu (ref_18) 2021; 44 ref_38 ref_37 Dar (ref_30) 2019; 38 Diamant (ref_28) 2018; 321 Kusiak (ref_33) 2020; 58 Razmjooy (ref_1) 2012; 63 ref_25 Figueroa (ref_21) 2020; 190 ref_24 ref_22 ref_43 ref_20 ref_42 ref_41 ref_40 ref_29 ref_27 Xie (ref_5) 2019; 52 Xie (ref_19) 2021; 14 ref_26 Wang (ref_3) 2014; 30 ref_9 Tian (ref_23) 2019; 2019 Yi (ref_32) 2019; 58 ref_4 Chen (ref_10) 2020; 192 ref_7 Kayaalp (ref_16) 2020; 3 |
References_xml | – volume: 52 start-page: 24 year: 2019 ident: ref_5 article-title: Research on carrot surface defect detection methods based on machine vision publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.12.484 – ident: ref_20 doi: 10.1109/ICCSCE.2017.8284412 – ident: ref_43 doi: 10.1609/aaai.v31i1.11231 – ident: ref_24 – volume: 190 start-page: 131 year: 2020 ident: ref_21 article-title: Computer vision based detection of external defects on tomatoes using deep learning publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2019.12.003 – ident: ref_34 – volume: 58 start-page: 1594 year: 2020 ident: ref_33 article-title: Convolutional and generative adversarial neural networks in manufacturing publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2019.1662133 – ident: ref_40 doi: 10.1109/CVPR.2014.81 – ident: ref_22 doi: 10.3390/s20236993 – ident: ref_26 doi: 10.1007/978-3-030-01240-3_44 – ident: ref_37 – ident: ref_35 – volume: 192 start-page: 102897 year: 2020 ident: ref_10 article-title: Monocular human pose estimation: A survey of deep learning-based methods publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2019.102897 – ident: ref_31 doi: 10.1109/ISBI.2018.8363678 – volume: 58 start-page: 101552 year: 2019 ident: ref_32 article-title: Generative adversarial network in medical imaging: A review publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101552 – volume: 39 start-page: 1137 year: 2016 ident: ref_6 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 30 start-page: 245 year: 2014 ident: ref_3 article-title: Machine vision detecting potato mechanical damage based on manifold learning algorithm publication-title: Trans. Chin. Soc. Agric. Eng. – ident: ref_27 doi: 10.1109/EMBC.2019.8857905 – volume: 3 start-page: 112 year: 2020 ident: ref_16 article-title: Classification of robust and rotten apples by deep learning algorithm publication-title: Sak. Univ. J. Comput. Inf. Sci. – ident: ref_25 – volume: 44 start-page: e13586 year: 2021 ident: ref_18 article-title: Identifying carrot appearance quality by an improved dense CapNet publication-title: J. Food Process. Eng. doi: 10.1111/jfpe.13586 – ident: ref_29 – volume: 38 start-page: 2375 year: 2019 ident: ref_30 article-title: Image synthesis in multi-contrast MRI with conditional generative adversarial networks publication-title: IEEE Trans. Med Imaging doi: 10.1109/TMI.2019.2901750 – volume: 37 start-page: 362 year: 2020 ident: ref_11 article-title: A survey of deep learning techniques for autonomous driving publication-title: J. Field Robot. doi: 10.1002/rob.21918 – ident: ref_39 doi: 10.1109/CVPR.2018.00474 – ident: ref_41 – ident: ref_14 doi: 10.3390/app8091575 – ident: ref_42 doi: 10.1109/CVPR.2015.7298594 – ident: ref_7 doi: 10.1109/ICCV.2015.169 – volume: 42 start-page: 60 year: 2017 ident: ref_8 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – volume: 1 start-page: 1 year: 2019 ident: ref_15 article-title: Automated apple defect detection using state-of-the-art object detection techniques publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-1393-4 – volume: 321 start-page: 321 year: 2018 ident: ref_28 article-title: GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.013 – ident: ref_38 – ident: ref_17 – ident: ref_36 – volume: 69 start-page: 1493 year: 2019 ident: ref_13 article-title: An end-to-end steel surface defect detection approach via fusing multiple hierarchical features publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2915404 – ident: ref_4 doi: 10.1109/ICICTA.2017.33 – volume: 2019 start-page: 7630926 year: 2019 ident: ref_23 article-title: Detection of apple lesions in orchards based on deep learning methods of cyclegan and yolov3-dense publication-title: J. Sens. doi: 10.1155/2019/7630926 – volume: 28 start-page: 178 year: 2012 ident: ref_2 article-title: Automatic detecting and grading method of potatoes based on machine vision publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 187 start-page: 27 year: 2016 ident: ref_12 article-title: Deep learning for visual understanding: A review publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.116 – ident: ref_9 doi: 10.1109/TPAMI.2021.3059968 – volume: 63 start-page: 268 year: 2012 ident: ref_1 article-title: A real-time mathematical computer method for potato inspection using machine vision publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.11.019 – volume: 14 start-page: 1361 year: 2021 ident: ref_19 article-title: Recognition of Defective Carrots Based on Deep Learning and Transfer Learning publication-title: Food Bioprocess Technol. doi: 10.1007/s11947-021-02653-8 |
SSID | ssj0000913807 |
Score | 2.3858764 |
Snippet | The performance of fruit surface defect detection is easily affected by factors such as noisy background and foliage occlusion. In this study, we choose lychee... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1500 |
SubjectTerms | agronomy Artificial neural networks Automation Background noise Categories cost effectiveness Data augmentation data collection Datasets deep convolutional neural network Deep learning Defects Design Faster RCNN Foliage Fruits generative adversarial network Generative adversarial networks leaves litchis Low temperature lychee Neural networks Occlusion Rot SSD surface defect detection Surface defects Surface properties surface quality |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvcCh4inSFmQkLhys7MPeeE8oaVoqBBECKvW28mOcS9kNm01_PzOOE1Qq9bSrXduH8bw985mxDyYUQSHnCK0KLyTaOKGd9MIZKb3yRgdJ3cjfFtXllfxyra5Twm2dyip3OjEqat85ypGPC4I9Qf9jkn9a_RF0axSdrqYrNB6zQ1TBGoOvw9n54vuPfZaFUC91NtmeT5YY34_Nso_dAlT-js5QdsceRdj-e1o5mpqLZ-wo-Yh8ut3U5-wRtC_Y0-myTzgZ8JLdfEW9BcB_bvpgHPA5UFkGPoZYWtXyGVonz_FlDrDiZ117m3gMFyZAjviIFeBrTrlY_nm6ENtJczMYPt0sf6e2pPYVu7o4_3V2KdLFCcLJvBhEUBqy2hXSWx20sq6sczCFq0pLcPIkhT5MTGW1x80BiWYsGI12yma5rRWUr9lB27XwhnFA-ZXaKSsxdNGmtlUVLLp5gVpyg7cjNt6Rr3EJVZwut7hpMLoggjf_E3zEPu5nrLaIGg-MndGO7McRFnb80PXLJolWU8oCMNKe1MoTMCpqJF8bgKzSpS0M5CN2utvPJgnouvnHTiP2fv8bRYvOS0wL3QbHVCX6b0ih8vjhJU7Yk4JKXWJd4Ck7GPoNvEVfZbDvEkP-BYYE6rs priority: 102 providerName: ProQuest |
Title | Lychee Surface Defect Detection Based on Deep Convolutional Neural Networks with GAN-Based Data Augmentation |
URI | https://www.proquest.com/docview/2564504571 https://www.proquest.com/docview/2636396583 https://doaj.org/article/342e133795d7484488d9aee0683b2ae1 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JT-swELYQXOCAHpso8JCRuHCI2jp26hxbyiIEFWKRuEVexr1AWpX0_f4344SKRYILJ0exHVmzeGbimc-MHZsggkLJSbQSPpFo4xLtpE-ckdIrb3SQVI18M8ouH-XVk3p6d9UX5YTV8MA14dqpFIBxVC9XnmAvUd58bgA6mU6tMBADH7R574KpuAfnXUJSr88lU4zr22Y8i1UClPaOTlDngx2KcP1fduNoYs7_sPXGN-T9ek0bbAnKTbbWH88afAzYYs_XuF8B8Pv5LBgHfAiUjoFNFVOqSj5Aq-Q5PgwBpvx0Uv5rZAs_TEAcsYmZ36-c_sHyi_4oqScNTWV4fz5-acqRym32eH72cHqZNBcmJE52RZUEpaGTOyG91UEr69K8C0a4LLUEI0_a50PPZFZ7ZApINF_BaLRPttO1uYJ0hy2XkxJ2GQfUW6mdshJDFm1ym2XBonsXqBQ3eNti7TfyFa5BE6dLLZ4LjCqI4MVngrfYyWLGtEbS-GbsgDiyGEcY2PEFSkbRSEbxk2S02MEbP4tGMV8LQeg56Mb2sPto0Y0qReckpoTJHMdkKfptSKF07zfWsc9WBSXCxKzBA7ZczebwFz2Zyh6ylcHZ6PbuMArvf7mi8oQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAcEE-RUmCR4MDBir1eO-sDQknTktI0QtBKvZl9zOZS7NRxQPwpfiMzthMESL31tJa9u7JmZ-exO_MNY6-1Fz5BzglUIlwgUccFykoXWC2lS5xWXlI28uk8nZ7LjxfJxQ77tcmFobDKjUxsBLUrLZ2RDwTBnqD9MYzeL68CqhpFt6ubEhotW5zAzx_osq3eHU9wfd8IcXR4djANuqoCgZWRqAOfKAgzK6QzyqvE2DiLQAubxoaw1olFnR_q1CiHfw4SZbzXCoW4CSOTJRDjvLfYrozRlemx3fHh_NPn7akOoWyqcNjeh8ZxFg70omqyEyjcHo2v8C_915QJ-E8LNKrt6D6719mkfNQy0QO2A8VDdne0qDpcDnjELmcoJwH4l3XltQU-AQoDwaZuQrkKPkZt6Dg-TACW_KAsvnc8jRMTAEjTNBHnK05nv_zDaB60gya61ny0Xnzr0qCKx-z8Rkj6hPWKsoCnjAPKC6lsYiS6SkpnJk29QbPSUwqwd6bPBhvy5bZDMadiGpc5ejNE8PxfgvfZ2-2IZYvgcU3fMa3Ith9hbzcvymqRd1s5j6UA9OyHWeIIiBUloMs0QJiq2AgNUZ_tb9Yz7wTCKv_Dvn32avsZtzLdz-gCyjX2SWO0F5FC8d71U7xkt6dnp7N8djw_ecbuCAqzaWIS91mvrtbwHO2k2rzomJOzrze9H34D2vAnJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwQDzFQgEjwYFDtInjJM4Bod2mS0vLqgIq9Zba8XgvJVmyWRB_jV_HTB6LAKm3nhwltqWMx_OwZ75h7JV2wkXIOZ6KhPUk6jhPFdJ6hZbSRlYrJykb-eMiPjyTH86j8x32a8iFobDKQSa2gtpWBZ2RTwTBnqD9kQQT14dFnGbzd6tvHlWQopvWoZxGxyLH8PMHum_rt0cZrvVrIeYHX_YPvb7CgFfIQDSeixT4aSGkNcqpyBRhGoAWRRwawl0ndrUu0bFRFv8CJMp7pxUKdOMHJo0gxHlvsN0EvSJ_xHZnB4vTT9sTHkLcVH7S3Y2GYepP9LJuMxUo9B4NMf8vXdiWDPhPI7Rqbn6X3entUz7tGOoe24HyPrs9XdY9Rgc8YJcnKDMB-OdN7XQBPAMKCcGmacO6Sj5DzWg5PmQAK75fld97_saJCQykbdro8zWnc2D-frrwukGZbjSfbpZf-5So8iE7uxaSPmKjsirhMeOAskOqIjIS3SalUxPHzqCJ6Sgd2FkzZpOBfHnRI5pTYY3LHD0bInj-L8HH7M12xKpD87ii74xWZNuPcLjbF1W9zPttnYdSAHr5SRpZAmVFaWhTDeDHKjRCQzBme8N65r1wWOd_WHnMXm4_47amuxpdQrXBPnGItiNSKHxy9RQv2E3cB_nJ0eL4KbslKOKmDU_cY6Om3sAzNJka87znTc4urns7_AZhZytc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lychee+Surface+Defect+Detection+Based+on+Deep+Convolutional+Neural+Networks+with+GAN-Based+Data+Augmentation&rft.jtitle=Agronomy+%28Basel%29&rft.au=Wang%2C+Chenglong&rft.au=Xiao%2C+Zhifeng&rft.date=2021-08-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=11&rft.issue=8&rft_id=info:doi/10.3390%2Fagronomy11081500&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |