CRISPR/Cas Applications in Myotonic Dystrophy: Expanding Opportunities
CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target...
Saved in:
Published in | International journal of molecular sciences Vol. 20; no. 15; p. 3689 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
27.07.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the DMPK/DM1-AS gene pair, the autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome. To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a polyadenylation signal in DMPK. Independently, catalytically deficient Cas9 (dCas9) was recruited to the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make CRISPR/Cas-mediated editing a therapeutic reality in patients. |
---|---|
AbstractList | CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the DMPK/DM1-AS gene pair, the autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome. To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a polyadenylation signal in DMPK. Independently, catalytically deficient Cas9 (dCas9) was recruited to the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make CRISPR/Cas-mediated editing a therapeutic reality in patients. CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the / gene pair, the autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome. To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a polyadenylation signal in . Independently, catalytically deficient Cas9 (dCas9) was recruited to the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make CRISPR/Cas-mediated editing a therapeutic reality in patients. CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the DMPK/DM1-AS gene pair, the autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome. To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a polyadenylation signal in DMPK. Independently, catalytically deficient Cas9 (dCas9) was recruited to the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make CRISPR/Cas-mediated editing a therapeutic reality in patients.CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the DMPK/DM1-AS gene pair, the autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome. To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a polyadenylation signal in DMPK. Independently, catalytically deficient Cas9 (dCas9) was recruited to the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make CRISPR/Cas-mediated editing a therapeutic reality in patients. Mutating one or both of the two nuclease domains of Cas9, respectively, resulted in the generation of Cas9 nickase (Cas9n), which only induces a single strand nick, and catalytically dead Cas9 (dCas9), which bears no nuclease activity at all (Figure 1). dCas9 can block transcription by physically occupying the gene or it may function as a scaffold for fluorophores (e.g., green fluorescent protein (GFP)), transcription activators or inhibitors (i.e., CRISPRa or CRISPRi), and epigenetic modifiers like demethylases and base editors [4,5] (Figure 1). [...]we will look at hurdles that must be taken to bring CRISPR/Cas-mediated gene editing closer to the patients. 2. From a therapeutic point of view, this excision approach is feasible in DM1, because the (CUG)n repeat is not part of the DMPK open reading frame, while functional open reading frames in long noncoding RNA DM1-AS have not been demonstrated yet [19]. Since expanded (CAG)n repeats in DM1-AS transcripts are subject to non-canonical, disease-related RAN translation [20], repeat excision will also abolish the production of toxic homopolymeric proteins. (2017), as they speculated that the editing efficiency in regions close to the repeat might be influenced by its abnormal 3D structure [22]. [...]they chose to target the DM1 locus more distal to the repeat, ~200–300 base pairs up- and downstream. CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the DMPK / DM1-AS gene pair, the autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome. To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a polyadenylation signal in DMPK . Independently, catalytically deficient Cas9 (dCas9) was recruited to the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make CRISPR/Cas-mediated editing a therapeutic reality in patients. |
Author | Wansink, Derick G. Raaijmakers, Renée H.L. Ripken, Lise Ausems, C. Rosanne M. |
AuthorAffiliation | 2 Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain Cognition and Behavior, 6525 GA Nijmegen, The Netherlands 1 Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands |
AuthorAffiliation_xml | – name: 1 Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands – name: 2 Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain Cognition and Behavior, 6525 GA Nijmegen, The Netherlands |
Author_xml | – sequence: 1 givenname: Renée H.L. orcidid: 0000-0001-9495-4830 surname: Raaijmakers fullname: Raaijmakers, Renée H.L. – sequence: 2 givenname: Lise surname: Ripken fullname: Ripken, Lise – sequence: 3 givenname: C. Rosanne M. orcidid: 0000-0002-6467-1984 surname: Ausems fullname: Ausems, C. Rosanne M. – sequence: 4 givenname: Derick G. orcidid: 0000-0002-6773-8662 surname: Wansink fullname: Wansink, Derick G. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31357652$$D View this record in MEDLINE/PubMed |
BookMark | eNptkctLxDAQxoMovm-epeDFg6vJpElbD8KyPkFRfJxDNk01SzepSSruf298soqnGZjffHzzzRpatM5qhLYI3qe0wgdmMg2ACaO8rBbQKskBBhjzYnGuX0FrIUwwBgqsWkYrlFBWcAar6HR0e3F3c3swkiEbdl1rlIzG2ZAZm13NXHTWqOx4FqJ33dPsMDt57aStjX3MrrvO-dhbE40OG2ipkW3Qm191HT2cntyPzgeX12cXo-HlQOUE4kA345rW5bgkRc1B11wqUATThjUS07xWmjWM52XdlBwUrVTBtQTCgORaUjmm6-joU7frx1OdeBu9bEXnzVT6mXDSiN8Ta57Eo3sRnFccsyIJ7H4JePfc6xDF1ASl21Za7fogAHiBU26UJXTnDzpxvbfpPAGUUg4sLyFR2_OOfqx8R5wA-ASUdyF43Qhl4kfIyaBpBcHi_Y9i_o9pae_P0rfuv_gbRqOfoQ |
CitedBy_id | crossref_primary_10_1007_s12015_020_10100_y crossref_primary_10_3389_fmed_2022_1019803 crossref_primary_10_1016_j_drudis_2021_03_024 crossref_primary_10_1167_tvst_9_9_47 crossref_primary_10_3390_ijms22116089 crossref_primary_10_1016_j_isci_2024_109930 crossref_primary_10_1016_j_omtn_2021_11_024 crossref_primary_10_3390_ijms241310650 crossref_primary_10_3390_ijms231810491 crossref_primary_10_1016_j_nmd_2020_03_011 crossref_primary_10_3390_ijms231911954 crossref_primary_10_3389_fnagi_2021_755392 crossref_primary_10_1093_toxres_tfae105 crossref_primary_10_1021_acs_biochem_0c00472 crossref_primary_10_3390_ijms21051854 crossref_primary_10_1016_j_drudis_2023_103489 crossref_primary_10_1016_j_gene_2022_146518 crossref_primary_10_3390_ijms20225685 crossref_primary_10_1016_j_omtn_2023_05_007 crossref_primary_10_3390_cells10112850 crossref_primary_10_1172_JCI136873 |
Cites_doi | 10.1016/j.molcel.2017.09.033 10.1016/j.omtn.2017.10.006 10.1016/j.jmb.2018.06.037 10.1038/nrm.2015.2 10.1038/d41586-019-00726-5 10.1182/blood.V94.3.864.415k34_864_874 10.1182/blood-2004-07-2908 10.1016/j.stemcr.2017.01.022 10.1016/j.cell.2016.10.044 10.1016/j.scr.2015.12.028 10.1371/journal.pone.0165499 10.1101/cshperspect.a012740 10.1089/hum.2018.151 10.1007/s40778-018-0145-5 10.1073/pnas.0905780106 10.1016/j.ymthe.2016.11.010 10.1038/d41586-019-01284-6 10.1038/nchembio.416 10.1016/j.molcel.2015.02.032 10.1038/s41573-019-0012-9 10.1126/science.289.5485.1769 10.1007/s00294-018-0865-1 10.1172/JCI92087 10.1089/hum.2017.150 10.1038/gt.2016.89 10.1016/j.celrep.2015.08.084 10.1038/nmeth.2857 10.1016/j.jconrel.2012.07.005 10.3389/fnmol.2018.00282 10.1128/JVI.72.6.5224-5230.1998 10.1128/CVI.05107-11 10.1371/journal.pgen.1003866 10.1016/j.mib.2017.05.008 10.1371/journal.pone.0095611 10.1038/ncomms1508 10.1182/blood.V95.5.1594.005k34_1594_1599 10.1038/s41431-018-0156-9 10.1093/hmg/ddw266 10.1101/631457 10.1093/nar/24.11.1992 10.1002/stem.1970 10.1073/pnas.95.17.10158 10.1016/j.cell.2017.07.010 10.1073/pnas.1013343108 10.12688/f1000research.16106.1 10.1080/15476286.2017.1279787 10.1007/s12015-015-9588-6 10.1016/j.neurol.2016.08.003 10.1038/s41374-019-0241-x 10.1039/9781788015714 10.3389/fnins.2018.00075 10.1126/science.1173110 10.1016/j.drudis.2018.08.004 10.1093/nar/gky548 10.1038/sj.gt.3301109 10.1016/j.bbadis.2013.03.002 10.1089/scd.2017.0209 10.1016/j.cell.2018.01.012 10.1073/pnas.0902420106 10.1038/ncomms13272 10.1038/gt.2009.59 10.1002/cphy.c170002 10.1212/CPJ.0000000000000531 10.1016/j.ymthe.2016.10.014 10.1089/hum.2015.107 10.1016/j.ymthe.2018.09.003 10.1016/j.bbrc.2012.06.090 10.1016/j.celrep.2018.01.083 10.1038/mt.2016.97 10.1089/nat.2019.0790 10.1146/annurev-genet-051710-150955 10.1126/science.aat5011 10.1038/nm1085 10.1093/hmg/ddq015 10.3389/fneur.2018.00349 10.1016/j.cell.2013.08.021 10.1038/75087 10.3389/fneur.2018.00368 10.7554/eLife.32724 10.1038/s41591-018-0326-x 10.1042/BCJ20170793 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms20153689 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database Proquest Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Access via ProQuest (Open Access) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC6696057 31357652 10_3390_ijms20153689 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Prinses Beatrix Spierfonds grantid: W.OR18-06 and W.OR18-18 – fundername: Stichting Spieren voor Spieren grantid: W.OR18-18 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c412t-efbd3d8b817d62ed6ac2c103f5fa034dce5f5648df862c39c76ea215214ea3ab3 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 14:38:03 EDT 2025 Thu Jul 10 17:51:17 EDT 2025 Fri Jul 25 09:58:53 EDT 2025 Wed Feb 19 02:31:57 EST 2025 Tue Jul 01 01:45:51 EDT 2025 Thu Apr 24 23:04:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | myotonic dystrophy muscular dystrophy repeat expansion cell therapy gene therapy neuromuscular disease trinucleotide repeat gene editing |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-efbd3d8b817d62ed6ac2c103f5fa034dce5f5648df862c39c76ea215214ea3ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-9495-4830 0000-0002-6467-1984 0000-0002-6773-8662 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms20153689 |
PMID | 31357652 |
PQID | 2333625482 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6696057 proquest_miscellaneous_2267014235 proquest_journals_2333625482 pubmed_primary_31357652 crossref_citationtrail_10_3390_ijms20153689 crossref_primary_10_3390_ijms20153689 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190727 |
PublicationDateYYYYMMDD | 2019-07-27 |
PublicationDate_xml | – month: 7 year: 2019 text: 20190727 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Calcedo (ref_79) 2011; 18 Charlesworth (ref_77) 2019; 25 Mosbach (ref_44) 2018; 22 Monckton (ref_67) 2019; 568 Knott (ref_1) 2018; 361 Dastidar (ref_21) 2018; 46 ref_13 ref_56 Wang (ref_23) 2018; 26 Carrell (ref_48) 2016; 25 ref_15 Cumming (ref_11) 2018; 26 Wheeler (ref_57) 2009; 325 Vandamme (ref_78) 2017; 28 Monahan (ref_81) 2000; 7 Liu (ref_28) 2010; 6 Komor (ref_3) 2017; 168 Galli (ref_73) 2018; 29 Monteys (ref_46) 2017; 25 Brook (ref_16) 2018; 9 Nance (ref_74) 2015; 26 Marthaler (ref_38) 2016; 16 Sternberg (ref_5) 2015; 58 Andre (ref_18) 2017; 25 ref_24 Koonin (ref_2) 2017; 37 Batra (ref_6) 2017; 170 Gudde (ref_19) 2017; 14 Xu (ref_39) 2017; 8 Sicot (ref_8) 2013; 1832 Petruska (ref_26) 1996; 24 ref_27 Jasin (ref_40) 2013; 5 Xia (ref_62) 2018; 4 Lander (ref_68) 2019; 567 Dellavalle (ref_61) 2011; 2 Arruda (ref_66) 2005; 105 Liu (ref_55) 2018; 172 Mosbach (ref_29) 2019; 65 Gao (ref_49) 2016; 24 Dabrowska (ref_35) 2018; 12 Chao (ref_70) 2000; 95 Andre (ref_10) 2018; 9 Yang (ref_33) 2017; 127 Overby (ref_17) 2018; 23 Thomas (ref_9) 2018; 8 Xu (ref_4) 2019; 431 Cinesi (ref_45) 2016; 7 Dogan (ref_7) 2016; 172 Provenzano (ref_22) 2017; 9 Park (ref_30) 2015; 13 Ponnazhagan (ref_69) 1998; 72 ref_31 Xia (ref_50) 2015; 33 Dominguez (ref_52) 2016; 17 Shin (ref_47) 2016; 25 Eid (ref_54) 2018; 475 Shen (ref_36) 2014; 11 Sun (ref_72) 2000; 6 Yu (ref_75) 2009; 16 Zu (ref_20) 2011; 108 Wang (ref_76) 2019; 18 Ouellet (ref_32) 2017; 24 Mankodi (ref_51) 2000; 289 Haenfler (ref_53) 2018; 11 Burke (ref_63) 2012; 162 ref_83 Ashizawa (ref_14) 2018; 8 Kostallari (ref_60) 2015; 142 ref_80 Russell (ref_82) 1999; 94 Heyer (ref_41) 2010; 44 Ouyang (ref_34) 2018; 27 ref_42 Li (ref_64) 2012; 424 Zhang (ref_71) 1998; 95 Ran (ref_37) 2013; 154 Gregorevic (ref_65) 2004; 10 Mittelman (ref_43) 2009; 106 Mulders (ref_58) 2009; 106 Birbrair (ref_59) 2015; 11 Braida (ref_12) 2010; 19 Pinto (ref_25) 2017; 68 |
References_xml | – volume: 68 start-page: 479 year: 2017 ident: ref_25 article-title: Impeding Transcription of Expanded Microsatellite Repeats by Deactivated Cas9 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.09.033 – volume: 9 start-page: 337 year: 2017 ident: ref_22 article-title: CRISPR/Cas9-Mediated Deletion of CTG Expansions Recovers Normal Phenotype in Myogenic Cells Derived from Myotonic Dystrophy 1 Patients publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2017.10.006 – volume: 431 start-page: 34 year: 2019 ident: ref_4 article-title: A CRISPR-dCas Toolbox for Genetic Engineering and Synthetic Biology publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2018.06.037 – volume: 17 start-page: 5 year: 2016 ident: ref_52 article-title: Beyond editing: Repurposing CRISPR-Cas9 for precision genome regulation and interrogation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2015.2 – volume: 567 start-page: 165 year: 2019 ident: ref_68 article-title: Adopt a moratorium on heritable genome editing publication-title: Nature doi: 10.1038/d41586-019-00726-5 – volume: 94 start-page: 864 year: 1999 ident: ref_82 article-title: Adeno-associated virus vectors and hematology publication-title: Blood doi: 10.1182/blood.V94.3.864.415k34_864_874 – volume: 105 start-page: 3458 year: 2005 ident: ref_66 article-title: Regional intravascular delivery of AAV-2-F.IX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model publication-title: Blood doi: 10.1182/blood-2004-07-2908 – volume: 8 start-page: 619 year: 2017 ident: ref_39 article-title: Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2017.01.022 – volume: 168 start-page: 20 year: 2017 ident: ref_3 article-title: CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes publication-title: Cell doi: 10.1016/j.cell.2016.10.044 – volume: 16 start-page: 180 year: 2016 ident: ref_38 article-title: Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H271 publication-title: Stem Cell Res. doi: 10.1016/j.scr.2015.12.028 – ident: ref_31 doi: 10.1371/journal.pone.0165499 – volume: 5 start-page: a012740 year: 2013 ident: ref_40 article-title: Repair of strand breaks by homologous recombination publication-title: Cold Spring Harb Perspect. Biol. doi: 10.1101/cshperspect.a012740 – volume: 29 start-page: 1098 year: 2018 ident: ref_73 article-title: Gene and Cell Therapy for Muscular Dystrophies: Are We Getting There? publication-title: Hum. Gene Ther. doi: 10.1089/hum.2018.151 – volume: 4 start-page: 299 year: 2018 ident: ref_62 article-title: Human iPSC Models to Study Orphan Diseases: Muscular Dystrophies publication-title: Curr. Stem Cell Rep. doi: 10.1007/s40778-018-0145-5 – volume: 106 start-page: 13915 year: 2009 ident: ref_58 article-title: Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0905780106 – volume: 25 start-page: 12 year: 2017 ident: ref_46 article-title: CRISPR/Cas9 Editing of the Mutant Huntingtin Allele In Vitro and In Vivo publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2016.11.010 – volume: 568 start-page: 458 year: 2019 ident: ref_67 article-title: Manage risk of accidental gene editing of germline publication-title: Nature doi: 10.1038/d41586-019-01284-6 – volume: 6 start-page: 652 year: 2010 ident: ref_28 article-title: Replication-dependent instability at (CTG) x (CAG) repeat hairpins in human cells publication-title: Nat. Chem. Biol doi: 10.1038/nchembio.416 – volume: 58 start-page: 568 year: 2015 ident: ref_5 article-title: Expanding the Biologist’s Toolkit with CRISPR-Cas9 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.02.032 – volume: 18 start-page: 358 year: 2019 ident: ref_76 article-title: Adeno-associated virus vector as a platform for gene therapy delivery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-019-0012-9 – volume: 289 start-page: 1769 year: 2000 ident: ref_51 article-title: Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat publication-title: Science doi: 10.1126/science.289.5485.1769 – volume: 65 start-page: 17 year: 2019 ident: ref_29 article-title: Trinucleotide repeat instability during double-strand break repair: From mechanisms to gene therapy publication-title: Curr. Genet. doi: 10.1007/s00294-018-0865-1 – volume: 127 start-page: 2719 year: 2017 ident: ref_33 article-title: CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease publication-title: J. Clin. Investig. doi: 10.1172/JCI92087 – volume: 28 start-page: 1061 year: 2017 ident: ref_78 article-title: Unraveling the Complex Story of Immune Responses to AAV Vectors Trial After Trial publication-title: Hum. Gene Ther. doi: 10.1089/hum.2017.150 – volume: 24 start-page: 265 year: 2017 ident: ref_32 article-title: Deletion of the GAA repeats from the human frataxin gene using the CRISPR-Cas9 system in YG8R-derived cells and mouse models of Friedreich ataxia publication-title: Gene Ther. doi: 10.1038/gt.2016.89 – volume: 13 start-page: 234 year: 2015 ident: ref_30 article-title: Reversion of FMR1 Methylation and Silencing by Editing the Triplet Repeats in Fragile X iPSC-Derived Neurons publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.08.084 – volume: 11 start-page: 399 year: 2014 ident: ref_36 article-title: Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects publication-title: Nat. Methods doi: 10.1038/nmeth.2857 – volume: 162 start-page: 414 year: 2012 ident: ref_63 article-title: Markedly enhanced skeletal muscle transfection achieved by the ultrasound-targeted delivery of non-viral gene nanocarriers with microbubbles publication-title: J. Control. Release doi: 10.1016/j.jconrel.2012.07.005 – volume: 11 start-page: 282 year: 2018 ident: ref_53 article-title: Targeted Reactivation of FMR1 Transcription in Fragile X Syndrome Embryonic Stem Cells publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2018.00282 – volume: 72 start-page: 5224 year: 1998 ident: ref_69 article-title: Recombinant human parvovirus B19 vectors: Erythroid cell-specific delivery and expression of transduced genes publication-title: J. Virol. doi: 10.1128/JVI.72.6.5224-5230.1998 – volume: 18 start-page: 1586 year: 2011 ident: ref_79 article-title: Adeno-associated virus antibody profiles in newborns, children, and adolescents publication-title: Clin. Vaccine Immunol. doi: 10.1128/CVI.05107-11 – ident: ref_27 doi: 10.1371/journal.pgen.1003866 – volume: 37 start-page: 67 year: 2017 ident: ref_2 article-title: Diversity, classification and evolution of CRISPR-Cas systems publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2017.05.008 – ident: ref_42 doi: 10.1371/journal.pone.0095611 – volume: 2 start-page: 499 year: 2011 ident: ref_61 article-title: Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells publication-title: Nat. Commun. doi: 10.1038/ncomms1508 – volume: 95 start-page: 1594 year: 2000 ident: ref_70 article-title: Sustained expression of human factor VIII in mice using a parvovirus-based vector publication-title: Blood doi: 10.1182/blood.V95.5.1594.005k34_1594_1599 – volume: 26 start-page: 1635 year: 2018 ident: ref_11 article-title: De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1 publication-title: Eur. J. Hum. Genet. doi: 10.1038/s41431-018-0156-9 – volume: 25 start-page: 4328 year: 2016 ident: ref_48 article-title: Dmpk gene deletion or antisense knockdown does not compromise cardiac or skeletal muscle function in mice publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddw266 – ident: ref_24 doi: 10.1101/631457 – volume: 24 start-page: 1992 year: 1996 ident: ref_26 article-title: Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases publication-title: Nucleic Acids Res. doi: 10.1093/nar/24.11.1992 – volume: 33 start-page: 1829 year: 2015 ident: ref_50 article-title: Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 induced pluripotent stem cell-derived neural stem cells publication-title: Stem Cells doi: 10.1002/stem.1970 – volume: 95 start-page: 10158 year: 1998 ident: ref_71 article-title: Efficient expression of CFTR function with adeno-associated virus vectors that carry shortened CFTR genes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.17.10158 – volume: 170 start-page: 899 year: 2017 ident: ref_6 article-title: Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9 publication-title: Cell doi: 10.1016/j.cell.2017.07.010 – volume: 108 start-page: 260 year: 2011 ident: ref_20 article-title: Non-ATG-initiated translation directed by microsatellite expansions publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1013343108 – ident: ref_80 doi: 10.12688/f1000research.16106.1 – volume: 14 start-page: 1374 year: 2017 ident: ref_19 article-title: Antisense transcription of the myotonic dystrophy locus yields low-abundant RNAs with and without (CAG)n repeat publication-title: RNA Biol. doi: 10.1080/15476286.2017.1279787 – volume: 11 start-page: 547 year: 2015 ident: ref_59 article-title: Pericytes are Essential for Skeletal Muscle Formation publication-title: Stem Cell Rev. doi: 10.1007/s12015-015-9588-6 – volume: 172 start-page: 572 year: 2016 ident: ref_7 article-title: Unravelling the myotonic dystrophy type 1 clinical spectrum: A systematic registry-based study with implications for disease classification publication-title: Rev. Neurol. doi: 10.1016/j.neurol.2016.08.003 – ident: ref_13 doi: 10.1038/s41374-019-0241-x – ident: ref_15 doi: 10.1039/9781788015714 – volume: 12 start-page: 75 year: 2018 ident: ref_35 article-title: Precise Excision of the CAG Tract from the Huntingtin Gene by Cas9 Nickases publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00075 – volume: 325 start-page: 336 year: 2009 ident: ref_57 article-title: Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA publication-title: Science doi: 10.1126/science.1173110 – volume: 23 start-page: 2013 year: 2018 ident: ref_17 article-title: RNA-mediated therapies in myotonic dystrophy publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2018.08.004 – volume: 46 start-page: 8275 year: 2018 ident: ref_21 article-title: Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky548 – volume: 7 start-page: 24 year: 2000 ident: ref_81 article-title: AAV vectors: Is clinical success on the horizon? publication-title: Gene Ther. doi: 10.1038/sj.gt.3301109 – volume: 1832 start-page: 1390 year: 2013 ident: ref_8 article-title: RNA toxicity in human disease and animal models: From the uncovering of a new mechanism to the development of promising therapies publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2013.03.002 – volume: 27 start-page: 756 year: 2018 ident: ref_34 article-title: CRISPR/Cas9-Targeted Deletion of Polyglutamine in Spinocerebellar Ataxia Type 3-Derived Induced Pluripotent Stem Cells publication-title: Stem Cells Dev. doi: 10.1089/scd.2017.0209 – volume: 172 start-page: 979 year: 2018 ident: ref_55 article-title: Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene publication-title: Cell doi: 10.1016/j.cell.2018.01.012 – volume: 106 start-page: 9607 year: 2009 ident: ref_43 article-title: Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0902420106 – volume: 7 start-page: 13272 year: 2016 ident: ref_45 article-title: Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase publication-title: Nat. Commun. doi: 10.1038/ncomms13272 – volume: 16 start-page: 953 year: 2009 ident: ref_75 article-title: A muscle-targeting peptide displayed on AAV2 improves muscle tropism on systemic delivery publication-title: Gene Ther. doi: 10.1038/gt.2009.59 – volume: 25 start-page: 4566 year: 2016 ident: ref_47 article-title: Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9 publication-title: Hum. Mol. Genet. – volume: 8 start-page: 509 year: 2018 ident: ref_9 article-title: Myotonic Dystrophy and Developmental Regulation of RNA Processing publication-title: Compr. Physiol. doi: 10.1002/cphy.c170002 – volume: 8 start-page: 507 year: 2018 ident: ref_14 article-title: Consensus-based care recommendations for adults with myotonic dystrophy type 1 publication-title: Neurol. Clin. Pract. doi: 10.1212/CPJ.0000000000000531 – volume: 25 start-page: 24 year: 2017 ident: ref_18 article-title: CRISPR/Cas9-Induced (CTGCAG)n Repeat Instability in the Myotonic Dystrophy Type 1 Locus: Implications for Therapeutic Genome Editing publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2016.10.014 – volume: 26 start-page: 786 year: 2015 ident: ref_74 article-title: Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy publication-title: Hum. Gene Ther. doi: 10.1089/hum.2015.107 – volume: 26 start-page: 2617 year: 2018 ident: ref_23 article-title: Therapeutic Genome Editing for Myotonic Dystrophy Type 1 Using CRISPR/Cas9 publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2018.09.003 – volume: 142 start-page: 1242 year: 2015 ident: ref_60 article-title: Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence publication-title: Development – volume: 424 start-page: 203 year: 2012 ident: ref_64 article-title: Gene transfer to skeletal muscle by site-specific delivery of electroporation and ultrasound publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.06.090 – volume: 22 start-page: 2146 year: 2018 ident: ref_44 article-title: TALEN-Induced Double-Strand Break Repair of CTG Trinucleotide Repeats publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.01.083 – volume: 24 start-page: 1378 year: 2016 ident: ref_49 article-title: Genome Therapy of Myotonic Dystrophy Type 1 iPS Cells for Development of Autologous Stem Cell Therapy publication-title: Mol. Ther. doi: 10.1038/mt.2016.97 – ident: ref_83 doi: 10.1089/nat.2019.0790 – volume: 44 start-page: 113 year: 2010 ident: ref_41 article-title: Regulation of homologous recombination in eukaryotes publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-051710-150955 – volume: 361 start-page: 866 year: 2018 ident: ref_1 article-title: CRISPR-Cas guides the future of genetic engineering publication-title: Science doi: 10.1126/science.aat5011 – volume: 10 start-page: 828 year: 2004 ident: ref_65 article-title: Systemic delivery of genes to striated muscles using adeno-associated viral vectors publication-title: Nat. Med. doi: 10.1038/nm1085 – volume: 19 start-page: 1399 year: 2010 ident: ref_12 article-title: Variant CCG and GGC repeats within the CTG expansion dramatically modify mutational dynamics and likely contribute toward unusual symptoms in some myotonic dystrophy type 1 patients publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq015 – volume: 9 start-page: 349 year: 2018 ident: ref_16 article-title: Small Molecules Which Improve Pathogenesis of Myotonic Dystrophy Type 1 publication-title: Front. Neurol. doi: 10.3389/fneur.2018.00349 – volume: 154 start-page: 1380 year: 2013 ident: ref_37 article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity publication-title: Cell doi: 10.1016/j.cell.2013.08.021 – volume: 6 start-page: 599 year: 2000 ident: ref_72 article-title: Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization publication-title: Nat. Med. doi: 10.1038/75087 – volume: 9 start-page: 368 year: 2018 ident: ref_10 article-title: Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy publication-title: Front. Neurol. doi: 10.3389/fneur.2018.00368 – ident: ref_56 doi: 10.7554/eLife.32724 – volume: 25 start-page: 249 year: 2019 ident: ref_77 article-title: Identification of preexisting adaptive immunity to Cas9 proteins in humans publication-title: Nat. Med. doi: 10.1038/s41591-018-0326-x – volume: 475 start-page: 1955 year: 2018 ident: ref_54 article-title: CRISPR base editors: Genome editing without double-stranded breaks publication-title: Biochem. J. doi: 10.1042/BCJ20170793 |
SSID | ssj0023259 |
Score | 2.3808513 |
SecondaryResourceType | review_article |
Snippet | CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular... Mutating one or both of the two nuclease domains of Cas9, respectively, resulted in the generation of Cas9 nickase (Cas9n), which only induces a single strand... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3689 |
SubjectTerms | Animals Cell cycle Cell- and Tissue-Based Therapy CRISPR CRISPR-Cas Systems Deoxyribonucleic acid Disease DNA DNA methylation Gene Editing Gene Targeting Genetic Association Studies Genetic Loci Genetic Predisposition to Disease Genetic Therapy Genomes Humans Laboratories Mutation Myotonic Dystrophy - genetics Myotonic Dystrophy - therapy Proteins Review Trinucleotide Repeat Expansion Trinucleotide Repeats |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBddxmAvpd1n1qx40D4NkVifcV9GSBvaQbrSrZA3I8syzdjsNHZg-e97Zzuus9I-64zlO1l3P93pfoQcDYwLWGIt5Sa2VDgb0SAQhoKrBm8fWGMV3kaeXqrzG_F9Jmf1gVtel1Vu9sRyo44zi2fkfcY57LUQX7NvizuKrFGYXa0pNF6Ql9i6DEu69OwBcHFWkqX54IOokoGqCt85wPz-_PffHHyf5AoJ3tsu6VGc-X-5ZMv_TPbIbh04eqPK0vtkx6VvyKuKSnL9lkzG1xc_r677Y5N7o1ZS2pun3nSdFdgB1ztd58UyA8WeeGf_FtWFFu_HAkPwVVq2Vn1HbiZnv8bntOZIoFb4rKAuiWIeD6Ohr2PFXKyMZdYf8EQmZsAFzFkmUolhnAB0sTywWjmDXLa-cIabiL8nnTRL3UfiSd9ZbZD3AdO3QkSMJRrEuHURCLou-bpRU2jrBuLIY_EnBCCBSg3bSu2S40Z6UTXOeEKut9F4WP8-efhg7C750gzDwsdshkldtgIZpjTgO8Zll3yoDNS8iPsccJSEp_WW6RoBbKq9PZLOb8vm2koBppP60_PTOiCv4QPw-hdlukc6xXLlPkN0UkSH5RK8BzlH5co priority: 102 providerName: ProQuest |
Title | CRISPR/Cas Applications in Myotonic Dystrophy: Expanding Opportunities |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31357652 https://www.proquest.com/docview/2333625482 https://www.proquest.com/docview/2267014235 https://pubmed.ncbi.nlm.nih.gov/PMC6696057 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB3xoVZcKtpSahoiI9FTZYj3066EEE0TKFIoCkTKzVqv12oQOCFxpOTfdzaOraS0l1582VnZntnVm6fZnQdw3FAmJKnWHlWJ9pjRsReGTHkI1Yj2oVZa2NvInRtx1WPXfd7fgFJtdOnAyV-pndWT6o0fT2bP83Pc8GeWcSJlPx08PE0QxzgVQbgJ24hJ0m7RDqvqCZg28LA49v5ixg68pj7FtJuTdWx6kXD-eW5yBYjau_BmmUG6F0XI38KGyd7Bq0JTcv4e2s3uj7vb7mlTTdyLleq0O8jcznyY21a47vf5JB8P0cNf3dZsVNxscX-OrBum2aLH6h702q375pW3FEvwNPNJ7pk0TmgSxIEvE0FMIpQm2m_QlKeqQRl-M0-5YEGSIofRNNRSGGVFbX1mFFUx_QBb2TAzH8HlvtFSWQEIW8dlLCYklWhGtYnR0DjwpXRTpJedxK2gxWOEjML6N1r1rwOfK-tR0UHjH3a10uNRuQwiQikiLLIq4sBRNYw7wJY1VGaGU7QhQiLRI5Q7sF8EqHpRGVkH5FroKgPbXXt9JBv8WnTZFgLJHZcH_z3zE-zgv9krYh6RNdjKx1NziBlMHtdhU_YlPoP2ZR22v7Vubrt1iym8vli2vwF5mPhC |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXxJtAgUWiJ7SKvc8YCaEqbZTQpqDSSrm56_VapCp2qB1B_hS_kVk7TlMQ3Hre8WtmdmfG8_gA3gTGRSyzlnKTWiqcTWgUCUPRVKO1j6yxyncjjw_V8ER8nMjJBvxqe2F8WWV7JtYHdVpY_4-8yzjHsxb9a_Zh9p161CifXW0hNBq12HeLHxiyle9HuyjfbcYGe8f9IV2iClArQlZRlyUpT3tJL9SpYi5VxjIbBjyTmQm4SK2TmVSil2bo7FseWa2c8eivoXCGm4TjfW_ATTS8gd9RenIZ4HFWg7OFaPOokpFqCu05j4Lu9OxbibZWcuUB5ddN4F9-7Z_lmWv2bnAP7i4dVbLTaNZ92HD5A7jVQFcuHsKgfzT68vmo2zcl2VlLgpNpTsaLovITd8nuoqwuChTkO7L3c9Y00JBPM-_yz_N6lOsjOLkW7j2GzbzI3VMgMnRWG48z4dPFQiSMZRrJuHUJEroOvG3ZFNvlwHKPm3EeY-DimRqvM7UD2yvqWTOo4x90Wy3H4-V2LeNL5erA69UybjSfPTG5K-ZIw5TGeJJx2YEnjYBWD-Ihx7hN4tX6iuhWBH6I99WVfPq1HuatFMaQUj_7_2u9gtvD4_FBfDA63H8Od_BjfOsZZXoLNquLuXuBnlGVvKzVkcDpdev_b_0eJDo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIlBfKu6mFFgk-oRWifeMkRCqkkYNpaUqVMqbWa_XaiqwQ-0I8tf4dcz6SFMQvPV5x9fM7M6M5_gAXvWMC1lqLeUmsVQ4G9MwFIaiqUZrH1pjle9GPjpWB2fi_URO1uBX2wvjyyrbM7E6qJPc-n_kXcY5nrXoX7Nu2pRFnAxH72bfqUeQ8pnWFk6jVpFDt_iB4VvxdjxEWe8yNtr_PDigDcIAtSJgJXVpnPCkH_cDnSjmEmUss0GPpzI1PS4S62QqlegnKTr-lodWK2c8EmwgnOEm5njfW3Bbcxn4PaYnV8EeZxVQW4D2jyoZqrronvOw151efCvQ7kquPLj8qjn8y8f9s1RzxfaN7sFm47SSvVrL7sOayx7AnRrGcvEQRoPT8aeT0-7AFGRvJSFOphk5WuSln75LhouivMxRqG_I_s9Z3UxDPs68-z_PqrGuj-DsRrj3GNazPHNbQGTgrDYec8KnjoWIGUs1knHrYiR0HXjdsimyzfByj6HxNcIgxjM1WmVqB3aX1LN6aMc_6HZajkfN1i2iK0XrwMvlMm46n0kxmcvnSMOUxtiScdmBJ7WAlg_iAccYTuLV-prolgR-oPf1lWx6Xg32VgrjSam3__9aL-Auan70YXx8-BQ28Ft8FxplegfWy8u5e4ZOUhk_r7SRwJebVv_fR4wocA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR%2FCas+Applications+in+Myotonic+Dystrophy%3A+Expanding+Opportunities&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Raaijmakers%2C+Ren%C3%A9e+H.L.&rft.au=Ripken%2C+Lise&rft.au=Ausems%2C+C.+Rosanne+M.&rft.au=Wansink%2C+Derick+G.&rft.date=2019-07-27&rft.pub=MDPI&rft.eissn=1422-0067&rft.volume=20&rft.issue=15&rft_id=info:doi/10.3390%2Fijms20153689&rft_id=info%3Apmid%2F31357652&rft.externalDocID=PMC6696057 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |