CRISPR/Cas Applications in Myotonic Dystrophy: Expanding Opportunities

CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 20; no. 15; p. 3689
Main Authors Raaijmakers, Renée H.L., Ripken, Lise, Ausems, C. Rosanne M., Wansink, Derick G.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 27.07.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the DMPK/DM1-AS gene pair, the autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome. To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a polyadenylation signal in DMPK. Independently, catalytically deficient Cas9 (dCas9) was recruited to the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make CRISPR/Cas-mediated editing a therapeutic reality in patients.
AbstractList CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the DMPK/DM1-AS gene pair, the autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome. To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a polyadenylation signal in DMPK. Independently, catalytically deficient Cas9 (dCas9) was recruited to the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make CRISPR/Cas-mediated editing a therapeutic reality in patients.
CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the / gene pair, the autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome. To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a polyadenylation signal in . Independently, catalytically deficient Cas9 (dCas9) was recruited to the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make CRISPR/Cas-mediated editing a therapeutic reality in patients.
CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the DMPK/DM1-AS gene pair, the autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome. To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a polyadenylation signal in DMPK. Independently, catalytically deficient Cas9 (dCas9) was recruited to the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make CRISPR/Cas-mediated editing a therapeutic reality in patients.CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the DMPK/DM1-AS gene pair, the autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome. To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a polyadenylation signal in DMPK. Independently, catalytically deficient Cas9 (dCas9) was recruited to the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make CRISPR/Cas-mediated editing a therapeutic reality in patients.
Mutating one or both of the two nuclease domains of Cas9, respectively, resulted in the generation of Cas9 nickase (Cas9n), which only induces a single strand nick, and catalytically dead Cas9 (dCas9), which bears no nuclease activity at all (Figure 1). dCas9 can block transcription by physically occupying the gene or it may function as a scaffold for fluorophores (e.g., green fluorescent protein (GFP)), transcription activators or inhibitors (i.e., CRISPRa or CRISPRi), and epigenetic modifiers like demethylases and base editors [4,5] (Figure 1). [...]we will look at hurdles that must be taken to bring CRISPR/Cas-mediated gene editing closer to the patients. 2. From a therapeutic point of view, this excision approach is feasible in DM1, because the (CUG)n repeat is not part of the DMPK open reading frame, while functional open reading frames in long noncoding RNA DM1-AS have not been demonstrated yet [19]. Since expanded (CAG)n repeats in DM1-AS transcripts are subject to non-canonical, disease-related RAN translation [20], repeat excision will also abolish the production of toxic homopolymeric proteins. (2017), as they speculated that the editing efficiency in regions close to the repeat might be influenced by its abnormal 3D structure [22]. [...]they chose to target the DM1 locus more distal to the repeat, ~200–300 base pairs up- and downstream.
CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated approaches that target the unstable (CTG•CAG)n repeat in the DMPK / DM1-AS gene pair, the autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome. To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a polyadenylation signal in DMPK . Independently, catalytically deficient Cas9 (dCas9) was recruited to the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make CRISPR/Cas-mediated editing a therapeutic reality in patients.
Author Wansink, Derick G.
Raaijmakers, Renée H.L.
Ripken, Lise
Ausems, C. Rosanne M.
AuthorAffiliation 2 Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain Cognition and Behavior, 6525 GA Nijmegen, The Netherlands
1 Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
AuthorAffiliation_xml – name: 1 Department of Cell Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
– name: 2 Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain Cognition and Behavior, 6525 GA Nijmegen, The Netherlands
Author_xml – sequence: 1
  givenname: Renée H.L.
  orcidid: 0000-0001-9495-4830
  surname: Raaijmakers
  fullname: Raaijmakers, Renée H.L.
– sequence: 2
  givenname: Lise
  surname: Ripken
  fullname: Ripken, Lise
– sequence: 3
  givenname: C. Rosanne M.
  orcidid: 0000-0002-6467-1984
  surname: Ausems
  fullname: Ausems, C. Rosanne M.
– sequence: 4
  givenname: Derick G.
  orcidid: 0000-0002-6773-8662
  surname: Wansink
  fullname: Wansink, Derick G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31357652$$D View this record in MEDLINE/PubMed
BookMark eNptkctLxDAQxoMovm-epeDFg6vJpElbD8KyPkFRfJxDNk01SzepSSruf298soqnGZjffHzzzRpatM5qhLYI3qe0wgdmMg2ACaO8rBbQKskBBhjzYnGuX0FrIUwwBgqsWkYrlFBWcAar6HR0e3F3c3swkiEbdl1rlIzG2ZAZm13NXHTWqOx4FqJ33dPsMDt57aStjX3MrrvO-dhbE40OG2ipkW3Qm191HT2cntyPzgeX12cXo-HlQOUE4kA345rW5bgkRc1B11wqUATThjUS07xWmjWM52XdlBwUrVTBtQTCgORaUjmm6-joU7frx1OdeBu9bEXnzVT6mXDSiN8Ta57Eo3sRnFccsyIJ7H4JePfc6xDF1ASl21Za7fogAHiBU26UJXTnDzpxvbfpPAGUUg4sLyFR2_OOfqx8R5wA-ASUdyF43Qhl4kfIyaBpBcHi_Y9i_o9pae_P0rfuv_gbRqOfoQ
CitedBy_id crossref_primary_10_1007_s12015_020_10100_y
crossref_primary_10_3389_fmed_2022_1019803
crossref_primary_10_1016_j_drudis_2021_03_024
crossref_primary_10_1167_tvst_9_9_47
crossref_primary_10_3390_ijms22116089
crossref_primary_10_1016_j_isci_2024_109930
crossref_primary_10_1016_j_omtn_2021_11_024
crossref_primary_10_3390_ijms241310650
crossref_primary_10_3390_ijms231810491
crossref_primary_10_1016_j_nmd_2020_03_011
crossref_primary_10_3390_ijms231911954
crossref_primary_10_3389_fnagi_2021_755392
crossref_primary_10_1093_toxres_tfae105
crossref_primary_10_1021_acs_biochem_0c00472
crossref_primary_10_3390_ijms21051854
crossref_primary_10_1016_j_drudis_2023_103489
crossref_primary_10_1016_j_gene_2022_146518
crossref_primary_10_3390_ijms20225685
crossref_primary_10_1016_j_omtn_2023_05_007
crossref_primary_10_3390_cells10112850
crossref_primary_10_1172_JCI136873
Cites_doi 10.1016/j.molcel.2017.09.033
10.1016/j.omtn.2017.10.006
10.1016/j.jmb.2018.06.037
10.1038/nrm.2015.2
10.1038/d41586-019-00726-5
10.1182/blood.V94.3.864.415k34_864_874
10.1182/blood-2004-07-2908
10.1016/j.stemcr.2017.01.022
10.1016/j.cell.2016.10.044
10.1016/j.scr.2015.12.028
10.1371/journal.pone.0165499
10.1101/cshperspect.a012740
10.1089/hum.2018.151
10.1007/s40778-018-0145-5
10.1073/pnas.0905780106
10.1016/j.ymthe.2016.11.010
10.1038/d41586-019-01284-6
10.1038/nchembio.416
10.1016/j.molcel.2015.02.032
10.1038/s41573-019-0012-9
10.1126/science.289.5485.1769
10.1007/s00294-018-0865-1
10.1172/JCI92087
10.1089/hum.2017.150
10.1038/gt.2016.89
10.1016/j.celrep.2015.08.084
10.1038/nmeth.2857
10.1016/j.jconrel.2012.07.005
10.3389/fnmol.2018.00282
10.1128/JVI.72.6.5224-5230.1998
10.1128/CVI.05107-11
10.1371/journal.pgen.1003866
10.1016/j.mib.2017.05.008
10.1371/journal.pone.0095611
10.1038/ncomms1508
10.1182/blood.V95.5.1594.005k34_1594_1599
10.1038/s41431-018-0156-9
10.1093/hmg/ddw266
10.1101/631457
10.1093/nar/24.11.1992
10.1002/stem.1970
10.1073/pnas.95.17.10158
10.1016/j.cell.2017.07.010
10.1073/pnas.1013343108
10.12688/f1000research.16106.1
10.1080/15476286.2017.1279787
10.1007/s12015-015-9588-6
10.1016/j.neurol.2016.08.003
10.1038/s41374-019-0241-x
10.1039/9781788015714
10.3389/fnins.2018.00075
10.1126/science.1173110
10.1016/j.drudis.2018.08.004
10.1093/nar/gky548
10.1038/sj.gt.3301109
10.1016/j.bbadis.2013.03.002
10.1089/scd.2017.0209
10.1016/j.cell.2018.01.012
10.1073/pnas.0902420106
10.1038/ncomms13272
10.1038/gt.2009.59
10.1002/cphy.c170002
10.1212/CPJ.0000000000000531
10.1016/j.ymthe.2016.10.014
10.1089/hum.2015.107
10.1016/j.ymthe.2018.09.003
10.1016/j.bbrc.2012.06.090
10.1016/j.celrep.2018.01.083
10.1038/mt.2016.97
10.1089/nat.2019.0790
10.1146/annurev-genet-051710-150955
10.1126/science.aat5011
10.1038/nm1085
10.1093/hmg/ddq015
10.3389/fneur.2018.00349
10.1016/j.cell.2013.08.021
10.1038/75087
10.3389/fneur.2018.00368
10.7554/eLife.32724
10.1038/s41591-018-0326-x
10.1042/BCJ20170793
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms20153689
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
Proquest Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Access via ProQuest (Open Access)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC6696057
31357652
10_3390_ijms20153689
Genre Journal Article
Review
GrantInformation_xml – fundername: Prinses Beatrix Spierfonds
  grantid: W.OR18-06 and W.OR18-18
– fundername: Stichting Spieren voor Spieren
  grantid: W.OR18-18
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c412t-efbd3d8b817d62ed6ac2c103f5fa034dce5f5648df862c39c76ea215214ea3ab3
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 14:38:03 EDT 2025
Thu Jul 10 17:51:17 EDT 2025
Fri Jul 25 09:58:53 EDT 2025
Wed Feb 19 02:31:57 EST 2025
Tue Jul 01 01:45:51 EDT 2025
Thu Apr 24 23:04:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords myotonic dystrophy
muscular dystrophy
repeat expansion
cell therapy
gene therapy
neuromuscular disease
trinucleotide repeat
gene editing
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-efbd3d8b817d62ed6ac2c103f5fa034dce5f5648df862c39c76ea215214ea3ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-9495-4830
0000-0002-6467-1984
0000-0002-6773-8662
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms20153689
PMID 31357652
PQID 2333625482
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6696057
proquest_miscellaneous_2267014235
proquest_journals_2333625482
pubmed_primary_31357652
crossref_citationtrail_10_3390_ijms20153689
crossref_primary_10_3390_ijms20153689
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190727
PublicationDateYYYYMMDD 2019-07-27
PublicationDate_xml – month: 7
  year: 2019
  text: 20190727
  day: 27
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Calcedo (ref_79) 2011; 18
Charlesworth (ref_77) 2019; 25
Mosbach (ref_44) 2018; 22
Monckton (ref_67) 2019; 568
Knott (ref_1) 2018; 361
Dastidar (ref_21) 2018; 46
ref_13
ref_56
Wang (ref_23) 2018; 26
Carrell (ref_48) 2016; 25
ref_15
Cumming (ref_11) 2018; 26
Wheeler (ref_57) 2009; 325
Vandamme (ref_78) 2017; 28
Monahan (ref_81) 2000; 7
Liu (ref_28) 2010; 6
Komor (ref_3) 2017; 168
Galli (ref_73) 2018; 29
Monteys (ref_46) 2017; 25
Brook (ref_16) 2018; 9
Nance (ref_74) 2015; 26
Marthaler (ref_38) 2016; 16
Sternberg (ref_5) 2015; 58
Andre (ref_18) 2017; 25
ref_24
Koonin (ref_2) 2017; 37
Batra (ref_6) 2017; 170
Gudde (ref_19) 2017; 14
Xu (ref_39) 2017; 8
Sicot (ref_8) 2013; 1832
Petruska (ref_26) 1996; 24
ref_27
Jasin (ref_40) 2013; 5
Xia (ref_62) 2018; 4
Lander (ref_68) 2019; 567
Dellavalle (ref_61) 2011; 2
Arruda (ref_66) 2005; 105
Liu (ref_55) 2018; 172
Mosbach (ref_29) 2019; 65
Gao (ref_49) 2016; 24
Dabrowska (ref_35) 2018; 12
Chao (ref_70) 2000; 95
Andre (ref_10) 2018; 9
Yang (ref_33) 2017; 127
Overby (ref_17) 2018; 23
Thomas (ref_9) 2018; 8
Xu (ref_4) 2019; 431
Cinesi (ref_45) 2016; 7
Dogan (ref_7) 2016; 172
Provenzano (ref_22) 2017; 9
Park (ref_30) 2015; 13
Ponnazhagan (ref_69) 1998; 72
ref_31
Xia (ref_50) 2015; 33
Dominguez (ref_52) 2016; 17
Shin (ref_47) 2016; 25
Eid (ref_54) 2018; 475
Shen (ref_36) 2014; 11
Sun (ref_72) 2000; 6
Yu (ref_75) 2009; 16
Zu (ref_20) 2011; 108
Wang (ref_76) 2019; 18
Ouellet (ref_32) 2017; 24
Mankodi (ref_51) 2000; 289
Haenfler (ref_53) 2018; 11
Burke (ref_63) 2012; 162
ref_83
Ashizawa (ref_14) 2018; 8
Kostallari (ref_60) 2015; 142
ref_80
Russell (ref_82) 1999; 94
Heyer (ref_41) 2010; 44
Ouyang (ref_34) 2018; 27
ref_42
Li (ref_64) 2012; 424
Zhang (ref_71) 1998; 95
Ran (ref_37) 2013; 154
Gregorevic (ref_65) 2004; 10
Mittelman (ref_43) 2009; 106
Mulders (ref_58) 2009; 106
Birbrair (ref_59) 2015; 11
Braida (ref_12) 2010; 19
Pinto (ref_25) 2017; 68
References_xml – volume: 68
  start-page: 479
  year: 2017
  ident: ref_25
  article-title: Impeding Transcription of Expanded Microsatellite Repeats by Deactivated Cas9
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.09.033
– volume: 9
  start-page: 337
  year: 2017
  ident: ref_22
  article-title: CRISPR/Cas9-Mediated Deletion of CTG Expansions Recovers Normal Phenotype in Myogenic Cells Derived from Myotonic Dystrophy 1 Patients
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2017.10.006
– volume: 431
  start-page: 34
  year: 2019
  ident: ref_4
  article-title: A CRISPR-dCas Toolbox for Genetic Engineering and Synthetic Biology
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2018.06.037
– volume: 17
  start-page: 5
  year: 2016
  ident: ref_52
  article-title: Beyond editing: Repurposing CRISPR-Cas9 for precision genome regulation and interrogation
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2015.2
– volume: 567
  start-page: 165
  year: 2019
  ident: ref_68
  article-title: Adopt a moratorium on heritable genome editing
  publication-title: Nature
  doi: 10.1038/d41586-019-00726-5
– volume: 94
  start-page: 864
  year: 1999
  ident: ref_82
  article-title: Adeno-associated virus vectors and hematology
  publication-title: Blood
  doi: 10.1182/blood.V94.3.864.415k34_864_874
– volume: 105
  start-page: 3458
  year: 2005
  ident: ref_66
  article-title: Regional intravascular delivery of AAV-2-F.IX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model
  publication-title: Blood
  doi: 10.1182/blood-2004-07-2908
– volume: 8
  start-page: 619
  year: 2017
  ident: ref_39
  article-title: Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2017.01.022
– volume: 168
  start-page: 20
  year: 2017
  ident: ref_3
  article-title: CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes
  publication-title: Cell
  doi: 10.1016/j.cell.2016.10.044
– volume: 16
  start-page: 180
  year: 2016
  ident: ref_38
  article-title: Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H271
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2015.12.028
– ident: ref_31
  doi: 10.1371/journal.pone.0165499
– volume: 5
  start-page: a012740
  year: 2013
  ident: ref_40
  article-title: Repair of strand breaks by homologous recombination
  publication-title: Cold Spring Harb Perspect. Biol.
  doi: 10.1101/cshperspect.a012740
– volume: 29
  start-page: 1098
  year: 2018
  ident: ref_73
  article-title: Gene and Cell Therapy for Muscular Dystrophies: Are We Getting There?
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2018.151
– volume: 4
  start-page: 299
  year: 2018
  ident: ref_62
  article-title: Human iPSC Models to Study Orphan Diseases: Muscular Dystrophies
  publication-title: Curr. Stem Cell Rep.
  doi: 10.1007/s40778-018-0145-5
– volume: 106
  start-page: 13915
  year: 2009
  ident: ref_58
  article-title: Triplet-repeat oligonucleotide-mediated reversal of RNA toxicity in myotonic dystrophy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0905780106
– volume: 25
  start-page: 12
  year: 2017
  ident: ref_46
  article-title: CRISPR/Cas9 Editing of the Mutant Huntingtin Allele In Vitro and In Vivo
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2016.11.010
– volume: 568
  start-page: 458
  year: 2019
  ident: ref_67
  article-title: Manage risk of accidental gene editing of germline
  publication-title: Nature
  doi: 10.1038/d41586-019-01284-6
– volume: 6
  start-page: 652
  year: 2010
  ident: ref_28
  article-title: Replication-dependent instability at (CTG) x (CAG) repeat hairpins in human cells
  publication-title: Nat. Chem. Biol
  doi: 10.1038/nchembio.416
– volume: 58
  start-page: 568
  year: 2015
  ident: ref_5
  article-title: Expanding the Biologist’s Toolkit with CRISPR-Cas9
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.02.032
– volume: 18
  start-page: 358
  year: 2019
  ident: ref_76
  article-title: Adeno-associated virus vector as a platform for gene therapy delivery
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-019-0012-9
– volume: 289
  start-page: 1769
  year: 2000
  ident: ref_51
  article-title: Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat
  publication-title: Science
  doi: 10.1126/science.289.5485.1769
– volume: 65
  start-page: 17
  year: 2019
  ident: ref_29
  article-title: Trinucleotide repeat instability during double-strand break repair: From mechanisms to gene therapy
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-018-0865-1
– volume: 127
  start-page: 2719
  year: 2017
  ident: ref_33
  article-title: CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI92087
– volume: 28
  start-page: 1061
  year: 2017
  ident: ref_78
  article-title: Unraveling the Complex Story of Immune Responses to AAV Vectors Trial After Trial
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2017.150
– volume: 24
  start-page: 265
  year: 2017
  ident: ref_32
  article-title: Deletion of the GAA repeats from the human frataxin gene using the CRISPR-Cas9 system in YG8R-derived cells and mouse models of Friedreich ataxia
  publication-title: Gene Ther.
  doi: 10.1038/gt.2016.89
– volume: 13
  start-page: 234
  year: 2015
  ident: ref_30
  article-title: Reversion of FMR1 Methylation and Silencing by Editing the Triplet Repeats in Fragile X iPSC-Derived Neurons
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.08.084
– volume: 11
  start-page: 399
  year: 2014
  ident: ref_36
  article-title: Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2857
– volume: 162
  start-page: 414
  year: 2012
  ident: ref_63
  article-title: Markedly enhanced skeletal muscle transfection achieved by the ultrasound-targeted delivery of non-viral gene nanocarriers with microbubbles
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2012.07.005
– volume: 11
  start-page: 282
  year: 2018
  ident: ref_53
  article-title: Targeted Reactivation of FMR1 Transcription in Fragile X Syndrome Embryonic Stem Cells
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2018.00282
– volume: 72
  start-page: 5224
  year: 1998
  ident: ref_69
  article-title: Recombinant human parvovirus B19 vectors: Erythroid cell-specific delivery and expression of transduced genes
  publication-title: J. Virol.
  doi: 10.1128/JVI.72.6.5224-5230.1998
– volume: 18
  start-page: 1586
  year: 2011
  ident: ref_79
  article-title: Adeno-associated virus antibody profiles in newborns, children, and adolescents
  publication-title: Clin. Vaccine Immunol.
  doi: 10.1128/CVI.05107-11
– ident: ref_27
  doi: 10.1371/journal.pgen.1003866
– volume: 37
  start-page: 67
  year: 2017
  ident: ref_2
  article-title: Diversity, classification and evolution of CRISPR-Cas systems
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2017.05.008
– ident: ref_42
  doi: 10.1371/journal.pone.0095611
– volume: 2
  start-page: 499
  year: 2011
  ident: ref_61
  article-title: Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1508
– volume: 95
  start-page: 1594
  year: 2000
  ident: ref_70
  article-title: Sustained expression of human factor VIII in mice using a parvovirus-based vector
  publication-title: Blood
  doi: 10.1182/blood.V95.5.1594.005k34_1594_1599
– volume: 26
  start-page: 1635
  year: 2018
  ident: ref_11
  article-title: De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1
  publication-title: Eur. J. Hum. Genet.
  doi: 10.1038/s41431-018-0156-9
– volume: 25
  start-page: 4328
  year: 2016
  ident: ref_48
  article-title: Dmpk gene deletion or antisense knockdown does not compromise cardiac or skeletal muscle function in mice
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddw266
– ident: ref_24
  doi: 10.1101/631457
– volume: 24
  start-page: 1992
  year: 1996
  ident: ref_26
  article-title: Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/24.11.1992
– volume: 33
  start-page: 1829
  year: 2015
  ident: ref_50
  article-title: Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 induced pluripotent stem cell-derived neural stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.1970
– volume: 95
  start-page: 10158
  year: 1998
  ident: ref_71
  article-title: Efficient expression of CFTR function with adeno-associated virus vectors that carry shortened CFTR genes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.17.10158
– volume: 170
  start-page: 899
  year: 2017
  ident: ref_6
  article-title: Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.010
– volume: 108
  start-page: 260
  year: 2011
  ident: ref_20
  article-title: Non-ATG-initiated translation directed by microsatellite expansions
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1013343108
– ident: ref_80
  doi: 10.12688/f1000research.16106.1
– volume: 14
  start-page: 1374
  year: 2017
  ident: ref_19
  article-title: Antisense transcription of the myotonic dystrophy locus yields low-abundant RNAs with and without (CAG)n repeat
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2017.1279787
– volume: 11
  start-page: 547
  year: 2015
  ident: ref_59
  article-title: Pericytes are Essential for Skeletal Muscle Formation
  publication-title: Stem Cell Rev.
  doi: 10.1007/s12015-015-9588-6
– volume: 172
  start-page: 572
  year: 2016
  ident: ref_7
  article-title: Unravelling the myotonic dystrophy type 1 clinical spectrum: A systematic registry-based study with implications for disease classification
  publication-title: Rev. Neurol.
  doi: 10.1016/j.neurol.2016.08.003
– ident: ref_13
  doi: 10.1038/s41374-019-0241-x
– ident: ref_15
  doi: 10.1039/9781788015714
– volume: 12
  start-page: 75
  year: 2018
  ident: ref_35
  article-title: Precise Excision of the CAG Tract from the Huntingtin Gene by Cas9 Nickases
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00075
– volume: 325
  start-page: 336
  year: 2009
  ident: ref_57
  article-title: Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA
  publication-title: Science
  doi: 10.1126/science.1173110
– volume: 23
  start-page: 2013
  year: 2018
  ident: ref_17
  article-title: RNA-mediated therapies in myotonic dystrophy
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2018.08.004
– volume: 46
  start-page: 8275
  year: 2018
  ident: ref_21
  article-title: Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky548
– volume: 7
  start-page: 24
  year: 2000
  ident: ref_81
  article-title: AAV vectors: Is clinical success on the horizon?
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3301109
– volume: 1832
  start-page: 1390
  year: 2013
  ident: ref_8
  article-title: RNA toxicity in human disease and animal models: From the uncovering of a new mechanism to the development of promising therapies
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2013.03.002
– volume: 27
  start-page: 756
  year: 2018
  ident: ref_34
  article-title: CRISPR/Cas9-Targeted Deletion of Polyglutamine in Spinocerebellar Ataxia Type 3-Derived Induced Pluripotent Stem Cells
  publication-title: Stem Cells Dev.
  doi: 10.1089/scd.2017.0209
– volume: 172
  start-page: 979
  year: 2018
  ident: ref_55
  article-title: Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.012
– volume: 106
  start-page: 9607
  year: 2009
  ident: ref_43
  article-title: Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0902420106
– volume: 7
  start-page: 13272
  year: 2016
  ident: ref_45
  article-title: Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13272
– volume: 16
  start-page: 953
  year: 2009
  ident: ref_75
  article-title: A muscle-targeting peptide displayed on AAV2 improves muscle tropism on systemic delivery
  publication-title: Gene Ther.
  doi: 10.1038/gt.2009.59
– volume: 25
  start-page: 4566
  year: 2016
  ident: ref_47
  article-title: Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9
  publication-title: Hum. Mol. Genet.
– volume: 8
  start-page: 509
  year: 2018
  ident: ref_9
  article-title: Myotonic Dystrophy and Developmental Regulation of RNA Processing
  publication-title: Compr. Physiol.
  doi: 10.1002/cphy.c170002
– volume: 8
  start-page: 507
  year: 2018
  ident: ref_14
  article-title: Consensus-based care recommendations for adults with myotonic dystrophy type 1
  publication-title: Neurol. Clin. Pract.
  doi: 10.1212/CPJ.0000000000000531
– volume: 25
  start-page: 24
  year: 2017
  ident: ref_18
  article-title: CRISPR/Cas9-Induced (CTGCAG)n Repeat Instability in the Myotonic Dystrophy Type 1 Locus: Implications for Therapeutic Genome Editing
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2016.10.014
– volume: 26
  start-page: 786
  year: 2015
  ident: ref_74
  article-title: Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2015.107
– volume: 26
  start-page: 2617
  year: 2018
  ident: ref_23
  article-title: Therapeutic Genome Editing for Myotonic Dystrophy Type 1 Using CRISPR/Cas9
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2018.09.003
– volume: 142
  start-page: 1242
  year: 2015
  ident: ref_60
  article-title: Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence
  publication-title: Development
– volume: 424
  start-page: 203
  year: 2012
  ident: ref_64
  article-title: Gene transfer to skeletal muscle by site-specific delivery of electroporation and ultrasound
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2012.06.090
– volume: 22
  start-page: 2146
  year: 2018
  ident: ref_44
  article-title: TALEN-Induced Double-Strand Break Repair of CTG Trinucleotide Repeats
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.01.083
– volume: 24
  start-page: 1378
  year: 2016
  ident: ref_49
  article-title: Genome Therapy of Myotonic Dystrophy Type 1 iPS Cells for Development of Autologous Stem Cell Therapy
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2016.97
– ident: ref_83
  doi: 10.1089/nat.2019.0790
– volume: 44
  start-page: 113
  year: 2010
  ident: ref_41
  article-title: Regulation of homologous recombination in eukaryotes
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-051710-150955
– volume: 361
  start-page: 866
  year: 2018
  ident: ref_1
  article-title: CRISPR-Cas guides the future of genetic engineering
  publication-title: Science
  doi: 10.1126/science.aat5011
– volume: 10
  start-page: 828
  year: 2004
  ident: ref_65
  article-title: Systemic delivery of genes to striated muscles using adeno-associated viral vectors
  publication-title: Nat. Med.
  doi: 10.1038/nm1085
– volume: 19
  start-page: 1399
  year: 2010
  ident: ref_12
  article-title: Variant CCG and GGC repeats within the CTG expansion dramatically modify mutational dynamics and likely contribute toward unusual symptoms in some myotonic dystrophy type 1 patients
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq015
– volume: 9
  start-page: 349
  year: 2018
  ident: ref_16
  article-title: Small Molecules Which Improve Pathogenesis of Myotonic Dystrophy Type 1
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2018.00349
– volume: 154
  start-page: 1380
  year: 2013
  ident: ref_37
  article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.021
– volume: 6
  start-page: 599
  year: 2000
  ident: ref_72
  article-title: Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization
  publication-title: Nat. Med.
  doi: 10.1038/75087
– volume: 9
  start-page: 368
  year: 2018
  ident: ref_10
  article-title: Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2018.00368
– ident: ref_56
  doi: 10.7554/eLife.32724
– volume: 25
  start-page: 249
  year: 2019
  ident: ref_77
  article-title: Identification of preexisting adaptive immunity to Cas9 proteins in humans
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0326-x
– volume: 475
  start-page: 1955
  year: 2018
  ident: ref_54
  article-title: CRISPR base editors: Genome editing without double-stranded breaks
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20170793
SSID ssj0023259
Score 2.3808513
SecondaryResourceType review_article
Snippet CRISPR/Cas technology holds promise for the development of therapies to treat inherited diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular...
Mutating one or both of the two nuclease domains of Cas9, respectively, resulted in the generation of Cas9 nickase (Cas9n), which only induces a single strand...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3689
SubjectTerms Animals
Cell cycle
Cell- and Tissue-Based Therapy
CRISPR
CRISPR-Cas Systems
Deoxyribonucleic acid
Disease
DNA
DNA methylation
Gene Editing
Gene Targeting
Genetic Association Studies
Genetic Loci
Genetic Predisposition to Disease
Genetic Therapy
Genomes
Humans
Laboratories
Mutation
Myotonic Dystrophy - genetics
Myotonic Dystrophy - therapy
Proteins
Review
Trinucleotide Repeat Expansion
Trinucleotide Repeats
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBddxmAvpd1n1qx40D4NkVifcV9GSBvaQbrSrZA3I8syzdjsNHZg-e97Zzuus9I-64zlO1l3P93pfoQcDYwLWGIt5Sa2VDgb0SAQhoKrBm8fWGMV3kaeXqrzG_F9Jmf1gVtel1Vu9sRyo44zi2fkfcY57LUQX7NvizuKrFGYXa0pNF6Ql9i6DEu69OwBcHFWkqX54IOokoGqCt85wPz-_PffHHyf5AoJ3tsu6VGc-X-5ZMv_TPbIbh04eqPK0vtkx6VvyKuKSnL9lkzG1xc_r677Y5N7o1ZS2pun3nSdFdgB1ztd58UyA8WeeGf_FtWFFu_HAkPwVVq2Vn1HbiZnv8bntOZIoFb4rKAuiWIeD6Ohr2PFXKyMZdYf8EQmZsAFzFkmUolhnAB0sTywWjmDXLa-cIabiL8nnTRL3UfiSd9ZbZD3AdO3QkSMJRrEuHURCLou-bpRU2jrBuLIY_EnBCCBSg3bSu2S40Z6UTXOeEKut9F4WP8-efhg7C750gzDwsdshkldtgIZpjTgO8Zll3yoDNS8iPsccJSEp_WW6RoBbKq9PZLOb8vm2koBppP60_PTOiCv4QPw-hdlukc6xXLlPkN0UkSH5RK8BzlH5co
  priority: 102
  providerName: ProQuest
Title CRISPR/Cas Applications in Myotonic Dystrophy: Expanding Opportunities
URI https://www.ncbi.nlm.nih.gov/pubmed/31357652
https://www.proquest.com/docview/2333625482
https://www.proquest.com/docview/2267014235
https://pubmed.ncbi.nlm.nih.gov/PMC6696057
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB3xoVZcKtpSahoiI9FTZYj3066EEE0TKFIoCkTKzVqv12oQOCFxpOTfdzaOraS0l1582VnZntnVm6fZnQdw3FAmJKnWHlWJ9pjRsReGTHkI1Yj2oVZa2NvInRtx1WPXfd7fgFJtdOnAyV-pndWT6o0fT2bP83Pc8GeWcSJlPx08PE0QxzgVQbgJ24hJ0m7RDqvqCZg28LA49v5ixg68pj7FtJuTdWx6kXD-eW5yBYjau_BmmUG6F0XI38KGyd7Bq0JTcv4e2s3uj7vb7mlTTdyLleq0O8jcznyY21a47vf5JB8P0cNf3dZsVNxscX-OrBum2aLH6h702q375pW3FEvwNPNJ7pk0TmgSxIEvE0FMIpQm2m_QlKeqQRl-M0-5YEGSIofRNNRSGGVFbX1mFFUx_QBb2TAzH8HlvtFSWQEIW8dlLCYklWhGtYnR0DjwpXRTpJedxK2gxWOEjML6N1r1rwOfK-tR0UHjH3a10uNRuQwiQikiLLIq4sBRNYw7wJY1VGaGU7QhQiLRI5Q7sF8EqHpRGVkH5FroKgPbXXt9JBv8WnTZFgLJHZcH_z3zE-zgv9krYh6RNdjKx1NziBlMHtdhU_YlPoP2ZR22v7Vubrt1iym8vli2vwF5mPhC
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXxJtAgUWiJ7SKvc8YCaEqbZTQpqDSSrm56_VapCp2qB1B_hS_kVk7TlMQ3Hre8WtmdmfG8_gA3gTGRSyzlnKTWiqcTWgUCUPRVKO1j6yxyncjjw_V8ER8nMjJBvxqe2F8WWV7JtYHdVpY_4-8yzjHsxb9a_Zh9p161CifXW0hNBq12HeLHxiyle9HuyjfbcYGe8f9IV2iClArQlZRlyUpT3tJL9SpYi5VxjIbBjyTmQm4SK2TmVSil2bo7FseWa2c8eivoXCGm4TjfW_ATTS8gd9RenIZ4HFWg7OFaPOokpFqCu05j4Lu9OxbibZWcuUB5ddN4F9-7Z_lmWv2bnAP7i4dVbLTaNZ92HD5A7jVQFcuHsKgfzT68vmo2zcl2VlLgpNpTsaLovITd8nuoqwuChTkO7L3c9Y00JBPM-_yz_N6lOsjOLkW7j2GzbzI3VMgMnRWG48z4dPFQiSMZRrJuHUJEroOvG3ZFNvlwHKPm3EeY-DimRqvM7UD2yvqWTOo4x90Wy3H4-V2LeNL5erA69UybjSfPTG5K-ZIw5TGeJJx2YEnjYBWD-Ihx7hN4tX6iuhWBH6I99WVfPq1HuatFMaQUj_7_2u9gtvD4_FBfDA63H8Od_BjfOsZZXoLNquLuXuBnlGVvKzVkcDpdev_b_0eJDo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIlBfKu6mFFgk-oRWifeMkRCqkkYNpaUqVMqbWa_XaiqwQ-0I8tf4dcz6SFMQvPV5x9fM7M6M5_gAXvWMC1lqLeUmsVQ4G9MwFIaiqUZrH1pjle9GPjpWB2fi_URO1uBX2wvjyyrbM7E6qJPc-n_kXcY5nrXoX7Nu2pRFnAxH72bfqUeQ8pnWFk6jVpFDt_iB4VvxdjxEWe8yNtr_PDigDcIAtSJgJXVpnPCkH_cDnSjmEmUss0GPpzI1PS4S62QqlegnKTr-lodWK2c8EmwgnOEm5njfW3Bbcxn4PaYnV8EeZxVQW4D2jyoZqrronvOw151efCvQ7kquPLj8qjn8y8f9s1RzxfaN7sFm47SSvVrL7sOayx7AnRrGcvEQRoPT8aeT0-7AFGRvJSFOphk5WuSln75LhouivMxRqG_I_s9Z3UxDPs68-z_PqrGuj-DsRrj3GNazPHNbQGTgrDYec8KnjoWIGUs1knHrYiR0HXjdsimyzfByj6HxNcIgxjM1WmVqB3aX1LN6aMc_6HZajkfN1i2iK0XrwMvlMm46n0kxmcvnSMOUxtiScdmBJ7WAlg_iAccYTuLV-prolgR-oPf1lWx6Xg32VgrjSam3__9aL-Auan70YXx8-BQ28Ft8FxplegfWy8u5e4ZOUhk_r7SRwJebVv_fR4wocA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR%2FCas+Applications+in+Myotonic+Dystrophy%3A+Expanding+Opportunities&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Raaijmakers%2C+Ren%C3%A9e+H.L.&rft.au=Ripken%2C+Lise&rft.au=Ausems%2C+C.+Rosanne+M.&rft.au=Wansink%2C+Derick+G.&rft.date=2019-07-27&rft.pub=MDPI&rft.eissn=1422-0067&rft.volume=20&rft.issue=15&rft_id=info:doi/10.3390%2Fijms20153689&rft_id=info%3Apmid%2F31357652&rft.externalDocID=PMC6696057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon