Min-max predictive control of a heat exchanger using a neural network solver
Min-max model predictive controllers (MMMPC) have been proposed for the control of linear plants subject to bounded uncertainties. The implementation of MMMPC suffers a large computational burden due to the numerical optimization problem that has to be solved at every sampling time. This fact severe...
Saved in:
Published in | IEEE transactions on control systems technology Vol. 12; no. 5; pp. 776 - 786 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.09.2004
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1063-6536 1558-0865 |
DOI | 10.1109/TCST.2004.826972 |
Cover
Abstract | Min-max model predictive controllers (MMMPC) have been proposed for the control of linear plants subject to bounded uncertainties. The implementation of MMMPC suffers a large computational burden due to the numerical optimization problem that has to be solved at every sampling time. This fact severely limits the class of processes in which this control is suitable. In this brief, the use of a neural network (NN) to approximate the solution of the min-max problem is proposed. The number of inputs of the NN is determined by the order and time delay of the model together with the control horizon. For large time delays the number of inputs can be prohibitive. A modification to the basic formulation is proposed in order to avoid this latter problem. Simulation and experimental results are given using a heat exchanger. |
---|---|
AbstractList | Min-max model predictive controllers (MMMPC) have been proposed for the control of linear plants subject to bounded uncertainties. The implementation of MMMPC suffers a large computational burden due to the numerical optimization problem that has to be solved at every sampling time. This fact severely limits the class of processes in which this control is suitable. In this brief, the use of a neural network (NN) to approximate the solution of the min-max problem is proposed. The number of inputs of the NN is determined by the order and time delay of the model together with the control horizon. For large time delays the number of inputs can be prohibitive. A modification to the basic formulation is proposed in order to avoid this latter problem. Simulation and experimental results are given using a heat exchanger. |
Author | Ramirez, D.R. Arahal, M.R. Camacho, E.F. |
Author_xml | – sequence: 1 givenname: D.R. surname: Ramirez fullname: Ramirez, D.R. organization: Dept. de Ingenieria de Sistemas y Autom.a, Univ. of Seville, Sevilla, Spain – sequence: 2 givenname: M.R. surname: Arahal fullname: Arahal, M.R. organization: Dept. de Ingenieria de Sistemas y Autom.a, Univ. of Seville, Sevilla, Spain – sequence: 3 givenname: E.F. surname: Camacho fullname: Camacho, E.F. organization: Dept. de Ingenieria de Sistemas y Autom.a, Univ. of Seville, Sevilla, Spain |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16335397$$DView record in Pascal Francis |
BookMark | eNqNkV1LHDEUhoMo-Hkv9GYotF7Nmu-ZuSyLtYUVL1yvwzGeaOxssk1m1P57M6xUECqFwAmH5z2H5Nkn2yEGJOSY0RljtDtdzq-WM06pnLVcdw3fIntMqbamrVbb5U61qLUSepfs5_xAKZOKN3tkceFDvYLnap3w1tvBP2JlYxhS7KvoKqjuEYYKn-09hDtM1Zh9uCvtgGOCvpThKaZfVY79I6ZDsuOgz3j0Wg_I9fez5fxHvbg8_zn_tqitZHyo0YFm2lLbOumEdrKRN8ipUFJ1UpS2anhDpbXO3jDOuQRhHdWcO2dBQSsOyMlm7jrF3yPmwax8ttj3EDCO2XSUaUUlm8ivH5K8LRsbLv8DFF05qoCf34EPcUyhPNe0rVBKdnyCvrxCkC30LkGwPpt18itIfwzTQijRNYXTG86mmHNCZ6wfYPCTAPC9YdRMcs0k10xyzUZuCdJ3wb-z_x35tIl4RHzDBW90-agXbEOvtQ |
CODEN | IETTE2 |
CitedBy_id | crossref_primary_10_1177_0959651817721773 crossref_primary_10_1021_ie201545z crossref_primary_10_1016_j_automatica_2006_11_008 crossref_primary_10_1016_j_jprocont_2005_07_005 crossref_primary_10_3182_20050703_6_CZ_1902_00465 crossref_primary_10_1002_rnc_1549 crossref_primary_10_1155_2018_9497618 crossref_primary_10_1016_j_isatra_2012_04_007 crossref_primary_10_1016_j_applthermaleng_2015_10_017 crossref_primary_10_1016_j_jprocont_2021_08_009 crossref_primary_10_1016_S1697_7912_08_70160_2 crossref_primary_10_1016_j_energy_2015_12_068 crossref_primary_10_1016_j_anucene_2010_01_008 crossref_primary_10_5762_KAIS_2011_12_10_4288 crossref_primary_10_1002_er_1380 crossref_primary_10_1007_s13369_016_2247_7 crossref_primary_10_1115_1_4037329 crossref_primary_10_1109_TCST_2006_880196 crossref_primary_10_1016_j_jfranklin_2011_07_008 crossref_primary_10_1016_j_jprocont_2004_06_003 crossref_primary_10_1021_acs_iecr_5b03791 |
Cites_doi | 10.1109/87.944469 10.1093/oso/9780198562924.001.0001 10.1109/CDC.2001.980974 10.1109/ICNN.1993.298772 10.1016/S0005-1098(96)00255-5 10.1007/978-1-4471-3398-8 10.1007/BF02551274 10.1109/37.845038 10.1109/72.207618 10.1109/CCA.1994.381407 10.1109/CDC.2003.1272688 10.1016/0005-1098(93)90096-C 10.3182/20020721-6-es-1901.01570 10.1016/0005-1098(96)00063-5 10.1016/S0967-0661(98)00097-5 10.1109/72.165588 10.1016/S0005-1098(02)00174-7 10.1002/rnc.815 10.1002/(SICI)1099-1115(199706)11:4<311::AID-ACS410>3.0.CO;2-K 10.1109/9.871769 10.1016/0893-6080(89)90003-8 10.1109/9.704989 10.1016/S0005-1098(99)00214-9 10.23919/ACC.1987.4789462 10.23919/ACC.1991.4791330 10.1109/TAC.2003.816984 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004 |
DBID | RIA RIE AAYXX CITATION IQODW 7SP 7TB 8FD FR3 L7M 7SC JQ2 L~C L~D H8D 7QO P64 |
DOI | 10.1109/TCST.2004.826972 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Aerospace Database Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1558-0865 |
EndPage | 786 |
ExternalDocumentID | 2426289551 16335397 10_1109_TCST_2004_826972 1327618 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG IQODW 7SP 7TB 8FD FR3 L7M 7SC JQ2 L~C L~D H8D 7QO P64 |
ID | FETCH-LOGICAL-c412t-efa616c0c8f4f36f474be2035459430c8572704ccfcb12224a3cf0622ffca5a83 |
IEDL.DBID | RIE |
ISSN | 1063-6536 |
IngestDate | Fri Sep 05 05:03:12 EDT 2025 Fri Sep 05 08:39:43 EDT 2025 Thu Sep 04 15:53:15 EDT 2025 Fri Jul 25 01:05:26 EDT 2025 Mon Jul 21 09:15:02 EDT 2025 Tue Jul 01 05:17:11 EDT 2025 Thu Apr 24 23:12:03 EDT 2025 Wed Aug 27 02:53:48 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Uncertain system Process control Heat exchanger Minimax method Delay time Neural network Sampling Delayed time Predictive control |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-efa616c0c8f4f36f474be2035459430c8572704ccfcb12224a3cf0622ffca5a83 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 883554925 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | pascalfrancis_primary_16335397 proquest_miscellaneous_901650418 crossref_citationtrail_10_1109_TCST_2004_826972 proquest_miscellaneous_28943724 proquest_journals_883554925 proquest_miscellaneous_28398395 ieee_primary_1327618 crossref_primary_10_1109_TCST_2004_826972 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-09-01 |
PublicationDateYYYYMMDD | 2004-09-01 |
PublicationDate_xml | – month: 09 year: 2004 text: 2004-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on control systems technology |
PublicationTitleAbbrev | TCST |
PublicationYear | 2004 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 Ramírez (ref29) ref1 ref17 ref16 ref19 ref18 Fahlman (ref27) 1990; 2 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 Platt (ref28) 1991; 3 ref5 |
References_xml | – ident: ref15 doi: 10.1109/87.944469 – ident: ref20 doi: 10.1093/oso/9780198562924.001.0001 – ident: ref4 doi: 10.1109/CDC.2001.980974 – ident: ref16 doi: 10.1109/ICNN.1993.298772 – ident: ref23 doi: 10.1016/S0005-1098(96)00255-5 – ident: ref1 doi: 10.1007/978-1-4471-3398-8 – ident: ref12 doi: 10.1007/BF02551274 – ident: ref14 doi: 10.1109/37.845038 – ident: ref26 doi: 10.1109/72.207618 – ident: ref17 doi: 10.1109/CCA.1994.381407 – ident: ref6 doi: 10.1109/CDC.2003.1272688 – ident: ref21 doi: 10.1016/0005-1098(93)90096-C – ident: ref11 doi: 10.3182/20020721-6-es-1901.01570 – volume-title: Proc. Eur. Control Conf. (ECC’99) ident: ref29 article-title: Model based predictive control using genetic algorithms. Application to a pilot plant – ident: ref7 doi: 10.1016/0005-1098(96)00063-5 – ident: ref3 doi: 10.1016/S0967-0661(98)00097-5 – volume: 2 start-page: 524 volume-title: Advances in Neural Information Processing Systems year: 1990 ident: ref27 article-title: The cascade-correlation learning architecture – ident: ref25 doi: 10.1109/72.165588 – ident: ref8 doi: 10.1016/S0005-1098(02)00174-7 – ident: ref10 doi: 10.1002/rnc.815 – volume: 3 start-page: 715 volume-title: Advances in Neural Information Processing Systems year: 1991 ident: ref28 article-title: Learning by combining memorization and gradient descent – ident: ref2 doi: 10.1002/(SICI)1099-1115(199706)11:4<311::AID-ACS410>3.0.CO;2-K – ident: ref9 doi: 10.1109/9.871769 – ident: ref13 doi: 10.1016/0893-6080(89)90003-8 – ident: ref22 doi: 10.1109/9.704989 – ident: ref18 doi: 10.1016/S0005-1098(99)00214-9 – ident: ref19 doi: 10.23919/ACC.1987.4789462 – ident: ref24 doi: 10.23919/ACC.1991.4791330 – ident: ref5 doi: 10.1109/TAC.2003.816984 |
SSID | ssj0014527 |
Score | 1.8810306 |
Snippet | Min-max model predictive controllers (MMMPC) have been proposed for the control of linear plants subject to bounded uncertainties. The implementation of MMMPC... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 776 |
SubjectTerms | Applied sciences Computer science; control theory; systems Control system synthesis Control systems Control theory. Systems Delay effects Exact sciences and technology Miscellaneous Neural networks Predictive control Predictive models Process control Process control. Computer integrated manufacturing Robust control Sampling methods Uncertain systems Uncertainty |
Title | Min-max predictive control of a heat exchanger using a neural network solver |
URI | https://ieeexplore.ieee.org/document/1327618 https://www.proquest.com/docview/883554925 https://www.proquest.com/docview/28398395 https://www.proquest.com/docview/28943724 https://www.proquest.com/docview/901650418 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3ooLbRqoKU-9FKp3nVix7GPFQKhqsuFReIWOY5dVS1ZxO5KqL--M3F2gdKiSjlEsRPZMx77m8wL4ENlbWWrVvCi0YYrLSpubWy48lKVVrcoUhTvPDnTpxfqy2V5uQGf1rEwIYTe-SyM6La35bczv6RfZWPUnFDrNpuwicssxWqtLQYqlWdFDUdyfc8kKex4enQ-7TXBEWJpWxUPjqC-pgp5RLo5EiWmahaPNub-tDnZgclqnMnJ5MdouWhG_tcfKRz_dyIv4PkAO9nntE5ewkboduHZvWSEe_B18r3jV-6WXd-Q8Ya2QTY4srNZZI7Rts3C7RAqzMhj_hs-poyY-Oku-ZMzXMsoHa_g4uR4enTKh1oL3Ku8WPAQnc61F95EFaWOqlJNKIREgEUJ2r0pEegI5X30TY6YQjnpo9BFEaN3pTPyNWx1sy68AeYrnFtsy9z5XOVRW5k3JkRPmeJaaUMG4xX5az8kIqd6GD_rXiERtiaGUX1MVSeGZfBx_cZ1SsLxRN89ovddv0TqDA4fcPiuXUtZIijL4GDF8noQ43ltDMExW5QZvF-3ovyRUcV1Ybac1wjPLF5P9rBkHFUZsH_0sBRTJlRu9v8--APYTg5D5Nr2FrYWN8vwDrHQojnsheA3PokFuA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8QA8jI-BFsY2P_CChFsndhz7cZqYCrR7oZP2FiWOPSFYOq2tNPHXcxen3QZsQspDFDuRfeez73K_uwN4X1hb2KIRPKu14UqLglsbaq6cVLnVDYoUxTtPTvToVH05y8824OM6FsZ734HP_IBuO19-M3NL-lU2RMsJrW7zCB7jua_yGK219hmoWKAVbRzJ9S2npLDD6dG3aWcLDlCbtkV25xDqqqoQJrKaI1lCrGfx19bcnTfHz2GyGmmEmfwYLBf1wP36I4nj_07lBWz1iic7jCvlJWz49hU8u5WOcBvGk-8tv6iu2eUVuW9oI2Q9lJ3NAqsYbdzMX_fBwoww8-f4mHJi4qfbiChnuJpRPl7D6fGn6dGI99UWuFNptuA-VDrVTjgTVJA6qELVPhMSCU0p2p3JUdURyrng6hS1ClVJF4TOshBclVdGvoHNdtb6HWCuwLmFJk8rl6o0aCvT2vjgKFdcI61PYLgif-n6VORUEeNn2ZkkwpbEMKqQqcrIsAQ-rN-4jGk4Hui7TfS-6RdJncD-HQ7ftGspc1TLEthdsbzsBXleGkMKmc3yBA7WrSiB5FapWj9bzktU0CxeD_aw5B5VCbB7eliKKhMqNW__PfgDeDKaTsbl-PPJ1114GuFDBHR7B5uLq6XfQ81oUe93AvEbD0EJBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Min-max+predictive+control+of+a+heat+exchanger+using+a+neural+network+solver&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Ramirez%2C+D.R&rft.au=Arahal%2C+M.R&rft.au=Camacho%2C+E.F&rft.date=2004-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=12&rft.issue=5&rft.spage=776&rft_id=info:doi/10.1109%2FTCST.2004.826972&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2426289551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon |