Min-max predictive control of a heat exchanger using a neural network solver

Min-max model predictive controllers (MMMPC) have been proposed for the control of linear plants subject to bounded uncertainties. The implementation of MMMPC suffers a large computational burden due to the numerical optimization problem that has to be solved at every sampling time. This fact severe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 12; no. 5; pp. 776 - 786
Main Authors Ramirez, D.R., Arahal, M.R., Camacho, E.F.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2004
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6536
1558-0865
DOI10.1109/TCST.2004.826972

Cover

Abstract Min-max model predictive controllers (MMMPC) have been proposed for the control of linear plants subject to bounded uncertainties. The implementation of MMMPC suffers a large computational burden due to the numerical optimization problem that has to be solved at every sampling time. This fact severely limits the class of processes in which this control is suitable. In this brief, the use of a neural network (NN) to approximate the solution of the min-max problem is proposed. The number of inputs of the NN is determined by the order and time delay of the model together with the control horizon. For large time delays the number of inputs can be prohibitive. A modification to the basic formulation is proposed in order to avoid this latter problem. Simulation and experimental results are given using a heat exchanger.
AbstractList Min-max model predictive controllers (MMMPC) have been proposed for the control of linear plants subject to bounded uncertainties. The implementation of MMMPC suffers a large computational burden due to the numerical optimization problem that has to be solved at every sampling time. This fact severely limits the class of processes in which this control is suitable. In this brief, the use of a neural network (NN) to approximate the solution of the min-max problem is proposed. The number of inputs of the NN is determined by the order and time delay of the model together with the control horizon. For large time delays the number of inputs can be prohibitive. A modification to the basic formulation is proposed in order to avoid this latter problem. Simulation and experimental results are given using a heat exchanger.
Author Ramirez, D.R.
Arahal, M.R.
Camacho, E.F.
Author_xml – sequence: 1
  givenname: D.R.
  surname: Ramirez
  fullname: Ramirez, D.R.
  organization: Dept. de Ingenieria de Sistemas y Autom.a, Univ. of Seville, Sevilla, Spain
– sequence: 2
  givenname: M.R.
  surname: Arahal
  fullname: Arahal, M.R.
  organization: Dept. de Ingenieria de Sistemas y Autom.a, Univ. of Seville, Sevilla, Spain
– sequence: 3
  givenname: E.F.
  surname: Camacho
  fullname: Camacho, E.F.
  organization: Dept. de Ingenieria de Sistemas y Autom.a, Univ. of Seville, Sevilla, Spain
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16335397$$DView record in Pascal Francis
BookMark eNqNkV1LHDEUhoMo-Hkv9GYotF7Nmu-ZuSyLtYUVL1yvwzGeaOxssk1m1P57M6xUECqFwAmH5z2H5Nkn2yEGJOSY0RljtDtdzq-WM06pnLVcdw3fIntMqbamrVbb5U61qLUSepfs5_xAKZOKN3tkceFDvYLnap3w1tvBP2JlYxhS7KvoKqjuEYYKn-09hDtM1Zh9uCvtgGOCvpThKaZfVY79I6ZDsuOgz3j0Wg_I9fez5fxHvbg8_zn_tqitZHyo0YFm2lLbOumEdrKRN8ipUFJ1UpS2anhDpbXO3jDOuQRhHdWcO2dBQSsOyMlm7jrF3yPmwax8ttj3EDCO2XSUaUUlm8ivH5K8LRsbLv8DFF05qoCf34EPcUyhPNe0rVBKdnyCvrxCkC30LkGwPpt18itIfwzTQijRNYXTG86mmHNCZ6wfYPCTAPC9YdRMcs0k10xyzUZuCdJ3wb-z_x35tIl4RHzDBW90-agXbEOvtQ
CODEN IETTE2
CitedBy_id crossref_primary_10_1177_0959651817721773
crossref_primary_10_1021_ie201545z
crossref_primary_10_1016_j_automatica_2006_11_008
crossref_primary_10_1016_j_jprocont_2005_07_005
crossref_primary_10_3182_20050703_6_CZ_1902_00465
crossref_primary_10_1002_rnc_1549
crossref_primary_10_1155_2018_9497618
crossref_primary_10_1016_j_isatra_2012_04_007
crossref_primary_10_1016_j_applthermaleng_2015_10_017
crossref_primary_10_1016_j_jprocont_2021_08_009
crossref_primary_10_1016_S1697_7912_08_70160_2
crossref_primary_10_1016_j_energy_2015_12_068
crossref_primary_10_1016_j_anucene_2010_01_008
crossref_primary_10_5762_KAIS_2011_12_10_4288
crossref_primary_10_1002_er_1380
crossref_primary_10_1007_s13369_016_2247_7
crossref_primary_10_1115_1_4037329
crossref_primary_10_1109_TCST_2006_880196
crossref_primary_10_1016_j_jfranklin_2011_07_008
crossref_primary_10_1016_j_jprocont_2004_06_003
crossref_primary_10_1021_acs_iecr_5b03791
Cites_doi 10.1109/87.944469
10.1093/oso/9780198562924.001.0001
10.1109/CDC.2001.980974
10.1109/ICNN.1993.298772
10.1016/S0005-1098(96)00255-5
10.1007/978-1-4471-3398-8
10.1007/BF02551274
10.1109/37.845038
10.1109/72.207618
10.1109/CCA.1994.381407
10.1109/CDC.2003.1272688
10.1016/0005-1098(93)90096-C
10.3182/20020721-6-es-1901.01570
10.1016/0005-1098(96)00063-5
10.1016/S0967-0661(98)00097-5
10.1109/72.165588
10.1016/S0005-1098(02)00174-7
10.1002/rnc.815
10.1002/(SICI)1099-1115(199706)11:4<311::AID-ACS410>3.0.CO;2-K
10.1109/9.871769
10.1016/0893-6080(89)90003-8
10.1109/9.704989
10.1016/S0005-1098(99)00214-9
10.23919/ACC.1987.4789462
10.23919/ACC.1991.4791330
10.1109/TAC.2003.816984
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004
DBID RIA
RIE
AAYXX
CITATION
IQODW
7SP
7TB
8FD
FR3
L7M
7SC
JQ2
L~C
L~D
H8D
7QO
P64
DOI 10.1109/TCST.2004.826972
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Aerospace Database
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1558-0865
EndPage 786
ExternalDocumentID 2426289551
16335397
10_1109_TCST_2004_826972
1327618
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
7SP
7TB
8FD
FR3
L7M
7SC
JQ2
L~C
L~D
H8D
7QO
P64
ID FETCH-LOGICAL-c412t-efa616c0c8f4f36f474be2035459430c8572704ccfcb12224a3cf0622ffca5a83
IEDL.DBID RIE
ISSN 1063-6536
IngestDate Fri Sep 05 05:03:12 EDT 2025
Fri Sep 05 08:39:43 EDT 2025
Thu Sep 04 15:53:15 EDT 2025
Fri Jul 25 01:05:26 EDT 2025
Mon Jul 21 09:15:02 EDT 2025
Tue Jul 01 05:17:11 EDT 2025
Thu Apr 24 23:12:03 EDT 2025
Wed Aug 27 02:53:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Uncertain system
Process control
Heat exchanger
Minimax method
Delay time
Neural network
Sampling
Delayed time
Predictive control
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-efa616c0c8f4f36f474be2035459430c8572704ccfcb12224a3cf0622ffca5a83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 883554925
PQPubID 23500
PageCount 11
ParticipantIDs pascalfrancis_primary_16335397
proquest_miscellaneous_901650418
crossref_citationtrail_10_1109_TCST_2004_826972
proquest_miscellaneous_28943724
proquest_journals_883554925
proquest_miscellaneous_28398395
ieee_primary_1327618
crossref_primary_10_1109_TCST_2004_826972
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-09-01
PublicationDateYYYYMMDD 2004-09-01
PublicationDate_xml – month: 09
  year: 2004
  text: 2004-09-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 2004
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
Ramírez (ref29)
ref1
ref17
ref16
ref19
ref18
Fahlman (ref27) 1990; 2
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
Platt (ref28) 1991; 3
ref5
References_xml – ident: ref15
  doi: 10.1109/87.944469
– ident: ref20
  doi: 10.1093/oso/9780198562924.001.0001
– ident: ref4
  doi: 10.1109/CDC.2001.980974
– ident: ref16
  doi: 10.1109/ICNN.1993.298772
– ident: ref23
  doi: 10.1016/S0005-1098(96)00255-5
– ident: ref1
  doi: 10.1007/978-1-4471-3398-8
– ident: ref12
  doi: 10.1007/BF02551274
– ident: ref14
  doi: 10.1109/37.845038
– ident: ref26
  doi: 10.1109/72.207618
– ident: ref17
  doi: 10.1109/CCA.1994.381407
– ident: ref6
  doi: 10.1109/CDC.2003.1272688
– ident: ref21
  doi: 10.1016/0005-1098(93)90096-C
– ident: ref11
  doi: 10.3182/20020721-6-es-1901.01570
– volume-title: Proc. Eur. Control Conf. (ECC’99)
  ident: ref29
  article-title: Model based predictive control using genetic algorithms. Application to a pilot plant
– ident: ref7
  doi: 10.1016/0005-1098(96)00063-5
– ident: ref3
  doi: 10.1016/S0967-0661(98)00097-5
– volume: 2
  start-page: 524
  volume-title: Advances in Neural Information Processing Systems
  year: 1990
  ident: ref27
  article-title: The cascade-correlation learning architecture
– ident: ref25
  doi: 10.1109/72.165588
– ident: ref8
  doi: 10.1016/S0005-1098(02)00174-7
– ident: ref10
  doi: 10.1002/rnc.815
– volume: 3
  start-page: 715
  volume-title: Advances in Neural Information Processing Systems
  year: 1991
  ident: ref28
  article-title: Learning by combining memorization and gradient descent
– ident: ref2
  doi: 10.1002/(SICI)1099-1115(199706)11:4<311::AID-ACS410>3.0.CO;2-K
– ident: ref9
  doi: 10.1109/9.871769
– ident: ref13
  doi: 10.1016/0893-6080(89)90003-8
– ident: ref22
  doi: 10.1109/9.704989
– ident: ref18
  doi: 10.1016/S0005-1098(99)00214-9
– ident: ref19
  doi: 10.23919/ACC.1987.4789462
– ident: ref24
  doi: 10.23919/ACC.1991.4791330
– ident: ref5
  doi: 10.1109/TAC.2003.816984
SSID ssj0014527
Score 1.8810306
Snippet Min-max model predictive controllers (MMMPC) have been proposed for the control of linear plants subject to bounded uncertainties. The implementation of MMMPC...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 776
SubjectTerms Applied sciences
Computer science; control theory; systems
Control system synthesis
Control systems
Control theory. Systems
Delay effects
Exact sciences and technology
Miscellaneous
Neural networks
Predictive control
Predictive models
Process control
Process control. Computer integrated manufacturing
Robust control
Sampling methods
Uncertain systems
Uncertainty
Title Min-max predictive control of a heat exchanger using a neural network solver
URI https://ieeexplore.ieee.org/document/1327618
https://www.proquest.com/docview/883554925
https://www.proquest.com/docview/28398395
https://www.proquest.com/docview/28943724
https://www.proquest.com/docview/901650418
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BJ3ooLbRqoKU-9FKp3nVix7GPFQKhqsuFReIWOY5dVS1ZxO5KqL--M3F2gdKiSjlEsRPZMx77m8wL4ENlbWWrVvCi0YYrLSpubWy48lKVVrcoUhTvPDnTpxfqy2V5uQGf1rEwIYTe-SyM6La35bczv6RfZWPUnFDrNpuwicssxWqtLQYqlWdFDUdyfc8kKex4enQ-7TXBEWJpWxUPjqC-pgp5RLo5EiWmahaPNub-tDnZgclqnMnJ5MdouWhG_tcfKRz_dyIv4PkAO9nntE5ewkboduHZvWSEe_B18r3jV-6WXd-Q8Ya2QTY4srNZZI7Rts3C7RAqzMhj_hs-poyY-Oku-ZMzXMsoHa_g4uR4enTKh1oL3Ku8WPAQnc61F95EFaWOqlJNKIREgEUJ2r0pEegI5X30TY6YQjnpo9BFEaN3pTPyNWx1sy68AeYrnFtsy9z5XOVRW5k3JkRPmeJaaUMG4xX5az8kIqd6GD_rXiERtiaGUX1MVSeGZfBx_cZ1SsLxRN89ovddv0TqDA4fcPiuXUtZIijL4GDF8noQ43ltDMExW5QZvF-3ovyRUcV1Ybac1wjPLF5P9rBkHFUZsH_0sBRTJlRu9v8--APYTg5D5Nr2FrYWN8vwDrHQojnsheA3PokFuA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8QA8jI-BFsY2P_CChFsndhz7cZqYCrR7oZP2FiWOPSFYOq2tNPHXcxen3QZsQspDFDuRfeez73K_uwN4X1hb2KIRPKu14UqLglsbaq6cVLnVDYoUxTtPTvToVH05y8824OM6FsZ734HP_IBuO19-M3NL-lU2RMsJrW7zCB7jua_yGK219hmoWKAVbRzJ9S2npLDD6dG3aWcLDlCbtkV25xDqqqoQJrKaI1lCrGfx19bcnTfHz2GyGmmEmfwYLBf1wP36I4nj_07lBWz1iic7jCvlJWz49hU8u5WOcBvGk-8tv6iu2eUVuW9oI2Q9lJ3NAqsYbdzMX_fBwoww8-f4mHJi4qfbiChnuJpRPl7D6fGn6dGI99UWuFNptuA-VDrVTjgTVJA6qELVPhMSCU0p2p3JUdURyrng6hS1ClVJF4TOshBclVdGvoHNdtb6HWCuwLmFJk8rl6o0aCvT2vjgKFdcI61PYLgif-n6VORUEeNn2ZkkwpbEMKqQqcrIsAQ-rN-4jGk4Hui7TfS-6RdJncD-HQ7ftGspc1TLEthdsbzsBXleGkMKmc3yBA7WrSiB5FapWj9bzktU0CxeD_aw5B5VCbB7eliKKhMqNW__PfgDeDKaTsbl-PPJ1114GuFDBHR7B5uLq6XfQ81oUe93AvEbD0EJBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Min-max+predictive+control+of+a+heat+exchanger+using+a+neural+network+solver&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Ramirez%2C+D.R&rft.au=Arahal%2C+M.R&rft.au=Camacho%2C+E.F&rft.date=2004-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=12&rft.issue=5&rft.spage=776&rft_id=info:doi/10.1109%2FTCST.2004.826972&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2426289551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon