Scouring Depth Assessment Downstream of Weirs Using Hybrid Intelligence Models
Considering the scouring depth downstream of weirs is a challenging issue due to its effect on weir stability. The adaptive neuro-fuzzy inference systems (ANFIS) model integrated with optimization methods namely cultural algorithm, biogeography based optimization (BBO), invasive weed optimization (I...
Saved in:
Published in | Applied sciences Vol. 10; no. 11; p. 3714 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Considering the scouring depth downstream of weirs is a challenging issue due to its effect on weir stability. The adaptive neuro-fuzzy inference systems (ANFIS) model integrated with optimization methods namely cultural algorithm, biogeography based optimization (BBO), invasive weed optimization (IWO) and teaching learning based optimization (TLBO) are proposed to predict the maximum depth of scouring based on the different input combinations. Several performance indices and graphical evaluators are employed to estimate the prediction accuracy in the training and testing phase. Results show that the ANFIS-IWO offers the highest prediction performance (RMSE = 0.148) compared to other models in the testing phase, while the ANFIS-BBO (RMSE = 0.411) provides the lowest accuracy. The findings obtained from the uncertainty analysis of prediction modeling indicate that the input variables variability has a higher impact on the predicted results than the structure of models. In general, the ANFIS-IWO can be used as a reliable and cost-effective method for predicting the scouring depth downstream of weirs. |
---|---|
AbstractList | Considering the scouring depth downstream of weirs is a challenging issue due to its effect on weir stability. The adaptive neuro-fuzzy inference systems (ANFIS) model integrated with optimization methods namely cultural algorithm, biogeography based optimization (BBO), invasive weed optimization (IWO) and teaching learning based optimization (TLBO) are proposed to predict the maximum depth of scouring based on the different input combinations. Several performance indices and graphical evaluators are employed to estimate the prediction accuracy in the training and testing phase. Results show that the ANFIS-IWO offers the highest prediction performance (RMSE = 0.148) compared to other models in the testing phase, while the ANFIS-BBO (RMSE = 0.411) provides the lowest accuracy. The findings obtained from the uncertainty analysis of prediction modeling indicate that the input variables variability has a higher impact on the predicted results than the structure of models. In general, the ANFIS-IWO can be used as a reliable and cost-effective method for predicting the scouring depth downstream of weirs. Keywords: weirs; scouring depth; adaptive neuro-fuzzy inference systems; optimization algorithms Considering the scouring depth downstream of weirs is a challenging issue due to its effect on weir stability. The adaptive neuro-fuzzy inference systems (ANFIS) model integrated with optimization methods namely cultural algorithm, biogeography based optimization (BBO), invasive weed optimization (IWO) and teaching learning based optimization (TLBO) are proposed to predict the maximum depth of scouring based on the different input combinations. Several performance indices and graphical evaluators are employed to estimate the prediction accuracy in the training and testing phase. Results show that the ANFIS-IWO offers the highest prediction performance (RMSE = 0.148) compared to other models in the testing phase, while the ANFIS-BBO (RMSE = 0.411)ANFIS-TLBO-M3 RMSEtesting=0.411, CCtesting~0.00) provides the lowest accuracy. The findings obtained from the uncertainty analysis of prediction modeling indicate that the input variables variability R-factor=1.72has a higher impact on the predicted results than the structure of models. In general, the ANFIS-IWO can be used as a reliable and cost-effective method for predicting the scouring depth downstream of weirs. Considering the scouring depth downstream of weirs is a challenging issue due to its effect on weir stability. The adaptive neuro-fuzzy inference systems (ANFIS) model integrated with optimization methods namely cultural algorithm, biogeography based optimization (BBO), invasive weed optimization (IWO) and teaching learning based optimization (TLBO) are proposed to predict the maximum depth of scouring based on the different input combinations. Several performance indices and graphical evaluators are employed to estimate the prediction accuracy in the training and testing phase. Results show that the ANFIS-IWO offers the highest prediction performance (RMSE = 0.148) compared to other models in the testing phase, while the ANFIS-BBO (RMSE = 0.411) provides the lowest accuracy. The findings obtained from the uncertainty analysis of prediction modeling indicate that the input variables variability has a higher impact on the predicted results than the structure of models. In general, the ANFIS-IWO can be used as a reliable and cost-effective method for predicting the scouring depth downstream of weirs. |
Audience | Academic |
Author | Yaseen, Zaher Mundher Sharafati, Ahmad Haghbin, Masoud Tiwari, Nand Kumar Haji Seyed Asadollah, Seyed Babak Al-Ansari, Nadhir |
Author_xml | – sequence: 1 givenname: Ahmad surname: Sharafati fullname: Sharafati, Ahmad – sequence: 2 givenname: Masoud orcidid: 0000-0002-2042-6645 surname: Haghbin fullname: Haghbin, Masoud – sequence: 3 givenname: Seyed Babak surname: Haji Seyed Asadollah fullname: Haji Seyed Asadollah, Seyed Babak – sequence: 4 givenname: Nand Kumar surname: Tiwari fullname: Tiwari, Nand Kumar – sequence: 5 givenname: Nadhir orcidid: 0000-0002-6790-2653 surname: Al-Ansari fullname: Al-Ansari, Nadhir – sequence: 6 givenname: Zaher Mundher orcidid: 0000-0003-3647-7137 surname: Yaseen fullname: Yaseen, Zaher Mundher |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-79020$$DView record from Swedish Publication Index |
BookMark | eNptkdFuFCEUhompibX2yheYe93KAYYZLjddtZtUvdDqJWHgsNLMwgTYNH17aVeTaoQLyMn_fTnJ_5KcxBSRkNdALzhX9J1ZFqAAfADxjJwyOsgVFzCcPPm_IOel3NJ2FPAR6Cn5_NWmQw5x121wqT-7dSlYyh5j7TbpLpaa0ey75LsfGHLpbspD9Op-ysF121hxnsMOo8XuU3I4l1fkuTdzwfPf7xm5-fD-2-XV6vrLx-3l-nplBbC6Qs8ds3xivZQMqBhlL5FZj5NnCh0IFKhgmCg4bygoaQCkEoZSyxW3jJ-R7dHrkrnVSw57k-91MkE_DlLeaZNrsDNq4bgbGbgeRieoUAY89j1Kb0AYZnhzvT26yh0uh-kv2yZ8Xz_a5nrQg6KMtvjFMb4zzR6iTzUb267DfbCtEh_afC35KOjY930D4AjYnErJ6LUN1dSQYgPDrIHqh_70k_4a8-Yf5s9W_0v_AlpCnOY |
CitedBy_id | crossref_primary_10_1080_23249676_2024_2358024 crossref_primary_10_1007_s12145_021_00682_7 crossref_primary_10_1007_s13201_022_01621_7 crossref_primary_10_1007_s13201_024_02181_8 crossref_primary_10_1016_j_scitotenv_2021_145288 crossref_primary_10_1007_s00521_024_10838_3 crossref_primary_10_1007_s12517_022_10910_z crossref_primary_10_1016_j_aej_2020_12_034 crossref_primary_10_1016_j_flowmeasinst_2022_102161 crossref_primary_10_1007_s00500_022_07437_6 crossref_primary_10_1016_j_ins_2021_04_063 crossref_primary_10_3390_app10155160 crossref_primary_10_1038_s41598_022_12038_2 crossref_primary_10_3390_w14091325 crossref_primary_10_3390_w16152133 crossref_primary_10_3390_w16172443 |
Cites_doi | 10.1680/wama.2009.00061 10.1061/(ASCE)PS.1949-1204.0000347 10.1061/(ASCE)0733-9437(2008)134:2(241) 10.1061/(ASCE)0733-9429(2008)134:1(105) 10.2166/hydro.2019.070 10.1016/j.advengsoft.2010.12.005 10.1007/s11269-018-1934-4 10.2166/hydro.2017.149 10.1016/j.asej.2016.04.001 10.1007/s13369-014-1244-y 10.1016/j.engappai.2006.06.012 10.1016/j.oceaneng.2015.10.053 10.1007/s12205-019-1327-0 10.1680/wama.2008.161.5.267 10.1080/00221686.2006.9521661 10.1061/(ASCE)0733-9429(2004)130:1(24) 10.1061/(ASCE)0733-9429(1991)117:5(579) 10.1007/s11269-011-9801-6 10.1016/j.ecoinf.2006.07.003 10.1016/j.engappai.2008.05.008 10.1061/(ASCE)HY.1943-7900.0001492 10.2166/wst.2012.100 10.1063/1.3452146 10.1016/j.psep.2020.04.045 10.1080/00221686.2015.1132275 10.1016/j.asoc.2016.07.035 10.1016/S1001-6058(08)60083-9 10.1080/00221686.2011.578914 10.1016/j.jher.2019.11.002 10.1080/09715010.2017.1286614 10.1016/j.jhydrol.2019.03.004 10.1016/j.jhydrol.2012.06.034 10.1061/(ASCE)HY.1943-7900.0000388 10.2166/hydro.2016.242 10.1007/s11831-019-09382-4 10.1080/02626667.2020.1734813 10.1080/1064119X.2017.1355944 10.1016/j.jher.2018.06.001 10.1109/21.256541 10.2166/hydro.2020.047 10.1002/esp.1081 10.1061/(ASCE)0733-9429(2005)131:10(898) 10.1109/ACCESS.2020.2965303 10.1109/TEVC.2008.919004 10.1080/02626667.2019.1703186 10.3390/w11122458 10.1080/09715010.2017.1408041 10.1016/j.oceaneng.2006.07.003 10.1007/978-3-540-73297-6 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 MDPI AG |
Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG |
DBID | AAYXX CITATION ADTPV AOWAS D8T ZZAVC DOA |
DOI | 10.3390/app10113714 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_4d3d821d518d4049a1fe55e6fa14a2a3 oai_DiVA_org_ltu_79020 A638408555 10_3390_app10113714 |
GeographicLocations | Vietnam |
GeographicLocations_xml | – name: Vietnam |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ADTPV AOWAS D8T IPNFZ RIG ZZAVC PUEGO |
ID | FETCH-LOGICAL-c412t-ef3d2c3b256621048656e2cfebf29ed14e4e917b01dfa0196a11694a00c393c23 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:28:31 EDT 2025 Thu Aug 21 06:34:17 EDT 2025 Tue Jun 10 20:15:08 EDT 2025 Tue Jul 01 03:14:14 EDT 2025 Thu Apr 24 22:53:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-ef3d2c3b256621048656e2cfebf29ed14e4e917b01dfa0196a11694a00c393c23 |
ORCID | 0000-0003-3647-7137 0000-0002-2042-6645 0000-0002-6790-2653 |
OpenAccessLink | https://doaj.org/article/4d3d821d518d4049a1fe55e6fa14a2a3 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4d3d821d518d4049a1fe55e6fa14a2a3 swepub_primary_oai_DiVA_org_ltu_79020 gale_infotracacademiconefile_A638408555 crossref_citationtrail_10_3390_app10113714 crossref_primary_10_3390_app10113714 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied sciences |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Mehrabian (ref_53) 2006; 1 Tafarojnoruz (ref_19) 2012; 138 Sharafati (ref_61) 2020; 140 Muzzammil (ref_32) 2016; 59 Marion (ref_16) 2004; 29 ref_58 ref_12 ref_11 ref_10 Jang (ref_38) 1993; 23 ref_52 ref_18 Hai (ref_59) 2020; 8 ref_17 Rao (ref_54) 2011; 43 Das (ref_4) 2013; 6 Abdollahpour (ref_36) 2019; 25 Salih (ref_55) 2020; 65 Chinnarasri (ref_14) 2008; Volume 161 ref_60 Malik (ref_56) 2020; 14 Najafzadeh (ref_7) 2015; 18 ref_25 ref_24 ref_22 ref_20 Azamathulla (ref_34) 2019; 21 ref_64 Gholami (ref_23) 2016; 48 ref_29 ref_28 ref_27 Sharafati (ref_62) 2018; 32 Sharafati (ref_63) 2018; 9 Goyal (ref_30) 2011; 25 ref_33 ref_31 Dey (ref_6) 2008; 134 Salih (ref_26) 2019; 573 ref_39 ref_37 Heller (ref_65) 2011; 49 Mohammed (ref_57) 2020; 2020 Wang (ref_3) 2018; 20 (ref_15) 1994; 71 Dehghani (ref_35) 2019; 13 Bormann (ref_13) 1991; 117 Ferro (ref_48) 2004; 130 ref_47 ref_46 ref_45 ref_44 ref_43 Guan (ref_1) 2016; 54 ref_42 ref_41 ref_40 Najafzadeh (ref_21) 2017; 23 Simon (ref_51) 2008; 12 ref_9 ref_8 Wang (ref_2) 2018; 144 Falciai (ref_49) 1978; 23 ref_5 |
References_xml | – ident: ref_41 doi: 10.1680/wama.2009.00061 – volume: 9 start-page: 4018024 year: 2018 ident: ref_63 article-title: Assessment of Stochastic Approaches in Prediction of Wave-Induced Pipeline Scour Depth publication-title: J. Pipeline Syst. Eng. Pract. doi: 10.1061/(ASCE)PS.1949-1204.0000347 – ident: ref_28 doi: 10.1061/(ASCE)0733-9437(2008)134:2(241) – volume: 134 start-page: 105 year: 2008 ident: ref_6 article-title: Scour at submerged cylindrical obstacles under steady flow publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(2008)134:1(105) – volume: 21 start-page: 1082 year: 2019 ident: ref_34 article-title: Estimation of scour depth around submerged weirs using self-adaptive extreme learning machine publication-title: J. Hydroinform. doi: 10.2166/hydro.2019.070 – ident: ref_45 doi: 10.1016/j.advengsoft.2010.12.005 – volume: 32 start-page: 2369 year: 2018 ident: ref_62 article-title: Assessment of Dam Overtopping Reliability using SUFI Based Overtopping Threshold Curve publication-title: Water Resour. Manag. doi: 10.1007/s11269-018-1934-4 – ident: ref_18 doi: 10.2166/hydro.2017.149 – ident: ref_42 – ident: ref_43 doi: 10.1016/j.asej.2016.04.001 – ident: ref_46 doi: 10.1007/s13369-014-1244-y – ident: ref_50 doi: 10.1016/j.engappai.2006.06.012 – ident: ref_39 doi: 10.1016/j.oceaneng.2015.10.053 – ident: ref_20 doi: 10.1007/s12205-019-1327-0 – volume: Volume 161 start-page: 267 year: 2008 ident: ref_14 article-title: Laboratory study of maximum scour depth downstream of sills publication-title: Proceedings of the Institution of Civil Engineers-Water Management doi: 10.1680/wama.2008.161.5.267 – ident: ref_24 doi: 10.1080/00221686.2006.9521661 – ident: ref_31 – volume: 130 start-page: 24 year: 2004 ident: ref_48 article-title: Scour on alluvial bed downstream of grade-control structures publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(2004)130:1(24) – volume: 117 start-page: 579 year: 1991 ident: ref_13 article-title: Scour downstream of grade-control structures publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(1991)117:5(579) – ident: ref_52 – volume: 71 start-page: 37 year: 1994 ident: ref_15 article-title: Indagine sullo scavo a valle di opere trasversali mediante modello fisico a fondo mobile publication-title: L’Energia Elettr. – ident: ref_10 – volume: 25 start-page: 2177 year: 2011 ident: ref_30 article-title: Estimation of scour downstream of a ski-jump bucket using support vector and M5 model tree publication-title: Water Resour. Manag. doi: 10.1007/s11269-011-9801-6 – volume: 1 start-page: 355 year: 2006 ident: ref_53 article-title: A novel numerical optimization algorithm inspired from weed colonization publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2006.07.003 – ident: ref_11 doi: 10.1016/j.engappai.2008.05.008 – volume: 144 start-page: 4018044 year: 2018 ident: ref_2 article-title: Local scour at downstream sloped submerged weirs publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0001492 – ident: ref_27 doi: 10.2166/wst.2012.100 – ident: ref_25 doi: 10.1063/1.3452146 – volume: 13 start-page: 529 year: 2019 ident: ref_35 article-title: Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 140 start-page: 68 year: 2020 ident: ref_61 article-title: The potential of new ensemble machine learning models for effluent quality parameters prediction and related uncertainty publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2020.04.045 – volume: 59 start-page: 44 year: 2016 ident: ref_32 article-title: Scour prediction at the control structures using adaptive neuro-fuzzy inference system publication-title: Water Energy Int. – ident: ref_17 – volume: 14 start-page: 323 year: 2020 ident: ref_56 article-title: Modeling monthly pan evaporation process over the Indian central Himalayas: Application of multiple learning artificial intelligence model publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 54 start-page: 172 year: 2016 ident: ref_1 article-title: Local scour at submerged weirs in sand-bed channels publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2015.1132275 – volume: 48 start-page: 563 year: 2016 ident: ref_23 article-title: Improving the performance of multi-layer perceptron and radial basis function models with a decision tree model to predict flow variables in a sharp 90 bend publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.07.035 – ident: ref_29 doi: 10.1016/S1001-6058(08)60083-9 – volume: 49 start-page: 293 year: 2011 ident: ref_65 article-title: Scale effects in physical hydraulic engineering models publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2011.578914 – ident: ref_9 doi: 10.1016/j.jher.2019.11.002 – volume: 23 start-page: 195 year: 2017 ident: ref_21 article-title: Prediction of local scour depth downstream of sluice gates using data-driven models publication-title: ISH J. Hydraul. Eng. doi: 10.1080/09715010.2017.1286614 – volume: 573 start-page: 1 year: 2019 ident: ref_26 article-title: Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.03.004 – ident: ref_47 – ident: ref_12 doi: 10.1016/j.jhydrol.2012.06.034 – volume: 138 start-page: 669 year: 2012 ident: ref_19 article-title: Discussion of “Genetic programming to predict bridge pier scour” publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0000388 – volume: 6 start-page: 59 year: 2013 ident: ref_4 article-title: Circulation characteristics of horseshoe vortex in scour region around circular piers publication-title: Water Sci. Eng. – ident: ref_8 doi: 10.2166/hydro.2016.242 – volume: 23 start-page: 111 year: 1978 ident: ref_49 article-title: Indagine sui gorghi che si formano a valle delle traverse torrentizie publication-title: Ital. For. Mont. – volume: 43 start-page: 303 year: 2011 ident: ref_54 article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput. Des. – ident: ref_22 doi: 10.1007/s11831-019-09382-4 – volume: 65 start-page: 1145 year: 2020 ident: ref_55 article-title: Integrative stochastic model standardization with genetic algorithm for rainfall pattern forecasting in tropical and semi-arid environments publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2020.1734813 – volume: 18 start-page: 42 year: 2015 ident: ref_7 article-title: Neuro-fuzzy GMDH based particle swarm optimization for prediction of scour depth at downstream of grade control structures publication-title: Eng. Sci. Technol. Int. J. – ident: ref_44 doi: 10.1080/1064119X.2017.1355944 – volume: 20 start-page: 101 year: 2018 ident: ref_3 article-title: Effects of a downstream submerged weir on local scour at bridge piers publication-title: J. Hydro-Environ. Res. doi: 10.1016/j.jher.2018.06.001 – volume: 2020 start-page: 7381617 year: 2020 ident: ref_57 article-title: Shallow Foundation Settlement Quantification: Application of Hybridized Adaptive Neuro-Fuzzy Inference System Model publication-title: Adv. Civ. Eng. – volume: 23 start-page: 665 year: 1993 ident: ref_38 article-title: ANFIS: Adaptive-network-based fuzzy inference system publication-title: IEEE Trans. Syst. Man. Cybern. doi: 10.1109/21.256541 – ident: ref_60 doi: 10.2166/hydro.2020.047 – volume: 29 start-page: 983 year: 2004 ident: ref_16 article-title: Effect of sill spacing and sediment size grading on scouring at grade-control structures publication-title: Earth Surf. Process. Landforms J. Br. Geomorphol. Res. Gr. doi: 10.1002/esp.1081 – ident: ref_33 doi: 10.1061/(ASCE)0733-9429(2005)131:10(898) – ident: ref_64 – volume: 8 start-page: 12026 year: 2020 ident: ref_59 article-title: Global solar radiation estimation and climatic variability analysis using extreme learning machine based predictive model publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2965303 – volume: 12 start-page: 702 year: 2008 ident: ref_51 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – ident: ref_58 doi: 10.1080/02626667.2019.1703186 – ident: ref_5 doi: 10.3390/w11122458 – volume: 25 start-page: 239 year: 2019 ident: ref_36 article-title: Assessing heuristic models through k-fold testing approach for estimating scour characteristics in environmental friendly structures publication-title: ISH J. Hydraul. Eng. doi: 10.1080/09715010.2017.1408041 – ident: ref_40 doi: 10.1016/j.oceaneng.2006.07.003 – ident: ref_37 doi: 10.1007/978-3-540-73297-6 |
SSID | ssj0000913810 |
Score | 2.2525811 |
Snippet | Considering the scouring depth downstream of weirs is a challenging issue due to its effect on weir stability. The adaptive neuro-fuzzy inference systems... |
SourceID | doaj swepub gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 3714 |
SubjectTerms | adaptive neuro-fuzzy inference systems Artificial intelligence Dams Dimensions Fuzzy algorithms Fuzzy logic Fuzzy systems Geoteknik Measurement Methods optimization algorithms scouring depth Soil Mechanics Vietnam weirs |
Title | Scouring Depth Assessment Downstream of Weirs Using Hybrid Intelligence Models |
URI | https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-79020 https://doaj.org/article/4d3d821d518d4049a1fe55e6fa14a2a3 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1La9wwEICHkF7SQ2geJZu2QYeUPMDUsmSvfNx0E7aBLCGv5mb0JAvb3ZB1Dv33nZHdxYFALrkKgeWZkTQjab4B2C9UwYuQlokvtUykkSZROlVJ34gyaM15kVLu8MW4GN3K8_v8vlPqi96ENXjgRnA_pBNOZdzlXDmJ7qzmwee5L4LmUmc6cj5xz-sEU3ENLjmhq5qEPIFxPd0Ho_VxEfN1OltQJPUv1-MXuNC4xZx9gvXWN2SDZkwbsOJnm_CxQwzchI12Li7YYQuMPtqC8bWdx2xDNvSP9QMbLGmbbEiHx_SY_A-bB_bbT54WLL4SYKO_lKvFfnWQnIwKo00X23B7dnrzc5S0dRISK3lWJz4Il1lh0HspMIKTCn00n9ngTchK77j00mNUZlLugiYeDqmglDpNrSiFzcRnWJ3NZ34HmOwrq1KDvixdN1pt0CEx2mCDCkI614Pj_6KrbAsRp1oW0wqDCZJz1ZFzD_aXnR8bdsbr3U5IB8suBLyODWgGVWsG1Vtm0IMD0mBF0xIHZHWbXYC_RYCraoDrDMHc8rwH3xslv_jgcHI3iB-c1s9Vv0Qnevc9hvUF1jIK0OOxzVdYrZ-e_Tf0YmqzBx9OTseXV3vRcP8BXL7wZw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scouring+Depth+Assessment+Downstream+of+Weirs+Using+Hybrid+Intelligence+Models&rft.jtitle=Applied+sciences&rft.au=Ahmad+Sharafati&rft.au=Masoud+Haghbin&rft.au=Seyed+Babak+Haji+Seyed+Asadollah&rft.au=Nand+Kumar+Tiwari&rft.date=2020-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=11&rft.spage=3714&rft_id=info:doi/10.3390%2Fapp10113714&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4d3d821d518d4049a1fe55e6fa14a2a3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |