Scouring Depth Assessment Downstream of Weirs Using Hybrid Intelligence Models

Considering the scouring depth downstream of weirs is a challenging issue due to its effect on weir stability. The adaptive neuro-fuzzy inference systems (ANFIS) model integrated with optimization methods namely cultural algorithm, biogeography based optimization (BBO), invasive weed optimization (I...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 10; no. 11; p. 3714
Main Authors Sharafati, Ahmad, Haghbin, Masoud, Haji Seyed Asadollah, Seyed Babak, Tiwari, Nand Kumar, Al-Ansari, Nadhir, Yaseen, Zaher Mundher
Format Journal Article
LanguageEnglish
Published MDPI AG 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Considering the scouring depth downstream of weirs is a challenging issue due to its effect on weir stability. The adaptive neuro-fuzzy inference systems (ANFIS) model integrated with optimization methods namely cultural algorithm, biogeography based optimization (BBO), invasive weed optimization (IWO) and teaching learning based optimization (TLBO) are proposed to predict the maximum depth of scouring based on the different input combinations. Several performance indices and graphical evaluators are employed to estimate the prediction accuracy in the training and testing phase. Results show that the ANFIS-IWO offers the highest prediction performance (RMSE = 0.148) compared to other models in the testing phase, while the ANFIS-BBO (RMSE = 0.411) provides the lowest accuracy. The findings obtained from the uncertainty analysis of prediction modeling indicate that the input variables variability has a higher impact on the predicted results than the structure of models. In general, the ANFIS-IWO can be used as a reliable and cost-effective method for predicting the scouring depth downstream of weirs.
AbstractList Considering the scouring depth downstream of weirs is a challenging issue due to its effect on weir stability. The adaptive neuro-fuzzy inference systems (ANFIS) model integrated with optimization methods namely cultural algorithm, biogeography based optimization (BBO), invasive weed optimization (IWO) and teaching learning based optimization (TLBO) are proposed to predict the maximum depth of scouring based on the different input combinations. Several performance indices and graphical evaluators are employed to estimate the prediction accuracy in the training and testing phase. Results show that the ANFIS-IWO offers the highest prediction performance (RMSE = 0.148) compared to other models in the testing phase, while the ANFIS-BBO (RMSE = 0.411) provides the lowest accuracy. The findings obtained from the uncertainty analysis of prediction modeling indicate that the input variables variability has a higher impact on the predicted results than the structure of models. In general, the ANFIS-IWO can be used as a reliable and cost-effective method for predicting the scouring depth downstream of weirs. Keywords: weirs; scouring depth; adaptive neuro-fuzzy inference systems; optimization algorithms
Considering the scouring depth downstream of weirs is a challenging issue due to its effect on weir stability. The adaptive neuro-fuzzy inference systems (ANFIS) model integrated with optimization methods namely cultural algorithm, biogeography based optimization (BBO), invasive weed optimization (IWO) and teaching learning based optimization (TLBO) are proposed to predict the maximum depth of scouring based on the different input combinations. Several performance indices and graphical evaluators are employed to estimate the prediction accuracy in the training and testing phase. Results show that the ANFIS-IWO offers the highest prediction performance (RMSE = 0.148) compared to other models in the testing phase, while the ANFIS-BBO (RMSE = 0.411)ANFIS-TLBO-M3 RMSEtesting=0.411, CCtesting~0.00) provides the lowest accuracy. The findings obtained from the uncertainty analysis of prediction modeling indicate that the input variables variability R-factor=1.72has a higher impact on the predicted results than the structure of models. In general, the ANFIS-IWO can be used as a reliable and cost-effective method for predicting the scouring depth downstream of weirs.
Considering the scouring depth downstream of weirs is a challenging issue due to its effect on weir stability. The adaptive neuro-fuzzy inference systems (ANFIS) model integrated with optimization methods namely cultural algorithm, biogeography based optimization (BBO), invasive weed optimization (IWO) and teaching learning based optimization (TLBO) are proposed to predict the maximum depth of scouring based on the different input combinations. Several performance indices and graphical evaluators are employed to estimate the prediction accuracy in the training and testing phase. Results show that the ANFIS-IWO offers the highest prediction performance (RMSE = 0.148) compared to other models in the testing phase, while the ANFIS-BBO (RMSE = 0.411) provides the lowest accuracy. The findings obtained from the uncertainty analysis of prediction modeling indicate that the input variables variability has a higher impact on the predicted results than the structure of models. In general, the ANFIS-IWO can be used as a reliable and cost-effective method for predicting the scouring depth downstream of weirs.
Audience Academic
Author Yaseen, Zaher Mundher
Sharafati, Ahmad
Haghbin, Masoud
Tiwari, Nand Kumar
Haji Seyed Asadollah, Seyed Babak
Al-Ansari, Nadhir
Author_xml – sequence: 1
  givenname: Ahmad
  surname: Sharafati
  fullname: Sharafati, Ahmad
– sequence: 2
  givenname: Masoud
  orcidid: 0000-0002-2042-6645
  surname: Haghbin
  fullname: Haghbin, Masoud
– sequence: 3
  givenname: Seyed Babak
  surname: Haji Seyed Asadollah
  fullname: Haji Seyed Asadollah, Seyed Babak
– sequence: 4
  givenname: Nand Kumar
  surname: Tiwari
  fullname: Tiwari, Nand Kumar
– sequence: 5
  givenname: Nadhir
  orcidid: 0000-0002-6790-2653
  surname: Al-Ansari
  fullname: Al-Ansari, Nadhir
– sequence: 6
  givenname: Zaher Mundher
  orcidid: 0000-0003-3647-7137
  surname: Yaseen
  fullname: Yaseen, Zaher Mundher
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-79020$$DView record from Swedish Publication Index
BookMark eNptkdFuFCEUhompibX2yheYe93KAYYZLjddtZtUvdDqJWHgsNLMwgTYNH17aVeTaoQLyMn_fTnJ_5KcxBSRkNdALzhX9J1ZFqAAfADxjJwyOsgVFzCcPPm_IOel3NJ2FPAR6Cn5_NWmQw5x121wqT-7dSlYyh5j7TbpLpaa0ey75LsfGHLpbspD9Op-ysF121hxnsMOo8XuU3I4l1fkuTdzwfPf7xm5-fD-2-XV6vrLx-3l-nplBbC6Qs8ds3xivZQMqBhlL5FZj5NnCh0IFKhgmCg4bygoaQCkEoZSyxW3jJ-R7dHrkrnVSw57k-91MkE_DlLeaZNrsDNq4bgbGbgeRieoUAY89j1Kb0AYZnhzvT26yh0uh-kv2yZ8Xz_a5nrQg6KMtvjFMb4zzR6iTzUb267DfbCtEh_afC35KOjY930D4AjYnErJ6LUN1dSQYgPDrIHqh_70k_4a8-Yf5s9W_0v_AlpCnOY
CitedBy_id crossref_primary_10_1080_23249676_2024_2358024
crossref_primary_10_1007_s12145_021_00682_7
crossref_primary_10_1007_s13201_022_01621_7
crossref_primary_10_1007_s13201_024_02181_8
crossref_primary_10_1016_j_scitotenv_2021_145288
crossref_primary_10_1007_s00521_024_10838_3
crossref_primary_10_1007_s12517_022_10910_z
crossref_primary_10_1016_j_aej_2020_12_034
crossref_primary_10_1016_j_flowmeasinst_2022_102161
crossref_primary_10_1007_s00500_022_07437_6
crossref_primary_10_1016_j_ins_2021_04_063
crossref_primary_10_3390_app10155160
crossref_primary_10_1038_s41598_022_12038_2
crossref_primary_10_3390_w14091325
crossref_primary_10_3390_w16152133
crossref_primary_10_3390_w16172443
Cites_doi 10.1680/wama.2009.00061
10.1061/(ASCE)PS.1949-1204.0000347
10.1061/(ASCE)0733-9437(2008)134:2(241)
10.1061/(ASCE)0733-9429(2008)134:1(105)
10.2166/hydro.2019.070
10.1016/j.advengsoft.2010.12.005
10.1007/s11269-018-1934-4
10.2166/hydro.2017.149
10.1016/j.asej.2016.04.001
10.1007/s13369-014-1244-y
10.1016/j.engappai.2006.06.012
10.1016/j.oceaneng.2015.10.053
10.1007/s12205-019-1327-0
10.1680/wama.2008.161.5.267
10.1080/00221686.2006.9521661
10.1061/(ASCE)0733-9429(2004)130:1(24)
10.1061/(ASCE)0733-9429(1991)117:5(579)
10.1007/s11269-011-9801-6
10.1016/j.ecoinf.2006.07.003
10.1016/j.engappai.2008.05.008
10.1061/(ASCE)HY.1943-7900.0001492
10.2166/wst.2012.100
10.1063/1.3452146
10.1016/j.psep.2020.04.045
10.1080/00221686.2015.1132275
10.1016/j.asoc.2016.07.035
10.1016/S1001-6058(08)60083-9
10.1080/00221686.2011.578914
10.1016/j.jher.2019.11.002
10.1080/09715010.2017.1286614
10.1016/j.jhydrol.2019.03.004
10.1016/j.jhydrol.2012.06.034
10.1061/(ASCE)HY.1943-7900.0000388
10.2166/hydro.2016.242
10.1007/s11831-019-09382-4
10.1080/02626667.2020.1734813
10.1080/1064119X.2017.1355944
10.1016/j.jher.2018.06.001
10.1109/21.256541
10.2166/hydro.2020.047
10.1002/esp.1081
10.1061/(ASCE)0733-9429(2005)131:10(898)
10.1109/ACCESS.2020.2965303
10.1109/TEVC.2008.919004
10.1080/02626667.2019.1703186
10.3390/w11122458
10.1080/09715010.2017.1408041
10.1016/j.oceaneng.2006.07.003
10.1007/978-3-540-73297-6
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
DBID AAYXX
CITATION
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.3390/app10113714
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_4d3d821d518d4049a1fe55e6fa14a2a3
oai_DiVA_org_ltu_79020
A638408555
10_3390_app10113714
GeographicLocations Vietnam
GeographicLocations_xml – name: Vietnam
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ADTPV
AOWAS
D8T
IPNFZ
RIG
ZZAVC
PUEGO
ID FETCH-LOGICAL-c412t-ef3d2c3b256621048656e2cfebf29ed14e4e917b01dfa0196a11694a00c393c23
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:28:31 EDT 2025
Thu Aug 21 06:34:17 EDT 2025
Tue Jun 10 20:15:08 EDT 2025
Tue Jul 01 03:14:14 EDT 2025
Thu Apr 24 22:53:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-ef3d2c3b256621048656e2cfebf29ed14e4e917b01dfa0196a11694a00c393c23
ORCID 0000-0003-3647-7137
0000-0002-2042-6645
0000-0002-6790-2653
OpenAccessLink https://doaj.org/article/4d3d821d518d4049a1fe55e6fa14a2a3
ParticipantIDs doaj_primary_oai_doaj_org_article_4d3d821d518d4049a1fe55e6fa14a2a3
swepub_primary_oai_DiVA_org_ltu_79020
gale_infotracacademiconefile_A638408555
crossref_citationtrail_10_3390_app10113714
crossref_primary_10_3390_app10113714
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied sciences
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Mehrabian (ref_53) 2006; 1
Tafarojnoruz (ref_19) 2012; 138
Sharafati (ref_61) 2020; 140
Muzzammil (ref_32) 2016; 59
Marion (ref_16) 2004; 29
ref_58
ref_12
ref_11
ref_10
Jang (ref_38) 1993; 23
ref_52
ref_18
Hai (ref_59) 2020; 8
ref_17
Rao (ref_54) 2011; 43
Das (ref_4) 2013; 6
Abdollahpour (ref_36) 2019; 25
Salih (ref_55) 2020; 65
Chinnarasri (ref_14) 2008; Volume 161
ref_60
Malik (ref_56) 2020; 14
Najafzadeh (ref_7) 2015; 18
ref_25
ref_24
ref_22
ref_20
Azamathulla (ref_34) 2019; 21
ref_64
Gholami (ref_23) 2016; 48
ref_29
ref_28
ref_27
Sharafati (ref_62) 2018; 32
Sharafati (ref_63) 2018; 9
Goyal (ref_30) 2011; 25
ref_33
ref_31
Dey (ref_6) 2008; 134
Salih (ref_26) 2019; 573
ref_39
ref_37
Heller (ref_65) 2011; 49
Mohammed (ref_57) 2020; 2020
Wang (ref_3) 2018; 20
(ref_15) 1994; 71
Dehghani (ref_35) 2019; 13
Bormann (ref_13) 1991; 117
Ferro (ref_48) 2004; 130
ref_47
ref_46
ref_45
ref_44
ref_43
Guan (ref_1) 2016; 54
ref_42
ref_41
ref_40
Najafzadeh (ref_21) 2017; 23
Simon (ref_51) 2008; 12
ref_9
ref_8
Wang (ref_2) 2018; 144
Falciai (ref_49) 1978; 23
ref_5
References_xml – ident: ref_41
  doi: 10.1680/wama.2009.00061
– volume: 9
  start-page: 4018024
  year: 2018
  ident: ref_63
  article-title: Assessment of Stochastic Approaches in Prediction of Wave-Induced Pipeline Scour Depth
  publication-title: J. Pipeline Syst. Eng. Pract.
  doi: 10.1061/(ASCE)PS.1949-1204.0000347
– ident: ref_28
  doi: 10.1061/(ASCE)0733-9437(2008)134:2(241)
– volume: 134
  start-page: 105
  year: 2008
  ident: ref_6
  article-title: Scour at submerged cylindrical obstacles under steady flow
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(2008)134:1(105)
– volume: 21
  start-page: 1082
  year: 2019
  ident: ref_34
  article-title: Estimation of scour depth around submerged weirs using self-adaptive extreme learning machine
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2019.070
– ident: ref_45
  doi: 10.1016/j.advengsoft.2010.12.005
– volume: 32
  start-page: 2369
  year: 2018
  ident: ref_62
  article-title: Assessment of Dam Overtopping Reliability using SUFI Based Overtopping Threshold Curve
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-018-1934-4
– ident: ref_18
  doi: 10.2166/hydro.2017.149
– ident: ref_42
– ident: ref_43
  doi: 10.1016/j.asej.2016.04.001
– ident: ref_46
  doi: 10.1007/s13369-014-1244-y
– ident: ref_50
  doi: 10.1016/j.engappai.2006.06.012
– ident: ref_39
  doi: 10.1016/j.oceaneng.2015.10.053
– ident: ref_20
  doi: 10.1007/s12205-019-1327-0
– volume: Volume 161
  start-page: 267
  year: 2008
  ident: ref_14
  article-title: Laboratory study of maximum scour depth downstream of sills
  publication-title: Proceedings of the Institution of Civil Engineers-Water Management
  doi: 10.1680/wama.2008.161.5.267
– ident: ref_24
  doi: 10.1080/00221686.2006.9521661
– ident: ref_31
– volume: 130
  start-page: 24
  year: 2004
  ident: ref_48
  article-title: Scour on alluvial bed downstream of grade-control structures
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(2004)130:1(24)
– volume: 117
  start-page: 579
  year: 1991
  ident: ref_13
  article-title: Scour downstream of grade-control structures
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(1991)117:5(579)
– ident: ref_52
– volume: 71
  start-page: 37
  year: 1994
  ident: ref_15
  article-title: Indagine sullo scavo a valle di opere trasversali mediante modello fisico a fondo mobile
  publication-title: L’Energia Elettr.
– ident: ref_10
– volume: 25
  start-page: 2177
  year: 2011
  ident: ref_30
  article-title: Estimation of scour downstream of a ski-jump bucket using support vector and M5 model tree
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-011-9801-6
– volume: 1
  start-page: 355
  year: 2006
  ident: ref_53
  article-title: A novel numerical optimization algorithm inspired from weed colonization
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2006.07.003
– ident: ref_11
  doi: 10.1016/j.engappai.2008.05.008
– volume: 144
  start-page: 4018044
  year: 2018
  ident: ref_2
  article-title: Local scour at downstream sloped submerged weirs
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0001492
– ident: ref_27
  doi: 10.2166/wst.2012.100
– ident: ref_25
  doi: 10.1063/1.3452146
– volume: 13
  start-page: 529
  year: 2019
  ident: ref_35
  article-title: Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 140
  start-page: 68
  year: 2020
  ident: ref_61
  article-title: The potential of new ensemble machine learning models for effluent quality parameters prediction and related uncertainty
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2020.04.045
– volume: 59
  start-page: 44
  year: 2016
  ident: ref_32
  article-title: Scour prediction at the control structures using adaptive neuro-fuzzy inference system
  publication-title: Water Energy Int.
– ident: ref_17
– volume: 14
  start-page: 323
  year: 2020
  ident: ref_56
  article-title: Modeling monthly pan evaporation process over the Indian central Himalayas: Application of multiple learning artificial intelligence model
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 54
  start-page: 172
  year: 2016
  ident: ref_1
  article-title: Local scour at submerged weirs in sand-bed channels
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2015.1132275
– volume: 48
  start-page: 563
  year: 2016
  ident: ref_23
  article-title: Improving the performance of multi-layer perceptron and radial basis function models with a decision tree model to predict flow variables in a sharp 90 bend
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.07.035
– ident: ref_29
  doi: 10.1016/S1001-6058(08)60083-9
– volume: 49
  start-page: 293
  year: 2011
  ident: ref_65
  article-title: Scale effects in physical hydraulic engineering models
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2011.578914
– ident: ref_9
  doi: 10.1016/j.jher.2019.11.002
– volume: 23
  start-page: 195
  year: 2017
  ident: ref_21
  article-title: Prediction of local scour depth downstream of sluice gates using data-driven models
  publication-title: ISH J. Hydraul. Eng.
  doi: 10.1080/09715010.2017.1286614
– volume: 573
  start-page: 1
  year: 2019
  ident: ref_26
  article-title: Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.03.004
– ident: ref_47
– ident: ref_12
  doi: 10.1016/j.jhydrol.2012.06.034
– volume: 138
  start-page: 669
  year: 2012
  ident: ref_19
  article-title: Discussion of “Genetic programming to predict bridge pier scour”
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)HY.1943-7900.0000388
– volume: 6
  start-page: 59
  year: 2013
  ident: ref_4
  article-title: Circulation characteristics of horseshoe vortex in scour region around circular piers
  publication-title: Water Sci. Eng.
– ident: ref_8
  doi: 10.2166/hydro.2016.242
– volume: 23
  start-page: 111
  year: 1978
  ident: ref_49
  article-title: Indagine sui gorghi che si formano a valle delle traverse torrentizie
  publication-title: Ital. For. Mont.
– volume: 43
  start-page: 303
  year: 2011
  ident: ref_54
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput. Des.
– ident: ref_22
  doi: 10.1007/s11831-019-09382-4
– volume: 65
  start-page: 1145
  year: 2020
  ident: ref_55
  article-title: Integrative stochastic model standardization with genetic algorithm for rainfall pattern forecasting in tropical and semi-arid environments
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2020.1734813
– volume: 18
  start-page: 42
  year: 2015
  ident: ref_7
  article-title: Neuro-fuzzy GMDH based particle swarm optimization for prediction of scour depth at downstream of grade control structures
  publication-title: Eng. Sci. Technol. Int. J.
– ident: ref_44
  doi: 10.1080/1064119X.2017.1355944
– volume: 20
  start-page: 101
  year: 2018
  ident: ref_3
  article-title: Effects of a downstream submerged weir on local scour at bridge piers
  publication-title: J. Hydro-Environ. Res.
  doi: 10.1016/j.jher.2018.06.001
– volume: 2020
  start-page: 7381617
  year: 2020
  ident: ref_57
  article-title: Shallow Foundation Settlement Quantification: Application of Hybridized Adaptive Neuro-Fuzzy Inference System Model
  publication-title: Adv. Civ. Eng.
– volume: 23
  start-page: 665
  year: 1993
  ident: ref_38
  article-title: ANFIS: Adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. Man. Cybern.
  doi: 10.1109/21.256541
– ident: ref_60
  doi: 10.2166/hydro.2020.047
– volume: 29
  start-page: 983
  year: 2004
  ident: ref_16
  article-title: Effect of sill spacing and sediment size grading on scouring at grade-control structures
  publication-title: Earth Surf. Process. Landforms J. Br. Geomorphol. Res. Gr.
  doi: 10.1002/esp.1081
– ident: ref_33
  doi: 10.1061/(ASCE)0733-9429(2005)131:10(898)
– ident: ref_64
– volume: 8
  start-page: 12026
  year: 2020
  ident: ref_59
  article-title: Global solar radiation estimation and climatic variability analysis using extreme learning machine based predictive model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2965303
– volume: 12
  start-page: 702
  year: 2008
  ident: ref_51
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– ident: ref_58
  doi: 10.1080/02626667.2019.1703186
– ident: ref_5
  doi: 10.3390/w11122458
– volume: 25
  start-page: 239
  year: 2019
  ident: ref_36
  article-title: Assessing heuristic models through k-fold testing approach for estimating scour characteristics in environmental friendly structures
  publication-title: ISH J. Hydraul. Eng.
  doi: 10.1080/09715010.2017.1408041
– ident: ref_40
  doi: 10.1016/j.oceaneng.2006.07.003
– ident: ref_37
  doi: 10.1007/978-3-540-73297-6
SSID ssj0000913810
Score 2.2525811
Snippet Considering the scouring depth downstream of weirs is a challenging issue due to its effect on weir stability. The adaptive neuro-fuzzy inference systems...
SourceID doaj
swepub
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3714
SubjectTerms adaptive neuro-fuzzy inference systems
Artificial intelligence
Dams
Dimensions
Fuzzy algorithms
Fuzzy logic
Fuzzy systems
Geoteknik
Measurement
Methods
optimization algorithms
scouring depth
Soil Mechanics
Vietnam
weirs
Title Scouring Depth Assessment Downstream of Weirs Using Hybrid Intelligence Models
URI https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-79020
https://doaj.org/article/4d3d821d518d4049a1fe55e6fa14a2a3
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1La9wwEICHkF7SQ2geJZu2QYeUPMDUsmSvfNx0E7aBLCGv5mb0JAvb3ZB1Dv33nZHdxYFALrkKgeWZkTQjab4B2C9UwYuQlokvtUykkSZROlVJ34gyaM15kVLu8MW4GN3K8_v8vlPqi96ENXjgRnA_pBNOZdzlXDmJ7qzmwee5L4LmUmc6cj5xz-sEU3ENLjmhq5qEPIFxPd0Ho_VxEfN1OltQJPUv1-MXuNC4xZx9gvXWN2SDZkwbsOJnm_CxQwzchI12Li7YYQuMPtqC8bWdx2xDNvSP9QMbLGmbbEiHx_SY_A-bB_bbT54WLL4SYKO_lKvFfnWQnIwKo00X23B7dnrzc5S0dRISK3lWJz4Il1lh0HspMIKTCn00n9ngTchK77j00mNUZlLugiYeDqmglDpNrSiFzcRnWJ3NZ34HmOwrq1KDvixdN1pt0CEx2mCDCkI614Pj_6KrbAsRp1oW0wqDCZJz1ZFzD_aXnR8bdsbr3U5IB8suBLyODWgGVWsG1Vtm0IMD0mBF0xIHZHWbXYC_RYCraoDrDMHc8rwH3xslv_jgcHI3iB-c1s9Vv0Qnevc9hvUF1jIK0OOxzVdYrZ-e_Tf0YmqzBx9OTseXV3vRcP8BXL7wZw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scouring+Depth+Assessment+Downstream+of+Weirs+Using+Hybrid+Intelligence+Models&rft.jtitle=Applied+sciences&rft.au=Ahmad+Sharafati&rft.au=Masoud+Haghbin&rft.au=Seyed+Babak+Haji+Seyed+Asadollah&rft.au=Nand+Kumar+Tiwari&rft.date=2020-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=10&rft.issue=11&rft.spage=3714&rft_id=info:doi/10.3390%2Fapp10113714&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4d3d821d518d4049a1fe55e6fa14a2a3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon