The Impact of Drought Stress on Soil Microbial Community, Enzyme Activities and Plants
Nowadays, the most significant consequence of climate change is drought stress. Drought is one of the important, alarming, and hazardous abiotic stresses responsible for the alterations in soil environment affecting soil organisms, including microorganisms and plants. It alters the activity and func...
Saved in:
Published in | Agronomy (Basel) Vol. 12; no. 1; p. 189 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nowadays, the most significant consequence of climate change is drought stress. Drought is one of the important, alarming, and hazardous abiotic stresses responsible for the alterations in soil environment affecting soil organisms, including microorganisms and plants. It alters the activity and functional composition of soil microorganisms that are responsible for crucial ecosystem functions and services. These stress conditions decrease microbial abundance, disturb microbial structure, decline microbial activity, including enzyme production (e.g., such as oxidoreductases, hydrolases, dehydrogenase, catalase, urease, phosphatases, β-glucosidase) and nutrient cycling, leading to a decrease in soil fertility followed by lower plant productivity and loss in economy. Interestingly, the negative effects of drought on soil can be minimized by adding organic substances such as compost, sewage slugs, or municipal solid waste that increases the activity of soil enzymes. Drought directly affects plant morphology, anatomy, physiology, and biochemistry. Its effect on plants can also be observed by changes at the transcriptomic and metabolomic levels. However, in plants, it can be mitigated by rhizosphere microbial communities, especially by plant growth-promoting bacteria (PGPB) and fungi (PGPF) that adapt their structural and functional compositions to water scarcity. This review was undertaken to discuss the impacts of drought stress on soil microbial community abundance, structure and activity, and plant growth and development, including the role of soil microorganisms in this process. Microbial activity in the soil environment was considered in terms of soil enzyme activities, pools, fluxes, and processes of terrestrial carbon (C) and nitrogen (N) cycles. A deep understanding of many aspects is necessary to explore the impacts of these extreme climate change events. We also focus on addressing the possible ways such as genome editing, molecular analysis (metagenomics, transcriptomics, and metabolomics) towards finding better solutions for mitigating drought effects and managing agricultural practices under harsh condition in a profitable manner. |
---|---|
AbstractList | Nowadays, the most significant consequence of climate change is drought stress. Drought is one of the important, alarming, and hazardous abiotic stresses responsible for the alterations in soil environment affecting soil organisms, including microorganisms and plants. It alters the activity and functional composition of soil microorganisms that are responsible for crucial ecosystem functions and services. These stress conditions decrease microbial abundance, disturb microbial structure, decline microbial activity, including enzyme production (e.g., such as oxidoreductases, hydrolases, dehydrogenase, catalase, urease, phosphatases, β-glucosidase) and nutrient cycling, leading to a decrease in soil fertility followed by lower plant productivity and loss in economy. Interestingly, the negative effects of drought on soil can be minimized by adding organic substances such as compost, sewage slugs, or municipal solid waste that increases the activity of soil enzymes. Drought directly affects plant morphology, anatomy, physiology, and biochemistry. Its effect on plants can also be observed by changes at the transcriptomic and metabolomic levels. However, in plants, it can be mitigated by rhizosphere microbial communities, especially by plant growth-promoting bacteria (PGPB) and fungi (PGPF) that adapt their structural and functional compositions to water scarcity. This review was undertaken to discuss the impacts of drought stress on soil microbial community abundance, structure and activity, and plant growth and development, including the role of soil microorganisms in this process. Microbial activity in the soil environment was considered in terms of soil enzyme activities, pools, fluxes, and processes of terrestrial carbon (C) and nitrogen (N) cycles. A deep understanding of many aspects is necessary to explore the impacts of these extreme climate change events. We also focus on addressing the possible ways such as genome editing, molecular analysis (metagenomics, transcriptomics, and metabolomics) towards finding better solutions for mitigating drought effects and managing agricultural practices under harsh condition in a profitable manner. |
Author | Bogati, Kalisa Walczak, Maciej |
Author_xml | – sequence: 1 givenname: Kalisa surname: Bogati fullname: Bogati, Kalisa – sequence: 2 givenname: Maciej surname: Walczak fullname: Walczak, Maciej |
BookMark | eNp1kc2LFDEQxYOs4Lru3WPAiwdnzVd3OsdlXN2BFYVdvYbqfMxm6E7GJC2Mf73REZEBc6mk-L1HvdRzdBZTdAi9pOSKc0XewjanmOYDZYQSOqgn6JwRyVeCq-7sn_szdFnKjrSjKB-IPEdfHx4d3sx7MBUnj9_ltGwfK76v2ZWCU8T3KUz4YzA5jQEmvE7zvMRQD2_wTfxxmB2-NjV8DzW4giFa_HmCWMsL9NTDVNzln3qBvry_eVjfru4-fdisr-9WRlBWV051BhRQYUdLfe8Hw8wIknPBRlCSSC-pscoRztqTWdFxK9TghWBWMcr5BdocfW2Cnd7nMEM-6ARB_26kvNWQazCT04xJ67ntyGB6wSQfOAhrwVtuxEhG0rxeH732OX1bXKl6DsW4qQVyaSma9byXgvKeNfTVCbpLS44taaMYZR3tVN8ocqTa55WSnf87ICX619706d6apD-RmFChhhRrhjD9X_gTALGf5Q |
CitedBy_id | crossref_primary_10_3390_land13111759 crossref_primary_10_1021_acs_jafc_4c05687 crossref_primary_10_3390_biology11081206 crossref_primary_10_3390_biom15010118 crossref_primary_10_3390_f14061200 crossref_primary_10_1002_joc_8219 crossref_primary_10_3390_w15081460 crossref_primary_10_3389_fmicb_2024_1376849 crossref_primary_10_3390_d15030391 crossref_primary_10_1016_j_rhisph_2023_100793 crossref_primary_10_1007_s42729_024_01711_2 crossref_primary_10_3390_f14101939 crossref_primary_10_1007_s40003_024_00735_5 crossref_primary_10_1016_j_stress_2023_100319 crossref_primary_10_1007_s11104_024_06658_y crossref_primary_10_3390_plants11091219 crossref_primary_10_1016_j_scitotenv_2023_169351 crossref_primary_10_3389_fpls_2024_1485362 crossref_primary_10_3390_plants13152056 crossref_primary_10_1016_j_apsoil_2025_105870 crossref_primary_10_1016_j_stress_2024_100683 crossref_primary_10_1111_sum_70014 crossref_primary_10_3389_fpls_2024_1377453 crossref_primary_10_1007_s00425_025_04635_y crossref_primary_10_3390_genes16030285 crossref_primary_10_7717_peerj_18171 crossref_primary_10_1016_j_plaphy_2023_107936 crossref_primary_10_1111_1758_2229_70041 crossref_primary_10_1007_s11104_023_06348_1 crossref_primary_10_1186_s12870_025_06092_x crossref_primary_10_3390_agronomy14071579 crossref_primary_10_1016_j_rhisph_2023_100687 crossref_primary_10_1016_j_fcr_2025_109752 crossref_primary_10_3389_fchem_2022_1106230 crossref_primary_10_3390_agronomy12040804 crossref_primary_10_1007_s42729_024_01863_1 crossref_primary_10_1155_2024_1739115 crossref_primary_10_1016_j_apsoil_2025_105942 crossref_primary_10_3390_agronomy12102548 crossref_primary_10_3390_biology12060853 crossref_primary_10_3390_agriculture14091601 crossref_primary_10_1007_s00425_024_04459_2 crossref_primary_10_3389_fpls_2024_1494987 crossref_primary_10_1021_acs_estlett_2c00585 crossref_primary_10_3390_agronomy14112616 crossref_primary_10_3390_soilsystems9010002 crossref_primary_10_7717_peerj_19133 crossref_primary_10_1016_j_rhisph_2022_100561 crossref_primary_10_15421_022334 crossref_primary_10_1111_sum_13016 crossref_primary_10_3389_fmicb_2023_1260585 crossref_primary_10_3390_en15186807 crossref_primary_10_1155_2022_1172805 crossref_primary_10_3390_microorganisms11051144 crossref_primary_10_1007_s12524_024_02114_7 crossref_primary_10_1016_j_xplc_2023_100772 crossref_primary_10_1111_sum_13138 crossref_primary_10_1016_j_soilbio_2023_109281 crossref_primary_10_3390_biology11030437 crossref_primary_10_1016_j_envexpbot_2022_105007 crossref_primary_10_1016_j_jenvman_2024_123846 crossref_primary_10_1016_j_apsoil_2023_105054 crossref_primary_10_1038_s41598_023_27844_5 crossref_primary_10_3390_microorganisms12122544 crossref_primary_10_3389_fmicb_2025_1550749 crossref_primary_10_31857_S0015330322600760 crossref_primary_10_3390_agronomy12123079 crossref_primary_10_1128_spectrum_02425_23 crossref_primary_10_1002_fes3_562 crossref_primary_10_3390_agronomy12061461 crossref_primary_10_3390_plants13010058 crossref_primary_10_3389_fpls_2022_919166 crossref_primary_10_3390_plants13202864 crossref_primary_10_3390_agronomy13051417 crossref_primary_10_3389_fsufs_2023_1332683 crossref_primary_10_1016_j_crbiot_2023_100128 crossref_primary_10_1016_j_sajb_2023_08_023 crossref_primary_10_1186_s12870_024_05748_4 crossref_primary_10_56027_JOASD_122024 crossref_primary_10_1016_j_soilbio_2024_109357 crossref_primary_10_1080_10643389_2023_2252310 crossref_primary_10_5194_bg_21_3571_2024 crossref_primary_10_1007_s00344_024_11500_x crossref_primary_10_1016_j_bcab_2023_102749 crossref_primary_10_1007_s42729_024_01924_5 crossref_primary_10_3390_agronomy13112740 crossref_primary_10_1016_j_geoderma_2024_116832 crossref_primary_10_1111_ejss_70044 crossref_primary_10_1134_S1021443722603172 crossref_primary_10_1007_s12223_024_01194_9 crossref_primary_10_36953_ECJ_16392522 crossref_primary_10_3390_agronomy12061253 crossref_primary_10_1007_s42729_023_01504_z crossref_primary_10_1007_s00344_025_11653_3 crossref_primary_10_1007_s11356_022_21742_5 crossref_primary_10_3390_horticulturae9030306 crossref_primary_10_1007_s00425_022_04047_2 crossref_primary_10_1007_s10142_025_01533_0 crossref_primary_10_3390_land11111887 crossref_primary_10_1021_acsomega_3c05564 crossref_primary_10_1021_acsestengg_3c00501 crossref_primary_10_1016_j_tim_2023_03_002 crossref_primary_10_1016_j_agee_2025_109565 crossref_primary_10_1007_s13157_024_01778_8 crossref_primary_10_3390_agronomy13071719 crossref_primary_10_3390_agronomy13122950 crossref_primary_10_1186_s40793_025_00673_x crossref_primary_10_1515_opag_2025_0417 crossref_primary_10_3390_life13030745 crossref_primary_10_1007_s00344_023_11218_2 crossref_primary_10_3390_jof9020239 crossref_primary_10_1016_j_chemosphere_2024_143098 crossref_primary_10_3390_ijms24087510 crossref_primary_10_3390_plants13162279 crossref_primary_10_1038_s41598_024_61894_7 crossref_primary_10_1590_1983_21252024v3712000rc crossref_primary_10_1016_j_catena_2025_108955 crossref_primary_10_3390_antiox14030329 crossref_primary_10_1016_j_crmicr_2024_100285 crossref_primary_10_3390_su152014792 crossref_primary_10_3389_fpls_2024_1471044 crossref_primary_10_1007_s10343_023_00912_6 crossref_primary_10_1111_1758_2229_13300 crossref_primary_10_3390_land12030559 crossref_primary_10_3389_fpls_2024_1439772 crossref_primary_10_1186_s40793_023_00512_x crossref_primary_10_3390_su16135368 crossref_primary_10_1016_j_pedobi_2023_150894 crossref_primary_10_1016_j_stress_2023_100171 crossref_primary_10_1186_s40538_025_00733_x crossref_primary_10_3389_fenvs_2023_1182586 crossref_primary_10_3390_f14101957 crossref_primary_10_1016_j_micres_2024_127698 crossref_primary_10_3389_fsufs_2024_1494819 crossref_primary_10_1080_01904167_2025_2461279 crossref_primary_10_17221_61_2022_PPS crossref_primary_10_1016_j_stress_2024_100617 crossref_primary_10_1111_gcb_70057 crossref_primary_10_1111_ppl_70012 crossref_primary_10_3390_su162411140 crossref_primary_10_1007_s44372_024_00022_1 crossref_primary_10_1016_j_scitotenv_2024_175274 crossref_primary_10_1177_11779322241233442 crossref_primary_10_1007_s00344_024_11380_1 crossref_primary_10_1016_j_stress_2023_100281 crossref_primary_10_1007_s10653_023_01823_1 crossref_primary_10_3390_agronomy14092111 crossref_primary_10_1016_j_apsoil_2024_105836 crossref_primary_10_1038_s41467_024_50463_1 crossref_primary_10_3390_agronomy13092373 crossref_primary_10_1007_s11356_024_34157_1 crossref_primary_10_1002_ajb2_70020 crossref_primary_10_3389_fpls_2022_1077152 crossref_primary_10_3390_agronomy14091949 crossref_primary_10_3389_fpls_2023_1042053 |
Cites_doi | 10.1007/s00425-010-1271-1 10.1038/s41598-018-21560-1 10.1111/ppl.13297 10.1186/s12870-020-02526-w 10.1186/s13717-021-00288-3 10.3390/ijms20092265 10.3354/ame044011 10.22541/au.165753037.75254949/v1 10.1016/j.apsoil.2008.04.005 10.1128/mr.53.1.121-147.1989 10.1016/j.envexpbot.2009.03.004 10.1016/j.tplants.2004.03.006 10.1186/s13059-015-0607-3 10.1038/s41598-018-22585-2 10.1104/pp.109.137554 10.1016/S2095-3119(14)60871-6 10.1007/s10113-013-0473-z 10.1152/physrev.00029.2006 10.1007/s11104-018-3774-7 10.1016/S0038-0717(00)00027-4 10.1016/j.soilbio.2004.02.021 10.1007/s00299-005-0093-2 10.1016/j.envexpbot.2019.103900 10.3390/ijms22169036 10.3390/plants10030436 10.1016/j.biotechadv.2012.07.002 10.1007/s10725-013-9853-0 10.1016/j.plaphy.2015.11.001 10.1111/1462-2920.15607 10.1139/cjm-2018-0636 10.1038/ismej.2017.118 10.1146/annurev-arplant-042809-112122 10.17660/ActaHortic.2001.560.54 10.1007/s11099-005-0089-8 10.1016/j.jclepro.2018.03.245 10.1038/s41598-021-84673-0 10.1111/pce.12682 10.3390/atmos12111475 10.1038/s42003-021-02037-w 10.1128/AEM.00855-10 10.3390/d13080366 10.1007/978-1-4614-3573-0_6 10.1016/j.plaphy.2009.02.009 10.1016/j.plaphy.2019.07.001 10.14348/molcells.2016.2324 10.1093/carcin/21.3.361 10.1146/annurev.arplant.55.031903.141701 10.1038/s41598-017-09397-6 10.1007/s11368-010-0308-1 10.1016/j.soilbio.2004.08.004 10.5194/bg-11-6003-2014 10.1093/mp/ssr114 10.3389/fgene.2021.692702 10.21475/ajcs.21.15.09.sp-3 10.1038/nature16467 10.1016/j.jplph.2004.01.013 10.1016/j.apsoil.2010.08.013 10.1016/j.scitotenv.2019.01.001 10.1038/s41598-018-36971-3 10.1038/srep40532 10.3390/biology9080189 10.3389/fpls.2020.00978 10.1016/j.envexpbot.2021.104628 10.1089/152308603770310239 10.1098/rstb.2010.0158 10.1104/pp.98.2.516 10.1016/j.indcrop.2013.04.036 10.1007/s00442-007-0804-1 10.1038/s41396-019-0389-9 10.5423/PPJ.SI.02.2013.0021 10.1186/s12870-019-1880-1 10.1016/j.fm.2019.103301 10.20944/preprints202102.0466.v1 10.1016/j.soilbio.2012.03.026 10.1186/s12870-020-02761-1 10.1038/s41579-019-0222-5 10.1016/j.femsec.2004.06.002 10.1371/journal.pone.0221571 10.1007/978-3-319-92387-1_2 10.1038/s41598-019-52567-x 10.1007/s13199-015-0370-y 10.1007/s00248-019-01432-5 10.1007/978-3-642-14225-3 10.1016/j.soilbio.2018.12.022 10.1016/S1002-0160(19)60839-8 10.1080/12298093.2021.1938803 10.3389/fmicb.2018.00284 10.3389/fpls.2016.01896 10.1002/jobm.202000011 10.1007/s11248-007-9099-6 10.1111/j.1461-0248.2007.01139.x 10.1016/j.micres.2021.126832 10.1016/j.cell.2016.08.029 10.1007/s11738-019-2812-2 10.1146/annurev-ecolsys-110617-062614 10.1007/s11738-013-1307-9 10.3390/plants3040559 10.3390/molecules21050573 10.1016/j.jhazmat.2016.08.009 10.1016/j.ejsobi.2016.11.007 10.3390/agronomy9070343 10.1016/0038-0717(78)90026-3 10.1007/s00027-007-0930-1 10.1038/s41598-018-21187-2 10.3389/fpls.2020.556972 10.1007/s00248-018-1260-7 10.1146/annurev-arplant-050312-120053 10.3389/fmicb.2021.676615 10.1007/s00344-012-9283-7 10.1007/s10725-012-9777-0 10.1007/s11738-016-2073-2 10.3390/agronomy10091429 10.1016/j.scienta.2011.11.024 10.1134/S1021443714020083 10.1111/tpj.13013 10.3390/horticulturae7100390 10.3390/f9060326 10.1093/pcp/pcn025 10.1371/journal.pone.0181835 10.1016/j.jprot.2016.01.006 10.3390/plants9070877 10.3389/fchem.2018.00026 10.3389/fmicb.2020.01216 10.1007/s11274-010-0444-1 10.7717/peerj.5877 10.1093/aob/mcy108 10.1093/jxb/erw080 10.1186/s12870-020-02413-4 10.1134/S1021443707040061 10.1007/s00253-018-9214-z 10.1371/journal.pone.0057472 10.1111/j.1541-0064.2008.00211.x 10.1016/j.envexpbot.2011.09.003 10.1007/s00374-009-0401-z 10.1094/MPMI-21-6-0799 10.3389/fpls.2016.01108 10.1016/j.soilbio.2017.06.012 10.1146/annurev-physiol-012110-142203 10.1007/s11703-010-0109-8 10.1016/j.scienta.2015.11.028 10.3389/fmicb.2014.00150 10.1016/j.apsoil.2008.02.005 10.1099/ijs.0.052902-0 10.1890/06-0219 10.15835/nbha47110952 10.21273/HORTSCI13961-19 10.5772/46157 10.1016/0038-0717(82)90005-0 10.1016/S0304-4238(02)00016-X 10.1007/s11356-020-12023-0 10.1128/AEM.02711-07 10.1007/s11104-016-3090-z 10.1038/sj.embor.7400586 10.1016/j.plaphy.2012.02.001 10.1111/1462-2920.15096 10.1111/j.1365-2486.2010.02300.x 10.1016/j.ecoenv.2018.03.013 10.1111/gcb.13503 10.3389/fpls.2021.668736 10.1016/S0168-9452(00)00457-X 10.1016/j.earscirev.2020.103501 10.1002/jobm.201800309 10.1016/S0960-8524(97)00171-5 10.1016/j.bbrc.2017.08.006 10.1371/journal.pone.0083365 10.1016/j.apsoil.2016.04.009 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI 7S9 L.6 DOA |
DOI | 10.3390/agronomy12010189 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student ProQuest SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2073-4395 |
ExternalDocumentID | oai_doaj_org_article_227df3d508c6427383a4ddafd3c4b0b0 10_3390_agronomy12010189 |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO ITC KQ8 M0K MODMG M~E OK1 OZF PATMY PHGZM PHGZT PIMPY PROAC PYCSY 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c412t-e95ca9a14dbd1f6f8c2cba73342ba9707f71cd9e032a972d453d498f442d92133 |
IEDL.DBID | BENPR |
ISSN | 2073-4395 |
IngestDate | Wed Aug 27 01:15:50 EDT 2025 Fri Jul 11 07:41:43 EDT 2025 Mon Jun 30 07:28:14 EDT 2025 Tue Jul 01 03:20:17 EDT 2025 Thu Apr 24 22:51:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-e95ca9a14dbd1f6f8c2cba73342ba9707f71cd9e032a972d453d498f442d92133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2621251596?pq-origsite=%requestingapplication% |
PQID | 2621251596 |
PQPubID | 2032440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_227df3d508c6427383a4ddafd3c4b0b0 proquest_miscellaneous_2636741362 proquest_journals_2621251596 crossref_primary_10_3390_agronomy12010189 crossref_citationtrail_10_3390_agronomy12010189 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agronomy (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Cutler (ref_84) 2010; 61 ref_137 Wang (ref_123) 2017; 7 ref_139 ref_138 Schimel (ref_26) 2007; 88 Feng (ref_91) 2005; 43 ref_14 ref_13 ref_12 Schimel (ref_48) 2018; 49 Tarazona (ref_94) 2015; 84 ref_99 ref_133 ref_96 Prashanth (ref_132) 2008; 17 ref_19 Chernysheva (ref_51) 2021; 37 ref_17 Arzanesh (ref_42) 2011; 27 Vrba (ref_64) 2006; 44 Wang (ref_74) 2001; 560 Naseem (ref_161) 2018; 58 Sardans (ref_59) 2005; 37 Oh (ref_181) 2013; 150 Sayer (ref_25) 2021; 4 Hu (ref_57) 2011; 11 Azzeme (ref_92) 2016; 38 Epule (ref_7) 2014; 14 Pascual (ref_24) 1998; 64 Siebielec (ref_67) 2018; 187 Ma (ref_172) 2014; 320 ref_21 Lesk (ref_10) 2016; 529 Ngumbi (ref_156) 2016; 105 Azad (ref_179) 2016; 68 Egea (ref_121) 2018; 8 Ni (ref_104) 2021; 191 Ma (ref_106) 2007; 54 Feng (ref_105) 2019; 142 Zhang (ref_118) 2021; 12 Csonka (ref_28) 1989; 53 Fuchslueger (ref_71) 2014; 11 Tanne (ref_36) 2014; 5 Rainsford (ref_152) 2018; Volume 74 Khadka (ref_150) 2019; 7 Brandt (ref_109) 2012; 748 Bowne (ref_126) 2012; 5 ref_158 Hussain (ref_175) 2014; 16 Valliyodan (ref_182) 2006; 9 Arun (ref_151) 2020; 60 Trujillo (ref_183) 2008; 49 Bejai (ref_163) 2019; 9 Khan (ref_6) 2021; 28 Wang (ref_127) 2004; 9 Mulvaney (ref_56) 1978; 10 ref_78 Moral (ref_103) 2021; 15 Naylor (ref_50) 2017; 11 Tahmasebi (ref_141) 2021; 12 ref_73 Jabbari (ref_77) 2013; 49 Liu (ref_81) 2013; 35 Khan (ref_20) 2019; 41 ref_160 Howell (ref_128) 2013; 64 Tintor (ref_23) 2012; 123 Bano (ref_165) 2013; 45 Criquet (ref_65) 2000; 32 Etesami (ref_154) 2018; 156 ref_148 Wang (ref_115) 2009; 47 ref_140 Staudinger (ref_170) 2016; 136 Egamberdieva (ref_155) 2017; 78 Wilmowicz (ref_75) 2020; 169 ref_86 (ref_60) 1982; 14 Pacher (ref_110) 2007; 87 Hand (ref_131) 2011; 73 Yang (ref_147) 2018; 38 Yerbury (ref_27) 2005; 6 Schreckinger (ref_63) 2021; 12 Jaiswal (ref_120) 2018; 8 Crisp (ref_40) 2015; 16 Kaur (ref_114) 2013; 70 Grillakis (ref_11) 2019; 660 Reddy (ref_90) 2004; 161 Deng (ref_72) 2021; 214 Xu (ref_107) 2016; 67 Meena (ref_53) 2021; 10 Criquet (ref_66) 2004; 36 Sandhya (ref_167) 2009; 46 Vardharajula (ref_166) 2011; 6 Pires (ref_124) 2016; 39 ref_54 (ref_116) 2001; 160 Goswami (ref_164) 2020; 30 Figueiredo (ref_169) 2008; 40 ref_177 Tiwari (ref_173) 2016; 99 Sherameti (ref_174) 2008; 21 Kasim (ref_171) 2013; 32 Gornall (ref_9) 2010; 365 Dossa (ref_95) 2017; 7 Budak (ref_180) 2013; 4 Veach (ref_46) 2020; 79 Gimenez (ref_88) 1992; 98 Alvarez (ref_31) 2004; 50 Ozturk (ref_100) 2021; 172 Sharifi (ref_162) 2018; 122 Calvo (ref_85) 2016; 23 Gleeson (ref_70) 2008; 40 Jamil (ref_15) 2018; 55 Apel (ref_113) 2004; 55 Ma (ref_89) 2015; 14 Bierza (ref_52) 2021; 11 Chartzoulakis (ref_82) 2002; 95 Cho (ref_129) 2006; 25 Shukla (ref_153) 2012; 54 Palud (ref_32) 2020; 85 Manzanera (ref_33) 2016; 7 Castro (ref_47) 2019; 13 Bastida (ref_45) 2017; 113 Stadtman (ref_111) 2003; 5 Heijden (ref_142) 2008; 11 ref_62 Chmielewska (ref_125) 2016; 7 Khoyerdi (ref_101) 2016; 198 Takahashi (ref_87) 2020; 11 You (ref_122) 2018; 8 Larned (ref_61) 2007; 69 Sun (ref_117) 2020; 11 Liao (ref_178) 2021; 49 Weintraub (ref_68) 2007; 154 Deshmukh (ref_130) 2016; 7 Preece (ref_69) 2019; 131 Castillo (ref_41) 2016; 7 Wu (ref_136) 2017; 491 Julca (ref_37) 2012; 30 Furlan (ref_83) 2012; 2012 Dietz (ref_108) 2016; 39 Yuste (ref_49) 2011; 17 Gupta (ref_97) 2014; 72 Guo (ref_135) 2010; 232 Abdi (ref_98) 2019; 47 Chandra (ref_159) 2019; 65 Santos (ref_39) 1998; 61 Nannipieri (ref_145) 2007; 25 Marnett (ref_112) 2000; 21 Hemkemeyer (ref_55) 2021; 252 Manzanera (ref_34) 2021; 23 Liu (ref_102) 2014; 3 Preece (ref_146) 2016; 409 Yin (ref_16) 2010; 4 Kumar (ref_149) 2020; 11 Ulrich (ref_76) 2019; 9 Behrooz (ref_176) 2019; 54 Hueso (ref_43) 2012; 50 Barba (ref_30) 2010; 76 Wheaton (ref_8) 2008; 52 Qaderi (ref_80) 2012; 75 Ullah (ref_144) 2019; 77 Sangtarash (ref_79) 2009; 66 Kala (ref_3) 2017; 5 Li (ref_134) 2014; 3 Enebe (ref_157) 2018; 102 LeBlanc (ref_29) 2008; 74 Manzanera (ref_38) 2013; 63 ref_2 Nguyen (ref_18) 2018; 431 Lamaoui (ref_1) 2018; 6 Nadarajah (ref_5) 2021; 22 Breitkreuz (ref_22) 2021; 23 Zhu (ref_119) 2016; 167 Niehaus (ref_35) 2018; 9 Cavicchioli (ref_143) 2019; 17 Lim (ref_168) 2013; 29 ref_4 Baldrian (ref_44) 2010; 46 Shukla (ref_58) 2011; Volume 22 Sabra (ref_93) 2012; 135 |
References_xml | – volume: 232 start-page: 1499 year: 2010 ident: ref_135 article-title: tomato glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salt stresses publication-title: Planta doi: 10.1007/s00425-010-1271-1 – volume: 8 start-page: 3382 year: 2018 ident: ref_120 article-title: Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum L.) and development of web-genomic resources publication-title: Sci. Rep. doi: 10.1038/s41598-018-21560-1 – volume: 172 start-page: 1321 year: 2021 ident: ref_100 article-title: Osmoregulation and its actions during the drought stress in plants publication-title: Physiol. Plant. doi: 10.1111/ppl.13297 – ident: ref_139 doi: 10.1186/s12870-020-02526-w – volume: 10 start-page: 1 year: 2021 ident: ref_53 article-title: Assessment of soil microbial and enzyme activity in the rhizosphere zone under different land use/cover of a semiarid region, India publication-title: Ecol. Process. doi: 10.1186/s13717-021-00288-3 – ident: ref_148 doi: 10.3390/ijms20092265 – volume: 44 start-page: 11 year: 2006 ident: ref_64 article-title: Extracellular enzyme activities in benthic cyanobacterial mats: Comparison between nutrient-enriched and control sites in marshes of northern Belize publication-title: Aquat. Microb. Ecol. doi: 10.3354/ame044011 – ident: ref_14 doi: 10.22541/au.165753037.75254949/v1 – volume: 40 start-page: 182 year: 2008 ident: ref_169 article-title: Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2008.04.005 – volume: 53 start-page: 121 year: 1989 ident: ref_28 article-title: Physiological and genetic responses of bacteria to osmotic stress publication-title: Microbiol. Rev. doi: 10.1128/mr.53.1.121-147.1989 – volume: 66 start-page: 212 year: 2009 ident: ref_79 article-title: Differential sensitivity of canola (Brassica napus L.) seedlings to ultraviolet-B radiation, water stress and abscisic acid publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2009.03.004 – volume: 9 start-page: 244 year: 2004 ident: ref_127 article-title: Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2004.03.006 – volume: 16 start-page: 50 year: 2015 ident: ref_40 article-title: Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes publication-title: Genome Biol. doi: 10.1186/s13059-015-0607-3 – volume: 8 start-page: 4331 year: 2018 ident: ref_122 article-title: Genome-wide identification and expression analyses of genes involved in raffinose accumulation in sesame publication-title: Sci. Rep. doi: 10.1038/s41598-018-22585-2 – volume: 150 start-page: 1368 year: 2013 ident: ref_181 article-title: Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions publication-title: Plant Physiol. doi: 10.1104/pp.109.137554 – volume: 14 start-page: 681 year: 2015 ident: ref_89 article-title: Effects of progressive drought on photosynthesis and partitioning of absorbed light in apple trees publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(14)60871-6 – volume: 14 start-page: 145 year: 2014 ident: ref_7 article-title: The causes, effects and challenges of Sahelian droughts: A critical review publication-title: Reg. Environ. Chang. doi: 10.1007/s10113-013-0473-z – volume: 87 start-page: 315 year: 2007 ident: ref_110 article-title: Nitric Oxide and Peroxynitrite in Health and Disease publication-title: Physiol. Rev. doi: 10.1152/physrev.00029.2006 – volume: 431 start-page: 371 year: 2018 ident: ref_18 article-title: Flooding and prolonged drought have dierential legacy impacts on soil nitrogen cycling, microbial communities and plant productivity publication-title: Plant. Soil doi: 10.1007/s11104-018-3774-7 – volume: 32 start-page: 1505 year: 2000 ident: ref_65 article-title: Annual variations of phenoloxidase activities in an evergreen oak litter: Influence of certain biotic and abiotic factors publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00027-4 – volume: 123 start-page: 17 year: 2012 ident: ref_23 article-title: Mitigating abiotic stress in crop plants by microorganisms publication-title: Proc. Nat. Sci. Matica Serpska Novi. Sad – volume: 36 start-page: 1111 year: 2004 ident: ref_66 article-title: Annual dynamics of phosphatase activities in an evergreen oak litter: Influence of biotic and abiotic factors publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.02.021 – volume: 25 start-page: 349 year: 2006 ident: ref_129 article-title: Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants publication-title: Plant Cell Rep. doi: 10.1007/s00299-005-0093-2 – volume: 169 start-page: 103900 year: 2020 ident: ref_75 article-title: Abscisic acid and ethylene in the control of nodule-specific response on drought in yellow lupine publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2019.103900 – volume: 22 start-page: 9036 year: 2021 ident: ref_5 article-title: Effects of Abiotic Stress on Soil Microbiome publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22169036 – ident: ref_99 doi: 10.3390/plants10030436 – volume: 30 start-page: 1641 year: 2012 ident: ref_37 article-title: Xeroprotectants for the stabilization of biomaterials publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2012.07.002 – volume: 72 start-page: 221 year: 2014 ident: ref_97 article-title: Glycine betaine application modifies biochemical attributes of osmotic adjustment in drought stressed wheat publication-title: Plant Growth Regul. doi: 10.1007/s10725-013-9853-0 – volume: 99 start-page: 108 year: 2016 ident: ref_173 article-title: Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2015.11.001 – volume: 55 start-page: 331 year: 2018 ident: ref_15 article-title: Inducing drought tolerance in wheat through combined use of L-tryptophan and Pseudomonas fluorescens publication-title: Pak. J. Agric. Sci. – volume: 23 start-page: 5866 year: 2021 ident: ref_22 article-title: Interactions between soil properties, agricultural management and cultivar type drive structural and functional adaptations of the wheat rhizosphere microbiome to drought publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.15607 – volume: 65 start-page: 387 year: 2019 ident: ref_159 article-title: Evaluation of ACC-deaminase-producing rhizobacteria to alleviate water-stress impacts in wheat (Triticum aestivum L.) plants publication-title: Can. J. Microbiol. doi: 10.1139/cjm-2018-0636 – volume: 11 start-page: 2691 year: 2017 ident: ref_50 article-title: Drought and host selection influence bacterial community dynamics in the grass root microbiome publication-title: ISME J. doi: 10.1038/ismej.2017.118 – volume: 61 start-page: 651 year: 2010 ident: ref_84 article-title: Abscisic acid: Emergence of a core signaling network publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042809-112122 – volume: 560 start-page: 285 year: 2001 ident: ref_74 article-title: Biotechnology of plant osmotic stress tolerance: Physiological and molecular considerations publication-title: Acta Hortic. doi: 10.17660/ActaHortic.2001.560.54 – volume: 43 start-page: 567 year: 2005 ident: ref_91 article-title: Photosynthesis and photo inhibition after night chilling in seedlings of two tropical tree species grown under three irradiances publication-title: Photosynthetica doi: 10.1007/s11099-005-0089-8 – volume: 187 start-page: 372 year: 2018 ident: ref_67 article-title: Long-term impact of sewage sludge, digestate and mineral fertilizers on plant yield and soil biological activity publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.03.245 – volume: Volume 22 start-page: 1 year: 2011 ident: ref_58 article-title: Soil Enzyme: The State-of-Art publication-title: Soil Enzymology – volume: 11 start-page: 5155 year: 2021 ident: ref_52 article-title: The role of plants and soil properties in the enzyme activities of substrates on hard coal mine spoil heaps publication-title: Sci. Rep. doi: 10.1038/s41598-021-84673-0 – volume: 39 start-page: 1304 year: 2016 ident: ref_124 article-title: The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis publication-title: Plant Cell Environ. doi: 10.1111/pce.12682 – ident: ref_13 doi: 10.3390/atmos12111475 – volume: 4 start-page: 516 year: 2021 ident: ref_25 article-title: Adaptation to chronic drought modifies soil microbial community responses to phytohormones publication-title: Commun. Biol. doi: 10.1038/s42003-021-02037-w – volume: 76 start-page: 5254 year: 2010 ident: ref_30 article-title: Rapid method for isolation of desiccation-tolerant strains and xeroprotectants publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00855-10 – ident: ref_17 doi: 10.3390/d13080366 – volume: 748 start-page: 145 year: 2012 ident: ref_109 article-title: Molecular mechanisms of superoxide production by the mitochondrial respiratory chain publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4614-3573-0_6 – volume: 47 start-page: 570 year: 2009 ident: ref_115 article-title: Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2009.02.009 – volume: 142 start-page: 151 year: 2019 ident: ref_105 article-title: A small heat shock protein CaHsp25. 9 positively regulates heat, salt, and drought stress tolerance in pepper (Capsicum annuum L.) publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.07.001 – volume: 39 start-page: 20 year: 2016 ident: ref_108 article-title: Thiol-based peroxidases and ascorbate peroxidases: Why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? publication-title: Mol. Cells doi: 10.14348/molcells.2016.2324 – volume: 21 start-page: 361 year: 2000 ident: ref_112 article-title: Oxyradicals and DNA damage publication-title: Carcinogenesis doi: 10.1093/carcin/21.3.361 – volume: 55 start-page: 373 year: 2004 ident: ref_113 article-title: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.55.031903.141701 – volume: 7 start-page: 8755 year: 2017 ident: ref_95 article-title: Transcriptomic, biochemical and physio-anatomical investigations shed more light on responses to drought stress in two contrasting sesame genotypes publication-title: Sci. Rep. doi: 10.1038/s41598-017-09397-6 – volume: 11 start-page: 271 year: 2011 ident: ref_57 article-title: Microbial functional diversity, metabolic quotient, and invertase activity of a sandy loam soil as affected by long-term application of organic amendment and mineral fertilizer publication-title: J. Soils Sediments doi: 10.1007/s11368-010-0308-1 – volume: 37 start-page: 455 year: 2005 ident: ref_59 article-title: Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2004.08.004 – volume: 11 start-page: 6003 year: 2014 ident: ref_71 article-title: Effect of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland publication-title: Biogeosciences doi: 10.5194/bg-11-6003-2014 – volume: 5 start-page: 418 year: 2012 ident: ref_126 article-title: Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level publication-title: Mol. Plant. doi: 10.1093/mp/ssr114 – volume: 12 start-page: 692702 year: 2021 ident: ref_118 article-title: Transcriptomics and metabolomics reveal purine and phenylpropanoid metabolism response to drought stress in Dendrobium sinense, an endemic orchid species in Hainan Island publication-title: Front. Genet. doi: 10.3389/fgene.2021.692702 – volume: 15 start-page: 28 year: 2021 ident: ref_103 article-title: Identification of small open reading frames (sORFs) associated with heat tolerance in nitrogen-fixing root nodules of Phaseolus vulgaris wild-type and cv BAT93 publication-title: Aust. J. Crop Sci. doi: 10.21475/ajcs.21.15.09.sp-3 – volume: 45 start-page: 13 year: 2013 ident: ref_165 article-title: Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress publication-title: Pak J. Bot. – volume: 529 start-page: 84 year: 2016 ident: ref_10 article-title: Influence of extreme weather disasters on global crop production publication-title: Nature doi: 10.1038/nature16467 – volume: 161 start-page: 1189 year: 2004 ident: ref_90 article-title: Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2004.01.013 – volume: 46 start-page: 177 year: 2010 ident: ref_44 article-title: Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2010.08.013 – volume: 660 start-page: 1245 year: 2019 ident: ref_11 article-title: Increase in severe and extreme soil moisture droughts for Europe under climate change publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.001 – volume: 2012 start-page: 890 year: 2012 ident: ref_83 article-title: Physiological and biochemical responses to drought stress and subsequent rehydration in the symbiotic association peanut-Bradyrhizobium sp. publication-title: ISRN Agron. – volume: 61 start-page: 117 year: 1998 ident: ref_39 article-title: An overview of the role and diversity of compatible solutes in Bacteria and Archaea publication-title: Adv. Biochem. Eng. Biotechnol. – volume: 9 start-page: 249 year: 2019 ident: ref_76 article-title: Plant-microbe interactions before drought influence plant physiological responses to subsequent severe drought publication-title: Sci. Rep. doi: 10.1038/s41598-018-36971-3 – volume: 7 start-page: 40532 year: 2017 ident: ref_123 article-title: Transcriptomic basis for drought-resistance in Brassica napus L. publication-title: Sci. Rep. doi: 10.1038/srep40532 – ident: ref_73 doi: 10.3390/biology9080189 – volume: 11 start-page: 978 year: 2020 ident: ref_117 article-title: Response of Plants to Water Stress: A Meta-Analysis publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00978 – volume: 191 start-page: 104628 year: 2021 ident: ref_104 article-title: The cotton 70-kDa heat shock protein GhHSP70-26 plays a positive role in the drought stress response publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2021.104628 – volume: 5 start-page: 577 year: 2003 ident: ref_111 article-title: Oxidation of methionine residues of proteins: Biological consequences publication-title: Antioxid Redox Signal. doi: 10.1089/152308603770310239 – volume: 365 start-page: 2973 year: 2010 ident: ref_9 article-title: Implications of climate change for agricultural productivity in the early twenty-first century publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2010.0158 – volume: 98 start-page: 516 year: 1992 ident: ref_88 article-title: Regulation of photosynthetic rate of two sunflower hybrids under water stress publication-title: Plant Physiol. doi: 10.1104/pp.98.2.516 – volume: 49 start-page: 177 year: 2013 ident: ref_77 article-title: Relationships between seedling establishment and soil moisture content for winter and spring rapeseed genotypes publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2013.04.036 – volume: 154 start-page: 327 year: 2007 ident: ref_68 article-title: The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem publication-title: Oecologia doi: 10.1007/s00442-007-0804-1 – volume: 13 start-page: 1776 year: 2019 ident: ref_47 article-title: Soil microbial responses to drought and exotic plants shift carbon metabolism publication-title: ISME J. doi: 10.1038/s41396-019-0389-9 – volume: 29 start-page: 201 year: 2013 ident: ref_168 article-title: Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper publication-title: Plant Pathol. J. doi: 10.5423/PPJ.SI.02.2013.0021 – ident: ref_21 doi: 10.1186/s12870-019-1880-1 – volume: 85 start-page: 103301 year: 2020 ident: ref_32 article-title: Identification and transcriptional profile of Lactobacillus paracasei genes involved in the response to desiccation and rehydration publication-title: Food Microbiol. doi: 10.1016/j.fm.2019.103301 – ident: ref_78 doi: 10.20944/preprints202102.0466.v1 – volume: 50 start-page: 167 year: 2012 ident: ref_43 article-title: Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.03.026 – ident: ref_140 doi: 10.1186/s12870-020-02761-1 – volume: 17 start-page: 569 year: 2019 ident: ref_143 article-title: Scientists’ warning to humanity: Microorganisms and climate change publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-019-0222-5 – volume: 50 start-page: 75 year: 2004 ident: ref_31 article-title: Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress publication-title: FEMS Microbiol. Ecol. doi: 10.1016/j.femsec.2004.06.002 – ident: ref_86 doi: 10.1371/journal.pone.0221571 – volume: Volume 74 start-page: 25 year: 2018 ident: ref_152 article-title: Phytoconstituents-Active and Inert Constituents, Metabolic Pathways, Chemistry and Application of Phytoconstituents, Primary Metabolic Products, and Bioactive Compounds of Primary Metabolic Origin publication-title: Therapeutic Use of Medicinal Plants and Their Extracts doi: 10.1007/978-3-319-92387-1_2 – volume: 9 start-page: 16282 year: 2019 ident: ref_163 article-title: Bacillus velezensis 5113 induced metabolic and molecular reprogramming during abiotic stress tolerance in wheat publication-title: Sci. Rep. doi: 10.1038/s41598-019-52567-x – volume: 37 start-page: 103012 year: 2021 ident: ref_51 article-title: Soil microbiological properties in livestock corrals: An additional new line of evidence to identify livestock dung publication-title: J. Archaeol. Sci. Rep. – volume: 68 start-page: 73 year: 2016 ident: ref_179 article-title: fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth publication-title: Symbiosis doi: 10.1007/s13199-015-0370-y – volume: 79 start-page: 662 year: 2020 ident: ref_46 article-title: Historical drought affects microbial population dynamics and activity during soil drying and re-wet publication-title: Microb. Ecol. doi: 10.1007/s00248-019-01432-5 – ident: ref_54 doi: 10.1007/978-3-642-14225-3 – volume: 131 start-page: 28 year: 2019 ident: ref_69 article-title: Effects of past and current drought on the composition and diversity of soil microbial communities publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.12.022 – volume: 30 start-page: 40 year: 2020 ident: ref_164 article-title: Plant growth-promoting rhizobacteria- alleviators of abiotic stresses in soil: A review publication-title: Pedosphere doi: 10.1016/S1002-0160(19)60839-8 – volume: 49 start-page: 396 year: 2021 ident: ref_178 article-title: Two arbuscular mycorrhizal fungi alleviates drought stress and improves plant growth in Cinnamomum migao seedlings publication-title: Mycobiology doi: 10.1080/12298093.2021.1938803 – volume: 38 start-page: 6729 year: 2018 ident: ref_147 article-title: Effects of drought on root architecture and non-structural carbohydrate of Cunninghamia lanceolata publication-title: Acta Ecol. Sin. – volume: 9 start-page: 284 year: 2018 ident: ref_35 article-title: Protection of pepper plants from drought by Microbacterium sp. 3J1 by modulation of the plant’s glutamine and α-ketoglutarate content: A comparative metabolomics approach publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00284 – volume: 7 start-page: 1896 year: 2016 ident: ref_130 article-title: Plant aquaporins: Genome-wide identification, transcriptomics, proteomics, and advanced analytical tools publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01896 – volume: 60 start-page: 768 year: 2020 ident: ref_151 article-title: Mitigation of drought stress in rice crop with plant growth-promoting abiotic stress-tolerant rice phyllosphere bacteria publication-title: J. Basic Microbiol. doi: 10.1002/jobm.202000011 – volume: 17 start-page: 281 year: 2008 ident: ref_132 article-title: Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance publication-title: Transgenic Res. doi: 10.1007/s11248-007-9099-6 – volume: 11 start-page: 296 year: 2008 ident: ref_142 article-title: The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01139.x – volume: 252 start-page: 126832 year: 2021 ident: ref_55 article-title: Functions of elements in soil microorganisms publication-title: Microb. Res. doi: 10.1016/j.micres.2021.126832 – volume: 167 start-page: 313 year: 2016 ident: ref_119 article-title: Abiotic stress signaling and responses in plants publication-title: Cell doi: 10.1016/j.cell.2016.08.029 – volume: 41 start-page: 25 year: 2019 ident: ref_20 article-title: Morpho-physiological and biochemical responses of tolerant and sensitive rapeseed cultivars to drought stress during early seedling growth stage publication-title: Acta Physiol. Plant doi: 10.1007/s11738-019-2812-2 – volume: 49 start-page: 409 year: 2018 ident: ref_48 article-title: Life in dry soils: Effects of drought on soil microbial communities and processes publication-title: Annu. Rev. Ecol. Evol. doi: 10.1146/annurev-ecolsys-110617-062614 – volume: 35 start-page: 2747 year: 2013 ident: ref_81 article-title: 5-Aminolevulinic acid enhances photosynthetic gas exchange, chlorophyll fluorescence and antioxidant system in oilseed rape under drought stress publication-title: Acta Physiol. Plant doi: 10.1007/s11738-013-1307-9 – volume: 3 start-page: 559 year: 2014 ident: ref_134 article-title: Redox modulation matters: Emerging functions for glutaredoxins in plant development and stress responses publication-title: Plants doi: 10.3390/plants3040559 – ident: ref_158 doi: 10.3390/molecules21050573 – volume: 320 start-page: 36 year: 2014 ident: ref_172 article-title: Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.08.009 – volume: 78 start-page: 38 year: 2017 ident: ref_155 article-title: Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2016.11.007 – ident: ref_160 doi: 10.3390/agronomy9070343 – volume: 10 start-page: 297 year: 1978 ident: ref_56 article-title: Use of p-benzoquinone and hydroquinone for retardation of urea hydrolysis in soils publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(78)90026-3 – volume: 69 start-page: 554 year: 2007 ident: ref_61 article-title: Invertebrate and microbial responses to inundation in an ephemeral river reach in New Zealand: Effects of preceding dry periods publication-title: Aquat. Sci. doi: 10.1007/s00027-007-0930-1 – volume: 8 start-page: 2791 year: 2018 ident: ref_121 article-title: The drought-tolerant Solanum pennellii regulates leaf water loss and induces genes involved in amino acid and ethylene/jasmonate metabolism under dehydration publication-title: Sci. Rep. doi: 10.1038/s41598-018-21187-2 – volume: 11 start-page: 556972 year: 2020 ident: ref_87 article-title: Drought stress responses and resistance in plants: From cellular responses to long-distance intercellular communication publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.556972 – volume: 77 start-page: 429 year: 2019 ident: ref_144 article-title: Microbiome Diversity in Cotton Rhizosphere Under Normal and Drought Conditions publication-title: Microb. Ecol. doi: 10.1007/s00248-018-1260-7 – volume: 64 start-page: 477 year: 2013 ident: ref_128 article-title: Endoplasmic reticulum stress responses in plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050312-120053 – volume: 12 start-page: 676615 year: 2021 ident: ref_63 article-title: Attributes of drying define the structure and functioning of microbial communities in temperate riverbed sediment publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.676615 – volume: 32 start-page: 122 year: 2013 ident: ref_171 article-title: Control of drought stress in wheat using plant-growth-promoting bacteria publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-012-9283-7 – volume: 70 start-page: 49 year: 2013 ident: ref_114 article-title: Exploration of the antioxidative defense system to characterize chickpea genotypes showing differential response towards water deficit conditions publication-title: Plant Growth Regul. doi: 10.1007/s10725-012-9777-0 – volume: 38 start-page: 1 year: 2016 ident: ref_92 article-title: Oil palm leaves and roots differ in physiological response, antioxidant enzyme activities and expression of stress-responsive genes upon exposure to drought stress publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-016-2073-2 – ident: ref_12 doi: 10.3390/agronomy10091429 – volume: 135 start-page: 23 year: 2012 ident: ref_93 article-title: Differential physiological and biochemical responses of three Echinacea species to salinity stress publication-title: Scientia. Hort. doi: 10.1016/j.scienta.2011.11.024 – volume: 3 start-page: 374 year: 2014 ident: ref_102 article-title: Responses of antioxidant defense system to drought stress in the leaves of Fargesia denudata seedlings, the staple food on the giant panda publication-title: Russ. J. Plant Physiol. doi: 10.1134/S1021443714020083 – volume: 84 start-page: 621 year: 2015 ident: ref_94 article-title: An enhanced plant lipidomics method based on multiplexed liquid chromatography-mass spectrometry reveals additional insights into cold- and drought-induced membrane remodeling publication-title: Plant J. doi: 10.1111/tpj.13013 – ident: ref_19 doi: 10.3390/horticulturae7100390 – volume: 7 start-page: 1577 year: 2016 ident: ref_33 article-title: Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms publication-title: Front. Microbiol. – ident: ref_137 doi: 10.3390/f9060326 – volume: 49 start-page: 512 year: 2008 ident: ref_183 article-title: SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when over expressed in tobacco plants publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcn025 – ident: ref_138 doi: 10.1371/journal.pone.0181835 – volume: 136 start-page: 202 year: 2016 ident: ref_170 article-title: Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula publication-title: J. Proteom. doi: 10.1016/j.jprot.2016.01.006 – ident: ref_177 doi: 10.3390/plants9070877 – volume: 6 start-page: 1 year: 2018 ident: ref_1 article-title: Heat and drought stresses in crops and approaches for their mitigation publication-title: Front. Chem. doi: 10.3389/fchem.2018.00026 – volume: 11 start-page: 1216 year: 2020 ident: ref_149 article-title: Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.01216 – volume: 6 start-page: 1 year: 2011 ident: ref_166 article-title: Drought-tolerant plant growth promoting Bacillus spp.: Effect on growth, osmolytes, and antioxidant status of maize under drought stress publication-title: J. Plant Int. – volume: 27 start-page: 197 year: 2011 ident: ref_42 article-title: Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-010-0444-1 – volume: 7 start-page: 5877 year: 2019 ident: ref_150 article-title: Effects of Trichoderma seedling treatment with system of rice intensification management and with conventional management of transplanted rice publication-title: PeerJ doi: 10.7717/peerj.5877 – volume: 122 start-page: 349 year: 2018 ident: ref_162 article-title: Revisiting bacterial volatile-mediated plant growth promotion: Lessons from the past and objectives for the future publication-title: Ann. Bot. doi: 10.1093/aob/mcy108 – volume: 67 start-page: 3831 year: 2016 ident: ref_107 article-title: Spreading the news: Subcellular and organellar reactive oxygen species production and signalling publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw080 – volume: 5 start-page: 43 year: 2017 ident: ref_3 article-title: Environmental and socioeconomic impacts of drought in India: Lessons for drought management publication-title: Appl. Ecol. Environ. Res. – ident: ref_96 doi: 10.1186/s12870-020-02413-4 – volume: 54 start-page: 472 year: 2007 ident: ref_106 article-title: Glycinebetaine application ameliorates negative effects of drought stress in tobacco publication-title: Russ. J. Plant Physiol. doi: 10.1134/S1021443707040061 – volume: 102 start-page: 7821 year: 2018 ident: ref_157 article-title: The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: A survival strategy publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-9214-z – ident: ref_133 doi: 10.1371/journal.pone.0057472 – volume: 16 start-page: 3 year: 2014 ident: ref_175 article-title: Can catalase and exopolysaccharides producing rhizobia ameliorate drought stress in wheat? publication-title: Int. J. Agric. Biol. – volume: 52 start-page: 241 year: 2008 ident: ref_8 article-title: Dry times: Hard lessons from the Canadian drought of 2001 and 2002 publication-title: Can. Geograph. doi: 10.1111/j.1541-0064.2008.00211.x – volume: 75 start-page: 107 year: 2012 ident: ref_80 article-title: Effects of temperature and watering regime on growth gas exchange and abscisic acid content of canola (Brassica napus L.) seedlings publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2011.09.003 – volume: 46 start-page: 17 year: 2009 ident: ref_167 article-title: Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45 publication-title: Biol. Fertil. Soils. doi: 10.1007/s00374-009-0401-z – volume: 21 start-page: 799 year: 2008 ident: ref_174 article-title: The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-21-6-0799 – volume: 7 start-page: 1108 year: 2016 ident: ref_125 article-title: Analysis of drought-induced proteomic and metabolomic changes in barley (Hordeum vulgare L.) leaves and roots unravels some aspects of biochemical mechanisms involved in drought tolerance publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01108 – volume: 113 start-page: 173 year: 2017 ident: ref_45 article-title: The impacts of organic amendments: Do they confer stability against drought on the soil microbial community? publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.06.012 – volume: 73 start-page: 115 year: 2011 ident: ref_131 article-title: LEA proteins during water stress: Not just for plants anymore publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-012110-142203 – volume: 4 start-page: 165 year: 2010 ident: ref_16 article-title: Effects of vesicular-arbuscular mycorrhiza on the protective system in strawberry leaves under drought stress publication-title: Front. Agric. China doi: 10.1007/s11703-010-0109-8 – volume: 7 start-page: 2066 year: 2016 ident: ref_41 article-title: New physiological role for the DNA molecule as a protector against drying Stress in desiccation-tolerant microorganisms publication-title: Front. Microbiol. – volume: 198 start-page: 44 year: 2016 ident: ref_101 article-title: Changes in some physiological and osmotic parameters of several pistachio genotypes under drought stress publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2015.11.028 – volume: 5 start-page: 150 year: 2014 ident: ref_36 article-title: Glass-forming property of hydroxyectoine is the cause of its superior function as a desiccation protectant publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00150 – volume: 40 start-page: 189 year: 2008 ident: ref_70 article-title: Influence of water potential on nitrification and structure of nitrifying bacterial communities in semiarid soils publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2008.02.005 – volume: 63 start-page: 4174 year: 2013 ident: ref_38 article-title: Arthrobacter siccitolerans sp. nov., a highly desiccation-tolerant, xeroprotectant-producing strain isolated from dry soil publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.052902-0 – volume: 4 start-page: 66 year: 2013 ident: ref_180 article-title: Drought tolerance in modern and wild wheat publication-title: Sci. World. J. – volume: 88 start-page: 1386 year: 2007 ident: ref_26 article-title: Microbial stress-response physiology and its implications for ecosystem function publication-title: Ecology doi: 10.1890/06-0219 – volume: 47 start-page: 70 year: 2019 ident: ref_98 article-title: Prolonged water deficit stress and methyl jasmonate-mediated changes in metabolite profile, flavonoid concentrations and antioxidant activity in peppermint (Mentha × piperita L.) publication-title: Not. Bot. Horti. Agrobo. doi: 10.15835/nbha47110952 – volume: 54 start-page: 1087 year: 2019 ident: ref_176 article-title: Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut publication-title: HortScience doi: 10.21273/HORTSCI13961-19 – ident: ref_4 doi: 10.5772/46157 – volume: 14 start-page: 353 year: 1982 ident: ref_60 article-title: Seasonal and spatial variation in fungal biomass in a forest soil publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(82)90005-0 – volume: 9 start-page: 189 year: 2006 ident: ref_182 article-title: Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin publication-title: Plant Biol. – volume: 95 start-page: 39 year: 2002 ident: ref_82 article-title: Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars publication-title: Sci. Hortic. doi: 10.1016/S0304-4238(02)00016-X – volume: 28 start-page: 17244 year: 2021 ident: ref_6 article-title: Global drought monitoring with big geospatial datasets using Google Earth Engine publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-12023-0 – volume: 74 start-page: 2627 year: 2008 ident: ref_29 article-title: Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02711-07 – volume: 409 start-page: 1 year: 2016 ident: ref_146 article-title: Rhizodeposition under drought and consequences for soil communities and ecosystem resilience publication-title: Plant Soil doi: 10.1007/s11104-016-3090-z – volume: 6 start-page: 1131 year: 2005 ident: ref_27 article-title: Quality control of protein folding in extracellular space publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400586 – volume: 54 start-page: 78 year: 2012 ident: ref_153 article-title: Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2012.02.001 – ident: ref_2 – volume: 23 start-page: 3351 year: 2021 ident: ref_34 article-title: Dealing with water stress and microbial preservation publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.15096 – volume: 17 start-page: 1475 year: 2011 ident: ref_49 article-title: Drought-resistant fungi control soil organic matter decomposition and its response to temperature publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2010.02300.x – volume: 156 start-page: 225 year: 2018 ident: ref_154 article-title: Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.03.013 – volume: 23 start-page: 1292 year: 2016 ident: ref_85 article-title: Atmospheric CO2 enrichment and drought stress modify root exudation of barley publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13503 – volume: 12 start-page: 668736 year: 2021 ident: ref_141 article-title: Comparison of Transcriptional Response of C3 and C4 Plants to Drought Stress Using Meta-Analysis and Systems Biology Approach publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.668736 – volume: 160 start-page: 723 year: 2001 ident: ref_116 article-title: Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea publication-title: Plant Sci. doi: 10.1016/S0168-9452(00)00457-X – volume: 214 start-page: 103501 year: 2021 ident: ref_72 article-title: Drought effects on soil carbon and nitrogen dynamics in global natural ecosystems publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2020.103501 – volume: 25 start-page: 89 year: 2007 ident: ref_145 article-title: Microbial diversity and microbial activity in the rhizosphere publication-title: Cienc. Suelo – volume: 58 start-page: 1009 year: 2018 ident: ref_161 article-title: Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance publication-title: J. Basic Microbiol. doi: 10.1002/jobm.201800309 – volume: 64 start-page: 131 year: 1998 ident: ref_24 article-title: Enzymatic activities in an arid soil amended with urban organic wastes: Laboratory experiment publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(97)00171-5 – volume: 491 start-page: 1034 year: 2017 ident: ref_136 article-title: Expression of a monothiol glutaredoxin, AtGRXS17, in tomato (Solanum lycopersicum) enhances drought tolerance publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.08.006 – ident: ref_62 doi: 10.1371/journal.pone.0083365 – volume: 105 start-page: 109 year: 2016 ident: ref_156 article-title: Bacterial-mediated drought tolerance: Current and future prospects publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2016.04.009 |
SSID | ssj0000913807 |
Score | 2.5999827 |
SecondaryResourceType | review_article |
Snippet | Nowadays, the most significant consequence of climate change is drought stress. Drought is one of the important, alarming, and hazardous abiotic stresses... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 189 |
SubjectTerms | Abundance Agricultural management Agricultural practices agronomy Biological activity carbon Catalase Climate change Composition composts decline Drought Ecological function ecosystems edaphic factors Environmental impact Enzymatic activity Functionals genome Genome editing Genomes Glucosidase growth and development Metabolomics Metagenomics Microbial activity Microbiomes Microorganisms Municipal solid waste Municipal waste management Nitrogen Nutrient cycles Plant communities Plant growth plant growth and development Plant morphology Rhizosphere Sewage Slugs soil Soil environment soil enzymes Soil fertility soil microbiome Soil microorganisms Soil stresses Soil structure Soils Solid waste management Structure-function relationships Transcriptomics Urease Water scarcity water shortages water stress β-Glucosidase |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6xWWcGLYGmyu0m6x_ooKuilVryF2ZcINZEaD_XXO7tJS1HQi7c8NmGZnezMl935PkJOohQwaqPzRg7hqhBK4jyYuq7OLCRaKuAmbJC9T6_H4vYpeVqS-vJ7wmp64NpwPcYy47jBPEJjqpwhoAJhDDjDtVCRCmgdY94SmApzsIw9k3q9LskR1_fgeRqqBGK__Bt7VfelOBTo-n_MxiHEDDfIepMb0kHdp02yYostsjZ4njb8GHabPOKw0ptQ2UhLRy-DyE5FR6Hig5YFHZUvE3r3EuiV8F1N_Uc1O6NXxefs1dKBDnoRCJApFIZ60aLqfYeMh1cPF9fdRhqhq0XMqq6ViQYJsTDKxC51fc20goxzwRTILMpcFmsjbcQZnjIjEm6E7DshmJEMcekuaRVlYfcIRSsC6H7i-iAFgApHWimdKmY4t23Smxsq1w1vuJevmOSIH7xp8--mbZPTxRNvNWfGL23Pve0X7TzbdbiAPpA3PpD_5QNt0pmPXN58gu85S5lP3hKZtsnx4jZ-PH5FBApbfvg2PMWUCoP4_n_044CsMl8dEf7QdEirmn7YQ8xZKnUU3PMLr1Hr8g priority: 102 providerName: Directory of Open Access Journals |
Title | The Impact of Drought Stress on Soil Microbial Community, Enzyme Activities and Plants |
URI | https://www.proquest.com/docview/2621251596 https://www.proquest.com/docview/2636741362 https://doaj.org/article/227df3d508c6427383a4ddafd3c4b0b0 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gIHRHmIhbYyEhckok1s5-ET2patChIVohT1Fo1fq0ptUnbTQ_vrO_Z6F1Sk3pLYiaKxPeNvxjMfwIe8QrLaNHlzT3BVSq1ID1Y-M7XD0iiNwsYDssfV0an8dlaeJYfbMh2rXOvEqKhtb4KPfMIrHmxxqarPV3-ywBoVoquJQuMxbFFr04xga392_OPnxssSql42eb2KTwrC9xOcL2K2QBHCwEVgd__HHsWy_f9p5WhqDp_Ds7RHZNPVoG7DI9e9gKfT-SLVyXAv4TcNL_saMxxZ79mXSLYzsJOY-cH6jp305xfs-3kss0TfSnkgw80nNutuby4dm5rIG0FAmWFnWSAvGpav4PRw9uvgKEsUCZmRBR8yp0qDCgtptS185RvDjcZaCMk1qjqvfV0Yq1wuON1yK0thpWq8lNwqTvj0NYy6vnNvgEmdI5qm9A0qiajjldHaVJpbIdwYJmtBtSbVDw80Fhct4Ygg2va-aMfwcfPG1ap2xgN994PsN_1C1ev4oF_M27SIWs5r64WlPaUh2FQTuEZpLXorDP29zsewsx65Ni3FZft34ozh_aaZFlGIjGDn-uvQR1S0tSJj_vbhT7yDJzzkP0QfzA6MhsW126VdyaD30tTbi6j-DuDT5W0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V6QE4oPISgQKLBAckrNi768ceEEppqoS2EaIt6s3dZ1Sp2G3iCoUfxW9kdmMHBFJvvfmxXlmzs_PcmQ_gTZxJ1NrIvLFDd5VzJVAOZi7SuZWpFkoyEw7ITrPxCf98mp5uwK-uFsYfq-xkYhDUptY-Rj6gGfW6OBXZx8uryKNG-exqB6GxYot9u_yBLtviw2QX1_ctpXuj40_jqEUViDRPaBNZkWopZMKNMonLXKGpVjJnjFMlRR7nLk-0ETZmFG-p4SkzXBSOc2oETXwAFEX-JmdZTHuwuTOafvm6jur4LptFnK_yoYyJeCBn81CdkPi0c-LR5P_SfwEm4D8tEFTb3hbcb21SMlwx0QPYsNVDuDeczdu-HPYRfEN2IpNQUUlqR3YDuE9DjkKlCakrclSfX5DD89DWCedq606a5Xsyqn4uv1sy1AGnAh1zIitDPFhSs3gMJ7dCvCfQq-rKPgXCVSylLlJXSMGlVOFKK6UzRQ1jtg-DjlClbvuVe9iMixL9Fk_a8l_S9uHd-ovLVa-OG8bueNqvx_ku2-FBPZ-V7aYtKc2NYwZtWI1uWo7OvOTGSGeYxr9XcR-2u5Ur262_KP8wah9er1_jpvWZGFnZ-tqPYRmacmg8PLt5ildwZ3x8eFAeTKb7z-Eu9bUXIf6zDb1mfm1foEXUqJctGxI4u23O_w3SvSEq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFD6UFEQfpN4wWnUEfRBcsjsze5kHkdQkNFZDsVb6tp1rKNTdNtki8af56zwz2Y2i0Le-7WV2WM6cOdc55wN4FWcStTYyb-zQXeVcCZSDmYt0bmWqhZLMhAOys2z_mH88SU-24FdXC-OPVXYyMQhqU2sfIx_QjHpdnIps4NpjEYejyfuLy8gjSPlMawensWaRA7v6ge7b8t10hGv9mtLJ-OuH_ahFGIg0T2gTWZFqKWTCjTKJy1yhqVYyZ4xTJUUe5y5PtBE2ZhRvqeEpM1wUjnNqBE18MBTF_3buvaIebO-NZ4dfNhEe33GziPN1bpQxEQ_kfBEqFRKfgk48svxfujBABvynEYKam-zA3dY-JcM1Q92DLVvdhzvD-aLt0WEfwDdkLTIN1ZWkdmQUgH4achSqTkhdkaP67Jx8PgstnnCutgalWb0l4-rn6rslQx0wK9BJJ7IyxAMnNcuHcHwjxHsEvaqu7GMgXMVS6iJ1hRRcShWutFI6U9QwZvsw6AhV6rZ3uYfQOC_Rh_GkLf8lbR_ebL64WPftuGbsnqf9ZpzvuB0e1It52W7gktLcOGbQntXosuXo2EtujHSGafx7Ffdht1u5shUDy_IP0_bh5eY1bmCflZGVra_8GJahWYeGxJPrp3gBt5Djy0_T2cFTuE19GUYIBe1Cr1lc2WdoHDXqecuFBE5vmvF_A_YBJV8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Impact+of+Drought+Stress+on+Soil+Microbial+Community%2C+Enzyme+Activities+and+Plants&rft.jtitle=Agronomy+%28Basel%29&rft.au=Bogati%2C+Kalisa&rft.au=Walczak%2C+Maciej&rft.date=2022-01-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=12&rft.issue=1&rft.spage=189&rft_id=info:doi/10.3390%2Fagronomy12010189&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agronomy12010189 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |