Peak Width of Skeletonized Mean Diffusivity as Neuroimaging Biomarker in Cerebral Amyloid Angiopathy
Whole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an automated DTI-based method, peak width of skeletonized mean diffusivity, in cerebral amyloid angiopathy, together with its association with conven...
Saved in:
Published in | American journal of neuroradiology : AJNR Vol. 42; no. 5; pp. 875 - 881 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Neuroradiology
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Whole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an automated DTI-based method, peak width of skeletonized mean diffusivity, in cerebral amyloid angiopathy, together with its association with conventional MRI markers and cognitive functions.
We included 24 subjects (mean age, 74.7 [SD, 6.0] years) with probable cerebral amyloid angiopathy and mild cognitive impairment and 62 patients with MCI not attributable to cerebral amyloid angiopathy (non-cerebral amyloid angiopathy-mild cognitive impairment). We compared peak width of skeletonized mean diffusivity between subjects with cerebral amyloid angiopathy-mild cognitive impairment and non-cerebral amyloid angiopathy-mild cognitive impairment and explored its associations with cognitive functions and conventional markers of cerebral small-vessel disease, using linear regression models.
Subjects with Cerebral amyloid angiopathy-mild cognitive impairment showed increased peak width of skeletonized mean diffusivity in comparison to those with non-cerebral amyloid angiopathy-mild cognitive impairment (
< .001). Peak width of skeletonized mean diffusivity values were correlated with the volume of white matter hyperintensities in both groups. Higher peak width of skeletonized mean diffusivity was associated with worse performance in processing speed among patients with cerebral amyloid angiopathy, after adjusting for other MRI markers of cerebral small vessel disease. The peak width of skeletonized mean diffusivity did not correlate with cognitive functions among those with non-cerebral amyloid angiopathy-mild cognitive impairment.
Peak width of skeletonized mean diffusivity is altered in cerebral amyloid angiopathy and is associated with performance in processing speed. This DTI-based method may reflect the degree of white matter structural disruption in cerebral amyloid angiopathy and could be a useful biomarker for cognition in this population. |
---|---|
AbstractList | Background and purpose: Whole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an automated DTI-based method, peak width of skeletonized mean diffusivity, in cerebral amyloid angiopathy, together with its association with conventional MRI markers and cognitive functions.Materials and methods: We included 24 subjects (mean age, 74.7 [SD, 6.0] years) with probable cerebral amyloid angiopathy and mild cognitive impairment and 62 patients with MCI not attributable to cerebral amyloid angiopathy (non-cerebral amyloid angiopathy-mild cognitive impairment). We compared peak width of skeletonized mean diffusivity between subjects with cerebral amyloid angiopathy-mild cognitive impairment and non-cerebral amyloid angiopathy-mild cognitive impairment and explored its associations with cognitive functions and conventional markers of cerebral small-vessel disease, using linear regression models.Results: Subjects with Cerebral amyloid angiopathy-mild cognitive impairment showed increased peak width of skeletonized mean diffusivity in comparison to those with non-cerebral amyloid angiopathy-mild cognitive impairment (P < .001). Peak width of skeletonized mean diffusivity values were correlated with the volume of white matter hyperintensities in both groups. Higher peak width of skeletonized mean diffusivity was associated with worse performance in processing speed among patients with cerebral amyloid angiopathy, after adjusting for other MRI markers of cerebral small vessel disease. The peak width of skeletonized mean diffusivity did not correlate with cognitive functions among those with non-cerebral amyloid angiopathy-mild cognitive impairment.Conclusions: Peak width of skeletonized mean diffusivity is altered in cerebral amyloid angiopathy and is associated with performance in processing speed. This DTI-based method may reflect the degree of white matter structural disruption in cerebral amyloid angiopathy and could be a useful biomarker for cognition in this population. Whole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an automated DTI-based method, peak width of skeletonized mean diffusivity, in cerebral amyloid angiopathy, together with its association with conventional MRI markers and cognitive functions.BACKGROUND AND PURPOSEWhole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an automated DTI-based method, peak width of skeletonized mean diffusivity, in cerebral amyloid angiopathy, together with its association with conventional MRI markers and cognitive functions.We included 24 subjects (mean age, 74.7 [SD, 6.0] years) with probable cerebral amyloid angiopathy and mild cognitive impairment and 62 patients with MCI not attributable to cerebral amyloid angiopathy (non-cerebral amyloid angiopathy-mild cognitive impairment). We compared peak width of skeletonized mean diffusivity between subjects with cerebral amyloid angiopathy-mild cognitive impairment and non-cerebral amyloid angiopathy-mild cognitive impairment and explored its associations with cognitive functions and conventional markers of cerebral small-vessel disease, using linear regression models.MATERIALS AND METHODSWe included 24 subjects (mean age, 74.7 [SD, 6.0] years) with probable cerebral amyloid angiopathy and mild cognitive impairment and 62 patients with MCI not attributable to cerebral amyloid angiopathy (non-cerebral amyloid angiopathy-mild cognitive impairment). We compared peak width of skeletonized mean diffusivity between subjects with cerebral amyloid angiopathy-mild cognitive impairment and non-cerebral amyloid angiopathy-mild cognitive impairment and explored its associations with cognitive functions and conventional markers of cerebral small-vessel disease, using linear regression models.Subjects with Cerebral amyloid angiopathy-mild cognitive impairment showed increased peak width of skeletonized mean diffusivity in comparison to those with non-cerebral amyloid angiopathy-mild cognitive impairment (P < .001). Peak width of skeletonized mean diffusivity values were correlated with the volume of white matter hyperintensities in both groups. Higher peak width of skeletonized mean diffusivity was associated with worse performance in processing speed among patients with cerebral amyloid angiopathy, after adjusting for other MRI markers of cerebral small vessel disease. The peak width of skeletonized mean diffusivity did not correlate with cognitive functions among those with non-cerebral amyloid angiopathy-mild cognitive impairment.RESULTSSubjects with Cerebral amyloid angiopathy-mild cognitive impairment showed increased peak width of skeletonized mean diffusivity in comparison to those with non-cerebral amyloid angiopathy-mild cognitive impairment (P < .001). Peak width of skeletonized mean diffusivity values were correlated with the volume of white matter hyperintensities in both groups. Higher peak width of skeletonized mean diffusivity was associated with worse performance in processing speed among patients with cerebral amyloid angiopathy, after adjusting for other MRI markers of cerebral small vessel disease. The peak width of skeletonized mean diffusivity did not correlate with cognitive functions among those with non-cerebral amyloid angiopathy-mild cognitive impairment.Peak width of skeletonized mean diffusivity is altered in cerebral amyloid angiopathy and is associated with performance in processing speed. This DTI-based method may reflect the degree of white matter structural disruption in cerebral amyloid angiopathy and could be a useful biomarker for cognition in this population.CONCLUSIONSPeak width of skeletonized mean diffusivity is altered in cerebral amyloid angiopathy and is associated with performance in processing speed. This DTI-based method may reflect the degree of white matter structural disruption in cerebral amyloid angiopathy and could be a useful biomarker for cognition in this population. Whole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an automated DTI-based method, peak width of skeletonized mean diffusivity, in cerebral amyloid angiopathy, together with its association with conventional MRI markers and cognitive functions. We included 24 subjects (mean age, 74.7 [SD, 6.0] years) with probable cerebral amyloid angiopathy and mild cognitive impairment and 62 patients with MCI not attributable to cerebral amyloid angiopathy (non-cerebral amyloid angiopathy-mild cognitive impairment). We compared peak width of skeletonized mean diffusivity between subjects with cerebral amyloid angiopathy-mild cognitive impairment and non-cerebral amyloid angiopathy-mild cognitive impairment and explored its associations with cognitive functions and conventional markers of cerebral small-vessel disease, using linear regression models. Subjects with Cerebral amyloid angiopathy-mild cognitive impairment showed increased peak width of skeletonized mean diffusivity in comparison to those with non-cerebral amyloid angiopathy-mild cognitive impairment ( < .001). Peak width of skeletonized mean diffusivity values were correlated with the volume of white matter hyperintensities in both groups. Higher peak width of skeletonized mean diffusivity was associated with worse performance in processing speed among patients with cerebral amyloid angiopathy, after adjusting for other MRI markers of cerebral small vessel disease. The peak width of skeletonized mean diffusivity did not correlate with cognitive functions among those with non-cerebral amyloid angiopathy-mild cognitive impairment. Peak width of skeletonized mean diffusivity is altered in cerebral amyloid angiopathy and is associated with performance in processing speed. This DTI-based method may reflect the degree of white matter structural disruption in cerebral amyloid angiopathy and could be a useful biomarker for cognition in this population. |
Author | Duering, M. Schirmer, M.D. Greenberg, S.M. Viswanathan, A. Charidimou, A. Raposo, N. Xiong, L. Gurol, M.E. Pasi, M. Etherton, M.R. Fotiadis, P. Schoemaker, D. Schwab, K. Boulouis, G. Zanon Zotin, M.C. |
Author_xml | – sequence: 1 givenname: N. orcidid: 0000-0002-9152-4445 surname: Raposo fullname: Raposo, N. – sequence: 2 givenname: M.C. orcidid: 0000-0001-6604-0660 surname: Zanon Zotin fullname: Zanon Zotin, M.C. – sequence: 3 givenname: D. orcidid: 0000-0003-2587-8883 surname: Schoemaker fullname: Schoemaker, D. – sequence: 4 givenname: L. orcidid: 0000-0003-3851-937X surname: Xiong fullname: Xiong, L. – sequence: 5 givenname: P. orcidid: 0000-0001-7287-9227 surname: Fotiadis fullname: Fotiadis, P. – sequence: 6 givenname: A. orcidid: 0000-0001-5891-337X surname: Charidimou fullname: Charidimou, A. – sequence: 7 givenname: M. orcidid: 0000-0001-9976-2459 surname: Pasi fullname: Pasi, M. – sequence: 8 givenname: G. orcidid: 0000-0001-8422-9205 surname: Boulouis fullname: Boulouis, G. – sequence: 9 givenname: K. orcidid: 0000-0001-5723-9109 surname: Schwab fullname: Schwab, K. – sequence: 10 givenname: M.D. orcidid: 0000-0001-9561-0239 surname: Schirmer fullname: Schirmer, M.D. – sequence: 11 givenname: M.R. orcidid: 0000-0002-4739-2449 surname: Etherton fullname: Etherton, M.R. – sequence: 12 givenname: M.E. orcidid: 0000-0002-2169-4457 surname: Gurol fullname: Gurol, M.E. – sequence: 13 givenname: S.M. orcidid: 0000-0003-1792-8887 surname: Greenberg fullname: Greenberg, S.M. – sequence: 14 givenname: M. orcidid: 0000-0003-2302-3136 surname: Duering fullname: Duering, M. – sequence: 15 givenname: A. orcidid: 0000-0001-5398-1816 surname: Viswanathan fullname: Viswanathan, A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33664113$$D View this record in MEDLINE/PubMed https://ut3-toulouseinp.hal.science/hal-04700330$$DView record in HAL |
BookMark | eNptkV1v0zAYhS00xLrBDT8A-RKQMuzYie0bpKwMhlQ-JEBwZ3n2m9ZrYhc7qdT9elK6IZi4smQ_5_GRzgk6CjEAQk8pOWNU8FfmOqSzRhBePkAzqlhdqEr9OEIzQlVV1JTIY3SS8zUhpFKifISOGatrTimbIfcZzBp_925Y4djiL2voYIjB34DDH8AE_Ma37Zj91g87bDL-CGOKvjdLH5b43MfepDUk7AOeQ4KrZDrc9LsueoebsPRxY4bV7jF62Jouw5Pb8xR9e3vxdX5ZLD69ez9vFoXltBwKEBZYa4DxGowkQIyxAupSVq6lslXEMaitU5YyySQhtSgFtJXkylaV4o6dotcH72a86sFZCMNUSG_SVDjtdDRe__sS_Eov41ZLSitWi0nw4iBY3YtdNgu9vyNcEMIY2dKJfX77WYo_R8iD7n220HUmQByzLrmSXErB-IQ--7vXH_PdDBNADoBNMecErbZ-MIOP-5q-05To_dJ6v7T-vfQUeXkvcmf9D_wLnxarVA |
CitedBy_id | crossref_primary_10_1002_acn3_51824 crossref_primary_10_1007_s00234_024_03499_5 crossref_primary_10_3389_fnins_2024_1427947 crossref_primary_10_3389_fneur_2024_1461258 crossref_primary_10_2139_ssrn_3984250 crossref_primary_10_1016_j_nic_2023_09_001 crossref_primary_10_1016_j_ibneur_2024_02_007 crossref_primary_10_1016_j_nicl_2022_103002 crossref_primary_10_1177_17474930211055906 crossref_primary_10_1097_WCO_0000000000001236 crossref_primary_10_1002_alz_14594 crossref_primary_10_1161_STROKEAHA_123_044688 crossref_primary_10_1148_radiol_212780 crossref_primary_10_3233_JAD_230553 crossref_primary_10_1097_WCO_0000000000000913 crossref_primary_10_1002_nbm_4743 crossref_primary_10_1016_j_gaitpost_2024_08_078 crossref_primary_10_1177_0271678X241261771 crossref_primary_10_31393_morphology_journal_2022_28_3__10 crossref_primary_10_1002_alz_13729 crossref_primary_10_1038_s41583_024_00846_6 crossref_primary_10_3389_fnins_2023_1141007 crossref_primary_10_1212_WNL_0000000000207854 crossref_primary_10_1016_S1474_4422_23_00114_X crossref_primary_10_1002_ana_26761 crossref_primary_10_1007_s00415_023_11592_7 crossref_primary_10_1016_j_tjpad_2024_100037 |
Cites_doi | 10.1111/j.1365-2796.2004.01388.x 10.1016/S1474-4422(09)70013-4 10.1093/brain/awv162 10.1186/alzrt231 10.1093/brain/awu316 10.1093/arclin/14.2.167 10.1136/jnnp-2011-301308 10.1001/jama.1993.03500180078038 10.3389/fneur.2019.00999 10.1212/wnl.57.4.632 10.1097/WAD.0b013e318191c7dd 10.1212/WNL.0000000000002362 10.1080/13854049108403297 10.1002/alz.12150 10.1093/brain/awx047 10.1161/STROKEAHA.118.022280 10.1212/WNL.0000000000001398 10.1093/geronj/47.3.P154 10.3389/fnins.2020.00238 10.1016/j.nicl.2020.102280 10.1017/S1355617709090626 10.1016/j.dadm.2019.09.003 10.3389/fpsyt.2020.00342 10.1002/ana.22516 10.1161/01.STR.0000227328.86353.a7 10.1016/S1474-4422(13)70124-8 10.3389/fpsyt.2019.00524 10.1016/S1474-4422(16)30030-8 10.1016/j.dadm.2019.01.002 10.1159/000375153 10.1159/000442299 10.1161/JAHA.118.011288 10.1212/WNL.0000000000002175 10.1212/WNL.0b013e3181dad605 10.1016/j.acn.2003.09.009 10.1212/01.wnl.0000142966.22886.20 10.1002/ana.24758 10.1002/1097-4679(198707)43:4<402::AID-JCLP2270430411>3.0.CO;2-E 10.1016/S0887-6177(03)00039-8 10.1016/j.nicl.2018.06.025 10.1076/jcen.20.6.828.1105 10.1371/journal.pone.0178886 10.1212/WNL.0000000000006699 |
ContentType | Journal Article |
Copyright | 2021 by American Journal of Neuroradiology. Distributed under a Creative Commons Attribution 4.0 International License 2021 by American Journal of Neuroradiology 2021 American Journal of Neuroradiology |
Copyright_xml | – notice: 2021 by American Journal of Neuroradiology. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2021 by American Journal of Neuroradiology 2021 American Journal of Neuroradiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC 5PM |
DOI | 10.3174/ajnr.A7042 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1936-959X |
EndPage | 881 |
ExternalDocumentID | PMC8115367 oai_HAL_hal_04700330v1 33664113 10_3174_ajnr_A7042 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS104130 – fundername: NIA NIH HHS grantid: P50 AG005134 – fundername: NIA NIH HHS grantid: R01 AG026484 – fundername: NIA NIH HHS grantid: R01 AG047975 – fundername: ; – fundername: ; grantid: K23AG02872605; P50AG005134; R01AG026484; R01AG047975 – fundername: Fulbright Scholarship – fundername: Harvard University Committee on General Scholarship grantid: Arthur Sachs Scholarship – fundername: European Union's Horizon 2020 research and innovation program grantid: Marie Sklodowska-Curie grant agreement No 753896 |
GroupedDBID | --- .55 .GJ 23M 2WC 53G 5GY 5RE 5VS 6J9 AAEJM AAYXX ACGFO ACIWK ACPRK ADBBV AENEX AFFNX AFHIN AFRAH AJJEV ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 E3Z EBS EJD EMOBN F5P F9R GX1 H13 INIJC KQ8 MV1 N9A OK1 P2P P6G R0Z RHI RPM TNE TR2 UDS W8F WOQ WOW X7M ZCG ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 1XC 5PM |
ID | FETCH-LOGICAL-c412t-e7ce3fae346ea80e0aac7e6285df18f90d3e6cd9c13838006727ef5849c5594d3 |
ISSN | 0195-6108 1936-959X |
IngestDate | Thu Aug 21 17:27:16 EDT 2025 Fri May 09 12:20:46 EDT 2025 Fri Jul 11 16:45:55 EDT 2025 Mon Jul 21 05:56:56 EDT 2025 Tue Jul 01 01:45:14 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2021 by American Journal of Neuroradiology. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Indicates open access to non-subscribers at www.ajnr.org |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c412t-e7ce3fae346ea80e0aac7e6285df18f90d3e6cd9c13838006727ef5849c5594d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC8115367 N. Raposo and M.C. Zanon Zotin contributed equally to this work. |
ORCID | 0000-0001-5891-337X 0000-0003-2587-8883 0000-0001-8422-9205 0000-0002-9152-4445 0000-0002-4739-2449 0000-0003-3851-937X 0000-0001-6604-0660 0000-0001-9976-2459 0000-0001-5398-1816 0000-0003-1792-8887 0000-0001-5723-9109 0000-0001-7287-9227 0000-0001-9561-0239 0000-0002-2169-4457 0000-0003-2302-3136 |
OpenAccessLink | http://www.ajnr.org/content/ajnr/42/5/875.full.pdf |
PMID | 33664113 |
PQID | 2498488734 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8115367 hal_primary_oai_HAL_hal_04700330v1 proquest_miscellaneous_2498488734 pubmed_primary_33664113 crossref_citationtrail_10_3174_ajnr_A7042 crossref_primary_10_3174_ajnr_A7042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-00 20210501 2021-05 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of neuroradiology : AJNR |
PublicationTitleAlternate | AJNR Am J Neuroradiol |
PublicationYear | 2021 |
Publisher | American Society of Neuroradiology |
Publisher_xml | – name: American Society of Neuroradiology |
References | 2022090904250742000_42.5.875.1 2022090904250742000_42.5.875.19 2022090904250742000_42.5.875.18 2022090904250742000_42.5.875.17 2022090904250742000_42.5.875.39 2022090904250742000_42.5.875.4 2022090904250742000_42.5.875.16 2022090904250742000_42.5.875.38 2022090904250742000_42.5.875.5 2022090904250742000_42.5.875.15 2022090904250742000_42.5.875.37 2022090904250742000_42.5.875.2 2022090904250742000_42.5.875.14 2022090904250742000_42.5.875.36 2022090904250742000_42.5.875.3 2022090904250742000_42.5.875.13 2022090904250742000_42.5.875.35 2022090904250742000_42.5.875.12 2022090904250742000_42.5.875.34 2022090904250742000_42.5.875.11 2022090904250742000_42.5.875.33 2022090904250742000_42.5.875.10 2022090904250742000_42.5.875.32 2022090904250742000_42.5.875.31 2022090904250742000_42.5.875.30 2022090904250742000_42.5.875.29 2022090904250742000_42.5.875.28 2022090904250742000_42.5.875.27 2022090904250742000_42.5.875.26 2022090904250742000_42.5.875.25 2022090904250742000_42.5.875.24 2022090904250742000_42.5.875.23 2022090904250742000_42.5.875.22 2022090904250742000_42.5.875.44 2022090904250742000_42.5.875.21 2022090904250742000_42.5.875.43 2022090904250742000_42.5.875.20 2022090904250742000_42.5.875.42 2022090904250742000_42.5.875.41 2022090904250742000_42.5.875.40 2022090904250742000_42.5.875.8 2022090904250742000_42.5.875.9 2022090904250742000_42.5.875.6 2022090904250742000_42.5.875.7 |
References_xml | – ident: 2022090904250742000_42.5.875.14 doi: 10.1111/j.1365-2796.2004.01388.x – ident: 2022090904250742000_42.5.875.28 doi: 10.1016/S1474-4422(09)70013-4 – ident: 2022090904250742000_42.5.875.29 doi: 10.1093/brain/awv162 – ident: 2022090904250742000_42.5.875.6 doi: 10.1186/alzrt231 – ident: 2022090904250742000_42.5.875.11 doi: 10.1093/brain/awu316 – ident: 2022090904250742000_42.5.875.24 doi: 10.1093/arclin/14.2.167 – ident: 2022090904250742000_42.5.875.1 doi: 10.1136/jnnp-2011-301308 – ident: 2022090904250742000_42.5.875.22 – ident: 2022090904250742000_42.5.875.16 doi: 10.1001/jama.1993.03500180078038 – ident: 2022090904250742000_42.5.875.36 doi: 10.3389/fneur.2019.00999 – ident: 2022090904250742000_42.5.875.5 doi: 10.1212/wnl.57.4.632 – ident: 2022090904250742000_42.5.875.17 doi: 10.1097/WAD.0b013e318191c7dd – ident: 2022090904250742000_42.5.875.12 doi: 10.1212/WNL.0000000000002362 – ident: 2022090904250742000_42.5.875.21 doi: 10.1080/13854049108403297 – ident: 2022090904250742000_42.5.875.42 doi: 10.1002/alz.12150 – ident: 2022090904250742000_42.5.875.10 doi: 10.1093/brain/awx047 – ident: 2022090904250742000_42.5.875.9 doi: 10.1161/STROKEAHA.118.022280 – ident: 2022090904250742000_42.5.875.44 doi: 10.1212/WNL.0000000000001398 – ident: 2022090904250742000_42.5.875.23 doi: 10.1093/geronj/47.3.P154 – ident: 2022090904250742000_42.5.875.34 doi: 10.3389/fnins.2020.00238 – ident: 2022090904250742000_42.5.875.37 doi: 10.1016/j.nicl.2020.102280 – ident: 2022090904250742000_42.5.875.20 doi: 10.1017/S1355617709090626 – ident: 2022090904250742000_42.5.875.33 doi: 10.1016/j.dadm.2019.09.003 – ident: 2022090904250742000_42.5.875.40 doi: 10.3389/fpsyt.2020.00342 – ident: 2022090904250742000_42.5.875.38 doi: 10.1002/ana.22516 – ident: 2022090904250742000_42.5.875.41 doi: 10.1161/01.STR.0000227328.86353.a7 – ident: 2022090904250742000_42.5.875.27 doi: 10.1016/S1474-4422(13)70124-8 – ident: 2022090904250742000_42.5.875.32 doi: 10.3389/fpsyt.2019.00524 – ident: 2022090904250742000_42.5.875.31 doi: 10.1016/S1474-4422(16)30030-8 – ident: 2022090904250742000_42.5.875.39 doi: 10.1016/j.dadm.2019.01.002 – ident: 2022090904250742000_42.5.875.30 doi: 10.1159/000375153 – ident: 2022090904250742000_42.5.875.7 doi: 10.1159/000442299 – ident: 2022090904250742000_42.5.875.35 doi: 10.1161/JAHA.118.011288 – ident: 2022090904250742000_42.5.875.3 doi: 10.1212/WNL.0000000000002175 – ident: 2022090904250742000_42.5.875.15 doi: 10.1212/WNL.0b013e3181dad605 – ident: 2022090904250742000_42.5.875.19 doi: 10.1016/j.acn.2003.09.009 – ident: 2022090904250742000_42.5.875.8 doi: 10.1212/01.wnl.0000142966.22886.20 – ident: 2022090904250742000_42.5.875.13 doi: 10.1002/ana.24758 – ident: 2022090904250742000_42.5.875.18 doi: 10.1002/1097-4679(198707)43:4<402::AID-JCLP2270430411>3.0.CO;2-E – ident: 2022090904250742000_42.5.875.26 doi: 10.1016/S0887-6177(03)00039-8 – ident: 2022090904250742000_42.5.875.4 doi: 10.1016/j.nicl.2018.06.025 – ident: 2022090904250742000_42.5.875.25 doi: 10.1076/jcen.20.6.828.1105 – ident: 2022090904250742000_42.5.875.2 doi: 10.1371/journal.pone.0178886 – ident: 2022090904250742000_42.5.875.43 doi: 10.1212/WNL.0000000000006699 |
SSID | ssj0005972 |
Score | 2.485663 |
Snippet | Whole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an... Background and purpose: Whole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive... |
SourceID | pubmedcentral hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 875 |
SubjectTerms | Adult Brain Aged Aged, 80 and over Biomarkers Cerebral Amyloid Angiopathy - diagnostic imaging Cerebral Amyloid Angiopathy - psychology Cerebral Small Vessel Diseases - diagnostic imaging Cognition Cognitive Dysfunction - diagnostic imaging Cognitive Dysfunction - psychology Diffusion Magnetic Resonance Imaging Diffusion Tensor Imaging - methods Female Functional Human health and pathology Humans Image Processing, Computer-Assisted - methods Life Sciences Male Neuroimaging Psychomotor Performance Reaction Time |
Title | Peak Width of Skeletonized Mean Diffusivity as Neuroimaging Biomarker in Cerebral Amyloid Angiopathy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33664113 https://www.proquest.com/docview/2498488734 https://ut3-toulouseinp.hal.science/hal-04700330 https://pubmed.ncbi.nlm.nih.gov/PMC8115367 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb5swFLbWTqr6Mu2-tNvkXV6miQywY8xjdlPUNZUmtVLUF2SMWVgXiEiyh_76HdtATNZJ215QBDagfB_H5_jcEHqtVWiVigxsE5Z6FJY0L81C5im4EKTw6iOT4T09Y5MLejIbzRyPqc4uWadDeX1jXsn_oArnAFedJfsPyHY3hRPwG_CFIyAMx7_CGOTZFXzX2Xpuck-uYAkBVa64BiVyqnfYPxZ5vlnZ9hBCC7RNXRUL25fofVEtdGhObfL-VK0dyIDWAgz4Ins7Lr8Vle5W3PP6du4dp96EKYhZi6wp5mQ2Gk_OHP_RslpVPZ_PpSiBcpdVU75g6mzUgixWC9EEenSxyLOiiRs-dfcowmAbEThUVq7GhHnxyHTN7QQvDR2CjRwpym0zlV3pDqoO1UvX97IejiPfTndgXi4MzoQwRgOb4bpTS7u9tIduh2BW6I4XX75uq8uDcRXaErb6Ue-2DzpEB-3Unv6yN9fRs7-bJrsRto7Kcn4X3WlsDTy2xLmHbqnyPjqYNtEUD1Cm-YMNf3CVY5c_WPMHO_zBYoVd_uCOP7goccsf3PAHb_nzEF18_nT-YeI1XTc8SYNw7alIKpILRShTgvvKF0JGSmfaZnnA89jPiGIyi2VAOOHWla9y0GNjCdYpzcgjtA80Uk8QFjSQHGYpxUMqIxaHgvFUSJmOsoin8QC9af_LRDYl6XVnlB8JmKYagkRDkBgIBuhVN3ZpC7HcOOolQNIN0LXTJ-PTRJ_zaaQbF_o_gwF60SKWgDDVHjJRqmqzSkIac1jRIkIH6LFFsLtXS4ABinrY9h7Wv1IWc1OwnYPZRVh09Md7HqPD7WfzFO2v6416BsruOn1uGPoL-s-upw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peak+Width+of+Skeletonized+Mean+Diffusivity+as+Neuroimaging+Biomarker+in+Cerebral+Amyloid+Angiopathy&rft.jtitle=American+journal+of+neuroradiology+%3A+AJNR&rft.au=Raposo%2C+N&rft.au=Zanon+Zotin%2C+M+C&rft.au=Schoemaker%2C+D&rft.au=Xiong%2C+L&rft.date=2021-05-01&rft.eissn=1936-959X&rft.volume=42&rft.issue=5&rft.spage=875&rft_id=info:doi/10.3174%2Fajnr.A7042&rft_id=info%3Apmid%2F33664113&rft.externalDocID=33664113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6108&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6108&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6108&client=summon |