Peak Width of Skeletonized Mean Diffusivity as Neuroimaging Biomarker in Cerebral Amyloid Angiopathy

Whole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an automated DTI-based method, peak width of skeletonized mean diffusivity, in cerebral amyloid angiopathy, together with its association with conven...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of neuroradiology : AJNR Vol. 42; no. 5; pp. 875 - 881
Main Authors Raposo, N., Zanon Zotin, M.C., Schoemaker, D., Xiong, L., Fotiadis, P., Charidimou, A., Pasi, M., Boulouis, G., Schwab, K., Schirmer, M.D., Etherton, M.R., Gurol, M.E., Greenberg, S.M., Duering, M., Viswanathan, A.
Format Journal Article
LanguageEnglish
Published United States American Society of Neuroradiology 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Whole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an automated DTI-based method, peak width of skeletonized mean diffusivity, in cerebral amyloid angiopathy, together with its association with conventional MRI markers and cognitive functions. We included 24 subjects (mean age, 74.7 [SD, 6.0] years) with probable cerebral amyloid angiopathy and mild cognitive impairment and 62 patients with MCI not attributable to cerebral amyloid angiopathy (non-cerebral amyloid angiopathy-mild cognitive impairment). We compared peak width of skeletonized mean diffusivity between subjects with cerebral amyloid angiopathy-mild cognitive impairment and non-cerebral amyloid angiopathy-mild cognitive impairment and explored its associations with cognitive functions and conventional markers of cerebral small-vessel disease, using linear regression models. Subjects with Cerebral amyloid angiopathy-mild cognitive impairment showed increased peak width of skeletonized mean diffusivity in comparison to those with non-cerebral amyloid angiopathy-mild cognitive impairment ( < .001). Peak width of skeletonized mean diffusivity values were correlated with the volume of white matter hyperintensities in both groups. Higher peak width of skeletonized mean diffusivity was associated with worse performance in processing speed among patients with cerebral amyloid angiopathy, after adjusting for other MRI markers of cerebral small vessel disease. The peak width of skeletonized mean diffusivity did not correlate with cognitive functions among those with non-cerebral amyloid angiopathy-mild cognitive impairment. Peak width of skeletonized mean diffusivity is altered in cerebral amyloid angiopathy and is associated with performance in processing speed. This DTI-based method may reflect the degree of white matter structural disruption in cerebral amyloid angiopathy and could be a useful biomarker for cognition in this population.
AbstractList Background and purpose: Whole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an automated DTI-based method, peak width of skeletonized mean diffusivity, in cerebral amyloid angiopathy, together with its association with conventional MRI markers and cognitive functions.Materials and methods: We included 24 subjects (mean age, 74.7 [SD, 6.0] years) with probable cerebral amyloid angiopathy and mild cognitive impairment and 62 patients with MCI not attributable to cerebral amyloid angiopathy (non-cerebral amyloid angiopathy-mild cognitive impairment). We compared peak width of skeletonized mean diffusivity between subjects with cerebral amyloid angiopathy-mild cognitive impairment and non-cerebral amyloid angiopathy-mild cognitive impairment and explored its associations with cognitive functions and conventional markers of cerebral small-vessel disease, using linear regression models.Results: Subjects with Cerebral amyloid angiopathy-mild cognitive impairment showed increased peak width of skeletonized mean diffusivity in comparison to those with non-cerebral amyloid angiopathy-mild cognitive impairment (P < .001). Peak width of skeletonized mean diffusivity values were correlated with the volume of white matter hyperintensities in both groups. Higher peak width of skeletonized mean diffusivity was associated with worse performance in processing speed among patients with cerebral amyloid angiopathy, after adjusting for other MRI markers of cerebral small vessel disease. The peak width of skeletonized mean diffusivity did not correlate with cognitive functions among those with non-cerebral amyloid angiopathy-mild cognitive impairment.Conclusions: Peak width of skeletonized mean diffusivity is altered in cerebral amyloid angiopathy and is associated with performance in processing speed. This DTI-based method may reflect the degree of white matter structural disruption in cerebral amyloid angiopathy and could be a useful biomarker for cognition in this population.
Whole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an automated DTI-based method, peak width of skeletonized mean diffusivity, in cerebral amyloid angiopathy, together with its association with conventional MRI markers and cognitive functions.BACKGROUND AND PURPOSEWhole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an automated DTI-based method, peak width of skeletonized mean diffusivity, in cerebral amyloid angiopathy, together with its association with conventional MRI markers and cognitive functions.We included 24 subjects (mean age, 74.7 [SD, 6.0] years) with probable cerebral amyloid angiopathy and mild cognitive impairment and 62 patients with MCI not attributable to cerebral amyloid angiopathy (non-cerebral amyloid angiopathy-mild cognitive impairment). We compared peak width of skeletonized mean diffusivity between subjects with cerebral amyloid angiopathy-mild cognitive impairment and non-cerebral amyloid angiopathy-mild cognitive impairment and explored its associations with cognitive functions and conventional markers of cerebral small-vessel disease, using linear regression models.MATERIALS AND METHODSWe included 24 subjects (mean age, 74.7 [SD, 6.0] years) with probable cerebral amyloid angiopathy and mild cognitive impairment and 62 patients with MCI not attributable to cerebral amyloid angiopathy (non-cerebral amyloid angiopathy-mild cognitive impairment). We compared peak width of skeletonized mean diffusivity between subjects with cerebral amyloid angiopathy-mild cognitive impairment and non-cerebral amyloid angiopathy-mild cognitive impairment and explored its associations with cognitive functions and conventional markers of cerebral small-vessel disease, using linear regression models.Subjects with Cerebral amyloid angiopathy-mild cognitive impairment showed increased peak width of skeletonized mean diffusivity in comparison to those with non-cerebral amyloid angiopathy-mild cognitive impairment (P < .001). Peak width of skeletonized mean diffusivity values were correlated with the volume of white matter hyperintensities in both groups. Higher peak width of skeletonized mean diffusivity was associated with worse performance in processing speed among patients with cerebral amyloid angiopathy, after adjusting for other MRI markers of cerebral small vessel disease. The peak width of skeletonized mean diffusivity did not correlate with cognitive functions among those with non-cerebral amyloid angiopathy-mild cognitive impairment.RESULTSSubjects with Cerebral amyloid angiopathy-mild cognitive impairment showed increased peak width of skeletonized mean diffusivity in comparison to those with non-cerebral amyloid angiopathy-mild cognitive impairment (P < .001). Peak width of skeletonized mean diffusivity values were correlated with the volume of white matter hyperintensities in both groups. Higher peak width of skeletonized mean diffusivity was associated with worse performance in processing speed among patients with cerebral amyloid angiopathy, after adjusting for other MRI markers of cerebral small vessel disease. The peak width of skeletonized mean diffusivity did not correlate with cognitive functions among those with non-cerebral amyloid angiopathy-mild cognitive impairment.Peak width of skeletonized mean diffusivity is altered in cerebral amyloid angiopathy and is associated with performance in processing speed. This DTI-based method may reflect the degree of white matter structural disruption in cerebral amyloid angiopathy and could be a useful biomarker for cognition in this population.CONCLUSIONSPeak width of skeletonized mean diffusivity is altered in cerebral amyloid angiopathy and is associated with performance in processing speed. This DTI-based method may reflect the degree of white matter structural disruption in cerebral amyloid angiopathy and could be a useful biomarker for cognition in this population.
Whole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an automated DTI-based method, peak width of skeletonized mean diffusivity, in cerebral amyloid angiopathy, together with its association with conventional MRI markers and cognitive functions. We included 24 subjects (mean age, 74.7 [SD, 6.0] years) with probable cerebral amyloid angiopathy and mild cognitive impairment and 62 patients with MCI not attributable to cerebral amyloid angiopathy (non-cerebral amyloid angiopathy-mild cognitive impairment). We compared peak width of skeletonized mean diffusivity between subjects with cerebral amyloid angiopathy-mild cognitive impairment and non-cerebral amyloid angiopathy-mild cognitive impairment and explored its associations with cognitive functions and conventional markers of cerebral small-vessel disease, using linear regression models. Subjects with Cerebral amyloid angiopathy-mild cognitive impairment showed increased peak width of skeletonized mean diffusivity in comparison to those with non-cerebral amyloid angiopathy-mild cognitive impairment ( < .001). Peak width of skeletonized mean diffusivity values were correlated with the volume of white matter hyperintensities in both groups. Higher peak width of skeletonized mean diffusivity was associated with worse performance in processing speed among patients with cerebral amyloid angiopathy, after adjusting for other MRI markers of cerebral small vessel disease. The peak width of skeletonized mean diffusivity did not correlate with cognitive functions among those with non-cerebral amyloid angiopathy-mild cognitive impairment. Peak width of skeletonized mean diffusivity is altered in cerebral amyloid angiopathy and is associated with performance in processing speed. This DTI-based method may reflect the degree of white matter structural disruption in cerebral amyloid angiopathy and could be a useful biomarker for cognition in this population.
Author Duering, M.
Schirmer, M.D.
Greenberg, S.M.
Viswanathan, A.
Charidimou, A.
Raposo, N.
Xiong, L.
Gurol, M.E.
Pasi, M.
Etherton, M.R.
Fotiadis, P.
Schoemaker, D.
Schwab, K.
Boulouis, G.
Zanon Zotin, M.C.
Author_xml – sequence: 1
  givenname: N.
  orcidid: 0000-0002-9152-4445
  surname: Raposo
  fullname: Raposo, N.
– sequence: 2
  givenname: M.C.
  orcidid: 0000-0001-6604-0660
  surname: Zanon Zotin
  fullname: Zanon Zotin, M.C.
– sequence: 3
  givenname: D.
  orcidid: 0000-0003-2587-8883
  surname: Schoemaker
  fullname: Schoemaker, D.
– sequence: 4
  givenname: L.
  orcidid: 0000-0003-3851-937X
  surname: Xiong
  fullname: Xiong, L.
– sequence: 5
  givenname: P.
  orcidid: 0000-0001-7287-9227
  surname: Fotiadis
  fullname: Fotiadis, P.
– sequence: 6
  givenname: A.
  orcidid: 0000-0001-5891-337X
  surname: Charidimou
  fullname: Charidimou, A.
– sequence: 7
  givenname: M.
  orcidid: 0000-0001-9976-2459
  surname: Pasi
  fullname: Pasi, M.
– sequence: 8
  givenname: G.
  orcidid: 0000-0001-8422-9205
  surname: Boulouis
  fullname: Boulouis, G.
– sequence: 9
  givenname: K.
  orcidid: 0000-0001-5723-9109
  surname: Schwab
  fullname: Schwab, K.
– sequence: 10
  givenname: M.D.
  orcidid: 0000-0001-9561-0239
  surname: Schirmer
  fullname: Schirmer, M.D.
– sequence: 11
  givenname: M.R.
  orcidid: 0000-0002-4739-2449
  surname: Etherton
  fullname: Etherton, M.R.
– sequence: 12
  givenname: M.E.
  orcidid: 0000-0002-2169-4457
  surname: Gurol
  fullname: Gurol, M.E.
– sequence: 13
  givenname: S.M.
  orcidid: 0000-0003-1792-8887
  surname: Greenberg
  fullname: Greenberg, S.M.
– sequence: 14
  givenname: M.
  orcidid: 0000-0003-2302-3136
  surname: Duering
  fullname: Duering, M.
– sequence: 15
  givenname: A.
  orcidid: 0000-0001-5398-1816
  surname: Viswanathan
  fullname: Viswanathan, A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33664113$$D View this record in MEDLINE/PubMed
https://ut3-toulouseinp.hal.science/hal-04700330$$DView record in HAL
BookMark eNptkV1v0zAYhS00xLrBDT8A-RKQMuzYie0bpKwMhlQ-JEBwZ3n2m9ZrYhc7qdT9elK6IZi4smQ_5_GRzgk6CjEAQk8pOWNU8FfmOqSzRhBePkAzqlhdqEr9OEIzQlVV1JTIY3SS8zUhpFKifISOGatrTimbIfcZzBp_925Y4djiL2voYIjB34DDH8AE_Ma37Zj91g87bDL-CGOKvjdLH5b43MfepDUk7AOeQ4KrZDrc9LsueoebsPRxY4bV7jF62Jouw5Pb8xR9e3vxdX5ZLD69ez9vFoXltBwKEBZYa4DxGowkQIyxAupSVq6lslXEMaitU5YyySQhtSgFtJXkylaV4o6dotcH72a86sFZCMNUSG_SVDjtdDRe__sS_Eov41ZLSitWi0nw4iBY3YtdNgu9vyNcEMIY2dKJfX77WYo_R8iD7n220HUmQByzLrmSXErB-IQ--7vXH_PdDBNADoBNMecErbZ-MIOP-5q-05To_dJ6v7T-vfQUeXkvcmf9D_wLnxarVA
CitedBy_id crossref_primary_10_1002_acn3_51824
crossref_primary_10_1007_s00234_024_03499_5
crossref_primary_10_3389_fnins_2024_1427947
crossref_primary_10_3389_fneur_2024_1461258
crossref_primary_10_2139_ssrn_3984250
crossref_primary_10_1016_j_nic_2023_09_001
crossref_primary_10_1016_j_ibneur_2024_02_007
crossref_primary_10_1016_j_nicl_2022_103002
crossref_primary_10_1177_17474930211055906
crossref_primary_10_1097_WCO_0000000000001236
crossref_primary_10_1002_alz_14594
crossref_primary_10_1161_STROKEAHA_123_044688
crossref_primary_10_1148_radiol_212780
crossref_primary_10_3233_JAD_230553
crossref_primary_10_1097_WCO_0000000000000913
crossref_primary_10_1002_nbm_4743
crossref_primary_10_1016_j_gaitpost_2024_08_078
crossref_primary_10_1177_0271678X241261771
crossref_primary_10_31393_morphology_journal_2022_28_3__10
crossref_primary_10_1002_alz_13729
crossref_primary_10_1038_s41583_024_00846_6
crossref_primary_10_3389_fnins_2023_1141007
crossref_primary_10_1212_WNL_0000000000207854
crossref_primary_10_1016_S1474_4422_23_00114_X
crossref_primary_10_1002_ana_26761
crossref_primary_10_1007_s00415_023_11592_7
crossref_primary_10_1016_j_tjpad_2024_100037
Cites_doi 10.1111/j.1365-2796.2004.01388.x
10.1016/S1474-4422(09)70013-4
10.1093/brain/awv162
10.1186/alzrt231
10.1093/brain/awu316
10.1093/arclin/14.2.167
10.1136/jnnp-2011-301308
10.1001/jama.1993.03500180078038
10.3389/fneur.2019.00999
10.1212/wnl.57.4.632
10.1097/WAD.0b013e318191c7dd
10.1212/WNL.0000000000002362
10.1080/13854049108403297
10.1002/alz.12150
10.1093/brain/awx047
10.1161/STROKEAHA.118.022280
10.1212/WNL.0000000000001398
10.1093/geronj/47.3.P154
10.3389/fnins.2020.00238
10.1016/j.nicl.2020.102280
10.1017/S1355617709090626
10.1016/j.dadm.2019.09.003
10.3389/fpsyt.2020.00342
10.1002/ana.22516
10.1161/01.STR.0000227328.86353.a7
10.1016/S1474-4422(13)70124-8
10.3389/fpsyt.2019.00524
10.1016/S1474-4422(16)30030-8
10.1016/j.dadm.2019.01.002
10.1159/000375153
10.1159/000442299
10.1161/JAHA.118.011288
10.1212/WNL.0000000000002175
10.1212/WNL.0b013e3181dad605
10.1016/j.acn.2003.09.009
10.1212/01.wnl.0000142966.22886.20
10.1002/ana.24758
10.1002/1097-4679(198707)43:4<402::AID-JCLP2270430411>3.0.CO;2-E
10.1016/S0887-6177(03)00039-8
10.1016/j.nicl.2018.06.025
10.1076/jcen.20.6.828.1105
10.1371/journal.pone.0178886
10.1212/WNL.0000000000006699
ContentType Journal Article
Copyright 2021 by American Journal of Neuroradiology.
Distributed under a Creative Commons Attribution 4.0 International License
2021 by American Journal of Neuroradiology 2021 American Journal of Neuroradiology
Copyright_xml – notice: 2021 by American Journal of Neuroradiology.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2021 by American Journal of Neuroradiology 2021 American Journal of Neuroradiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
5PM
DOI 10.3174/ajnr.A7042
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1936-959X
EndPage 881
ExternalDocumentID PMC8115367
oai_HAL_hal_04700330v1
33664113
10_3174_ajnr_A7042
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS104130
– fundername: NIA NIH HHS
  grantid: P50 AG005134
– fundername: NIA NIH HHS
  grantid: R01 AG026484
– fundername: NIA NIH HHS
  grantid: R01 AG047975
– fundername: ;
– fundername: ;
  grantid: K23AG02872605; P50AG005134; R01AG026484; R01AG047975
– fundername: Fulbright Scholarship
– fundername: Harvard University Committee on General Scholarship
  grantid: Arthur Sachs Scholarship
– fundername: European Union's Horizon 2020 research and innovation program
  grantid: Marie Sklodowska-Curie grant agreement No 753896
GroupedDBID ---
.55
.GJ
23M
2WC
53G
5GY
5RE
5VS
6J9
AAEJM
AAYXX
ACGFO
ACIWK
ACPRK
ADBBV
AENEX
AFFNX
AFHIN
AFRAH
AJJEV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
E3Z
EBS
EJD
EMOBN
F5P
F9R
GX1
H13
INIJC
KQ8
MV1
N9A
OK1
P2P
P6G
R0Z
RHI
RPM
TNE
TR2
UDS
W8F
WOQ
WOW
X7M
ZCG
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
5PM
ID FETCH-LOGICAL-c412t-e7ce3fae346ea80e0aac7e6285df18f90d3e6cd9c13838006727ef5849c5594d3
ISSN 0195-6108
1936-959X
IngestDate Thu Aug 21 17:27:16 EDT 2025
Fri May 09 12:20:46 EDT 2025
Fri Jul 11 16:45:55 EDT 2025
Mon Jul 21 05:56:56 EDT 2025
Tue Jul 01 01:45:14 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2021 by American Journal of Neuroradiology.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Indicates open access to non-subscribers at www.ajnr.org
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-e7ce3fae346ea80e0aac7e6285df18f90d3e6cd9c13838006727ef5849c5594d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC8115367
N. Raposo and M.C. Zanon Zotin contributed equally to this work.
ORCID 0000-0001-5891-337X
0000-0003-2587-8883
0000-0001-8422-9205
0000-0002-9152-4445
0000-0002-4739-2449
0000-0003-3851-937X
0000-0001-6604-0660
0000-0001-9976-2459
0000-0001-5398-1816
0000-0003-1792-8887
0000-0001-5723-9109
0000-0001-7287-9227
0000-0001-9561-0239
0000-0002-2169-4457
0000-0003-2302-3136
OpenAccessLink http://www.ajnr.org/content/ajnr/42/5/875.full.pdf
PMID 33664113
PQID 2498488734
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8115367
hal_primary_oai_HAL_hal_04700330v1
proquest_miscellaneous_2498488734
pubmed_primary_33664113
crossref_citationtrail_10_3174_ajnr_A7042
crossref_primary_10_3174_ajnr_A7042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-00
20210501
2021-05
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of neuroradiology : AJNR
PublicationTitleAlternate AJNR Am J Neuroradiol
PublicationYear 2021
Publisher American Society of Neuroradiology
Publisher_xml – name: American Society of Neuroradiology
References 2022090904250742000_42.5.875.1
2022090904250742000_42.5.875.19
2022090904250742000_42.5.875.18
2022090904250742000_42.5.875.17
2022090904250742000_42.5.875.39
2022090904250742000_42.5.875.4
2022090904250742000_42.5.875.16
2022090904250742000_42.5.875.38
2022090904250742000_42.5.875.5
2022090904250742000_42.5.875.15
2022090904250742000_42.5.875.37
2022090904250742000_42.5.875.2
2022090904250742000_42.5.875.14
2022090904250742000_42.5.875.36
2022090904250742000_42.5.875.3
2022090904250742000_42.5.875.13
2022090904250742000_42.5.875.35
2022090904250742000_42.5.875.12
2022090904250742000_42.5.875.34
2022090904250742000_42.5.875.11
2022090904250742000_42.5.875.33
2022090904250742000_42.5.875.10
2022090904250742000_42.5.875.32
2022090904250742000_42.5.875.31
2022090904250742000_42.5.875.30
2022090904250742000_42.5.875.29
2022090904250742000_42.5.875.28
2022090904250742000_42.5.875.27
2022090904250742000_42.5.875.26
2022090904250742000_42.5.875.25
2022090904250742000_42.5.875.24
2022090904250742000_42.5.875.23
2022090904250742000_42.5.875.22
2022090904250742000_42.5.875.44
2022090904250742000_42.5.875.21
2022090904250742000_42.5.875.43
2022090904250742000_42.5.875.20
2022090904250742000_42.5.875.42
2022090904250742000_42.5.875.41
2022090904250742000_42.5.875.40
2022090904250742000_42.5.875.8
2022090904250742000_42.5.875.9
2022090904250742000_42.5.875.6
2022090904250742000_42.5.875.7
References_xml – ident: 2022090904250742000_42.5.875.14
  doi: 10.1111/j.1365-2796.2004.01388.x
– ident: 2022090904250742000_42.5.875.28
  doi: 10.1016/S1474-4422(09)70013-4
– ident: 2022090904250742000_42.5.875.29
  doi: 10.1093/brain/awv162
– ident: 2022090904250742000_42.5.875.6
  doi: 10.1186/alzrt231
– ident: 2022090904250742000_42.5.875.11
  doi: 10.1093/brain/awu316
– ident: 2022090904250742000_42.5.875.24
  doi: 10.1093/arclin/14.2.167
– ident: 2022090904250742000_42.5.875.1
  doi: 10.1136/jnnp-2011-301308
– ident: 2022090904250742000_42.5.875.22
– ident: 2022090904250742000_42.5.875.16
  doi: 10.1001/jama.1993.03500180078038
– ident: 2022090904250742000_42.5.875.36
  doi: 10.3389/fneur.2019.00999
– ident: 2022090904250742000_42.5.875.5
  doi: 10.1212/wnl.57.4.632
– ident: 2022090904250742000_42.5.875.17
  doi: 10.1097/WAD.0b013e318191c7dd
– ident: 2022090904250742000_42.5.875.12
  doi: 10.1212/WNL.0000000000002362
– ident: 2022090904250742000_42.5.875.21
  doi: 10.1080/13854049108403297
– ident: 2022090904250742000_42.5.875.42
  doi: 10.1002/alz.12150
– ident: 2022090904250742000_42.5.875.10
  doi: 10.1093/brain/awx047
– ident: 2022090904250742000_42.5.875.9
  doi: 10.1161/STROKEAHA.118.022280
– ident: 2022090904250742000_42.5.875.44
  doi: 10.1212/WNL.0000000000001398
– ident: 2022090904250742000_42.5.875.23
  doi: 10.1093/geronj/47.3.P154
– ident: 2022090904250742000_42.5.875.34
  doi: 10.3389/fnins.2020.00238
– ident: 2022090904250742000_42.5.875.37
  doi: 10.1016/j.nicl.2020.102280
– ident: 2022090904250742000_42.5.875.20
  doi: 10.1017/S1355617709090626
– ident: 2022090904250742000_42.5.875.33
  doi: 10.1016/j.dadm.2019.09.003
– ident: 2022090904250742000_42.5.875.40
  doi: 10.3389/fpsyt.2020.00342
– ident: 2022090904250742000_42.5.875.38
  doi: 10.1002/ana.22516
– ident: 2022090904250742000_42.5.875.41
  doi: 10.1161/01.STR.0000227328.86353.a7
– ident: 2022090904250742000_42.5.875.27
  doi: 10.1016/S1474-4422(13)70124-8
– ident: 2022090904250742000_42.5.875.32
  doi: 10.3389/fpsyt.2019.00524
– ident: 2022090904250742000_42.5.875.31
  doi: 10.1016/S1474-4422(16)30030-8
– ident: 2022090904250742000_42.5.875.39
  doi: 10.1016/j.dadm.2019.01.002
– ident: 2022090904250742000_42.5.875.30
  doi: 10.1159/000375153
– ident: 2022090904250742000_42.5.875.7
  doi: 10.1159/000442299
– ident: 2022090904250742000_42.5.875.35
  doi: 10.1161/JAHA.118.011288
– ident: 2022090904250742000_42.5.875.3
  doi: 10.1212/WNL.0000000000002175
– ident: 2022090904250742000_42.5.875.15
  doi: 10.1212/WNL.0b013e3181dad605
– ident: 2022090904250742000_42.5.875.19
  doi: 10.1016/j.acn.2003.09.009
– ident: 2022090904250742000_42.5.875.8
  doi: 10.1212/01.wnl.0000142966.22886.20
– ident: 2022090904250742000_42.5.875.13
  doi: 10.1002/ana.24758
– ident: 2022090904250742000_42.5.875.18
  doi: 10.1002/1097-4679(198707)43:4<402::AID-JCLP2270430411>3.0.CO;2-E
– ident: 2022090904250742000_42.5.875.26
  doi: 10.1016/S0887-6177(03)00039-8
– ident: 2022090904250742000_42.5.875.4
  doi: 10.1016/j.nicl.2018.06.025
– ident: 2022090904250742000_42.5.875.25
  doi: 10.1076/jcen.20.6.828.1105
– ident: 2022090904250742000_42.5.875.2
  doi: 10.1371/journal.pone.0178886
– ident: 2022090904250742000_42.5.875.43
  doi: 10.1212/WNL.0000000000006699
SSID ssj0005972
Score 2.485663
Snippet Whole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive impairment. We evaluated an...
Background and purpose: Whole-brain network connectivity has been shown to be a useful biomarker of cerebral amyloid angiopathy and related cognitive...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 875
SubjectTerms Adult Brain
Aged
Aged, 80 and over
Biomarkers
Cerebral Amyloid Angiopathy - diagnostic imaging
Cerebral Amyloid Angiopathy - psychology
Cerebral Small Vessel Diseases - diagnostic imaging
Cognition
Cognitive Dysfunction - diagnostic imaging
Cognitive Dysfunction - psychology
Diffusion Magnetic Resonance Imaging
Diffusion Tensor Imaging - methods
Female
Functional
Human health and pathology
Humans
Image Processing, Computer-Assisted - methods
Life Sciences
Male
Neuroimaging
Psychomotor Performance
Reaction Time
Title Peak Width of Skeletonized Mean Diffusivity as Neuroimaging Biomarker in Cerebral Amyloid Angiopathy
URI https://www.ncbi.nlm.nih.gov/pubmed/33664113
https://www.proquest.com/docview/2498488734
https://ut3-toulouseinp.hal.science/hal-04700330
https://pubmed.ncbi.nlm.nih.gov/PMC8115367
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb5swFLbWTqr6Mu2-tNvkXV6miQywY8xjdlPUNZUmtVLUF2SMWVgXiEiyh_76HdtATNZJ215QBDagfB_H5_jcEHqtVWiVigxsE5Z6FJY0L81C5im4EKTw6iOT4T09Y5MLejIbzRyPqc4uWadDeX1jXsn_oArnAFedJfsPyHY3hRPwG_CFIyAMx7_CGOTZFXzX2Xpuck-uYAkBVa64BiVyqnfYPxZ5vlnZ9hBCC7RNXRUL25fofVEtdGhObfL-VK0dyIDWAgz4Ins7Lr8Vle5W3PP6du4dp96EKYhZi6wp5mQ2Gk_OHP_RslpVPZ_PpSiBcpdVU75g6mzUgixWC9EEenSxyLOiiRs-dfcowmAbEThUVq7GhHnxyHTN7QQvDR2CjRwpym0zlV3pDqoO1UvX97IejiPfTndgXi4MzoQwRgOb4bpTS7u9tIduh2BW6I4XX75uq8uDcRXaErb6Ue-2DzpEB-3Unv6yN9fRs7-bJrsRto7Kcn4X3WlsDTy2xLmHbqnyPjqYNtEUD1Cm-YMNf3CVY5c_WPMHO_zBYoVd_uCOP7goccsf3PAHb_nzEF18_nT-YeI1XTc8SYNw7alIKpILRShTgvvKF0JGSmfaZnnA89jPiGIyi2VAOOHWla9y0GNjCdYpzcgjtA80Uk8QFjSQHGYpxUMqIxaHgvFUSJmOsoin8QC9af_LRDYl6XVnlB8JmKYagkRDkBgIBuhVN3ZpC7HcOOolQNIN0LXTJ-PTRJ_zaaQbF_o_gwF60SKWgDDVHjJRqmqzSkIac1jRIkIH6LFFsLtXS4ABinrY9h7Wv1IWc1OwnYPZRVh09Md7HqPD7WfzFO2v6416BsruOn1uGPoL-s-upw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peak+Width+of+Skeletonized+Mean+Diffusivity+as+Neuroimaging+Biomarker+in+Cerebral+Amyloid+Angiopathy&rft.jtitle=American+journal+of+neuroradiology+%3A+AJNR&rft.au=Raposo%2C+N&rft.au=Zanon+Zotin%2C+M+C&rft.au=Schoemaker%2C+D&rft.au=Xiong%2C+L&rft.date=2021-05-01&rft.eissn=1936-959X&rft.volume=42&rft.issue=5&rft.spage=875&rft_id=info:doi/10.3174%2Fajnr.A7042&rft_id=info%3Apmid%2F33664113&rft.externalDocID=33664113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6108&client=summon