Bioinformatics Methods for Mass Spectrometry-Based Proteomics Data Analysis

Recent advances in mass spectrometry (MS)-based proteomics have enabled tremendous progress in the understanding of cellular mechanisms, disease progression, and the relationship between genotype and phenotype. Though many popular bioinformatics methods in proteomics are derived from other omics stu...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 21; no. 8; p. 2873
Main Authors Chen, Chen, Hou, Jie, Tanner, John J., Cheng, Jianlin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.04.2020
MDPI
Subjects
Online AccessGet full text
ISSN1422-0067
1661-6596
1422-0067
DOI10.3390/ijms21082873

Cover

Abstract Recent advances in mass spectrometry (MS)-based proteomics have enabled tremendous progress in the understanding of cellular mechanisms, disease progression, and the relationship between genotype and phenotype. Though many popular bioinformatics methods in proteomics are derived from other omics studies, novel analysis strategies are required to deal with the unique characteristics of proteomics data. In this review, we discuss the current developments in the bioinformatics methods used in proteomics and how they facilitate the mechanistic understanding of biological processes. We first introduce bioinformatics software and tools designed for mass spectrometry-based protein identification and quantification, and then we review the different statistical and machine learning methods that have been developed to perform comprehensive analysis in proteomics studies. We conclude with a discussion of how quantitative protein data can be used to reconstruct protein interactions and signaling networks.
AbstractList Recent advances in mass spectrometry (MS)-based proteomics have enabled tremendous progress in the understanding of cellular mechanisms, disease progression, and the relationship between genotype and phenotype. Though many popular bioinformatics methods in proteomics are derived from other omics studies, novel analysis strategies are required to deal with the unique characteristics of proteomics data. In this review, we discuss the current developments in the bioinformatics methods used in proteomics and how they facilitate the mechanistic understanding of biological processes. We first introduce bioinformatics software and tools designed for mass spectrometry-based protein identification and quantification, and then we review the different statistical and machine learning methods that have been developed to perform comprehensive analysis in proteomics studies. We conclude with a discussion of how quantitative protein data can be used to reconstruct protein interactions and signaling networks.
Recent advances in mass spectrometry (MS)-based proteomics have enabled tremendous progress in the understanding of cellular mechanisms, disease progression, and the relationship between genotype and phenotype. Though many popular bioinformatics methods in proteomics are derived from other omics studies, novel analysis strategies are required to deal with the unique characteristics of proteomics data. In this review, we discuss the current developments in the bioinformatics methods used in proteomics and how they facilitate the mechanistic understanding of biological processes. We first introduce bioinformatics software and tools designed for mass spectrometry-based protein identification and quantification, and then we review the different statistical and machine learning methods that have been developed to perform comprehensive analysis in proteomics studies. We conclude with a discussion of how quantitative protein data can be used to reconstruct protein interactions and signaling networks.Recent advances in mass spectrometry (MS)-based proteomics have enabled tremendous progress in the understanding of cellular mechanisms, disease progression, and the relationship between genotype and phenotype. Though many popular bioinformatics methods in proteomics are derived from other omics studies, novel analysis strategies are required to deal with the unique characteristics of proteomics data. In this review, we discuss the current developments in the bioinformatics methods used in proteomics and how they facilitate the mechanistic understanding of biological processes. We first introduce bioinformatics software and tools designed for mass spectrometry-based protein identification and quantification, and then we review the different statistical and machine learning methods that have been developed to perform comprehensive analysis in proteomics studies. We conclude with a discussion of how quantitative protein data can be used to reconstruct protein interactions and signaling networks.
Author Chen, Chen
Cheng, Jianlin
Hou, Jie
Tanner, John J.
AuthorAffiliation 2 Department of Computer Science, Saint Louis University, St. Louis, MO 63103, USA; jie.hou@slu.edu
3 Program in Bioinformatics & Computational Biology, Saint Louis University, St. Louis, MO 63103, USA
1 Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA; ccm3x@mail.missouri.edu
4 Departments of Biochemistry and Chemistry, University of Missouri, Columbia, MO 65211, USA; tannerjj@missouri.edu
AuthorAffiliation_xml – name: 2 Department of Computer Science, Saint Louis University, St. Louis, MO 63103, USA; jie.hou@slu.edu
– name: 1 Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA; ccm3x@mail.missouri.edu
– name: 4 Departments of Biochemistry and Chemistry, University of Missouri, Columbia, MO 65211, USA; tannerjj@missouri.edu
– name: 3 Program in Bioinformatics & Computational Biology, Saint Louis University, St. Louis, MO 63103, USA
Author_xml – sequence: 1
  givenname: Chen
  orcidid: 0000-0002-2973-461X
  surname: Chen
  fullname: Chen, Chen
– sequence: 2
  givenname: Jie
  surname: Hou
  fullname: Hou, Jie
– sequence: 3
  givenname: John J.
  orcidid: 0000-0001-8314-113X
  surname: Tanner
  fullname: Tanner, John J.
– sequence: 4
  givenname: Jianlin
  surname: Cheng
  fullname: Cheng, Jianlin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32326049$$D View this record in MEDLINE/PubMed
BookMark eNptkc1LAzEQxYMoatWbZ1nw4sHVfO2mexHa-okVBfUc0uyspuxuapIK_e_N0ipVPGXI_Obx5k0Pbba2BYQOCT5jrMDnZtp4SnCf9gXbQLuEU5pinIvNtXoH9byfYkwZzYpttMNikWNe7KL7obGmraxrVDDaJw8Q3m3pk_iTPCjvk-cZ6OBsA8Et0qHyUCZPzgawTYdfqqCSQavqhTd-H21VqvZwsHr30Ov11cvoNh0_3tyNBuNUc0JDCrygZZaVUADJNOdlhisx0RkTdMJKqDjVXBMWNxIgCCsxyfsacDGptKBcY7aHLpa6s_mkgVJDG5yq5cyZRrmFtMrI353WvMs3-ykFJTkuWBQ4WQk4-zEHH2RjvIa6Vi3YuZeUFbwvckFFRI__oFM7d3HhJZWTGHtHHa07-rHynXME6BLQznrvoJLahJi47QyaWhIsu2PK9WPGodM_Q9-6_-JfcEig7Q
CitedBy_id crossref_primary_10_1016_j_ajem_2020_05_031
crossref_primary_10_3390_cancers14122957
crossref_primary_10_31083_j_jin2105147
crossref_primary_10_1186_s12991_024_00522_0
crossref_primary_10_2174_1871520621666210707095833
crossref_primary_10_3390_life10080143
crossref_primary_10_1007_s11947_023_03269_w
crossref_primary_10_1002_jms_5116
crossref_primary_10_1021_acsnano_3c10679
crossref_primary_10_1007_s11011_023_01262_y
crossref_primary_10_1021_acs_jproteome_3c00439
crossref_primary_10_3390_ijms24065743
crossref_primary_10_3389_fopht_2023_1241001
crossref_primary_10_2174_1570164620666230331102317
crossref_primary_10_1016_j_hpr_2022_300596
crossref_primary_10_1016_j_jplph_2023_154031
crossref_primary_10_1016_j_chroma_2025_465789
crossref_primary_10_1155_2023_1738750
crossref_primary_10_1109_TVCG_2022_3223399
crossref_primary_10_1016_j_cll_2022_09_021
crossref_primary_10_1021_jasms_2c00214
crossref_primary_10_1016_j_phymed_2025_156631
crossref_primary_10_1016_j_jplph_2025_154430
crossref_primary_10_1007_s13258_022_01267_4
crossref_primary_10_2147_COPD_S410387
crossref_primary_10_1016_j_ddtec_2021_06_007
crossref_primary_10_2903_j_efsa_2023_e211013
crossref_primary_10_1016_j_mcpro_2024_100818
crossref_primary_10_3389_fmolb_2021_701477
crossref_primary_10_2174_0929866530666221019162943
crossref_primary_10_1007_s13253_023_00574_x
crossref_primary_10_1177_11786469231211184
crossref_primary_10_1038_s41467_024_50875_z
crossref_primary_10_1016_j_intimp_2024_111779
crossref_primary_10_3390_proteomes12030026
crossref_primary_10_1093_femsre_fuad051
crossref_primary_10_3389_fgene_2022_1056405
crossref_primary_10_3389_fgene_2022_905353
crossref_primary_10_3390_biomedicines12030585
crossref_primary_10_1007_s10534_023_00506_9
crossref_primary_10_1186_s12014_023_09424_x
crossref_primary_10_1002_cpim_105
crossref_primary_10_1088_1757_899X_1074_1_012006
crossref_primary_10_1002_cbic_202100534
crossref_primary_10_1002_pmic_202300002
crossref_primary_10_1002_qub2_35
crossref_primary_10_1016_j_ijbiomac_2024_131923
crossref_primary_10_1007_s13318_024_00912_5
crossref_primary_10_1021_acs_jproteome_3c00075
crossref_primary_10_3390_proteomes9020029
crossref_primary_10_3390_ijms221910298
crossref_primary_10_1016_j_molcel_2021_12_027
crossref_primary_10_3389_fmicb_2023_1245805
crossref_primary_10_3390_ijms22179508
crossref_primary_10_18632_aging_204960
crossref_primary_10_3390_jcm10112309
crossref_primary_10_1016_j_arr_2022_101771
crossref_primary_10_1155_2022_9272709
crossref_primary_10_3390_ijms25105071
crossref_primary_10_3390_jpm13050790
crossref_primary_10_1002_mas_21792
crossref_primary_10_1016_j_piel_2022_07_023
crossref_primary_10_1021_acs_jcim_2c01161
crossref_primary_10_2147_BTT_S486345
crossref_primary_10_3390_metabo14010050
crossref_primary_10_1039_D3CC05988J
crossref_primary_10_3390_ijms22189860
crossref_primary_10_1002_jbt_23217
crossref_primary_10_1093_stcltm_szac052
crossref_primary_10_31083_j_fbl2901039
crossref_primary_10_1038_s41568_022_00446_5
crossref_primary_10_1097_MD_0000000000036414
crossref_primary_10_3390_ijms22137101
crossref_primary_10_1186_s12859_023_05281_5
crossref_primary_10_18632_aging_205903
crossref_primary_10_1007_s00292_023_01261_x
crossref_primary_10_1016_j_fochms_2021_100045
crossref_primary_10_1089_vim_2023_0094
crossref_primary_10_3389_fdmed_2022_814603
crossref_primary_10_3390_ijms23042187
crossref_primary_10_1016_j_jpbao_2023_100012
crossref_primary_10_1021_acs_jproteome_2c00033
crossref_primary_10_1007_s12647_024_00770_1
crossref_primary_10_1016_j_jprot_2020_103897
crossref_primary_10_1186_s12943_024_02050_7
crossref_primary_10_1186_s12884_023_06215_y
crossref_primary_10_3389_fimmu_2022_1015491
crossref_primary_10_3389_fphys_2021_723510
crossref_primary_10_1093_bioinformatics_btac628
crossref_primary_10_1109_TCOMM_2024_3367748
crossref_primary_10_3390_cells10081854
crossref_primary_10_1007_s00432_025_06144_7
crossref_primary_10_3390_biomedicines12020333
crossref_primary_10_1016_j_cosrev_2023_100571
crossref_primary_10_18632_aging_204947
crossref_primary_10_3390_ani12131718
crossref_primary_10_3390_foods12132524
crossref_primary_10_1016_j_microc_2024_111317
crossref_primary_10_1002_adsr_202200052
crossref_primary_10_1021_acsomega_1c01465
crossref_primary_10_1002_rcm_9088
crossref_primary_10_1016_j_neuro_2022_11_004
crossref_primary_10_3390_life13020544
crossref_primary_10_1186_s13023_024_03462_w
crossref_primary_10_1142_S0219720024500252
crossref_primary_10_1016_j_fbio_2025_106148
crossref_primary_10_1093_gigascience_giac048
crossref_primary_10_1152_physrev_00026_2023
crossref_primary_10_1038_s41598_024_76095_5
crossref_primary_10_1016_j_csbj_2021_12_012
crossref_primary_10_3389_fphar_2021_700696
crossref_primary_10_1016_j_imbio_2023_152722
crossref_primary_10_1002_wfs2_1516
crossref_primary_10_1080_1040841X_2022_2065905
crossref_primary_10_3390_md22010012
crossref_primary_10_1016_j_aca_2023_341790
crossref_primary_10_1016_j_hfc_2021_11_004
crossref_primary_10_1038_s41467_024_46485_4
crossref_primary_10_14720_abs_65_2_12499
crossref_primary_10_1021_acs_analchem_4c06471
crossref_primary_10_1146_annurev_anchem_061020_022048
crossref_primary_10_3934_mbe_2023005
crossref_primary_10_1093_gigascience_giae054
crossref_primary_10_1016_j_jprot_2021_104240
crossref_primary_10_3390_cells13050394
crossref_primary_10_1016_j_anireprosci_2022_107075
crossref_primary_10_1186_s12890_022_02240_3
crossref_primary_10_3390_proteomes9030038
crossref_primary_10_3389_fsurg_2022_1025557
crossref_primary_10_1007_s13199_024_00996_2
crossref_primary_10_3390_plants13192714
crossref_primary_10_3389_fnsyn_2023_1130198
crossref_primary_10_1016_j_jenvman_2023_118333
crossref_primary_10_2174_0113816128289900240219104854
crossref_primary_10_2174_1574888X17666220627145424
crossref_primary_10_1080_14789450_2021_1910028
crossref_primary_10_3390_app15020666
crossref_primary_10_3389_fgene_2021_667936
crossref_primary_10_1016_j_ccr_2021_213905
crossref_primary_10_1016_j_jep_2025_119381
crossref_primary_10_1111_acel_14318
crossref_primary_10_3389_fnmol_2021_647451
crossref_primary_10_17816_JOWD83961
Cites_doi 10.1093/nar/gkr1122
10.1093/intbio/zyz025
10.1073/pnas.96.12.6591
10.1158/1541-7786.MCR-17-0378
10.1021/pr300624g
10.1002/pmic.200600422
10.1021/ac048788h
10.1186/1471-2105-5-194
10.1038/nmeth.2698
10.1016/1044-0305(94)80016-2
10.1186/1471-2164-6-145
10.1093/nar/gkv523
10.1007/978-1-59745-493-3_28
10.1146/annurev-anchem-071015-041535
10.1038/nbt1275
10.1093/bioinformatics/btt285
10.1021/pr200153k
10.1038/nmeth891
10.1074/mcp.M900217-MCP200
10.1038/s41467-020-15346-1
10.1021/acs.jproteome.8b00927
10.1371/journal.pcbi.1005973
10.1186/1471-2105-9-80
10.1021/pr700747q
10.1093/bioinformatics/btw398
10.1002/mas.21400
10.1074/jbc.M112.351304
10.1074/mcp.O114.039586
10.3390/toxics4010005
10.1021/ac200609a
10.1093/bioinformatics/btz366
10.1021/cn400053c
10.1109/ESIAT.2009.206
10.1093/nar/gkw937
10.1093/bioinformatics/btv699
10.1002/prot.22172
10.1007/s13361-015-1264-1
10.1021/pr500060d
10.1074/mcp.M500061-MCP200
10.1007/978-1-60761-444-9_5
10.1021/ac0341261
10.1016/j.jprot.2019.103543
10.3390/ijms20205075
10.1038/nmeth.3144
10.1142/9789812772435_0039
10.1186/1471-2105-9-163
10.1007/s13361-015-1201-3
10.1021/pr2008175
10.1021/acs.jproteome.7b00028
10.1002/pmic.200900375
10.1093/nar/gkh036
10.1038/nmeth.3773
10.1074/mcp.M400215-MCP200
10.1038/nature13319
10.1046/j.1432-1033.2003.03428.x
10.1007/s12014-009-9024-5
10.1002/elps.1150180333
10.1080/14789450.2017.1359545
10.1016/j.jasms.2010.03.028
10.1021/pr200677z
10.1074/mcp.M500230-MCP200
10.1038/13690
10.1021/pr070520u
10.1186/s12859-019-3034-8
10.1074/mcp.M113.031591
10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
10.1021/pr501138h
10.1038/455047a
10.3390/ijms20205188
10.1021/pr501164r
10.1093/bioinformatics/btn590
10.1074/mcp.TIR119.001385
10.1021/pr800420s
10.1074/mcp.R112.025163
10.1093/nar/gky1131
10.1038/nprot.2016.136
10.1089/cmb.2006.13.364
10.1021/ac050102d
10.1007/978-1-4471-0123-9
10.1002/(SICI)1097-0231(19970615)11:9<1015::AID-RCM958>3.0.CO;2-H
10.1093/bioinformatics/btn615
10.1142/9789812702456_0021
10.1038/nmeth.3655
10.1021/ac0508853
10.1093/bioinformatics/bth092
10.1074/mcp.M200025-MCP200
10.1021/acs.jproteome.8b00206
10.1021/acs.jproteome.6b00034
10.1074/mcp.M113.037309
10.1038/msb.2008.75
10.1186/s12864-018-4923-3
10.1093/bioinformatics/btr246
10.1590/S0103-90162008000400015
10.1093/nar/gkq1018
10.7150/ijbs.32142
10.1038/srep31730
10.1002/cbic.201800650
10.1021/pr900721e
10.1074/mcp.M900267-MCP200
10.1002/0471250953.bi1323s44
10.1021/ac051319a
10.1002/rcm.1196
10.1021/pr049920x
10.1074/mcp.M900317-MCP200
10.1186/1471-2105-8-401
10.1089/cmb.2009.0018
10.1016/j.jprot.2012.07.034
10.1007/978-1-60761-175-2
10.1021/pr101065j
10.3390/ijms17091426
10.1007/s12011-017-1063-6
10.1093/nar/gkv1048
10.7554/eLife.16950
10.1186/gb-2003-4-9-r60
10.1021/acs.jproteome.6b00403
10.3389/fnmol.2019.00224
10.1021/acs.jproteome.8b00295
10.1002/pmic.200900370
10.1002/0471250953.bi1320s40
10.1186/s12859-019-2619-6
10.1021/ac701863d
10.1002/pmic.200400873
10.1038/nmeth1019
10.1093/nar/gkq1039
10.1146/annurev-anchem-071015-041550
10.1074/mcp.M115.050245
10.1021/pr0701198
10.1093/nar/gkg838
10.1074/mcp.D500002-MCP200
10.1021/pr100594k
10.1021/pr800154p
10.1016/j.copbio.2016.09.003
10.1021/pr500473n
10.1016/j.compbiomed.2017.08.028
10.1007/978-1-4939-9814-2_19
10.1038/nbt1289
10.1186/1471-2105-11-450
10.1021/pr1009977
10.1021/pr500880b
10.1021/acs.jproteome.7b00429
10.1093/bioinformatics/btm555
10.1016/S0140-6736(06)69342-2
10.1074/mcp.R600012-MCP200
10.1038/ncomms10259
10.1093/bioinformatics/18.suppl_1.S96
10.1002/pmic.201600267
10.1038/s41598-017-19120-0
10.1038/nmeth.3255
10.1038/s41592-019-0457-0
10.1038/nbt1001-946
10.1017/CBO9780511790515
10.1093/bioinformatics/bti685
10.1073/pnas.0904100106
10.1038/nmeth.4390
10.1073/pnas.1705691114
10.1371/journal.pone.0141287
10.1007/s11306-012-0399-3
10.3390/ijms20194905
10.1093/bioinformatics/btq054
10.1128/MCB.19.3.1720
10.1371/journal.pgen.1004047
10.1021/acs.jproteome.7b00873
10.1074/mcp.M111.010587
10.1074/mcp.T500034-MCP200
10.1074/mcp.M114.040287
10.1074/mcp.M113.035949
10.1089/106652799318300
10.1093/bioinformatics/btt338
10.1038/s41598-019-40873-3
10.1074/jbc.M115.687269
10.1002/pmic.200402101
10.1038/nprot.2010.192
10.1016/j.euprot.2015.02.002
10.1002/jssc.201900804
10.11613/BM.2011.029
10.1038/s41592-018-0260-3
10.1093/bioinformatics/btx415
10.1038/nmeth.3940
10.1093/nar/gkw1092
10.1371/journal.pone.0116221
10.1021/pr0499491
10.1021/pr100734z
10.1093/bioinformatics/btm281
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms21082873
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC7216093
32326049
10_3390_ijms21082873
Genre Journal Article
Review
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM093123
– fundername: National Science Foundation
  grantid: IIS1763246
– fundername: National Science Foundation
  grantid: DBI1759934
– fundername: NIH HHS
  grantid: R01GM093123
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c412t-e492d55de9e15c44d50f7bc5372b3def42c4c130827e713d0168ce09bfc724c03
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 14:14:59 EDT 2025
Fri Sep 05 08:53:10 EDT 2025
Fri Jul 25 19:58:24 EDT 2025
Wed Feb 19 02:29:39 EST 2025
Thu Apr 24 23:00:31 EDT 2025
Tue Jul 01 04:15:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords machine learning
bioinformatics analysis
computational proteomics
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-e492d55de9e15c44d50f7bc5372b3def42c4c130827e713d0168ce09bfc724c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8314-113X
0000-0002-2973-461X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms21082873
PMID 32326049
PQID 2394612877
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7216093
proquest_miscellaneous_2394876727
proquest_journals_2394612877
pubmed_primary_32326049
crossref_citationtrail_10_3390_ijms21082873
crossref_primary_10_3390_ijms21082873
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200420
PublicationDateYYYYMMDD 2020-04-20
PublicationDate_xml – month: 4
  year: 2020
  text: 20200420
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Searle (ref_67) 2020; 11
ref_136
Mischnik (ref_175) 2015; 32
Han (ref_81) 2001; 19
Edwards (ref_158) 2009; 5
Savitski (ref_45) 2006; 5
Rudolph (ref_48) 2019; 18
Pang (ref_174) 2020; 211
Sun (ref_182) 2012; 8
Deeb (ref_151) 2015; 14
Hill (ref_127) 2008; 7
Carbon (ref_140) 2008; 25
Tyanova (ref_18) 2016; 11
Wang (ref_19) 2015; 12
Pappireddi (ref_187) 2019; 20
Gygi (ref_2) 1999; 19
Schmidl (ref_168) 2010; 9
Tsou (ref_42) 2015; 12
Tran (ref_27) 2019; 16
Li (ref_68) 2017; 16
Nesvizhskii (ref_72) 2003; 75
Arora (ref_169) 2012; 287
Cao (ref_88) 2012; 11
Ding (ref_156) 2018; 16
Strasser (ref_4) 2019; 11
Tran (ref_64) 2017; 114
Wang (ref_38) 2014; 13
Wilhelm (ref_102) 2014; 509
Alexandrov (ref_110) 2010; 9
Geiger (ref_104) 2011; 6
Alexandrov (ref_111) 2011; 27
Monroe (ref_84) 2007; 23
Piovesan (ref_143) 2015; 43
ref_129
Jeong (ref_34) 2013; 29
Nahnsen (ref_99) 2013; 12
Agranoff (ref_152) 2006; 368
Deutsch (ref_79) 2010; 10
Addona (ref_13) 1999; 6
Bjornson (ref_26) 2008; 7
ref_120
Huber (ref_116) 2002; 18
Brodbelt (ref_24) 2015; 26
ref_123
Frank (ref_14) 2005; 77
Szklarczyk (ref_190) 2019; 47
Hill (ref_178) 2016; 13
McHugh (ref_125) 2011; 21
ref_28
Craig (ref_12) 2004; 20
Li (ref_97) 2014; 13
Chalkley (ref_23) 2005; 4
Eng (ref_16) 2008; 7
Fischer (ref_29) 2005; 77
Bern (ref_35) 2012; 40
Waegele (ref_137) 2008; 25
ref_159
ref_71
Wiese (ref_96) 2007; 7
Perfetto (ref_135) 2015; 44
Yang (ref_41) 2004; 3
Wisniewski (ref_105) 2014; 13
Luo (ref_147) 2013; 29
Tabb (ref_56) 2015; 26
ref_78
ref_76
ref_157
Pedrioli (ref_98) 2006; 3
Hanrieder (ref_106) 2013; 4
ref_160
Birhanu (ref_172) 2017; 16
Krzywinski (ref_124) 2013; 10
Cifani (ref_40) 2018; 17
Ravikumar (ref_170) 2014; 13
Wan (ref_22) 2006; 78
Dennis (ref_132) 2003; 4
Li (ref_33) 2019; 15
Weatherly (ref_49) 2005; 4
Sharaf (ref_3) 2019; 12
Petyuk (ref_54) 2008; 80
ref_141
ref_144
ref_85
Wiredja (ref_176) 2017; 33
ref_145
Elias (ref_61) 2010; 604
(ref_139) 2004; 32
Nesvizhskii (ref_70) 2014; 11
Rauniyar (ref_149) 2014; 13
Wang (ref_183) 2018; 183
Suomi (ref_114) 2016; 19
Zecha (ref_95) 2019; 18
Perkins (ref_17) 1999; 20
Bergamo (ref_121) 2008; 65
Bern (ref_117) 2006; 13
ref_58
ref_173
Bauer (ref_161) 2003; 270
Cheerathodi (ref_186) 2020; 2060
ref_177
Pirhaji (ref_184) 2016; 13
ref_179
Wei (ref_118) 2018; 8
Croft (ref_146) 2010; 39
Rinner (ref_162) 2007; 25
Chapman (ref_65) 2014; 33
Silva (ref_103) 2006; 5
Xie (ref_130) 2005; 21
ref_180
Eng (ref_10) 1994; 5
Petyuk (ref_53) 2010; 9
Han (ref_69) 2011; 10
Ma (ref_30) 2003; 17
Herbrich (ref_128) 2013; 12
Kou (ref_25) 2016; 32
Donnelly (ref_8) 2019; 16
Toby (ref_7) 2016; 9
Ting (ref_31) 2017; 14
Wisniewski (ref_113) 2016; 15
Mortensen (ref_52) 2010; 9
Geer (ref_11) 2004; 3
Kil (ref_55) 2011; 83
Howe (ref_138) 2008; 455
Perchey (ref_51) 2019; 9
ref_166
ref_165
Gillet (ref_6) 2016; 9
ref_63
Cox (ref_83) 2014; 13
ref_62
Kanehisa (ref_148) 2017; 45
ref_167
Anderson (ref_1) 1997; 18
Shen (ref_73) 2008; 24
May (ref_47) 2017; 16
Slotta (ref_43) 2010; 10
Schmidt (ref_91) 2005; 5
Tornow (ref_164) 2003; 31
Domon (ref_9) 2006; 5
Tyanova (ref_153) 2016; 7
Tanner (ref_37) 2005; 77
Edwards (ref_21) 2013; 44
ref_115
Weisbrod (ref_66) 2012; 11
Li (ref_74) 2009; 16
ref_119
Gygi (ref_90) 1999; 17
Tabb (ref_36) 2008; 7
Oda (ref_93) 1999; 96
Baker (ref_107) 2017; 43
Merrill (ref_89) 2014; 13
Singhal (ref_171) 2015; 290
Ong (ref_92) 2002; 1
Arntzen (ref_77) 2011; 10
Serang (ref_75) 2010; 9
Tran (ref_86) 2016; 6
Kammers (ref_126) 2015; 7
Szklarczyk (ref_133) 2017; 45
Rauniyar (ref_94) 2014; 13
Ishihama (ref_82) 2005; 4
Girod (ref_109) 2010; 21
Zhang (ref_39) 2012; 11
MacLean (ref_87) 2010; 26
Shevchenko (ref_15) 1997; 11
Gonnelli (ref_46) 2015; 14
Cerami (ref_185) 2011; 39
Wiberg (ref_122) 2015; 14
Isik (ref_150) 2017; 89
ref_108
Khan (ref_80) 2009; 106
Hornbeck (ref_134) 2012; 40
Hawkins (ref_142) 2009; 74
Reiter (ref_44) 2009; 8
Leung (ref_100) 2005; 5
Solntsev (ref_50) 2018; 17
Choi (ref_131) 2008; 7
ref_188
Yang (ref_32) 2019; 35
Schaefer (ref_181) 2016; 45
ref_189
Lin (ref_59) 2018; 17
Kallback (ref_112) 2012; 75
Cox (ref_57) 2011; 10
Kar (ref_5) 2017; 14
Elias (ref_60) 2007; 4
Itzhak (ref_154) 2016; 5
Schirmer (ref_20) 2003; 3
Mallick (ref_101) 2007; 25
Su (ref_155) 2017; 17
Glatter (ref_163) 2009; 5
References_xml – volume: 40
  start-page: D261
  year: 2012
  ident: ref_134
  article-title: PhosphoSitePlus: A comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse
  publication-title: Nucleic. Acids. Res.
  doi: 10.1093/nar/gkr1122
– volume: 11
  start-page: 301
  year: 2019
  ident: ref_4
  article-title: Substrate-based kinase activity inference identifies MK2 as driver of colitis
  publication-title: Integr. Biol.
  doi: 10.1093/intbio/zyz025
– volume: 96
  start-page: 6591
  year: 1999
  ident: ref_93
  article-title: Accurate quantitation of protein expression and site-specific phosphorylation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.12.6591
– volume: 16
  start-page: 269
  year: 2018
  ident: ref_156
  article-title: Precision Oncology beyond Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority of Cancer Cells to Effective Therapeutics
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-17-0378
– volume: 12
  start-page: 594
  year: 2013
  ident: ref_128
  article-title: Statistical inference from multiple iTRAQ experiments without using common reference standards
  publication-title: J. Proteome Res.
  doi: 10.1021/pr300624g
– volume: 7
  start-page: 340
  year: 2007
  ident: ref_96
  article-title: Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research
  publication-title: Proteomics
  doi: 10.1002/pmic.200600422
– volume: 77
  start-page: 964
  year: 2005
  ident: ref_14
  article-title: PepNovo: De novo peptide sequencing via probabilistic network modeling
  publication-title: Anal. Chem.
  doi: 10.1021/ac048788h
– ident: ref_115
  doi: 10.1186/1471-2105-5-194
– volume: 10
  start-page: 1041
  year: 2013
  ident: ref_124
  article-title: Significance, P values and t-tests
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2698
– volume: 5
  start-page: 976
  year: 1994
  ident: ref_10
  article-title: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/1044-0305(94)80016-2
– ident: ref_78
  doi: 10.1186/1471-2164-6-145
– volume: 43
  start-page: W134
  year: 2015
  ident: ref_143
  article-title: INGA: Protein function prediction combining interaction networks, domain assignments and sequence similarity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv523
– ident: ref_58
  doi: 10.1007/978-1-59745-493-3_28
– volume: 9
  start-page: 449
  year: 2016
  ident: ref_6
  article-title: Mass Spectrometry Applied to Bottom-Up Proteomics: Entering the High-Throughput Era for Hypothesis Testing
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev-anchem-071015-041535
– volume: 25
  start-page: 125
  year: 2007
  ident: ref_101
  article-title: Computational prediction of proteotypic peptides for quantitative proteomics
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1275
– volume: 29
  start-page: 1830
  year: 2013
  ident: ref_147
  article-title: Pathview: An R/Bioconductor package for pathway-based data integration and visualization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt285
– volume: 10
  start-page: 2930
  year: 2011
  ident: ref_69
  article-title: PeaksPTM: Mass spectrometry-based identification of peptides with unspecified modifications
  publication-title: J. Proteome Res.
  doi: 10.1021/pr200153k
– volume: 3
  start-page: 533
  year: 2006
  ident: ref_98
  article-title: Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software
  publication-title: Nat. Methods
  doi: 10.1038/nmeth891
– volume: 9
  start-page: 486
  year: 2010
  ident: ref_53
  article-title: DtaRefinery, a software tool for elimination of systematic errors from parent ion mass measurements in tandem mass spectra data sets
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M900217-MCP200
– volume: 11
  start-page: 1548
  year: 2020
  ident: ref_67
  article-title: Generating high quality libraries for DIA MS with empirically corrected peptide predictions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15346-1
– volume: 18
  start-page: 2052
  year: 2019
  ident: ref_48
  article-title: A Network Module for the Perseus Software for Computational Proteomics Facilitates Proteome Interaction Graph Analysis
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.8b00927
– ident: ref_123
  doi: 10.1371/journal.pcbi.1005973
– ident: ref_141
  doi: 10.1186/1471-2105-9-80
– volume: 7
  start-page: 47
  year: 2008
  ident: ref_131
  article-title: False Discovery Rates and Related Statistical Concepts in Mass Spectrometry-Based Proteomics
  publication-title: J. Proteome Res.
  doi: 10.1021/pr700747q
– volume: 32
  start-page: 3495
  year: 2016
  ident: ref_25
  article-title: TopPIC: A software tool for top-down mass spectrometry-based proteoform identification and characterization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw398
– volume: 33
  start-page: 452
  year: 2014
  ident: ref_65
  article-title: Multiplexed and data-independent tandem mass spectrometry for global proteome profiling
  publication-title: Mass Spectrom. Rev.
  doi: 10.1002/mas.21400
– volume: 287
  start-page: 26749
  year: 2012
  ident: ref_169
  article-title: Unveiling the novel dual specificity protein kinases in Bacillus anthracis: Identification of the first prokaryotic dual specificity tyrosine phosphorylation-regulated kinase (DYRK)-like kinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.351304
– volume: 13
  start-page: 3663
  year: 2014
  ident: ref_38
  article-title: JUMP: A tag-based database search tool for peptide identification with high sensitivity and accuracy
  publication-title: Mol. Cel.l Proteomics
  doi: 10.1074/mcp.O114.039586
– ident: ref_108
  doi: 10.3390/toxics4010005
– volume: 83
  start-page: 5259
  year: 2011
  ident: ref_55
  article-title: Preview: A program for surveying shotgun proteomics tandem mass spectrometry data
  publication-title: Anal. Chem.
  doi: 10.1021/ac200609a
– volume: 35
  start-page: i183
  year: 2019
  ident: ref_32
  article-title: pNovo 3: Precise de novo peptide sequencing using a learning-to-rank framework
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz366
– volume: 4
  start-page: 666
  year: 2013
  ident: ref_106
  article-title: Imaging mass spectrometry in neuroscience
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/cn400053c
– ident: ref_120
  doi: 10.1109/ESIAT.2009.206
– volume: 45
  start-page: D362
  year: 2017
  ident: ref_133
  article-title: The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible
  publication-title: Nucleic. Acids. Res.
  doi: 10.1093/nar/gkw937
– volume: 32
  start-page: 424
  year: 2015
  ident: ref_175
  article-title: IKAP: A heuristic framework for inference of kinase activities from Phosphoproteomics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv699
– volume: 74
  start-page: 566
  year: 2009
  ident: ref_142
  article-title: PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data
  publication-title: Proteins: Struct. Funct. Bioinforma.
  doi: 10.1002/prot.22172
– volume: 26
  start-page: 1797
  year: 2015
  ident: ref_24
  article-title: Focus on the 20-year anniversary of SEQUEST
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1007/s13361-015-1264-1
– volume: 13
  start-page: 3488
  year: 2014
  ident: ref_97
  article-title: Estimating influence of cofragmentation on peptide quantification and identification in iTRAQ experiments by simulating multiplexed spectra
  publication-title: J. Proteome Res.
  doi: 10.1021/pr500060d
– volume: 4
  start-page: 1265
  year: 2005
  ident: ref_82
  article-title: Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein
  publication-title: Mol. Cell. Proteomics.
  doi: 10.1074/mcp.M500061-MCP200
– volume: 604
  start-page: 55
  year: 2010
  ident: ref_61
  article-title: Target-decoy search strategy for mass spectrometry-based proteomics
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60761-444-9_5
– volume: 75
  start-page: 4646
  year: 2003
  ident: ref_72
  article-title: A statistical model for identifying proteins by tandem mass spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac0341261
– volume: 211
  start-page: 103543
  year: 2020
  ident: ref_174
  article-title: Acetylome profiling of Vibrio alginolyticus reveals its role in bacterial virulence
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2019.103543
– ident: ref_177
– ident: ref_180
  doi: 10.3390/ijms20205075
– volume: 11
  start-page: 1114
  year: 2014
  ident: ref_70
  article-title: Proteogenomics: Concepts, applications and computational strategies
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3144
– ident: ref_71
  doi: 10.1142/9789812772435_0039
– ident: ref_85
  doi: 10.1186/1471-2105-9-163
– volume: 26
  start-page: 1814
  year: 2015
  ident: ref_56
  article-title: The SEQUEST family tree
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1007/s13361-015-1201-3
– volume: 11
  start-page: 1621
  year: 2012
  ident: ref_66
  article-title: Accurate peptide fragment mass analysis: Multiplexed peptide identification and quantification
  publication-title: J. Proteome Res.
  doi: 10.1021/pr2008175
– volume: 16
  start-page: 1817
  year: 2017
  ident: ref_47
  article-title: Param-Medic: A Tool for Improving MS/MS Database Search Yield by Optimizing Parameter Settings
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.7b00028
– volume: 10
  start-page: 1150
  year: 2010
  ident: ref_79
  article-title: A guided tour of the Trans-Proteomic Pipeline
  publication-title: Proteomics
  doi: 10.1002/pmic.200900375
– volume: 32
  start-page: D258
  year: 2004
  ident: ref_139
  article-title: The Gene Ontology (GO) database and informatics resource
  publication-title: Nucleic. Acids. Res.
  doi: 10.1093/nar/gkh036
– volume: 13
  start-page: 310
  year: 2016
  ident: ref_178
  article-title: Inferring causal molecular networks: Empirical assessment through a community-based effort
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3773
– volume: 4
  start-page: 762
  year: 2005
  ident: ref_49
  article-title: A Heuristic Method for Assigning a False-discovery Rate for Protein Identifications from Mascot Database Search Results
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M400215-MCP200
– volume: 509
  start-page: 582
  year: 2014
  ident: ref_102
  article-title: Mass-spectrometry-based draft of the human proteome
  publication-title: Nature
  doi: 10.1038/nature13319
– volume: 270
  start-page: 570
  year: 2003
  ident: ref_161
  article-title: Affinity purification-mass spectrometry
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1033.2003.03428.x
– volume: 5
  start-page: 23
  year: 2009
  ident: ref_158
  article-title: An Unsupervised, Model-Free, Machine-Learning Combiner for Peptide Identifications from Tandem Mass Spectra
  publication-title: Clin. Proteomics
  doi: 10.1007/s12014-009-9024-5
– volume: 18
  start-page: 533
  year: 1997
  ident: ref_1
  article-title: A comparison of selected mRNA and protein abundances in human liver
  publication-title: Electrophoresis
  doi: 10.1002/elps.1150180333
– volume: 14
  start-page: 715
  year: 2017
  ident: ref_5
  article-title: Integral membrane proteins: Bottom-up, top-down and structural proteomics
  publication-title: Expert Rev. Proteomics
  doi: 10.1080/14789450.2017.1359545
– volume: 21
  start-page: 1177
  year: 2010
  ident: ref_109
  article-title: Desorption electrospray ionization imaging mass spectrometry of lipids in rat spinal cord
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/j.jasms.2010.03.028
– volume: 11
  start-page: 829
  year: 2012
  ident: ref_88
  article-title: Quantitative proteomic analysis of membrane proteins involved in astroglial differentiation of neural stem cells by SILAC labeling coupled with LC–MS/MS
  publication-title: J. Proteome Res.
  doi: 10.1021/pr200677z
– volume: 5
  start-page: 144
  year: 2006
  ident: ref_103
  article-title: Absolute quantification of proteins by LCMSE: A virtue of parallel MS acquisition
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M500230-MCP200
– volume: 17
  start-page: 994
  year: 1999
  ident: ref_90
  article-title: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags
  publication-title: Nat. Biotechnol.
  doi: 10.1038/13690
– volume: 7
  start-page: 3091
  year: 2008
  ident: ref_127
  article-title: A statistical model for iTRAQ data analysis
  publication-title: J. Proteome Res.
  doi: 10.1021/pr070520u
– ident: ref_62
  doi: 10.1186/s12859-019-3034-8
– volume: 13
  start-page: 2513
  year: 2014
  ident: ref_83
  article-title: Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M113.031591
– volume: 20
  start-page: 3551
  year: 1999
  ident: ref_17
  article-title: Probability-based protein identification by searching sequence databases using mass spectrometry data
  publication-title: Electrophoresis
  doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
– volume: 14
  start-page: 1993
  year: 2015
  ident: ref_122
  article-title: Review, Evaluation, and Discussion of the Challenges of Missing Value Imputation for Mass Spectrometry-Based Label-Free Global Proteomics
  publication-title: J. Proteome Res.
  doi: 10.1021/pr501138h
– volume: 455
  start-page: 47
  year: 2008
  ident: ref_138
  article-title: Big data: The future of biocuration
  publication-title: Nature
  doi: 10.1038/455047a
– ident: ref_166
  doi: 10.3390/ijms20205188
– ident: ref_179
– volume: 14
  start-page: 1792
  year: 2015
  ident: ref_46
  article-title: A decoy-free approach to the identification of peptides
  publication-title: J. Proteome Res.
  doi: 10.1021/pr501164r
– volume: 25
  start-page: 141
  year: 2008
  ident: ref_137
  article-title: CRONOS: The cross-reference navigation server
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn590
– volume: 18
  start-page: 1468
  year: 2019
  ident: ref_95
  article-title: TMT Labeling for the Masses: A Robust and Cost-efficient, In-solution Labeling Approach
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.TIR119.001385
– volume: 7
  start-page: 4598
  year: 2008
  ident: ref_16
  article-title: A fast SEQUEST cross correlation algorithm
  publication-title: J. Proteome Res.
  doi: 10.1021/pr800420s
– volume: 12
  start-page: 549
  year: 2013
  ident: ref_99
  article-title: Tools for label-free peptide quantification
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.R112.025163
– volume: 47
  start-page: D607
  year: 2019
  ident: ref_190
  article-title: STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1131
– volume: 11
  start-page: 2301
  year: 2016
  ident: ref_18
  article-title: The MaxQuant computational platform for mass spectrometry-based shotgun proteomics
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.136
– volume: 13
  start-page: 364
  year: 2006
  ident: ref_117
  article-title: De novo analysis of peptide tandem mass spectra by spectral graph partitioning
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2006.13.364
– volume: 77
  start-page: 4626
  year: 2005
  ident: ref_37
  article-title: InsPecT: Identification of posttranslationally modified peptides from tandem mass spectra
  publication-title: Anal. Chem.
  doi: 10.1021/ac050102d
– ident: ref_157
  doi: 10.1007/978-1-4471-0123-9
– volume: 11
  start-page: 1015
  year: 1997
  ident: ref_15
  article-title: Rapid ‘de novo’peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/(SICI)1097-0231(19970615)11:9<1015::AID-RCM958>3.0.CO;2-H
– volume: 25
  start-page: 288
  year: 2008
  ident: ref_140
  article-title: AmiGO: Online access to ontology and annotation data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn615
– ident: ref_165
  doi: 10.1142/9789812702456_0021
– volume: 12
  start-page: 1106
  year: 2015
  ident: ref_19
  article-title: MSPLIT-DIA: Sensitive peptide identification for data-independent acquisition
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3655
– volume: 77
  start-page: 7265
  year: 2005
  ident: ref_29
  article-title: NovoHMM: A hidden Markov model for de novo peptide sequencing
  publication-title: Anal. Chem.
  doi: 10.1021/ac0508853
– volume: 20
  start-page: 1466
  year: 2004
  ident: ref_12
  article-title: TANDEM: Matching proteins with tandem mass spectra
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth092
– volume: 1
  start-page: 376
  year: 2002
  ident: ref_92
  article-title: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics
  publication-title: Mol. Cell. Proteomics.
  doi: 10.1074/mcp.M200025-MCP200
– volume: 17
  start-page: 3644
  year: 2018
  ident: ref_59
  article-title: Combining High-Resolution and Exact Calibration To Boost Statistical Power: A Well-Calibrated Score Function for High-Resolution MS2 Data
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.8b00206
– volume: 16
  start-page: 1383
  year: 2017
  ident: ref_68
  article-title: Global Post-Translational Modification Discovery
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.6b00034
– volume: 13
  start-page: 3497
  year: 2014
  ident: ref_105
  article-title: A “proteomic ruler” for protein copy number and concentration estimation without spike-in standards
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M113.037309
– volume: 5
  start-page: 237
  year: 2009
  ident: ref_163
  article-title: An integrated workflow for charting the human interaction proteome: Insights into the PP2A system
  publication-title: Mol. Systems Biol.
  doi: 10.1038/msb.2008.75
– ident: ref_76
  doi: 10.1186/s12864-018-4923-3
– volume: 27
  start-page: i230
  year: 2011
  ident: ref_111
  article-title: Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr246
– volume: 65
  start-page: 422
  year: 2008
  ident: ref_121
  article-title: Distribution-free multiple imputation in an interaction matrix through singular value decomposition
  publication-title: Sci. Agric.
  doi: 10.1590/S0103-90162008000400015
– volume: 39
  start-page: D691
  year: 2010
  ident: ref_146
  article-title: Reactome: A database of reactions, pathways and biological processes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1018
– volume: 15
  start-page: 1787
  year: 2019
  ident: ref_33
  article-title: SWPepNovo: An Efficient De Novo Peptide Sequencing Tool for Large-scale MS/MS Spectra Analysis
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.32142
– volume: 19
  start-page: 1
  year: 2016
  ident: ref_114
  article-title: A systematic evaluation of normalization methods in quantitative label-free proteomics
  publication-title: Brief. Bioinforma.
– volume: 6
  start-page: 31730
  year: 2016
  ident: ref_86
  article-title: Complete De Novo Assembly of Monoclonal Antibody Sequences
  publication-title: Sci. Rep.
  doi: 10.1038/srep31730
– volume: 20
  start-page: 1210
  year: 2019
  ident: ref_187
  article-title: A Review on Quantitative Multiplexed Proteomics
  publication-title: Chembiochem
  doi: 10.1002/cbic.201800650
– volume: 9
  start-page: 393
  year: 2010
  ident: ref_52
  article-title: MSQuant, an open source platform for mass spectrometry-based quantitative proteomics
  publication-title: J. Proteome Res.
  doi: 10.1021/pr900721e
– volume: 9
  start-page: 1228
  year: 2010
  ident: ref_168
  article-title: The phosphoproteome of the minimal bacterium Mycoplasma pneumoniae: Analysis of the complete known Ser/Thr kinome suggests the existence of novel kinases
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M900267-MCP200
– volume: 44
  start-page: 11
  year: 2013
  ident: ref_21
  article-title: PepArML: A Meta-Search Peptide Identification Platform for Tandem Mass Spectra
  publication-title: Curr. Protoc. Bioinforma.
  doi: 10.1002/0471250953.bi1323s44
– volume: 78
  start-page: 432
  year: 2006
  ident: ref_22
  article-title: PepHMM: A hidden Markov model based scoring function for mass spectrometry database search
  publication-title: Anal. Chem.
  doi: 10.1021/ac051319a
– volume: 17
  start-page: 2337
  year: 2003
  ident: ref_30
  article-title: PEAKS: Powerful software for peptide de novo sequencing by tandem mass spectrometry
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.1196
– volume: 3
  start-page: 1002
  year: 2004
  ident: ref_41
  article-title: DBParser: Web-based software for shotgun proteomic data analyses
  publication-title: J. Proteome Res.
  doi: 10.1021/pr049920x
– volume: 8
  start-page: 2405
  year: 2009
  ident: ref_44
  article-title: Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M900317-MCP200
– ident: ref_136
  doi: 10.1186/1471-2105-8-401
– volume: 16
  start-page: 1183
  year: 2009
  ident: ref_74
  article-title: A Bayesian approach to protein inference problem in shotgun proteomics
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2009.0018
– volume: 75
  start-page: 4941
  year: 2012
  ident: ref_112
  article-title: Novel mass spectrometry imaging software assisting labeled normalization and quantitation of drugs and neuropeptides directly in tissue sections
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2012.07.034
– ident: ref_145
  doi: 10.1007/978-1-60761-175-2
– volume: 10
  start-page: 1794
  year: 2011
  ident: ref_57
  article-title: Andromeda: A peptide search engine integrated into the MaxQuant environment
  publication-title: J. Proteome Res.
  doi: 10.1021/pr101065j
– ident: ref_144
  doi: 10.3390/ijms17091426
– volume: 183
  start-page: 40
  year: 2018
  ident: ref_183
  article-title: Network Analysis of Se-and Zn-related Proteins in the Serum Proteomics Expression Profile of the Endemic Dilated Cardiomyopathy Keshan Disease
  publication-title: Biol. Trace Element Res.
  doi: 10.1007/s12011-017-1063-6
– volume: 44
  start-page: D548
  year: 2015
  ident: ref_135
  article-title: SIGNOR: A database of causal relationships between biological entities
  publication-title: Nucleic. Acids. Res.
  doi: 10.1093/nar/gkv1048
– volume: 5
  start-page: e16950
  year: 2016
  ident: ref_154
  article-title: Global, quantitative and dynamic mapping of protein subcellular localization
  publication-title: Elife
  doi: 10.7554/eLife.16950
– ident: ref_63
  doi: 10.1021/ac0508853
– volume: 4
  start-page: R60
  year: 2003
  ident: ref_132
  article-title: DAVID: Database for Annotation, Visualization, and Integrated Discovery
  publication-title: Genome Biol.
  doi: 10.1186/gb-2003-4-9-r60
– volume: 15
  start-page: 2321
  year: 2016
  ident: ref_113
  article-title: A Proteomics Approach to the Protein Normalization Problem: Selection of Unvarying Proteins for MS-Based Proteomics and Western Blotting
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.6b00403
– volume: 12
  start-page: 224
  year: 2019
  ident: ref_3
  article-title: Systematic Affinity Purification Coupled to Mass Spectrometry Identified p62 as Part of the Cannabinoid Receptor CB2 Interactome
  publication-title: Front Mol. Neurosci.
  doi: 10.3389/fnmol.2019.00224
– volume: 17
  start-page: 3681
  year: 2018
  ident: ref_40
  article-title: ProteomeGenerator: A Framework for Comprehensive Proteomics Based on de Novo Transcriptome Assembly and High-Accuracy Peptide Mass Spectral Matching
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.8b00295
– volume: 10
  start-page: 3035
  year: 2010
  ident: ref_43
  article-title: MassSieve: Panning MS/MS peptide data for proteins
  publication-title: Proteomics
  doi: 10.1002/pmic.200900370
– volume: 40
  start-page: 13.20.1
  year: 2012
  ident: ref_35
  article-title: Byonic: Advanced peptide and protein identification software
  publication-title: Curr. Protoc. Bioinform.
  doi: 10.1002/0471250953.bi1320s40
– ident: ref_119
  doi: 10.1186/s12859-019-2619-6
– volume: 3
  start-page: 38
  year: 2003
  ident: ref_20
  article-title: MudPIT: A powerful proteomics tool for discovery
  publication-title: Discov. Med.
– volume: 80
  start-page: 693
  year: 2008
  ident: ref_54
  article-title: Elimination of systematic mass measurement errors in liquid chromatography-mass spectrometry based proteomics using regression models and a priori partial knowledge of the sample content
  publication-title: Anal. Chem.
  doi: 10.1021/ac701863d
– volume: 5
  start-page: 4
  year: 2005
  ident: ref_91
  article-title: A novel strategy for quantitative proteomics using isotope-coded protein labels
  publication-title: Proteomics
  doi: 10.1002/pmic.200400873
– volume: 4
  start-page: 207
  year: 2007
  ident: ref_60
  article-title: Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1019
– volume: 39
  start-page: D685
  year: 2011
  ident: ref_185
  article-title: Pathway Commons, a web resource for biological pathway data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1039
– volume: 9
  start-page: 499
  year: 2016
  ident: ref_7
  article-title: Progress in Top-Down Proteomics and the Analysis of Proteoforms
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev-anchem-071015-041550
– volume: 14
  start-page: 2947
  year: 2015
  ident: ref_151
  article-title: Machine Learning-based Classification of Diffuse Large B-cell Lymphoma Patients by Their Protein Expression Profiles
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M115.050245
– volume: 7
  start-page: 293
  year: 2008
  ident: ref_26
  article-title: X!!Tandem, an improved method for running X!tandem in parallel on collections of commodity computers
  publication-title: J. Proteome Res.
  doi: 10.1021/pr0701198
– volume: 31
  start-page: 6283
  year: 2003
  ident: ref_164
  article-title: Functional modules by relating protein interaction networks and gene expression
  publication-title: Nucleic Acids Rese.
  doi: 10.1093/nar/gkg838
– volume: 4
  start-page: 1194
  year: 2005
  ident: ref_23
  article-title: Comprehensive analysis of a multidimensional liquid chromatography mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometer: II. New developments in Protein Prospector allow for reliable and comprehensive automatic analysis of large datasets
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.D500002-MCP200
– volume: 9
  start-page: 5346
  year: 2010
  ident: ref_75
  article-title: Efficient marginalization to compute protein posterior probabilities from shotgun mass spectrometry data
  publication-title: J. Proteome Res.
  doi: 10.1021/pr100594k
– volume: 7
  start-page: 3838
  year: 2008
  ident: ref_36
  article-title: DirecTag: Accurate sequence tags from peptide MS/MS through statistical scoring
  publication-title: J. Proteome Res.
  doi: 10.1021/pr800154p
– volume: 43
  start-page: 62
  year: 2017
  ident: ref_107
  article-title: Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry imaging
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2016.09.003
– volume: 13
  start-page: 5496
  year: 2014
  ident: ref_149
  article-title: PSEA-Quant: A Protein Set Enrichment Analysis on Label-Free and Label-Based Protein Quantification Data
  publication-title: J. Proteome Res.
  doi: 10.1021/pr500473n
– volume: 89
  start-page: 397
  year: 2017
  ident: ref_150
  article-title: Integration of RNA-Seq and RPPA data for survival time prediction in cancer patients
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.08.028
– volume: 2060
  start-page: 327
  year: 2020
  ident: ref_186
  article-title: BioID Combined with Mass Spectrometry to Study Herpesvirus Protein-Protein Interaction Networks
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-9814-2_19
– volume: 25
  start-page: 345
  year: 2007
  ident: ref_162
  article-title: An integrated mass spectrometric and computational framework for the analysis of protein interaction networks
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1289
– ident: ref_129
  doi: 10.1186/1471-2105-11-450
– volume: 45
  start-page: D408
  year: 2016
  ident: ref_181
  article-title: HIPPIE v2.0: Enhancing meaningfulness and reliability of protein–protein interaction networks
  publication-title: Nucleic Acids Res.
– volume: 10
  start-page: 913
  year: 2011
  ident: ref_77
  article-title: IsobariQ: Software for isobaric quantitative proteomics using IPTL, iTRAQ, and TMT
  publication-title: J. Proteome Res.
  doi: 10.1021/pr1009977
– volume: 13
  start-page: 5293
  year: 2014
  ident: ref_94
  article-title: Isobaric labeling-based relative quantification in shotgun proteomics
  publication-title: J. Proteome Res.
  doi: 10.1021/pr500880b
– volume: 16
  start-page: 4045
  year: 2017
  ident: ref_172
  article-title: Nepsilon- and O-Acetylation in Mycobacterium tuberculosis Lineage 7 and Lineage 4 Strains: Proteins Involved in Bioenergetics, Virulence, and Antimicrobial Resistance Are Acetylated
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.7b00429
– volume: 24
  start-page: 202
  year: 2008
  ident: ref_73
  article-title: A hierarchical statistical model to assess the confidence of peptides and proteins inferred from tandem mass spectrometry
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm555
– volume: 368
  start-page: 1012
  year: 2006
  ident: ref_152
  article-title: Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)69342-2
– volume: 5
  start-page: 1921
  year: 2006
  ident: ref_9
  article-title: Challenges and Opportunities in Proteomics Data Analysis
  publication-title: Mol. Cell. Proteom.
  doi: 10.1074/mcp.R600012-MCP200
– volume: 7
  start-page: 10259
  year: 2016
  ident: ref_153
  article-title: Proteomic maps of breast cancer subtypes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10259
– volume: 18
  start-page: S96
  year: 2002
  ident: ref_116
  article-title: Variance stabilization applied to microarray data calibration and to the quantification of differential expression
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_1.S96
– volume: 17
  start-page: 1600267
  year: 2017
  ident: ref_155
  article-title: Single cell proteomics in biomedicine: High-dimensional data acquisition, visualization, and analysis
  publication-title: PROTEOMICS
  doi: 10.1002/pmic.201600267
– volume: 8
  start-page: 663
  year: 2018
  ident: ref_118
  article-title: Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-19120-0
– volume: 12
  start-page: 258
  year: 2015
  ident: ref_42
  article-title: DIA-Umpire: Comprehensive computational framework for data-independent acquisition proteomics
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3255
– volume: 16
  start-page: 587
  year: 2019
  ident: ref_8
  article-title: Best practices and benchmarks for intact protein analysis for top-down mass spectrometry
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0457-0
– volume: 19
  start-page: 946
  year: 2001
  ident: ref_81
  article-title: Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1001-946
– ident: ref_160
  doi: 10.1017/CBO9780511790515
– volume: 21
  start-page: 4280
  year: 2005
  ident: ref_130
  article-title: A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti685
– volume: 106
  start-page: 15544
  year: 2009
  ident: ref_80
  article-title: Protein quantification across hundreds of experimental conditions
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0904100106
– ident: ref_189
– volume: 14
  start-page: 903
  year: 2017
  ident: ref_31
  article-title: PECAN: Library-free peptide detection for data-independent acquisition tandem mass spectrometry data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4390
– volume: 114
  start-page: 8247
  year: 2017
  ident: ref_64
  article-title: De novo peptide sequencing by deep learning
  publication-title: Proce. Nat. Acad. Sci.
  doi: 10.1073/pnas.1705691114
– ident: ref_159
  doi: 10.1371/journal.pone.0141287
– volume: 8
  start-page: 81
  year: 2012
  ident: ref_182
  article-title: COVAIN: A toolbox for uni- and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data
  publication-title: Metabolomics
  doi: 10.1007/s11306-012-0399-3
– ident: ref_167
  doi: 10.3390/ijms20194905
– volume: 26
  start-page: 966
  year: 2010
  ident: ref_87
  article-title: Skyline: An open source document editor for creating and analyzing targeted proteomics experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq054
– volume: 19
  start-page: 1720
  year: 1999
  ident: ref_2
  article-title: Correlation between Protein and mRNA Abundance in Yeast
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.19.3.1720
– ident: ref_188
  doi: 10.1371/journal.pgen.1004047
– volume: 17
  start-page: 1844
  year: 2018
  ident: ref_50
  article-title: Enhanced Global Post-translational Modification Discovery with MetaMorpheus
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.7b00873
– volume: 11
  start-page: M111.010587
  year: 2012
  ident: ref_39
  article-title: PEAKS DB: De novo sequencing assisted database search for sensitive and accurate peptide identification
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M111.010587
– volume: 5
  start-page: 935
  year: 2006
  ident: ref_45
  article-title: ModifiComb, a new proteomic tool for mapping substoichiometric post-translational modifications, finding novel types of modifications, and fingerprinting complex protein mixtures
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.T500034-MCP200
– volume: 13
  start-page: 2503
  year: 2014
  ident: ref_89
  article-title: NeuCode labels for relative protein quantification
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M114.040287
– volume: 13
  start-page: 1965
  year: 2014
  ident: ref_170
  article-title: Quantitative phosphoproteome analysis of Bacillus subtilis reveals novel substrates of the kinase PrkC and phosphatase PrpC
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M113.035949
– volume: 6
  start-page: 327
  year: 1999
  ident: ref_13
  article-title: De novo peptide sequencing via tandem mass spectrometry
  publication-title: J. Comput. Biol.
  doi: 10.1089/106652799318300
– volume: 29
  start-page: 1953
  year: 2013
  ident: ref_34
  article-title: UniNovo: A universal tool for de novo peptide sequencing
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt338
– volume: 9
  start-page: 4181
  year: 2019
  ident: ref_51
  article-title: PTMselect: Optimization of protein modifications discovery by mass spectrometry
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-40873-3
– volume: 290
  start-page: 26218
  year: 2015
  ident: ref_171
  article-title: Systematic Analysis of Mycobacterial Acylation Reveals First Example of Acylation-mediated Regulation of Enzyme Activity of a Bacterial Phosphatase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.687269
– volume: 5
  start-page: 3040
  year: 2005
  ident: ref_100
  article-title: A novel strategy using MASCOT Distiller for analysis of cleavable isotope-coded affinity tag data to quantify protein changes in plasma
  publication-title: Proteomics
  doi: 10.1002/pmic.200402101
– volume: 6
  start-page: 147
  year: 2011
  ident: ref_104
  article-title: Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2010.192
– volume: 7
  start-page: 11
  year: 2015
  ident: ref_126
  article-title: Detecting significant changes in protein abundance
  publication-title: EuPA Open Proteomics
  doi: 10.1016/j.euprot.2015.02.002
– ident: ref_173
  doi: 10.1002/jssc.201900804
– volume: 21
  start-page: 203
  year: 2011
  ident: ref_125
  article-title: Multiple comparison analysis testing in ANOVA
  publication-title: Biochem. Med. (Zagreb)
  doi: 10.11613/BM.2011.029
– volume: 16
  start-page: 63
  year: 2019
  ident: ref_27
  article-title: Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0260-3
– volume: 33
  start-page: 3489
  year: 2017
  ident: ref_176
  article-title: The KSEA App: A web-based tool for kinase activity inference from quantitative phosphoproteomics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx415
– volume: 13
  start-page: 770
  year: 2016
  ident: ref_184
  article-title: Revealing disease-associated pathways by network integration of untargeted metabolomics
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3940
– volume: 45
  start-page: D353
  year: 2017
  ident: ref_148
  article-title: KEGG: New perspectives on genomes, pathways, diseases and drugs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1092
– ident: ref_28
  doi: 10.1371/journal.pone.0116221
– volume: 3
  start-page: 958
  year: 2004
  ident: ref_11
  article-title: Open mass spectrometry search algorithm
  publication-title: J. Proteome Res.
  doi: 10.1021/pr0499491
– volume: 9
  start-page: 6535
  year: 2010
  ident: ref_110
  article-title: Spatial segmentation of imaging mass spectrometry data with edge-preserving image denoising and clustering
  publication-title: J. Proteome Res.
  doi: 10.1021/pr100734z
– volume: 23
  start-page: 2021
  year: 2007
  ident: ref_84
  article-title: VIPER: An advanced software package to support high-throughput LC-MS peptide identification
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm281
SSID ssj0023259
Score 2.6202204
SecondaryResourceType review_article
Snippet Recent advances in mass spectrometry (MS)-based proteomics have enabled tremendous progress in the understanding of cellular mechanisms, disease progression,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2873
SubjectTerms Accuracy
Algorithms
Bioinformatics
Biomedical research
Computational Biology - methods
Data Analysis
Humans
Identification
Machine Learning
Mass Spectrometry
Peptides
Protein Interaction Mapping
Protein Interaction Maps
Proteins
Proteomics
Proteomics - statistics & numerical data
Review
Scientific imaging
Search engines
Search strategies
Software
Support vector machines
Workflow
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IHgR39YXEfQkwbZJmvYkPhFlxYPC3kqbpKhoV209-O-daburq-itNAMtM-nMfE3yfQC72FH4me9iXhQ259ImlmdFFPAEu3MsGFbZmA44966jizt52Vf97odb1W2rHObEJlHbgaF_5Ack4Y3VONb68OWVk2oUra52EhqTMN1Ql-F81v0vwCXCRiwtwBrEI5VE7cZ3gTD_4OHxuUK0Q3TvYrwk_eozf26X_FZ_zudhrmsc2VEb6QWYcOUizLRSkh9LcIVXHQkqES-zXqMMXTG8w3rYIDMSmq-Jm6B---DHWLssuyGOBjqVXLHTrM7YkKBkGe7Oz25PLngnlMCNDMKaO5mEVinrEhcoI6VVfqFzo4QOc2FdIUMjTUDENNohKLXY5sXG-UleGAyI8cUKTJWD0q0B87XWpF0U5w6xjCvyMM50mClDJ3hFYT3YH_oqNR2LOIlZPKWIJsiz6XfPerA3sn5p2TP-sNscuj3tvqEq_Yq4BzujYZz9tKSRlW7w3tpgPscmzIPVNkqjBwmMf4QAyAM9Fr-RATFrj4-UD_cNwzYxGvmJWP__tTZgNiT07UvMNZswVb-9uy1sUep8u5mHnx_d5mo
  priority: 102
  providerName: ProQuest
Title Bioinformatics Methods for Mass Spectrometry-Based Proteomics Data Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/32326049
https://www.proquest.com/docview/2394612877
https://www.proquest.com/docview/2394876727
https://pubmed.ncbi.nlm.nih.gov/PMC7216093
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB1BIhCXivLpFqJFghMybOzdrH2oELSEqFUQQkTKzbJ31yoVGEgcqfn3nYk_lDTthYtleWdlacbeeU_2vgdwjIiCx9wGbpqaxBUmNG6cdtpuiOgcG4aRJqANzv3bTm8gvg_lcAUqt9EygeN_UjvykxqMns5-v00v8IX_QowTKfv546_nMTIXkm73V6GJt-gQDeuL-nsCwgYZFr-9L83YgHUfxzuc5DTne9MS4Pz7v8m5RtTdhA8lgmSXRck_worNtmCt8JScbsMPPCvVUEmBmfVnFtFjhldYH5EyI8f5nEQK8tHUvcImZtgdiTXQ9uQx-xbnMauUSnZg0L1--NpzS8cEV4u2l7tWhJ6R0tjQtqUWwkieqkRLX3mJb2wqPC10mxRqlEV2ahDvBdryMEk1VkZzfxca2Utm94FxpRSZGAWJRVJj08QLYuXFUtNWXj81DpxWuYp0KSdOrhZPEdIKSnI0n2QHTuro10JG4z9xB1Xao-pZiMi9HYFYoJQDR_Uwvgb0bSPO7MukiMGFHdGYA3tFleobVeV1QC3Urw4gie3Fkezx50xqm6SNeOh_evfMz7DhEUPnAtejA2jko4k9RBiTJy1YVUOFx6B704Lm1fXt3X2LGotszZ7dP24P-MQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9VLybUsBI9ISsJrYTJ4cKUdpqy3ZXFWql3kJiO6IIsqVJhfbP8duYyYsuCG69RfEojxnbM2N7vg_gNUYUfua7mBeFzbmyieVZEQU8wegcHYYNbUwFztNZND5TH87D8xX42dfC0LHKfk5sJmo7N7RGvkMU3uiNY63fXn7nxBpFu6s9hUbWUSvY3QZirCvsmLjFD0zhqt2jfbT3thCHB6fvx7xjGeBGBaLmTiXChqF1iQtCo5QN_ULnJpRa5NK6QgmjTECoLtphRmcxRoqN85O8MPg3xpf43DuwqqjCdQSrewezk49DyidFQ9cWoBfkUZhE7dF7KRN_5-LLtwrzLQKcl8tO8a9I988Dmzc84OF9WO9CV_au7WsPYMWVD-FuS2a5eAQTvOpgWAn6mU0bbuqK4R02xRCdEdV9TegI9dWC76H3tOyEUCKoLrpi-1mdsR4i5TGc3YoSn8ConJduA5ivtSb2pDh3mE25IhdxpkUWGqohloX14E2vq9R0OOZEp_E1xXyGNJve1KwH24P0ZYvf8Q-5rV7taTeKq_R3n_Pg1dCM4482VbLSza9bGfQoGAZ68LS10vAiifaPMAXzQC_ZbxAgbO_llvLic4PxTZhKfiI3__9ZL-He-HR6nB4fzSbPYE3QWoCvcObbglF9de2eY8BU5y-6Xsng020PhF8bxymn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYxET8jaxHbi5FAhynbVsuxqhajUW0hsRxRBtjSp0P5FfhUzedEFwa23KLGSeMbjmbE93wfwEiMKP_NdzIvC5lzZxPKsiAKeYHSODsOGNqYC5_kiOjxW707Cky342dfC0LHKfk5sJmq7MrRGPiYKb_TGsdbjojsWsZxMX59958QgRTutPZ1G1tEs2L0Gbqwr8pi59Q9M56q9ownqfleI6cHHt4e8YxzgRgWi5k4lwoahdYkLQqOUDf1C5yaUWuTSukIJo0xACC_aYXZnMV6KjfOTvDDYM-NLfO812Mb-R2oE2_sHi-WHIf2ToqFuC9Aj8ihMovYYvpSJPz798q3C3IvA5-Wmg_wr6v3z8OYlbzi9Dbe6MJa9acfdHdhy5V243hJbru_BDK86SFaCgWbzhqe6YniHzTFcZ0R7XxNSQn2-5vvoSS1bEmIE1UhXbJLVGevhUu7D8ZUI8QGMylXpHgHztdbEpBTnDjMrV-QizrTIQkP1xLKwHrzqZZWaDtOcqDW-ppjbkGTTy5L1YHdofdZiefyj3U4v9rSz6Cr9Pf48eDE8RlukDZasdKuLtg16FwwJPXjYamn4kET9R5iOeaA39Dc0IJzvzSfl6ecG75vwlfxEPv7_bz2HG2gQ6fujxewJ3BS0LOArnAR3YFSfX7inGDvV-bNuUDL4dNV28AuvIi3T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinformatics+Methods+for+Mass+Spectrometry-Based+Proteomics+Data+Analysis&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Chen%2C+Chen&rft.au=Hou%2C+Jie&rft.au=Tanner%2C+John+J.&rft.au=Cheng%2C+Jianlin&rft.date=2020-04-20&rft.pub=MDPI&rft.eissn=1422-0067&rft.volume=21&rft.issue=8&rft_id=info:doi/10.3390%2Fijms21082873&rft_id=info%3Apmid%2F32326049&rft.externalDocID=PMC7216093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon