Bioinformatics Methods for Mass Spectrometry-Based Proteomics Data Analysis
Recent advances in mass spectrometry (MS)-based proteomics have enabled tremendous progress in the understanding of cellular mechanisms, disease progression, and the relationship between genotype and phenotype. Though many popular bioinformatics methods in proteomics are derived from other omics stu...
Saved in:
Published in | International journal of molecular sciences Vol. 21; no. 8; p. 2873 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
20.04.2020
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1422-0067 1661-6596 1422-0067 |
DOI | 10.3390/ijms21082873 |
Cover
Abstract | Recent advances in mass spectrometry (MS)-based proteomics have enabled tremendous progress in the understanding of cellular mechanisms, disease progression, and the relationship between genotype and phenotype. Though many popular bioinformatics methods in proteomics are derived from other omics studies, novel analysis strategies are required to deal with the unique characteristics of proteomics data. In this review, we discuss the current developments in the bioinformatics methods used in proteomics and how they facilitate the mechanistic understanding of biological processes. We first introduce bioinformatics software and tools designed for mass spectrometry-based protein identification and quantification, and then we review the different statistical and machine learning methods that have been developed to perform comprehensive analysis in proteomics studies. We conclude with a discussion of how quantitative protein data can be used to reconstruct protein interactions and signaling networks. |
---|---|
AbstractList | Recent advances in mass spectrometry (MS)-based proteomics have enabled tremendous progress in the understanding of cellular mechanisms, disease progression, and the relationship between genotype and phenotype. Though many popular bioinformatics methods in proteomics are derived from other omics studies, novel analysis strategies are required to deal with the unique characteristics of proteomics data. In this review, we discuss the current developments in the bioinformatics methods used in proteomics and how they facilitate the mechanistic understanding of biological processes. We first introduce bioinformatics software and tools designed for mass spectrometry-based protein identification and quantification, and then we review the different statistical and machine learning methods that have been developed to perform comprehensive analysis in proteomics studies. We conclude with a discussion of how quantitative protein data can be used to reconstruct protein interactions and signaling networks. Recent advances in mass spectrometry (MS)-based proteomics have enabled tremendous progress in the understanding of cellular mechanisms, disease progression, and the relationship between genotype and phenotype. Though many popular bioinformatics methods in proteomics are derived from other omics studies, novel analysis strategies are required to deal with the unique characteristics of proteomics data. In this review, we discuss the current developments in the bioinformatics methods used in proteomics and how they facilitate the mechanistic understanding of biological processes. We first introduce bioinformatics software and tools designed for mass spectrometry-based protein identification and quantification, and then we review the different statistical and machine learning methods that have been developed to perform comprehensive analysis in proteomics studies. We conclude with a discussion of how quantitative protein data can be used to reconstruct protein interactions and signaling networks.Recent advances in mass spectrometry (MS)-based proteomics have enabled tremendous progress in the understanding of cellular mechanisms, disease progression, and the relationship between genotype and phenotype. Though many popular bioinformatics methods in proteomics are derived from other omics studies, novel analysis strategies are required to deal with the unique characteristics of proteomics data. In this review, we discuss the current developments in the bioinformatics methods used in proteomics and how they facilitate the mechanistic understanding of biological processes. We first introduce bioinformatics software and tools designed for mass spectrometry-based protein identification and quantification, and then we review the different statistical and machine learning methods that have been developed to perform comprehensive analysis in proteomics studies. We conclude with a discussion of how quantitative protein data can be used to reconstruct protein interactions and signaling networks. |
Author | Chen, Chen Cheng, Jianlin Hou, Jie Tanner, John J. |
AuthorAffiliation | 2 Department of Computer Science, Saint Louis University, St. Louis, MO 63103, USA; jie.hou@slu.edu 3 Program in Bioinformatics & Computational Biology, Saint Louis University, St. Louis, MO 63103, USA 1 Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA; ccm3x@mail.missouri.edu 4 Departments of Biochemistry and Chemistry, University of Missouri, Columbia, MO 65211, USA; tannerjj@missouri.edu |
AuthorAffiliation_xml | – name: 2 Department of Computer Science, Saint Louis University, St. Louis, MO 63103, USA; jie.hou@slu.edu – name: 1 Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA; ccm3x@mail.missouri.edu – name: 4 Departments of Biochemistry and Chemistry, University of Missouri, Columbia, MO 65211, USA; tannerjj@missouri.edu – name: 3 Program in Bioinformatics & Computational Biology, Saint Louis University, St. Louis, MO 63103, USA |
Author_xml | – sequence: 1 givenname: Chen orcidid: 0000-0002-2973-461X surname: Chen fullname: Chen, Chen – sequence: 2 givenname: Jie surname: Hou fullname: Hou, Jie – sequence: 3 givenname: John J. orcidid: 0000-0001-8314-113X surname: Tanner fullname: Tanner, John J. – sequence: 4 givenname: Jianlin surname: Cheng fullname: Cheng, Jianlin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32326049$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1LAzEQxYMoatWbZ1nw4sHVfO2mexHa-okVBfUc0uyspuxuapIK_e_N0ipVPGXI_Obx5k0Pbba2BYQOCT5jrMDnZtp4SnCf9gXbQLuEU5pinIvNtXoH9byfYkwZzYpttMNikWNe7KL7obGmraxrVDDaJw8Q3m3pk_iTPCjvk-cZ6OBsA8Et0qHyUCZPzgawTYdfqqCSQavqhTd-H21VqvZwsHr30Ov11cvoNh0_3tyNBuNUc0JDCrygZZaVUADJNOdlhisx0RkTdMJKqDjVXBMWNxIgCCsxyfsacDGptKBcY7aHLpa6s_mkgVJDG5yq5cyZRrmFtMrI353WvMs3-ykFJTkuWBQ4WQk4-zEHH2RjvIa6Vi3YuZeUFbwvckFFRI__oFM7d3HhJZWTGHtHHa07-rHynXME6BLQznrvoJLahJi47QyaWhIsu2PK9WPGodM_Q9-6_-JfcEig7Q |
CitedBy_id | crossref_primary_10_1016_j_ajem_2020_05_031 crossref_primary_10_3390_cancers14122957 crossref_primary_10_31083_j_jin2105147 crossref_primary_10_1186_s12991_024_00522_0 crossref_primary_10_2174_1871520621666210707095833 crossref_primary_10_3390_life10080143 crossref_primary_10_1007_s11947_023_03269_w crossref_primary_10_1002_jms_5116 crossref_primary_10_1021_acsnano_3c10679 crossref_primary_10_1007_s11011_023_01262_y crossref_primary_10_1021_acs_jproteome_3c00439 crossref_primary_10_3390_ijms24065743 crossref_primary_10_3389_fopht_2023_1241001 crossref_primary_10_2174_1570164620666230331102317 crossref_primary_10_1016_j_hpr_2022_300596 crossref_primary_10_1016_j_jplph_2023_154031 crossref_primary_10_1016_j_chroma_2025_465789 crossref_primary_10_1155_2023_1738750 crossref_primary_10_1109_TVCG_2022_3223399 crossref_primary_10_1016_j_cll_2022_09_021 crossref_primary_10_1021_jasms_2c00214 crossref_primary_10_1016_j_phymed_2025_156631 crossref_primary_10_1016_j_jplph_2025_154430 crossref_primary_10_1007_s13258_022_01267_4 crossref_primary_10_2147_COPD_S410387 crossref_primary_10_1016_j_ddtec_2021_06_007 crossref_primary_10_2903_j_efsa_2023_e211013 crossref_primary_10_1016_j_mcpro_2024_100818 crossref_primary_10_3389_fmolb_2021_701477 crossref_primary_10_2174_0929866530666221019162943 crossref_primary_10_1007_s13253_023_00574_x crossref_primary_10_1177_11786469231211184 crossref_primary_10_1038_s41467_024_50875_z crossref_primary_10_1016_j_intimp_2024_111779 crossref_primary_10_3390_proteomes12030026 crossref_primary_10_1093_femsre_fuad051 crossref_primary_10_3389_fgene_2022_1056405 crossref_primary_10_3389_fgene_2022_905353 crossref_primary_10_3390_biomedicines12030585 crossref_primary_10_1007_s10534_023_00506_9 crossref_primary_10_1186_s12014_023_09424_x crossref_primary_10_1002_cpim_105 crossref_primary_10_1088_1757_899X_1074_1_012006 crossref_primary_10_1002_cbic_202100534 crossref_primary_10_1002_pmic_202300002 crossref_primary_10_1002_qub2_35 crossref_primary_10_1016_j_ijbiomac_2024_131923 crossref_primary_10_1007_s13318_024_00912_5 crossref_primary_10_1021_acs_jproteome_3c00075 crossref_primary_10_3390_proteomes9020029 crossref_primary_10_3390_ijms221910298 crossref_primary_10_1016_j_molcel_2021_12_027 crossref_primary_10_3389_fmicb_2023_1245805 crossref_primary_10_3390_ijms22179508 crossref_primary_10_18632_aging_204960 crossref_primary_10_3390_jcm10112309 crossref_primary_10_1016_j_arr_2022_101771 crossref_primary_10_1155_2022_9272709 crossref_primary_10_3390_ijms25105071 crossref_primary_10_3390_jpm13050790 crossref_primary_10_1002_mas_21792 crossref_primary_10_1016_j_piel_2022_07_023 crossref_primary_10_1021_acs_jcim_2c01161 crossref_primary_10_2147_BTT_S486345 crossref_primary_10_3390_metabo14010050 crossref_primary_10_1039_D3CC05988J crossref_primary_10_3390_ijms22189860 crossref_primary_10_1002_jbt_23217 crossref_primary_10_1093_stcltm_szac052 crossref_primary_10_31083_j_fbl2901039 crossref_primary_10_1038_s41568_022_00446_5 crossref_primary_10_1097_MD_0000000000036414 crossref_primary_10_3390_ijms22137101 crossref_primary_10_1186_s12859_023_05281_5 crossref_primary_10_18632_aging_205903 crossref_primary_10_1007_s00292_023_01261_x crossref_primary_10_1016_j_fochms_2021_100045 crossref_primary_10_1089_vim_2023_0094 crossref_primary_10_3389_fdmed_2022_814603 crossref_primary_10_3390_ijms23042187 crossref_primary_10_1016_j_jpbao_2023_100012 crossref_primary_10_1021_acs_jproteome_2c00033 crossref_primary_10_1007_s12647_024_00770_1 crossref_primary_10_1016_j_jprot_2020_103897 crossref_primary_10_1186_s12943_024_02050_7 crossref_primary_10_1186_s12884_023_06215_y crossref_primary_10_3389_fimmu_2022_1015491 crossref_primary_10_3389_fphys_2021_723510 crossref_primary_10_1093_bioinformatics_btac628 crossref_primary_10_1109_TCOMM_2024_3367748 crossref_primary_10_3390_cells10081854 crossref_primary_10_1007_s00432_025_06144_7 crossref_primary_10_3390_biomedicines12020333 crossref_primary_10_1016_j_cosrev_2023_100571 crossref_primary_10_18632_aging_204947 crossref_primary_10_3390_ani12131718 crossref_primary_10_3390_foods12132524 crossref_primary_10_1016_j_microc_2024_111317 crossref_primary_10_1002_adsr_202200052 crossref_primary_10_1021_acsomega_1c01465 crossref_primary_10_1002_rcm_9088 crossref_primary_10_1016_j_neuro_2022_11_004 crossref_primary_10_3390_life13020544 crossref_primary_10_1186_s13023_024_03462_w crossref_primary_10_1142_S0219720024500252 crossref_primary_10_1016_j_fbio_2025_106148 crossref_primary_10_1093_gigascience_giac048 crossref_primary_10_1152_physrev_00026_2023 crossref_primary_10_1038_s41598_024_76095_5 crossref_primary_10_1016_j_csbj_2021_12_012 crossref_primary_10_3389_fphar_2021_700696 crossref_primary_10_1016_j_imbio_2023_152722 crossref_primary_10_1002_wfs2_1516 crossref_primary_10_1080_1040841X_2022_2065905 crossref_primary_10_3390_md22010012 crossref_primary_10_1016_j_aca_2023_341790 crossref_primary_10_1016_j_hfc_2021_11_004 crossref_primary_10_1038_s41467_024_46485_4 crossref_primary_10_14720_abs_65_2_12499 crossref_primary_10_1021_acs_analchem_4c06471 crossref_primary_10_1146_annurev_anchem_061020_022048 crossref_primary_10_3934_mbe_2023005 crossref_primary_10_1093_gigascience_giae054 crossref_primary_10_1016_j_jprot_2021_104240 crossref_primary_10_3390_cells13050394 crossref_primary_10_1016_j_anireprosci_2022_107075 crossref_primary_10_1186_s12890_022_02240_3 crossref_primary_10_3390_proteomes9030038 crossref_primary_10_3389_fsurg_2022_1025557 crossref_primary_10_1007_s13199_024_00996_2 crossref_primary_10_3390_plants13192714 crossref_primary_10_3389_fnsyn_2023_1130198 crossref_primary_10_1016_j_jenvman_2023_118333 crossref_primary_10_2174_0113816128289900240219104854 crossref_primary_10_2174_1574888X17666220627145424 crossref_primary_10_1080_14789450_2021_1910028 crossref_primary_10_3390_app15020666 crossref_primary_10_3389_fgene_2021_667936 crossref_primary_10_1016_j_ccr_2021_213905 crossref_primary_10_1016_j_jep_2025_119381 crossref_primary_10_1111_acel_14318 crossref_primary_10_3389_fnmol_2021_647451 crossref_primary_10_17816_JOWD83961 |
Cites_doi | 10.1093/nar/gkr1122 10.1093/intbio/zyz025 10.1073/pnas.96.12.6591 10.1158/1541-7786.MCR-17-0378 10.1021/pr300624g 10.1002/pmic.200600422 10.1021/ac048788h 10.1186/1471-2105-5-194 10.1038/nmeth.2698 10.1016/1044-0305(94)80016-2 10.1186/1471-2164-6-145 10.1093/nar/gkv523 10.1007/978-1-59745-493-3_28 10.1146/annurev-anchem-071015-041535 10.1038/nbt1275 10.1093/bioinformatics/btt285 10.1021/pr200153k 10.1038/nmeth891 10.1074/mcp.M900217-MCP200 10.1038/s41467-020-15346-1 10.1021/acs.jproteome.8b00927 10.1371/journal.pcbi.1005973 10.1186/1471-2105-9-80 10.1021/pr700747q 10.1093/bioinformatics/btw398 10.1002/mas.21400 10.1074/jbc.M112.351304 10.1074/mcp.O114.039586 10.3390/toxics4010005 10.1021/ac200609a 10.1093/bioinformatics/btz366 10.1021/cn400053c 10.1109/ESIAT.2009.206 10.1093/nar/gkw937 10.1093/bioinformatics/btv699 10.1002/prot.22172 10.1007/s13361-015-1264-1 10.1021/pr500060d 10.1074/mcp.M500061-MCP200 10.1007/978-1-60761-444-9_5 10.1021/ac0341261 10.1016/j.jprot.2019.103543 10.3390/ijms20205075 10.1038/nmeth.3144 10.1142/9789812772435_0039 10.1186/1471-2105-9-163 10.1007/s13361-015-1201-3 10.1021/pr2008175 10.1021/acs.jproteome.7b00028 10.1002/pmic.200900375 10.1093/nar/gkh036 10.1038/nmeth.3773 10.1074/mcp.M400215-MCP200 10.1038/nature13319 10.1046/j.1432-1033.2003.03428.x 10.1007/s12014-009-9024-5 10.1002/elps.1150180333 10.1080/14789450.2017.1359545 10.1016/j.jasms.2010.03.028 10.1021/pr200677z 10.1074/mcp.M500230-MCP200 10.1038/13690 10.1021/pr070520u 10.1186/s12859-019-3034-8 10.1074/mcp.M113.031591 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 10.1021/pr501138h 10.1038/455047a 10.3390/ijms20205188 10.1021/pr501164r 10.1093/bioinformatics/btn590 10.1074/mcp.TIR119.001385 10.1021/pr800420s 10.1074/mcp.R112.025163 10.1093/nar/gky1131 10.1038/nprot.2016.136 10.1089/cmb.2006.13.364 10.1021/ac050102d 10.1007/978-1-4471-0123-9 10.1002/(SICI)1097-0231(19970615)11:9<1015::AID-RCM958>3.0.CO;2-H 10.1093/bioinformatics/btn615 10.1142/9789812702456_0021 10.1038/nmeth.3655 10.1021/ac0508853 10.1093/bioinformatics/bth092 10.1074/mcp.M200025-MCP200 10.1021/acs.jproteome.8b00206 10.1021/acs.jproteome.6b00034 10.1074/mcp.M113.037309 10.1038/msb.2008.75 10.1186/s12864-018-4923-3 10.1093/bioinformatics/btr246 10.1590/S0103-90162008000400015 10.1093/nar/gkq1018 10.7150/ijbs.32142 10.1038/srep31730 10.1002/cbic.201800650 10.1021/pr900721e 10.1074/mcp.M900267-MCP200 10.1002/0471250953.bi1323s44 10.1021/ac051319a 10.1002/rcm.1196 10.1021/pr049920x 10.1074/mcp.M900317-MCP200 10.1186/1471-2105-8-401 10.1089/cmb.2009.0018 10.1016/j.jprot.2012.07.034 10.1007/978-1-60761-175-2 10.1021/pr101065j 10.3390/ijms17091426 10.1007/s12011-017-1063-6 10.1093/nar/gkv1048 10.7554/eLife.16950 10.1186/gb-2003-4-9-r60 10.1021/acs.jproteome.6b00403 10.3389/fnmol.2019.00224 10.1021/acs.jproteome.8b00295 10.1002/pmic.200900370 10.1002/0471250953.bi1320s40 10.1186/s12859-019-2619-6 10.1021/ac701863d 10.1002/pmic.200400873 10.1038/nmeth1019 10.1093/nar/gkq1039 10.1146/annurev-anchem-071015-041550 10.1074/mcp.M115.050245 10.1021/pr0701198 10.1093/nar/gkg838 10.1074/mcp.D500002-MCP200 10.1021/pr100594k 10.1021/pr800154p 10.1016/j.copbio.2016.09.003 10.1021/pr500473n 10.1016/j.compbiomed.2017.08.028 10.1007/978-1-4939-9814-2_19 10.1038/nbt1289 10.1186/1471-2105-11-450 10.1021/pr1009977 10.1021/pr500880b 10.1021/acs.jproteome.7b00429 10.1093/bioinformatics/btm555 10.1016/S0140-6736(06)69342-2 10.1074/mcp.R600012-MCP200 10.1038/ncomms10259 10.1093/bioinformatics/18.suppl_1.S96 10.1002/pmic.201600267 10.1038/s41598-017-19120-0 10.1038/nmeth.3255 10.1038/s41592-019-0457-0 10.1038/nbt1001-946 10.1017/CBO9780511790515 10.1093/bioinformatics/bti685 10.1073/pnas.0904100106 10.1038/nmeth.4390 10.1073/pnas.1705691114 10.1371/journal.pone.0141287 10.1007/s11306-012-0399-3 10.3390/ijms20194905 10.1093/bioinformatics/btq054 10.1128/MCB.19.3.1720 10.1371/journal.pgen.1004047 10.1021/acs.jproteome.7b00873 10.1074/mcp.M111.010587 10.1074/mcp.T500034-MCP200 10.1074/mcp.M114.040287 10.1074/mcp.M113.035949 10.1089/106652799318300 10.1093/bioinformatics/btt338 10.1038/s41598-019-40873-3 10.1074/jbc.M115.687269 10.1002/pmic.200402101 10.1038/nprot.2010.192 10.1016/j.euprot.2015.02.002 10.1002/jssc.201900804 10.11613/BM.2011.029 10.1038/s41592-018-0260-3 10.1093/bioinformatics/btx415 10.1038/nmeth.3940 10.1093/nar/gkw1092 10.1371/journal.pone.0116221 10.1021/pr0499491 10.1021/pr100734z 10.1093/bioinformatics/btm281 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms21082873 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC7216093 32326049 10_3390_ijms21082873 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM093123 – fundername: National Science Foundation grantid: IIS1763246 – fundername: National Science Foundation grantid: DBI1759934 – fundername: NIH HHS grantid: R01GM093123 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 ESTFP PUEGO 5PM |
ID | FETCH-LOGICAL-c412t-e492d55de9e15c44d50f7bc5372b3def42c4c130827e713d0168ce09bfc724c03 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 14:14:59 EDT 2025 Fri Sep 05 08:53:10 EDT 2025 Fri Jul 25 19:58:24 EDT 2025 Wed Feb 19 02:29:39 EST 2025 Thu Apr 24 23:00:31 EDT 2025 Tue Jul 01 04:15:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | machine learning bioinformatics analysis computational proteomics |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-e492d55de9e15c44d50f7bc5372b3def42c4c130827e713d0168ce09bfc724c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8314-113X 0000-0002-2973-461X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms21082873 |
PMID | 32326049 |
PQID | 2394612877 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7216093 proquest_miscellaneous_2394876727 proquest_journals_2394612877 pubmed_primary_32326049 crossref_citationtrail_10_3390_ijms21082873 crossref_primary_10_3390_ijms21082873 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200420 |
PublicationDateYYYYMMDD | 2020-04-20 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200420 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Searle (ref_67) 2020; 11 ref_136 Mischnik (ref_175) 2015; 32 Han (ref_81) 2001; 19 Edwards (ref_158) 2009; 5 Savitski (ref_45) 2006; 5 Rudolph (ref_48) 2019; 18 Pang (ref_174) 2020; 211 Sun (ref_182) 2012; 8 Deeb (ref_151) 2015; 14 Hill (ref_127) 2008; 7 Carbon (ref_140) 2008; 25 Tyanova (ref_18) 2016; 11 Wang (ref_19) 2015; 12 Pappireddi (ref_187) 2019; 20 Gygi (ref_2) 1999; 19 Schmidl (ref_168) 2010; 9 Tsou (ref_42) 2015; 12 Tran (ref_27) 2019; 16 Li (ref_68) 2017; 16 Nesvizhskii (ref_72) 2003; 75 Arora (ref_169) 2012; 287 Cao (ref_88) 2012; 11 Ding (ref_156) 2018; 16 Strasser (ref_4) 2019; 11 Tran (ref_64) 2017; 114 Wang (ref_38) 2014; 13 Wilhelm (ref_102) 2014; 509 Alexandrov (ref_110) 2010; 9 Geiger (ref_104) 2011; 6 Alexandrov (ref_111) 2011; 27 Monroe (ref_84) 2007; 23 Piovesan (ref_143) 2015; 43 ref_129 Jeong (ref_34) 2013; 29 Nahnsen (ref_99) 2013; 12 Agranoff (ref_152) 2006; 368 Deutsch (ref_79) 2010; 10 Addona (ref_13) 1999; 6 Bjornson (ref_26) 2008; 7 ref_120 Huber (ref_116) 2002; 18 Brodbelt (ref_24) 2015; 26 ref_123 Frank (ref_14) 2005; 77 Szklarczyk (ref_190) 2019; 47 Hill (ref_178) 2016; 13 McHugh (ref_125) 2011; 21 ref_28 Craig (ref_12) 2004; 20 Li (ref_97) 2014; 13 Chalkley (ref_23) 2005; 4 Eng (ref_16) 2008; 7 Fischer (ref_29) 2005; 77 Bern (ref_35) 2012; 40 Waegele (ref_137) 2008; 25 ref_159 ref_71 Wiese (ref_96) 2007; 7 Perfetto (ref_135) 2015; 44 Yang (ref_41) 2004; 3 Wisniewski (ref_105) 2014; 13 Luo (ref_147) 2013; 29 Tabb (ref_56) 2015; 26 ref_78 ref_76 ref_157 Pedrioli (ref_98) 2006; 3 Hanrieder (ref_106) 2013; 4 ref_160 Birhanu (ref_172) 2017; 16 Krzywinski (ref_124) 2013; 10 Cifani (ref_40) 2018; 17 Ravikumar (ref_170) 2014; 13 Wan (ref_22) 2006; 78 Dennis (ref_132) 2003; 4 Li (ref_33) 2019; 15 Weatherly (ref_49) 2005; 4 Sharaf (ref_3) 2019; 12 Petyuk (ref_54) 2008; 80 ref_141 ref_144 ref_85 Wiredja (ref_176) 2017; 33 ref_145 Elias (ref_61) 2010; 604 (ref_139) 2004; 32 Nesvizhskii (ref_70) 2014; 11 Rauniyar (ref_149) 2014; 13 Wang (ref_183) 2018; 183 Suomi (ref_114) 2016; 19 Zecha (ref_95) 2019; 18 Perkins (ref_17) 1999; 20 Bergamo (ref_121) 2008; 65 Bern (ref_117) 2006; 13 ref_58 ref_173 Bauer (ref_161) 2003; 270 Cheerathodi (ref_186) 2020; 2060 ref_177 Pirhaji (ref_184) 2016; 13 ref_179 Wei (ref_118) 2018; 8 Croft (ref_146) 2010; 39 Rinner (ref_162) 2007; 25 Chapman (ref_65) 2014; 33 Silva (ref_103) 2006; 5 Xie (ref_130) 2005; 21 ref_180 Eng (ref_10) 1994; 5 Petyuk (ref_53) 2010; 9 Han (ref_69) 2011; 10 Ma (ref_30) 2003; 17 Herbrich (ref_128) 2013; 12 Kou (ref_25) 2016; 32 Donnelly (ref_8) 2019; 16 Toby (ref_7) 2016; 9 Ting (ref_31) 2017; 14 Wisniewski (ref_113) 2016; 15 Mortensen (ref_52) 2010; 9 Geer (ref_11) 2004; 3 Kil (ref_55) 2011; 83 Howe (ref_138) 2008; 455 Perchey (ref_51) 2019; 9 ref_166 ref_165 Gillet (ref_6) 2016; 9 ref_63 Cox (ref_83) 2014; 13 ref_62 Kanehisa (ref_148) 2017; 45 ref_167 Anderson (ref_1) 1997; 18 Shen (ref_73) 2008; 24 May (ref_47) 2017; 16 Slotta (ref_43) 2010; 10 Schmidt (ref_91) 2005; 5 Tornow (ref_164) 2003; 31 Domon (ref_9) 2006; 5 Tyanova (ref_153) 2016; 7 Tanner (ref_37) 2005; 77 Edwards (ref_21) 2013; 44 ref_115 Weisbrod (ref_66) 2012; 11 Li (ref_74) 2009; 16 ref_119 Gygi (ref_90) 1999; 17 Tabb (ref_36) 2008; 7 Oda (ref_93) 1999; 96 Baker (ref_107) 2017; 43 Merrill (ref_89) 2014; 13 Singhal (ref_171) 2015; 290 Ong (ref_92) 2002; 1 Arntzen (ref_77) 2011; 10 Serang (ref_75) 2010; 9 Tran (ref_86) 2016; 6 Kammers (ref_126) 2015; 7 Szklarczyk (ref_133) 2017; 45 Rauniyar (ref_94) 2014; 13 Ishihama (ref_82) 2005; 4 Girod (ref_109) 2010; 21 Zhang (ref_39) 2012; 11 MacLean (ref_87) 2010; 26 Shevchenko (ref_15) 1997; 11 Gonnelli (ref_46) 2015; 14 Cerami (ref_185) 2011; 39 Wiberg (ref_122) 2015; 14 Isik (ref_150) 2017; 89 ref_108 Khan (ref_80) 2009; 106 Hornbeck (ref_134) 2012; 40 Hawkins (ref_142) 2009; 74 Reiter (ref_44) 2009; 8 Leung (ref_100) 2005; 5 Solntsev (ref_50) 2018; 17 Choi (ref_131) 2008; 7 ref_188 Yang (ref_32) 2019; 35 Schaefer (ref_181) 2016; 45 ref_189 Lin (ref_59) 2018; 17 Kallback (ref_112) 2012; 75 Cox (ref_57) 2011; 10 Kar (ref_5) 2017; 14 Elias (ref_60) 2007; 4 Itzhak (ref_154) 2016; 5 Schirmer (ref_20) 2003; 3 Mallick (ref_101) 2007; 25 Su (ref_155) 2017; 17 Glatter (ref_163) 2009; 5 |
References_xml | – volume: 40 start-page: D261 year: 2012 ident: ref_134 article-title: PhosphoSitePlus: A comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse publication-title: Nucleic. Acids. Res. doi: 10.1093/nar/gkr1122 – volume: 11 start-page: 301 year: 2019 ident: ref_4 article-title: Substrate-based kinase activity inference identifies MK2 as driver of colitis publication-title: Integr. Biol. doi: 10.1093/intbio/zyz025 – volume: 96 start-page: 6591 year: 1999 ident: ref_93 article-title: Accurate quantitation of protein expression and site-specific phosphorylation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.12.6591 – volume: 16 start-page: 269 year: 2018 ident: ref_156 article-title: Precision Oncology beyond Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority of Cancer Cells to Effective Therapeutics publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-17-0378 – volume: 12 start-page: 594 year: 2013 ident: ref_128 article-title: Statistical inference from multiple iTRAQ experiments without using common reference standards publication-title: J. Proteome Res. doi: 10.1021/pr300624g – volume: 7 start-page: 340 year: 2007 ident: ref_96 article-title: Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research publication-title: Proteomics doi: 10.1002/pmic.200600422 – volume: 77 start-page: 964 year: 2005 ident: ref_14 article-title: PepNovo: De novo peptide sequencing via probabilistic network modeling publication-title: Anal. Chem. doi: 10.1021/ac048788h – ident: ref_115 doi: 10.1186/1471-2105-5-194 – volume: 10 start-page: 1041 year: 2013 ident: ref_124 article-title: Significance, P values and t-tests publication-title: Nat. Methods doi: 10.1038/nmeth.2698 – volume: 5 start-page: 976 year: 1994 ident: ref_10 article-title: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/1044-0305(94)80016-2 – ident: ref_78 doi: 10.1186/1471-2164-6-145 – volume: 43 start-page: W134 year: 2015 ident: ref_143 article-title: INGA: Protein function prediction combining interaction networks, domain assignments and sequence similarity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv523 – ident: ref_58 doi: 10.1007/978-1-59745-493-3_28 – volume: 9 start-page: 449 year: 2016 ident: ref_6 article-title: Mass Spectrometry Applied to Bottom-Up Proteomics: Entering the High-Throughput Era for Hypothesis Testing publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-071015-041535 – volume: 25 start-page: 125 year: 2007 ident: ref_101 article-title: Computational prediction of proteotypic peptides for quantitative proteomics publication-title: Nat. Biotechnol. doi: 10.1038/nbt1275 – volume: 29 start-page: 1830 year: 2013 ident: ref_147 article-title: Pathview: An R/Bioconductor package for pathway-based data integration and visualization publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt285 – volume: 10 start-page: 2930 year: 2011 ident: ref_69 article-title: PeaksPTM: Mass spectrometry-based identification of peptides with unspecified modifications publication-title: J. Proteome Res. doi: 10.1021/pr200153k – volume: 3 start-page: 533 year: 2006 ident: ref_98 article-title: Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software publication-title: Nat. Methods doi: 10.1038/nmeth891 – volume: 9 start-page: 486 year: 2010 ident: ref_53 article-title: DtaRefinery, a software tool for elimination of systematic errors from parent ion mass measurements in tandem mass spectra data sets publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M900217-MCP200 – volume: 11 start-page: 1548 year: 2020 ident: ref_67 article-title: Generating high quality libraries for DIA MS with empirically corrected peptide predictions publication-title: Nat. Commun. doi: 10.1038/s41467-020-15346-1 – volume: 18 start-page: 2052 year: 2019 ident: ref_48 article-title: A Network Module for the Perseus Software for Computational Proteomics Facilitates Proteome Interaction Graph Analysis publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.8b00927 – ident: ref_123 doi: 10.1371/journal.pcbi.1005973 – ident: ref_141 doi: 10.1186/1471-2105-9-80 – volume: 7 start-page: 47 year: 2008 ident: ref_131 article-title: False Discovery Rates and Related Statistical Concepts in Mass Spectrometry-Based Proteomics publication-title: J. Proteome Res. doi: 10.1021/pr700747q – volume: 32 start-page: 3495 year: 2016 ident: ref_25 article-title: TopPIC: A software tool for top-down mass spectrometry-based proteoform identification and characterization publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw398 – volume: 33 start-page: 452 year: 2014 ident: ref_65 article-title: Multiplexed and data-independent tandem mass spectrometry for global proteome profiling publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.21400 – volume: 287 start-page: 26749 year: 2012 ident: ref_169 article-title: Unveiling the novel dual specificity protein kinases in Bacillus anthracis: Identification of the first prokaryotic dual specificity tyrosine phosphorylation-regulated kinase (DYRK)-like kinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.351304 – volume: 13 start-page: 3663 year: 2014 ident: ref_38 article-title: JUMP: A tag-based database search tool for peptide identification with high sensitivity and accuracy publication-title: Mol. Cel.l Proteomics doi: 10.1074/mcp.O114.039586 – ident: ref_108 doi: 10.3390/toxics4010005 – volume: 83 start-page: 5259 year: 2011 ident: ref_55 article-title: Preview: A program for surveying shotgun proteomics tandem mass spectrometry data publication-title: Anal. Chem. doi: 10.1021/ac200609a – volume: 35 start-page: i183 year: 2019 ident: ref_32 article-title: pNovo 3: Precise de novo peptide sequencing using a learning-to-rank framework publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz366 – volume: 4 start-page: 666 year: 2013 ident: ref_106 article-title: Imaging mass spectrometry in neuroscience publication-title: ACS Chem. Neurosci. doi: 10.1021/cn400053c – ident: ref_120 doi: 10.1109/ESIAT.2009.206 – volume: 45 start-page: D362 year: 2017 ident: ref_133 article-title: The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible publication-title: Nucleic. Acids. Res. doi: 10.1093/nar/gkw937 – volume: 32 start-page: 424 year: 2015 ident: ref_175 article-title: IKAP: A heuristic framework for inference of kinase activities from Phosphoproteomics data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv699 – volume: 74 start-page: 566 year: 2009 ident: ref_142 article-title: PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data publication-title: Proteins: Struct. Funct. Bioinforma. doi: 10.1002/prot.22172 – volume: 26 start-page: 1797 year: 2015 ident: ref_24 article-title: Focus on the 20-year anniversary of SEQUEST publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-015-1264-1 – volume: 13 start-page: 3488 year: 2014 ident: ref_97 article-title: Estimating influence of cofragmentation on peptide quantification and identification in iTRAQ experiments by simulating multiplexed spectra publication-title: J. Proteome Res. doi: 10.1021/pr500060d – volume: 4 start-page: 1265 year: 2005 ident: ref_82 article-title: Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein publication-title: Mol. Cell. Proteomics. doi: 10.1074/mcp.M500061-MCP200 – volume: 604 start-page: 55 year: 2010 ident: ref_61 article-title: Target-decoy search strategy for mass spectrometry-based proteomics publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60761-444-9_5 – volume: 75 start-page: 4646 year: 2003 ident: ref_72 article-title: A statistical model for identifying proteins by tandem mass spectrometry publication-title: Anal. Chem. doi: 10.1021/ac0341261 – volume: 211 start-page: 103543 year: 2020 ident: ref_174 article-title: Acetylome profiling of Vibrio alginolyticus reveals its role in bacterial virulence publication-title: J. Proteomics doi: 10.1016/j.jprot.2019.103543 – ident: ref_177 – ident: ref_180 doi: 10.3390/ijms20205075 – volume: 11 start-page: 1114 year: 2014 ident: ref_70 article-title: Proteogenomics: Concepts, applications and computational strategies publication-title: Nat. Methods doi: 10.1038/nmeth.3144 – ident: ref_71 doi: 10.1142/9789812772435_0039 – ident: ref_85 doi: 10.1186/1471-2105-9-163 – volume: 26 start-page: 1814 year: 2015 ident: ref_56 article-title: The SEQUEST family tree publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-015-1201-3 – volume: 11 start-page: 1621 year: 2012 ident: ref_66 article-title: Accurate peptide fragment mass analysis: Multiplexed peptide identification and quantification publication-title: J. Proteome Res. doi: 10.1021/pr2008175 – volume: 16 start-page: 1817 year: 2017 ident: ref_47 article-title: Param-Medic: A Tool for Improving MS/MS Database Search Yield by Optimizing Parameter Settings publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.7b00028 – volume: 10 start-page: 1150 year: 2010 ident: ref_79 article-title: A guided tour of the Trans-Proteomic Pipeline publication-title: Proteomics doi: 10.1002/pmic.200900375 – volume: 32 start-page: D258 year: 2004 ident: ref_139 article-title: The Gene Ontology (GO) database and informatics resource publication-title: Nucleic. Acids. Res. doi: 10.1093/nar/gkh036 – volume: 13 start-page: 310 year: 2016 ident: ref_178 article-title: Inferring causal molecular networks: Empirical assessment through a community-based effort publication-title: Nat. Methods doi: 10.1038/nmeth.3773 – volume: 4 start-page: 762 year: 2005 ident: ref_49 article-title: A Heuristic Method for Assigning a False-discovery Rate for Protein Identifications from Mascot Database Search Results publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M400215-MCP200 – volume: 509 start-page: 582 year: 2014 ident: ref_102 article-title: Mass-spectrometry-based draft of the human proteome publication-title: Nature doi: 10.1038/nature13319 – volume: 270 start-page: 570 year: 2003 ident: ref_161 article-title: Affinity purification-mass spectrometry publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1033.2003.03428.x – volume: 5 start-page: 23 year: 2009 ident: ref_158 article-title: An Unsupervised, Model-Free, Machine-Learning Combiner for Peptide Identifications from Tandem Mass Spectra publication-title: Clin. Proteomics doi: 10.1007/s12014-009-9024-5 – volume: 18 start-page: 533 year: 1997 ident: ref_1 article-title: A comparison of selected mRNA and protein abundances in human liver publication-title: Electrophoresis doi: 10.1002/elps.1150180333 – volume: 14 start-page: 715 year: 2017 ident: ref_5 article-title: Integral membrane proteins: Bottom-up, top-down and structural proteomics publication-title: Expert Rev. Proteomics doi: 10.1080/14789450.2017.1359545 – volume: 21 start-page: 1177 year: 2010 ident: ref_109 article-title: Desorption electrospray ionization imaging mass spectrometry of lipids in rat spinal cord publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/j.jasms.2010.03.028 – volume: 11 start-page: 829 year: 2012 ident: ref_88 article-title: Quantitative proteomic analysis of membrane proteins involved in astroglial differentiation of neural stem cells by SILAC labeling coupled with LC–MS/MS publication-title: J. Proteome Res. doi: 10.1021/pr200677z – volume: 5 start-page: 144 year: 2006 ident: ref_103 article-title: Absolute quantification of proteins by LCMSE: A virtue of parallel MS acquisition publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M500230-MCP200 – volume: 17 start-page: 994 year: 1999 ident: ref_90 article-title: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags publication-title: Nat. Biotechnol. doi: 10.1038/13690 – volume: 7 start-page: 3091 year: 2008 ident: ref_127 article-title: A statistical model for iTRAQ data analysis publication-title: J. Proteome Res. doi: 10.1021/pr070520u – ident: ref_62 doi: 10.1186/s12859-019-3034-8 – volume: 13 start-page: 2513 year: 2014 ident: ref_83 article-title: Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M113.031591 – volume: 20 start-page: 3551 year: 1999 ident: ref_17 article-title: Probability-based protein identification by searching sequence databases using mass spectrometry data publication-title: Electrophoresis doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 – volume: 14 start-page: 1993 year: 2015 ident: ref_122 article-title: Review, Evaluation, and Discussion of the Challenges of Missing Value Imputation for Mass Spectrometry-Based Label-Free Global Proteomics publication-title: J. Proteome Res. doi: 10.1021/pr501138h – volume: 455 start-page: 47 year: 2008 ident: ref_138 article-title: Big data: The future of biocuration publication-title: Nature doi: 10.1038/455047a – ident: ref_166 doi: 10.3390/ijms20205188 – ident: ref_179 – volume: 14 start-page: 1792 year: 2015 ident: ref_46 article-title: A decoy-free approach to the identification of peptides publication-title: J. Proteome Res. doi: 10.1021/pr501164r – volume: 25 start-page: 141 year: 2008 ident: ref_137 article-title: CRONOS: The cross-reference navigation server publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn590 – volume: 18 start-page: 1468 year: 2019 ident: ref_95 article-title: TMT Labeling for the Masses: A Robust and Cost-efficient, In-solution Labeling Approach publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.TIR119.001385 – volume: 7 start-page: 4598 year: 2008 ident: ref_16 article-title: A fast SEQUEST cross correlation algorithm publication-title: J. Proteome Res. doi: 10.1021/pr800420s – volume: 12 start-page: 549 year: 2013 ident: ref_99 article-title: Tools for label-free peptide quantification publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.R112.025163 – volume: 47 start-page: D607 year: 2019 ident: ref_190 article-title: STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1131 – volume: 11 start-page: 2301 year: 2016 ident: ref_18 article-title: The MaxQuant computational platform for mass spectrometry-based shotgun proteomics publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.136 – volume: 13 start-page: 364 year: 2006 ident: ref_117 article-title: De novo analysis of peptide tandem mass spectra by spectral graph partitioning publication-title: J. Comput. Biol. doi: 10.1089/cmb.2006.13.364 – volume: 77 start-page: 4626 year: 2005 ident: ref_37 article-title: InsPecT: Identification of posttranslationally modified peptides from tandem mass spectra publication-title: Anal. Chem. doi: 10.1021/ac050102d – ident: ref_157 doi: 10.1007/978-1-4471-0123-9 – volume: 11 start-page: 1015 year: 1997 ident: ref_15 article-title: Rapid ‘de novo’peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/(SICI)1097-0231(19970615)11:9<1015::AID-RCM958>3.0.CO;2-H – volume: 25 start-page: 288 year: 2008 ident: ref_140 article-title: AmiGO: Online access to ontology and annotation data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn615 – ident: ref_165 doi: 10.1142/9789812702456_0021 – volume: 12 start-page: 1106 year: 2015 ident: ref_19 article-title: MSPLIT-DIA: Sensitive peptide identification for data-independent acquisition publication-title: Nat. Methods doi: 10.1038/nmeth.3655 – volume: 77 start-page: 7265 year: 2005 ident: ref_29 article-title: NovoHMM: A hidden Markov model for de novo peptide sequencing publication-title: Anal. Chem. doi: 10.1021/ac0508853 – volume: 20 start-page: 1466 year: 2004 ident: ref_12 article-title: TANDEM: Matching proteins with tandem mass spectra publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth092 – volume: 1 start-page: 376 year: 2002 ident: ref_92 article-title: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics publication-title: Mol. Cell. Proteomics. doi: 10.1074/mcp.M200025-MCP200 – volume: 17 start-page: 3644 year: 2018 ident: ref_59 article-title: Combining High-Resolution and Exact Calibration To Boost Statistical Power: A Well-Calibrated Score Function for High-Resolution MS2 Data publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.8b00206 – volume: 16 start-page: 1383 year: 2017 ident: ref_68 article-title: Global Post-Translational Modification Discovery publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.6b00034 – volume: 13 start-page: 3497 year: 2014 ident: ref_105 article-title: A “proteomic ruler” for protein copy number and concentration estimation without spike-in standards publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M113.037309 – volume: 5 start-page: 237 year: 2009 ident: ref_163 article-title: An integrated workflow for charting the human interaction proteome: Insights into the PP2A system publication-title: Mol. Systems Biol. doi: 10.1038/msb.2008.75 – ident: ref_76 doi: 10.1186/s12864-018-4923-3 – volume: 27 start-page: i230 year: 2011 ident: ref_111 article-title: Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr246 – volume: 65 start-page: 422 year: 2008 ident: ref_121 article-title: Distribution-free multiple imputation in an interaction matrix through singular value decomposition publication-title: Sci. Agric. doi: 10.1590/S0103-90162008000400015 – volume: 39 start-page: D691 year: 2010 ident: ref_146 article-title: Reactome: A database of reactions, pathways and biological processes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1018 – volume: 15 start-page: 1787 year: 2019 ident: ref_33 article-title: SWPepNovo: An Efficient De Novo Peptide Sequencing Tool for Large-scale MS/MS Spectra Analysis publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.32142 – volume: 19 start-page: 1 year: 2016 ident: ref_114 article-title: A systematic evaluation of normalization methods in quantitative label-free proteomics publication-title: Brief. Bioinforma. – volume: 6 start-page: 31730 year: 2016 ident: ref_86 article-title: Complete De Novo Assembly of Monoclonal Antibody Sequences publication-title: Sci. Rep. doi: 10.1038/srep31730 – volume: 20 start-page: 1210 year: 2019 ident: ref_187 article-title: A Review on Quantitative Multiplexed Proteomics publication-title: Chembiochem doi: 10.1002/cbic.201800650 – volume: 9 start-page: 393 year: 2010 ident: ref_52 article-title: MSQuant, an open source platform for mass spectrometry-based quantitative proteomics publication-title: J. Proteome Res. doi: 10.1021/pr900721e – volume: 9 start-page: 1228 year: 2010 ident: ref_168 article-title: The phosphoproteome of the minimal bacterium Mycoplasma pneumoniae: Analysis of the complete known Ser/Thr kinome suggests the existence of novel kinases publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M900267-MCP200 – volume: 44 start-page: 11 year: 2013 ident: ref_21 article-title: PepArML: A Meta-Search Peptide Identification Platform for Tandem Mass Spectra publication-title: Curr. Protoc. Bioinforma. doi: 10.1002/0471250953.bi1323s44 – volume: 78 start-page: 432 year: 2006 ident: ref_22 article-title: PepHMM: A hidden Markov model based scoring function for mass spectrometry database search publication-title: Anal. Chem. doi: 10.1021/ac051319a – volume: 17 start-page: 2337 year: 2003 ident: ref_30 article-title: PEAKS: Powerful software for peptide de novo sequencing by tandem mass spectrometry publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.1196 – volume: 3 start-page: 1002 year: 2004 ident: ref_41 article-title: DBParser: Web-based software for shotgun proteomic data analyses publication-title: J. Proteome Res. doi: 10.1021/pr049920x – volume: 8 start-page: 2405 year: 2009 ident: ref_44 article-title: Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M900317-MCP200 – ident: ref_136 doi: 10.1186/1471-2105-8-401 – volume: 16 start-page: 1183 year: 2009 ident: ref_74 article-title: A Bayesian approach to protein inference problem in shotgun proteomics publication-title: J. Comput. Biol. doi: 10.1089/cmb.2009.0018 – volume: 75 start-page: 4941 year: 2012 ident: ref_112 article-title: Novel mass spectrometry imaging software assisting labeled normalization and quantitation of drugs and neuropeptides directly in tissue sections publication-title: J. Proteomics doi: 10.1016/j.jprot.2012.07.034 – ident: ref_145 doi: 10.1007/978-1-60761-175-2 – volume: 10 start-page: 1794 year: 2011 ident: ref_57 article-title: Andromeda: A peptide search engine integrated into the MaxQuant environment publication-title: J. Proteome Res. doi: 10.1021/pr101065j – ident: ref_144 doi: 10.3390/ijms17091426 – volume: 183 start-page: 40 year: 2018 ident: ref_183 article-title: Network Analysis of Se-and Zn-related Proteins in the Serum Proteomics Expression Profile of the Endemic Dilated Cardiomyopathy Keshan Disease publication-title: Biol. Trace Element Res. doi: 10.1007/s12011-017-1063-6 – volume: 44 start-page: D548 year: 2015 ident: ref_135 article-title: SIGNOR: A database of causal relationships between biological entities publication-title: Nucleic. Acids. Res. doi: 10.1093/nar/gkv1048 – volume: 5 start-page: e16950 year: 2016 ident: ref_154 article-title: Global, quantitative and dynamic mapping of protein subcellular localization publication-title: Elife doi: 10.7554/eLife.16950 – ident: ref_63 doi: 10.1021/ac0508853 – volume: 4 start-page: R60 year: 2003 ident: ref_132 article-title: DAVID: Database for Annotation, Visualization, and Integrated Discovery publication-title: Genome Biol. doi: 10.1186/gb-2003-4-9-r60 – volume: 15 start-page: 2321 year: 2016 ident: ref_113 article-title: A Proteomics Approach to the Protein Normalization Problem: Selection of Unvarying Proteins for MS-Based Proteomics and Western Blotting publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.6b00403 – volume: 12 start-page: 224 year: 2019 ident: ref_3 article-title: Systematic Affinity Purification Coupled to Mass Spectrometry Identified p62 as Part of the Cannabinoid Receptor CB2 Interactome publication-title: Front Mol. Neurosci. doi: 10.3389/fnmol.2019.00224 – volume: 17 start-page: 3681 year: 2018 ident: ref_40 article-title: ProteomeGenerator: A Framework for Comprehensive Proteomics Based on de Novo Transcriptome Assembly and High-Accuracy Peptide Mass Spectral Matching publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.8b00295 – volume: 10 start-page: 3035 year: 2010 ident: ref_43 article-title: MassSieve: Panning MS/MS peptide data for proteins publication-title: Proteomics doi: 10.1002/pmic.200900370 – volume: 40 start-page: 13.20.1 year: 2012 ident: ref_35 article-title: Byonic: Advanced peptide and protein identification software publication-title: Curr. Protoc. Bioinform. doi: 10.1002/0471250953.bi1320s40 – ident: ref_119 doi: 10.1186/s12859-019-2619-6 – volume: 3 start-page: 38 year: 2003 ident: ref_20 article-title: MudPIT: A powerful proteomics tool for discovery publication-title: Discov. Med. – volume: 80 start-page: 693 year: 2008 ident: ref_54 article-title: Elimination of systematic mass measurement errors in liquid chromatography-mass spectrometry based proteomics using regression models and a priori partial knowledge of the sample content publication-title: Anal. Chem. doi: 10.1021/ac701863d – volume: 5 start-page: 4 year: 2005 ident: ref_91 article-title: A novel strategy for quantitative proteomics using isotope-coded protein labels publication-title: Proteomics doi: 10.1002/pmic.200400873 – volume: 4 start-page: 207 year: 2007 ident: ref_60 article-title: Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry publication-title: Nat. Methods doi: 10.1038/nmeth1019 – volume: 39 start-page: D685 year: 2011 ident: ref_185 article-title: Pathway Commons, a web resource for biological pathway data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1039 – volume: 9 start-page: 499 year: 2016 ident: ref_7 article-title: Progress in Top-Down Proteomics and the Analysis of Proteoforms publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-071015-041550 – volume: 14 start-page: 2947 year: 2015 ident: ref_151 article-title: Machine Learning-based Classification of Diffuse Large B-cell Lymphoma Patients by Their Protein Expression Profiles publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M115.050245 – volume: 7 start-page: 293 year: 2008 ident: ref_26 article-title: X!!Tandem, an improved method for running X!tandem in parallel on collections of commodity computers publication-title: J. Proteome Res. doi: 10.1021/pr0701198 – volume: 31 start-page: 6283 year: 2003 ident: ref_164 article-title: Functional modules by relating protein interaction networks and gene expression publication-title: Nucleic Acids Rese. doi: 10.1093/nar/gkg838 – volume: 4 start-page: 1194 year: 2005 ident: ref_23 article-title: Comprehensive analysis of a multidimensional liquid chromatography mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometer: II. New developments in Protein Prospector allow for reliable and comprehensive automatic analysis of large datasets publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.D500002-MCP200 – volume: 9 start-page: 5346 year: 2010 ident: ref_75 article-title: Efficient marginalization to compute protein posterior probabilities from shotgun mass spectrometry data publication-title: J. Proteome Res. doi: 10.1021/pr100594k – volume: 7 start-page: 3838 year: 2008 ident: ref_36 article-title: DirecTag: Accurate sequence tags from peptide MS/MS through statistical scoring publication-title: J. Proteome Res. doi: 10.1021/pr800154p – volume: 43 start-page: 62 year: 2017 ident: ref_107 article-title: Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry imaging publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2016.09.003 – volume: 13 start-page: 5496 year: 2014 ident: ref_149 article-title: PSEA-Quant: A Protein Set Enrichment Analysis on Label-Free and Label-Based Protein Quantification Data publication-title: J. Proteome Res. doi: 10.1021/pr500473n – volume: 89 start-page: 397 year: 2017 ident: ref_150 article-title: Integration of RNA-Seq and RPPA data for survival time prediction in cancer patients publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.08.028 – volume: 2060 start-page: 327 year: 2020 ident: ref_186 article-title: BioID Combined with Mass Spectrometry to Study Herpesvirus Protein-Protein Interaction Networks publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-9814-2_19 – volume: 25 start-page: 345 year: 2007 ident: ref_162 article-title: An integrated mass spectrometric and computational framework for the analysis of protein interaction networks publication-title: Nat. Biotechnol. doi: 10.1038/nbt1289 – ident: ref_129 doi: 10.1186/1471-2105-11-450 – volume: 45 start-page: D408 year: 2016 ident: ref_181 article-title: HIPPIE v2.0: Enhancing meaningfulness and reliability of protein–protein interaction networks publication-title: Nucleic Acids Res. – volume: 10 start-page: 913 year: 2011 ident: ref_77 article-title: IsobariQ: Software for isobaric quantitative proteomics using IPTL, iTRAQ, and TMT publication-title: J. Proteome Res. doi: 10.1021/pr1009977 – volume: 13 start-page: 5293 year: 2014 ident: ref_94 article-title: Isobaric labeling-based relative quantification in shotgun proteomics publication-title: J. Proteome Res. doi: 10.1021/pr500880b – volume: 16 start-page: 4045 year: 2017 ident: ref_172 article-title: Nepsilon- and O-Acetylation in Mycobacterium tuberculosis Lineage 7 and Lineage 4 Strains: Proteins Involved in Bioenergetics, Virulence, and Antimicrobial Resistance Are Acetylated publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.7b00429 – volume: 24 start-page: 202 year: 2008 ident: ref_73 article-title: A hierarchical statistical model to assess the confidence of peptides and proteins inferred from tandem mass spectrometry publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm555 – volume: 368 start-page: 1012 year: 2006 ident: ref_152 article-title: Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum publication-title: Lancet doi: 10.1016/S0140-6736(06)69342-2 – volume: 5 start-page: 1921 year: 2006 ident: ref_9 article-title: Challenges and Opportunities in Proteomics Data Analysis publication-title: Mol. Cell. Proteom. doi: 10.1074/mcp.R600012-MCP200 – volume: 7 start-page: 10259 year: 2016 ident: ref_153 article-title: Proteomic maps of breast cancer subtypes publication-title: Nat. Commun. doi: 10.1038/ncomms10259 – volume: 18 start-page: S96 year: 2002 ident: ref_116 article-title: Variance stabilization applied to microarray data calibration and to the quantification of differential expression publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.suppl_1.S96 – volume: 17 start-page: 1600267 year: 2017 ident: ref_155 article-title: Single cell proteomics in biomedicine: High-dimensional data acquisition, visualization, and analysis publication-title: PROTEOMICS doi: 10.1002/pmic.201600267 – volume: 8 start-page: 663 year: 2018 ident: ref_118 article-title: Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data publication-title: Sci. Rep. doi: 10.1038/s41598-017-19120-0 – volume: 12 start-page: 258 year: 2015 ident: ref_42 article-title: DIA-Umpire: Comprehensive computational framework for data-independent acquisition proteomics publication-title: Nat. Methods doi: 10.1038/nmeth.3255 – volume: 16 start-page: 587 year: 2019 ident: ref_8 article-title: Best practices and benchmarks for intact protein analysis for top-down mass spectrometry publication-title: Nat. Methods doi: 10.1038/s41592-019-0457-0 – volume: 19 start-page: 946 year: 2001 ident: ref_81 article-title: Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry publication-title: Nat. Biotechnol. doi: 10.1038/nbt1001-946 – ident: ref_160 doi: 10.1017/CBO9780511790515 – volume: 21 start-page: 4280 year: 2005 ident: ref_130 article-title: A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti685 – volume: 106 start-page: 15544 year: 2009 ident: ref_80 article-title: Protein quantification across hundreds of experimental conditions publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0904100106 – ident: ref_189 – volume: 14 start-page: 903 year: 2017 ident: ref_31 article-title: PECAN: Library-free peptide detection for data-independent acquisition tandem mass spectrometry data publication-title: Nat. Methods doi: 10.1038/nmeth.4390 – volume: 114 start-page: 8247 year: 2017 ident: ref_64 article-title: De novo peptide sequencing by deep learning publication-title: Proce. Nat. Acad. Sci. doi: 10.1073/pnas.1705691114 – ident: ref_159 doi: 10.1371/journal.pone.0141287 – volume: 8 start-page: 81 year: 2012 ident: ref_182 article-title: COVAIN: A toolbox for uni- and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data publication-title: Metabolomics doi: 10.1007/s11306-012-0399-3 – ident: ref_167 doi: 10.3390/ijms20194905 – volume: 26 start-page: 966 year: 2010 ident: ref_87 article-title: Skyline: An open source document editor for creating and analyzing targeted proteomics experiments publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq054 – volume: 19 start-page: 1720 year: 1999 ident: ref_2 article-title: Correlation between Protein and mRNA Abundance in Yeast publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.19.3.1720 – ident: ref_188 doi: 10.1371/journal.pgen.1004047 – volume: 17 start-page: 1844 year: 2018 ident: ref_50 article-title: Enhanced Global Post-translational Modification Discovery with MetaMorpheus publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.7b00873 – volume: 11 start-page: M111.010587 year: 2012 ident: ref_39 article-title: PEAKS DB: De novo sequencing assisted database search for sensitive and accurate peptide identification publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M111.010587 – volume: 5 start-page: 935 year: 2006 ident: ref_45 article-title: ModifiComb, a new proteomic tool for mapping substoichiometric post-translational modifications, finding novel types of modifications, and fingerprinting complex protein mixtures publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.T500034-MCP200 – volume: 13 start-page: 2503 year: 2014 ident: ref_89 article-title: NeuCode labels for relative protein quantification publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M114.040287 – volume: 13 start-page: 1965 year: 2014 ident: ref_170 article-title: Quantitative phosphoproteome analysis of Bacillus subtilis reveals novel substrates of the kinase PrkC and phosphatase PrpC publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M113.035949 – volume: 6 start-page: 327 year: 1999 ident: ref_13 article-title: De novo peptide sequencing via tandem mass spectrometry publication-title: J. Comput. Biol. doi: 10.1089/106652799318300 – volume: 29 start-page: 1953 year: 2013 ident: ref_34 article-title: UniNovo: A universal tool for de novo peptide sequencing publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt338 – volume: 9 start-page: 4181 year: 2019 ident: ref_51 article-title: PTMselect: Optimization of protein modifications discovery by mass spectrometry publication-title: Sci. Rep. doi: 10.1038/s41598-019-40873-3 – volume: 290 start-page: 26218 year: 2015 ident: ref_171 article-title: Systematic Analysis of Mycobacterial Acylation Reveals First Example of Acylation-mediated Regulation of Enzyme Activity of a Bacterial Phosphatase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.687269 – volume: 5 start-page: 3040 year: 2005 ident: ref_100 article-title: A novel strategy using MASCOT Distiller for analysis of cleavable isotope-coded affinity tag data to quantify protein changes in plasma publication-title: Proteomics doi: 10.1002/pmic.200402101 – volume: 6 start-page: 147 year: 2011 ident: ref_104 article-title: Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics publication-title: Nat. Protoc. doi: 10.1038/nprot.2010.192 – volume: 7 start-page: 11 year: 2015 ident: ref_126 article-title: Detecting significant changes in protein abundance publication-title: EuPA Open Proteomics doi: 10.1016/j.euprot.2015.02.002 – ident: ref_173 doi: 10.1002/jssc.201900804 – volume: 21 start-page: 203 year: 2011 ident: ref_125 article-title: Multiple comparison analysis testing in ANOVA publication-title: Biochem. Med. (Zagreb) doi: 10.11613/BM.2011.029 – volume: 16 start-page: 63 year: 2019 ident: ref_27 article-title: Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry publication-title: Nat. Methods doi: 10.1038/s41592-018-0260-3 – volume: 33 start-page: 3489 year: 2017 ident: ref_176 article-title: The KSEA App: A web-based tool for kinase activity inference from quantitative phosphoproteomics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx415 – volume: 13 start-page: 770 year: 2016 ident: ref_184 article-title: Revealing disease-associated pathways by network integration of untargeted metabolomics publication-title: Nat. Methods doi: 10.1038/nmeth.3940 – volume: 45 start-page: D353 year: 2017 ident: ref_148 article-title: KEGG: New perspectives on genomes, pathways, diseases and drugs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1092 – ident: ref_28 doi: 10.1371/journal.pone.0116221 – volume: 3 start-page: 958 year: 2004 ident: ref_11 article-title: Open mass spectrometry search algorithm publication-title: J. Proteome Res. doi: 10.1021/pr0499491 – volume: 9 start-page: 6535 year: 2010 ident: ref_110 article-title: Spatial segmentation of imaging mass spectrometry data with edge-preserving image denoising and clustering publication-title: J. Proteome Res. doi: 10.1021/pr100734z – volume: 23 start-page: 2021 year: 2007 ident: ref_84 article-title: VIPER: An advanced software package to support high-throughput LC-MS peptide identification publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm281 |
SSID | ssj0023259 |
Score | 2.6202204 |
SecondaryResourceType | review_article |
Snippet | Recent advances in mass spectrometry (MS)-based proteomics have enabled tremendous progress in the understanding of cellular mechanisms, disease progression,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2873 |
SubjectTerms | Accuracy Algorithms Bioinformatics Biomedical research Computational Biology - methods Data Analysis Humans Identification Machine Learning Mass Spectrometry Peptides Protein Interaction Mapping Protein Interaction Maps Proteins Proteomics Proteomics - statistics & numerical data Review Scientific imaging Search engines Search strategies Software Support vector machines Workflow |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IHgR39YXEfQkwbZJmvYkPhFlxYPC3kqbpKhoV209-O-daburq-itNAMtM-nMfE3yfQC72FH4me9iXhQ259ImlmdFFPAEu3MsGFbZmA44966jizt52Vf97odb1W2rHObEJlHbgaF_5Ack4Y3VONb68OWVk2oUra52EhqTMN1Ql-F81v0vwCXCRiwtwBrEI5VE7cZ3gTD_4OHxuUK0Q3TvYrwk_eozf26X_FZ_zudhrmsc2VEb6QWYcOUizLRSkh9LcIVXHQkqES-zXqMMXTG8w3rYIDMSmq-Jm6B---DHWLssuyGOBjqVXLHTrM7YkKBkGe7Oz25PLngnlMCNDMKaO5mEVinrEhcoI6VVfqFzo4QOc2FdIUMjTUDENNohKLXY5sXG-UleGAyI8cUKTJWD0q0B87XWpF0U5w6xjCvyMM50mClDJ3hFYT3YH_oqNR2LOIlZPKWIJsiz6XfPerA3sn5p2TP-sNscuj3tvqEq_Yq4BzujYZz9tKSRlW7w3tpgPscmzIPVNkqjBwmMf4QAyAM9Fr-RATFrj4-UD_cNwzYxGvmJWP__tTZgNiT07UvMNZswVb-9uy1sUep8u5mHnx_d5mo priority: 102 providerName: ProQuest |
Title | Bioinformatics Methods for Mass Spectrometry-Based Proteomics Data Analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32326049 https://www.proquest.com/docview/2394612877 https://www.proquest.com/docview/2394876727 https://pubmed.ncbi.nlm.nih.gov/PMC7216093 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB1BIhCXivLpFqJFghMybOzdrH2oELSEqFUQQkTKzbJ31yoVGEgcqfn3nYk_lDTthYtleWdlacbeeU_2vgdwjIiCx9wGbpqaxBUmNG6cdtpuiOgcG4aRJqANzv3bTm8gvg_lcAUqt9EygeN_UjvykxqMns5-v00v8IX_QowTKfv546_nMTIXkm73V6GJt-gQDeuL-nsCwgYZFr-9L83YgHUfxzuc5DTne9MS4Pz7v8m5RtTdhA8lgmSXRck_worNtmCt8JScbsMPPCvVUEmBmfVnFtFjhldYH5EyI8f5nEQK8tHUvcImZtgdiTXQ9uQx-xbnMauUSnZg0L1--NpzS8cEV4u2l7tWhJ6R0tjQtqUWwkieqkRLX3mJb2wqPC10mxRqlEV2ahDvBdryMEk1VkZzfxca2Utm94FxpRSZGAWJRVJj08QLYuXFUtNWXj81DpxWuYp0KSdOrhZPEdIKSnI0n2QHTuro10JG4z9xB1Xao-pZiMi9HYFYoJQDR_Uwvgb0bSPO7MukiMGFHdGYA3tFleobVeV1QC3Urw4gie3Fkezx50xqm6SNeOh_evfMz7DhEUPnAtejA2jko4k9RBiTJy1YVUOFx6B704Lm1fXt3X2LGotszZ7dP24P-MQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9VLybUsBI9ISsJrYTJ4cKUdpqy3ZXFWql3kJiO6IIsqVJhfbP8duYyYsuCG69RfEojxnbM2N7vg_gNUYUfua7mBeFzbmyieVZEQU8wegcHYYNbUwFztNZND5TH87D8xX42dfC0LHKfk5sJmo7N7RGvkMU3uiNY63fXn7nxBpFu6s9hUbWUSvY3QZirCvsmLjFD0zhqt2jfbT3thCHB6fvx7xjGeBGBaLmTiXChqF1iQtCo5QN_ULnJpRa5NK6QgmjTECoLtphRmcxRoqN85O8MPg3xpf43DuwqqjCdQSrewezk49DyidFQ9cWoBfkUZhE7dF7KRN_5-LLtwrzLQKcl8tO8a9I988Dmzc84OF9WO9CV_au7WsPYMWVD-FuS2a5eAQTvOpgWAn6mU0bbuqK4R02xRCdEdV9TegI9dWC76H3tOyEUCKoLrpi-1mdsR4i5TGc3YoSn8ConJduA5ivtSb2pDh3mE25IhdxpkUWGqohloX14E2vq9R0OOZEp_E1xXyGNJve1KwH24P0ZYvf8Q-5rV7taTeKq_R3n_Pg1dCM4482VbLSza9bGfQoGAZ68LS10vAiifaPMAXzQC_ZbxAgbO_llvLic4PxTZhKfiI3__9ZL-He-HR6nB4fzSbPYE3QWoCvcObbglF9de2eY8BU5y-6Xsng020PhF8bxymn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYxET8jaxHbi5FAhynbVsuxqhajUW0hsRxRBtjSp0P5FfhUzedEFwa23KLGSeMbjmbE93wfwEiMKP_NdzIvC5lzZxPKsiAKeYHSODsOGNqYC5_kiOjxW707Cky342dfC0LHKfk5sJmq7MrRGPiYKb_TGsdbjojsWsZxMX59958QgRTutPZ1G1tEs2L0Gbqwr8pi59Q9M56q9ownqfleI6cHHt4e8YxzgRgWi5k4lwoahdYkLQqOUDf1C5yaUWuTSukIJo0xACC_aYXZnMV6KjfOTvDDYM-NLfO812Mb-R2oE2_sHi-WHIf2ToqFuC9Aj8ihMovYYvpSJPz798q3C3IvA5-Wmg_wr6v3z8OYlbzi9Dbe6MJa9acfdHdhy5V243hJbru_BDK86SFaCgWbzhqe6YniHzTFcZ0R7XxNSQn2-5vvoSS1bEmIE1UhXbJLVGevhUu7D8ZUI8QGMylXpHgHztdbEpBTnDjMrV-QizrTIQkP1xLKwHrzqZZWaDtOcqDW-ppjbkGTTy5L1YHdofdZiefyj3U4v9rSz6Cr9Pf48eDE8RlukDZasdKuLtg16FwwJPXjYamn4kET9R5iOeaA39Dc0IJzvzSfl6ecG75vwlfxEPv7_bz2HG2gQ6fujxewJ3BS0LOArnAR3YFSfX7inGDvV-bNuUDL4dNV28AuvIi3T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinformatics+Methods+for+Mass+Spectrometry-Based+Proteomics+Data+Analysis&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Chen%2C+Chen&rft.au=Hou%2C+Jie&rft.au=Tanner%2C+John+J.&rft.au=Cheng%2C+Jianlin&rft.date=2020-04-20&rft.pub=MDPI&rft.eissn=1422-0067&rft.volume=21&rft.issue=8&rft_id=info:doi/10.3390%2Fijms21082873&rft_id=info%3Apmid%2F32326049&rft.externalDocID=PMC7216093 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |