Alternative Respiratory Pathway Component Genes (AOX and ND) in Rice and Barley and Their Response to Stress
Plants have a non-energy conserving bypass of the classical mitochondrial cytochrome c pathway, known as the alternative respiratory pathway (AP). This involves type II NAD(P)H dehydrogenases (NDs) on both sides of the mitochondrial inner membrane, ubiquinone, and the alternative oxidase (AOX). The...
Saved in:
Published in | International journal of molecular sciences Vol. 19; no. 3; p. 915 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
20.03.2018
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plants have a non-energy conserving bypass of the classical mitochondrial cytochrome c pathway, known as the alternative respiratory pathway (AP). This involves type II NAD(P)H dehydrogenases (NDs) on both sides of the mitochondrial inner membrane, ubiquinone, and the alternative oxidase (AOX). The AP components have been widely characterised from Arabidopsis, but little is known for monocot species. We have identified all the genes encoding components of the AP in rice and barley and found the key genes which respond to oxidative stress conditions. In both species, AOX is encoded by four genes; in rice OsAOX1a, 1c, 1d and 1e representing four clades, and in barley, HvAOX1a, 1c, 1d1 and 1d2, but no 1e. All three subfamilies of plant ND genes, NDA, NDB and NDC are present in both rice and barley, but there are fewer NDB genes compared to Arabidopsis. Cyanide treatment of both species, along with salt treatment of rice and drought treatment of barley led to enhanced expression of various AP components; there was a high level of co-expression of AOX1a and AOX1d, along with NDB3 during the stress treatments, reminiscent of the co-expression that has been well characterised in Arabidopsis for AtAOX1a and AtNDB2. |
---|---|
AbstractList | Plants have a non-energy conserving bypass of the classical mitochondrial cytochrome c pathway, known as the alternative respiratory pathway (AP). This involves type II NAD(P)H dehydrogenases (NDs) on both sides of the mitochondrial inner membrane, ubiquinone, and the alternative oxidase (AOX). The AP components have been widely characterised from Arabidopsis, but little is known for monocot species. We have identified all the genes encoding components of the AP in rice and barley and found the key genes which respond to oxidative stress conditions. In both species, AOX is encoded by four genes; in rice
,
,
and
representing four clades, and in barley,
,
,
and
, but no
. All three subfamilies of plant
genes,
,
and
are present in both rice and barley, but there are fewer
genes compared to Arabidopsis. Cyanide treatment of both species, along with salt treatment of rice and drought treatment of barley led to enhanced expression of various AP components; there was a high level of co-expression of
and
, along with
during the stress treatments, reminiscent of the co-expression that has been well characterised in Arabidopsis for
and
. Plants have a non-energy conserving bypass of the classical mitochondrial cytochrome c pathway, known as the alternative respiratory pathway (AP). This involves type II NAD(P)H dehydrogenases (NDs) on both sides of the mitochondrial inner membrane, ubiquinone, and the alternative oxidase (AOX). The AP components have been widely characterised from Arabidopsis, but little is known for monocot species. We have identified all the genes encoding components of the AP in rice and barley and found the key genes which respond to oxidative stress conditions. In both species, AOX is encoded by four genes; in rice OsAOX1a , 1c , 1d and 1e representing four clades, and in barley, HvAOX1a , 1c , 1d1 and 1d2 , but no 1e . All three subfamilies of plant ND genes, NDA , NDB and NDC are present in both rice and barley, but there are fewer NDB genes compared to Arabidopsis. Cyanide treatment of both species, along with salt treatment of rice and drought treatment of barley led to enhanced expression of various AP components; there was a high level of co-expression of AOX1a and AOX1d , along with NDB3 during the stress treatments, reminiscent of the co-expression that has been well characterised in Arabidopsis for AtAOX1a and AtNDB2 . Plants have a non-energy conserving bypass of the classical mitochondrial cytochrome c pathway, known as the alternative respiratory pathway (AP). This involves type II NAD(P)H dehydrogenases (NDs) on both sides of the mitochondrial inner membrane, ubiquinone, and the alternative oxidase (AOX). The AP components have been widely characterised from Arabidopsis, but little is known for monocot species. We have identified all the genes encoding components of the AP in rice and barley and found the key genes which respond to oxidative stress conditions. In both species, AOX is encoded by four genes; in rice OsAOX1a, 1c, 1d and 1e representing four clades, and in barley, HvAOX1a, 1c, 1d1 and 1d2, but no 1e. All three subfamilies of plant ND genes, NDA, NDB and NDC are present in both rice and barley, but there are fewer NDB genes compared to Arabidopsis. Cyanide treatment of both species, along with salt treatment of rice and drought treatment of barley led to enhanced expression of various AP components; there was a high level of co-expression of AOX1a and AOX1d, along with NDB3 during the stress treatments, reminiscent of the co-expression that has been well characterised in Arabidopsis for AtAOX1a and AtNDB2.Plants have a non-energy conserving bypass of the classical mitochondrial cytochrome c pathway, known as the alternative respiratory pathway (AP). This involves type II NAD(P)H dehydrogenases (NDs) on both sides of the mitochondrial inner membrane, ubiquinone, and the alternative oxidase (AOX). The AP components have been widely characterised from Arabidopsis, but little is known for monocot species. We have identified all the genes encoding components of the AP in rice and barley and found the key genes which respond to oxidative stress conditions. In both species, AOX is encoded by four genes; in rice OsAOX1a, 1c, 1d and 1e representing four clades, and in barley, HvAOX1a, 1c, 1d1 and 1d2, but no 1e. All three subfamilies of plant ND genes, NDA, NDB and NDC are present in both rice and barley, but there are fewer NDB genes compared to Arabidopsis. Cyanide treatment of both species, along with salt treatment of rice and drought treatment of barley led to enhanced expression of various AP components; there was a high level of co-expression of AOX1a and AOX1d, along with NDB3 during the stress treatments, reminiscent of the co-expression that has been well characterised in Arabidopsis for AtAOX1a and AtNDB2. Plants have a non-energy conserving bypass of the classical mitochondrial cytochrome c pathway, known as the alternative respiratory pathway (AP). This involves type II NAD(P)H dehydrogenases (NDs) on both sides of the mitochondrial inner membrane, ubiquinone, and the alternative oxidase (AOX). The AP components have been widely characterised from Arabidopsis, but little is known for monocot species. We have identified all the genes encoding components of the AP in rice and barley and found the key genes which respond to oxidative stress conditions. In both species, AOX is encoded by four genes; in rice OsAOX1a, 1c, 1d and 1e representing four clades, and in barley, HvAOX1a, 1c, 1d1 and 1d2, but no 1e. All three subfamilies of plant ND genes, NDA, NDB and NDC are present in both rice and barley, but there are fewer NDB genes compared to Arabidopsis. Cyanide treatment of both species, along with salt treatment of rice and drought treatment of barley led to enhanced expression of various AP components; there was a high level of co-expression of AOX1a and AOX1d, along with NDB3 during the stress treatments, reminiscent of the co-expression that has been well characterised in Arabidopsis for AtAOX1a and AtNDB2. |
Author | Dametto, Lettee Jenkins, Colin Day, David Sweetman, Crystal Soole, Kathleen Shavrukov, Yuri Wanniarachchi, Vajira |
AuthorAffiliation | College of Science and Engineering, Flinders University of South Australia, GPO Box 5100, Adelaide, SA 5001, Australia; Vajira.Wanniarachchi@anu.edu.au (V.R.W.); dame0006@flinders.edu.au (L.D.); Crystal.Sweetman@flinders.edu.au (C.S.); Yuri.Shavrukov@flinders.edu.au (Y.S.); David.Day@flinders.edu.au (D.A.D.); Colin.Jenkins@flinders.edu.au (C.L.D.J.) |
AuthorAffiliation_xml | – name: College of Science and Engineering, Flinders University of South Australia, GPO Box 5100, Adelaide, SA 5001, Australia; Vajira.Wanniarachchi@anu.edu.au (V.R.W.); dame0006@flinders.edu.au (L.D.); Crystal.Sweetman@flinders.edu.au (C.S.); Yuri.Shavrukov@flinders.edu.au (Y.S.); David.Day@flinders.edu.au (D.A.D.); Colin.Jenkins@flinders.edu.au (C.L.D.J.) |
Author_xml | – sequence: 1 givenname: Vajira orcidid: 0000-0002-0801-0209 surname: Wanniarachchi fullname: Wanniarachchi, Vajira – sequence: 2 givenname: Lettee surname: Dametto fullname: Dametto, Lettee – sequence: 3 givenname: Crystal orcidid: 0000-0002-7922-8205 surname: Sweetman fullname: Sweetman, Crystal – sequence: 4 givenname: Yuri surname: Shavrukov fullname: Shavrukov, Yuri – sequence: 5 givenname: David orcidid: 0000-0001-7967-2173 surname: Day fullname: Day, David – sequence: 6 givenname: Colin surname: Jenkins fullname: Jenkins, Colin – sequence: 7 givenname: Kathleen orcidid: 0000-0002-8837-3404 surname: Soole fullname: Soole, Kathleen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29558397$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1PGzEQhi1ExVe59VxZ6oVKBPyx3l1fkEJKaSUEFQWpN8tZTxpHXjvYDlX-fZ1AUUD1wR7Lz7wznncfbfvgAaEPlJxwLsmpnfWJSsKJpGIL7dGKsQEhdbO9Ee-i_ZRmhDDOhNxBu0wK0XLZ7CE3dBmi19k-Ar6FNLdR5xCX-IfO0z96iUehn5eCPuNL8JDw0fDmF9be4Osvn7H1-NZ2sL6f6-hguQ7vpmDjWi34BDgH_DNHSOk9ejfRLsHh83mA7r9e3I2-Da5uLr-PhleDrqIsD4BTICXkwnRt2VozqWoJhhpo63FrDKlkNeas47RuuGigYQ0VhjFjgI4J5Qfo7El3vhj3YLrSfdROzaPtdVyqoK16_eLtVP0Oj0q0TVl1ETh6FojhYQEpq96mDpzTHsIiKUZoLcr05arWpzfoLCzKQF2hKGmrSkrWFurjZkcvrfwzogDHT0AXQ0oRJi8IJWrls9r0ueDsDd7ZXEwMq_9Y9_-kv8wAqys |
CitedBy_id | crossref_primary_10_21285_achb_943 crossref_primary_10_3390_plants11162145 crossref_primary_10_1016_j_envexpbot_2022_104965 crossref_primary_10_1534_g3_119_400366 crossref_primary_10_1016_j_jplph_2019_153013 crossref_primary_10_1093_plphys_kiad153 crossref_primary_10_1371_journal_pone_0201439 crossref_primary_10_21285_2227_2925_2023_13_4_516_522 crossref_primary_10_1093_jxb_erz357 crossref_primary_10_1038_s41598_020_65614_9 crossref_primary_10_3389_fpls_2021_748204 crossref_primary_10_3389_fpls_2021_813691 crossref_primary_10_3390_ijms19102972 crossref_primary_10_3390_ijms21113844 crossref_primary_10_3389_fpls_2020_01235 crossref_primary_10_1093_plphys_kiac541 crossref_primary_10_3390_plants12122284 crossref_primary_10_1021_acs_analchem_1c01872 crossref_primary_10_1134_S1021443722060218 crossref_primary_10_1016_j_mito_2020_04_001 crossref_primary_10_1016_j_cj_2022_07_016 crossref_primary_10_1016_j_gene_2023_147756 crossref_primary_10_3390_ijms20123067 crossref_primary_10_3390_ijms19123849 crossref_primary_10_1080_10715762_2021_1921172 crossref_primary_10_3390_plants8120557 crossref_primary_10_1016_j_jplph_2023_153943 crossref_primary_10_3390_plants13182565 crossref_primary_10_1111_nph_18340 crossref_primary_10_1111_pbi_13659 crossref_primary_10_1016_j_envexpbot_2019_02_026 crossref_primary_10_1111_ppl_13847 crossref_primary_10_1007_s11120_018_0577_x crossref_primary_10_1093_pcp_pcz099 crossref_primary_10_1016_j_pbi_2020_101996 crossref_primary_10_3390_ijms21082796 crossref_primary_10_1021_acssynbio_1c00029 crossref_primary_10_1016_j_ecoenv_2019_110043 |
Cites_doi | 10.1371/journal.pone.0011335 10.1371/journal.pone.0096946 10.1104/pp.19.00877 10.1016/j.ympev.2003.08.021 10.1104/pp.17.00681 10.1104/pp.105.070763 10.1093/mp/ssq058 10.1016/S0378-1119(97)00502-7 10.1186/1939-8433-6-4 10.1093/molbev/msw054 10.1016/j.mito.2014.04.007 10.1074/jbc.273.46.30750 10.3389/fpls.2012.00194 10.1104/pp.121.3.793 10.1093/jxb/erj070 10.1146/annurev.arplant.55.031903.141720 10.1016/j.jplph.2015.03.016 10.1016/j.tplants.2006.05.001 10.1266/ggs.77.31 10.5511/plantbiotechnology.19.187 10.1105/tpc.15.00103 10.1016/j.phytochem.2004.04.007 10.1023/A:1013246501917 10.1104/pp.103.024208 10.1155/2008/420747 10.1104/pp.103.029363 10.1016/S0014-5793(99)00259-8 10.2478/s11756-010-0100-0 10.1104/pp.004150 10.1007/s11103-005-5514-7 10.1007/s00425-012-1827-3 10.1023/A:1026298032009 10.1006/abbi.1995.1245 10.1016/j.jplph.2016.12.009 10.3390/ijms14046805 10.1006/jmbi.2000.3903 10.1111/nph.14030 10.1110/ps.8.5.978 10.1146/annurev-arplant-042110-103857 10.1111/j.1399-3054.2009.01305.x 10.1073/pnas.96.14.8271 10.1111/nph.12773 10.1074/jbc.M704674200 10.1016/j.bbabio.2005.12.005 10.1111/j.1365-3040.2005.01322.x 10.1186/1471-2229-13-100 10.1016/S0005-2728(03)00112-9 10.1016/0014-5793(93)80233-K 10.1104/pp.111.2.613 10.1007/s13258-011-0164-4 10.1016/S0014-5793(99)00808-X 10.1111/nph.14169 10.1515/znc-2013-1-206 10.1016/0003-2697(87)90021-2 10.1046/j.1365-313X.1999.00576.x 10.1104/pp.105.065565 10.1007/s00299-015-1886-6 10.4238/2013.November.11.4 10.1111/j.1399-3054.2011.01471.x 10.1111/j.1399-3054.1997.tb03468.x 10.1266/ggs.76.89 10.1093/mp/ssq056 10.1046/j.1365-313X.2003.01970.x 10.1016/0005-2728(96)00068-0 10.1093/pcp/pci221 10.1016/j.febslet.2008.07.061 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 by the authors. 2018 |
Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms19030915 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) PML(ProQuest Medical Library) ProQuest Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC5877776 29558397 10_3390_ijms19030915 |
Genre | Journal Article |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR IPNFZ ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TR2 TUS UKHRP ~8M NPM PJZUB PPXIY 3V. 7XB 8FK K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c412t-e31e0c4135dc835d8df469ed1de86b8dd0494b32c3167357e72715d22dde1b013 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 17:52:03 EDT 2025 Fri Jul 11 14:14:37 EDT 2025 Fri Jul 25 20:02:22 EDT 2025 Mon Jul 21 06:04:37 EDT 2025 Thu Apr 24 22:49:16 EDT 2025 Tue Jul 01 01:45:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | NADH dehydrogenase barley rice alternative oxidase oxidative stress |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-e31e0c4135dc835d8df469ed1de86b8dd0494b32c3167357e72715d22dde1b013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-7922-8205 0000-0002-8837-3404 0000-0002-0801-0209 0000-0001-7967-2173 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms19030915 |
PMID | 29558397 |
PQID | 2108449928 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5877776 proquest_miscellaneous_2016533991 proquest_journals_2108449928 pubmed_primary_29558397 crossref_primary_10_3390_ijms19030915 crossref_citationtrail_10_3390_ijms19030915 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-20 |
PublicationDateYYYYMMDD | 2018-03-20 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2018 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Tanudji (ref_45) 1999; 26 Millar (ref_5) 1993; 329 Bailey (ref_9) 2003; 29 ref_58 ref_57 ref_55 Saitou (ref_61) 1987; 4 Elhafez (ref_11) 2006; 47 Saish (ref_12) 2001; 76 Shavrukov (ref_71) 2013; 237 Melo (ref_41) 1996; 1276 Kim (ref_73) 2003; 25 ref_59 ref_60 Taylor (ref_53) 2005; 139 Rasmusson (ref_3) 2004; 55 Zhao (ref_25) 2015; 181 Selinski (ref_35) 2017; 174 Vanlerberghe (ref_33) 1999; 121 ref_69 ref_24 Cotsaftis (ref_70) 2011; 4 ref_23 ref_67 Hoefnagel (ref_6) 1995; 318 ref_65 Millar (ref_36) 1996; 111 ref_63 Feng (ref_51) 2013; 68 Purvis (ref_7) 1997; 100 Ito (ref_16) 1997; 203 Mangelsen (ref_28) 2011; 4 Rhoads (ref_32) 1998; 273 Schwahn (ref_47) 2016; 212 Moore (ref_10) 2003; 133 Emanuelsson (ref_64) 2000; 300 Costa (ref_50) 2017; 210 Merchant (ref_1) 2011; Volume 62 Costa (ref_19) 2014; 19 Clifton (ref_14) 2005; 58 Wang (ref_15) 2011; 142 Vanlerberghe (ref_4) 2013; 14 Michalecka (ref_29) 2003; 133 Maxwell (ref_44) 1999; 96 Noguchi (ref_52) 2005; 28 Carrie (ref_30) 2008; 582 Fatihi (ref_40) 2015; 27 Kristensen (ref_74) 2004; 65 Borecky (ref_13) 2006; 57 Cvetkovska (ref_49) 2014; 203 Kawahara (ref_56) 2013; 6 Saika (ref_18) 2002; 77 Djajanegara (ref_34) 1999; 454 Smith (ref_46) 2009; 137 Feng (ref_21) 2010; 65 Popov (ref_8) 2001; 21 Considine (ref_17) 2002; 129 Wang (ref_26) 2016; 35 Rasmusson (ref_43) 1999; 20 Dahal (ref_48) 2017; 213 Umbach (ref_75) 2005; 139 Costa (ref_27) 2006; 11 Michalecka (ref_38) 2004; 37 Kumar (ref_62) 2016; 33 ref_42 Chomczynski (ref_72) 1987; 162 Ohtsu (ref_20) 2002; 19 Emanuelsson (ref_66) 1999; 8 Finnegan (ref_76) 1999; 447 ref_2 Holtzapffel (ref_37) 2003; 1606 Reumann (ref_68) 2012; 3 Umbach (ref_31) 2006; 1757 Geisler (ref_39) 2007; 282 Li (ref_22) 2013; 12 Shatnawi (ref_54) 2012; 34 |
References_xml | – ident: ref_67 doi: 10.1371/journal.pone.0011335 – ident: ref_23 doi: 10.1371/journal.pone.0096946 – ident: ref_42 doi: 10.1104/pp.19.00877 – volume: 29 start-page: 435 year: 2003 ident: ref_9 article-title: Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes publication-title: Mol. Phylgenet. Evol. doi: 10.1016/j.ympev.2003.08.021 – ident: ref_55 – volume: 174 start-page: 2113 year: 2017 ident: ref_35 article-title: Analysis of posttranslational activation of alternative oxidase isoforms publication-title: Plant Physiol. doi: 10.1104/pp.17.00681 – volume: 139 start-page: 1806 year: 2005 ident: ref_75 article-title: Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue publication-title: Plant Physiol. doi: 10.1104/pp.105.070763 – volume: 4 start-page: 97 year: 2011 ident: ref_28 article-title: Transcriptome analysis of high-temperature stress in developing barley caryopses: Early stress responses and effects on storage compound biosynthesis publication-title: Mol. Plant doi: 10.1093/mp/ssq058 – volume: 203 start-page: 121 year: 1997 ident: ref_16 article-title: Transcript levels of tandem-arranged alternative oxidase genes in rice are increased by low temperature publication-title: Gene doi: 10.1016/S0378-1119(97)00502-7 – ident: ref_65 – volume: 26 start-page: 337 year: 1999 ident: ref_45 article-title: The multiple alternative oxidase proteins of soybean publication-title: Aust. J. Plant Physiol. – volume: 6 start-page: 4 year: 2013 ident: ref_56 article-title: Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data publication-title: Rice. doi: 10.1186/1939-8433-6-4 – volume: 33 start-page: 1870 year: 2016 ident: ref_62 article-title: Mega7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msw054 – volume: 19 start-page: 172 year: 2014 ident: ref_19 article-title: A classification scheme for alternative oxidases reveals the taxonomic distribution and evolutionary history of the enzyme in angiosperms publication-title: Mitochondrion doi: 10.1016/j.mito.2014.04.007 – volume: 273 start-page: 30750 year: 1998 ident: ref_32 article-title: Regulation of the cyanide-resistant alternative oxidase of plant mitochondria—Identification of the cysteine residue involved in α-keto acid stimulation and intersubunit disulfide bond formation publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.46.30750 – volume: 3 start-page: 194 year: 2012 ident: ref_68 article-title: PredPlantPTS1: A web server for the prediction of plant peroxisomal proteins publication-title: Front. Plant. Sci. doi: 10.3389/fpls.2012.00194 – ident: ref_58 – volume: 121 start-page: 793 year: 1999 ident: ref_33 article-title: In organello and in vivo evidence of the importance of the regulatory sulfhydryl/disulfide system and pyruvate for alternative oxidase activity in tobacco publication-title: Plant Physiol. doi: 10.1104/pp.121.3.793 – volume: 57 start-page: 849 year: 2006 ident: ref_13 article-title: The plant energy-dissipating mitochondrial systems: Depicting the genomic structure and the expression profiles of the gene families of uncoupling protein and alternative oxidase in monocots and dicots publication-title: J. Exp. Bot. doi: 10.1093/jxb/erj070 – volume: 55 start-page: 23 year: 2004 ident: ref_3 article-title: Alternative NAD(P)H dehydrogenases of plant mitochondria publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.55.031903.141720 – volume: 181 start-page: 83 year: 2015 ident: ref_25 article-title: Glucose-6-phosphate dehydrogenase and alternative oxidase are involved in the cross tolerance of highland barley to salt stress and UV-B radiation publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2015.03.016 – volume: 11 start-page: 281 year: 2006 ident: ref_27 article-title: AOX—A functional marker for efficient cell reprogramming under stress? publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2006.05.001 – volume: 77 start-page: 31 year: 2002 ident: ref_18 article-title: AOX1c, a novel rice gene for alternative oxidase; comparison with rice AOX1a and AOX1b publication-title: Genes Genet. Syst. doi: 10.1266/ggs.77.31 – volume: 19 start-page: 187 year: 2002 ident: ref_20 article-title: ABA-independent expression of rice alternative oxidase genes under envinronmental stresses publication-title: Plant Biotechnol. doi: 10.5511/plantbiotechnology.19.187 – volume: 27 start-page: 1730 year: 2015 ident: ref_40 article-title: A dedicated type II NADPH dehydrogenase performs the penultimate step in the biosynthesis of Vitamin K-1 in Synechocystis and Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.15.00103 – volume: 65 start-page: 1839 year: 2004 ident: ref_74 article-title: Identification of oxidised proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry publication-title: Phytochemistry doi: 10.1016/j.phytochem.2004.04.007 – volume: 21 start-page: 369 year: 2001 ident: ref_8 article-title: Stress-induced changes in ubiquinone concentration and alternative oxidase in plant mitochondria publication-title: Biosci. Rep. doi: 10.1023/A:1013246501917 – volume: 133 start-page: 642 year: 2003 ident: ref_29 article-title: Arabidopsis genes encoding mitochondrial type IINAD(P)H dehydrogenases have different evolutionary orgin and show distinct responses to light publication-title: Plant Physiol. doi: 10.1104/pp.103.024208 – ident: ref_69 doi: 10.1155/2008/420747 – volume: 133 start-page: 1968 year: 2003 ident: ref_10 article-title: Identification of AtNDI1, an internal non-phosphorylating NAD(P)H dehydrogenase in Arabidopsis mitochondria publication-title: Plant Physiol. doi: 10.1104/pp.103.029363 – volume: 447 start-page: 21 year: 1999 ident: ref_76 article-title: An alternative oxidase monoclonal antibody recognises a highly conserved sequence among alternative oxidase subunits publication-title: FEBS Lett. doi: 10.1016/S0014-5793(99)00259-8 – volume: 65 start-page: 868 year: 2010 ident: ref_21 article-title: Salt stress-induced expression of rice AOX1a is mediated through an accumulation of hydrogen peroxide publication-title: Biologia doi: 10.2478/s11756-010-0100-0 – volume: 129 start-page: 949 year: 2002 ident: ref_17 article-title: Molecular distinction between alternative oxidase from monocots and dicots publication-title: Plant Physiol. doi: 10.1104/pp.004150 – volume: 58 start-page: 193 year: 2005 ident: ref_14 article-title: Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana publication-title: Plant Mol. Biol. doi: 10.1007/s11103-005-5514-7 – ident: ref_59 – volume: 237 start-page: 1111 year: 2013 ident: ref_71 article-title: HVP10 encoding V-PPase is a prime candidate for the barley HvNax3 sodium exclusion gene: Evidence from fine mapping and expression analysis publication-title: Planta doi: 10.1007/s00425-012-1827-3 – volume: 25 start-page: 1869 year: 2003 ident: ref_73 article-title: Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice publication-title: Biotechnol. Lett. doi: 10.1023/A:1026298032009 – volume: 318 start-page: 394 year: 1995 ident: ref_6 article-title: Cytochrome and alternative respiratory pathways compete for electrons in the presence of pyruvate in soybean mitochondria publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1995.1245 – volume: 210 start-page: 58 year: 2017 ident: ref_50 article-title: In silico identification of alternative oxidase 2 (AOX2) in monocots: A new evolutionary scenario publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2016.12.009 – volume: 14 start-page: 6805 year: 2013 ident: ref_4 article-title: Alternative oxidase: A mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms14046805 – volume: 300 start-page: 1005 year: 2000 ident: ref_64 article-title: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.3903 – volume: 212 start-page: 66 year: 2016 ident: ref_47 article-title: Unravelling the in vivo regulation and metabolic role of the alternative oxidase pathway in C-3 species under photoinhibitory conditions publication-title: New Phytol. doi: 10.1111/nph.14030 – volume: 8 start-page: 978 year: 1999 ident: ref_66 article-title: ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites publication-title: Protein Sci. doi: 10.1110/ps.8.5.978 – volume: Volume 62 start-page: 79 year: 2011 ident: ref_1 article-title: Organization and Regulation of Mitochondrial Respiration in Plants publication-title: Annual Review of Plant Biology doi: 10.1146/annurev-arplant-042110-103857 – volume: 137 start-page: 459 year: 2009 ident: ref_46 article-title: Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2009.01305.x – volume: 96 start-page: 8271 year: 1999 ident: ref_44 article-title: The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.14.8271 – volume: 203 start-page: 449 year: 2014 ident: ref_49 article-title: Knockdown of mitochondrial alternative oxidase induces the ‘stress state’ of signaling molecule pools in Nicotiana tabacum, with implications for stomatal function publication-title: New Phytol. doi: 10.1111/nph.12773 – volume: 282 start-page: 28455 year: 2007 ident: ref_39 article-title: Ca2+-binding and Ca2+-independent respiratory NADH and NADPH dehydrogenases of Arabidopsis thaliana publication-title: J. Biol. Chem. doi: 10.1074/jbc.M704674200 – volume: 1757 start-page: 135 year: 2006 ident: ref_31 article-title: Regulation of plant alternative oxidase activity: A tale of two cysteines publication-title: Biochimica Et Biophysica Acta-Bioenergetics doi: 10.1016/j.bbabio.2005.12.005 – volume: 28 start-page: 760 year: 2005 ident: ref_52 article-title: Response of mitochondria to light intensity in the leaves of sun and shade species publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2005.01322.x – ident: ref_24 doi: 10.1186/1471-2229-13-100 – ident: ref_63 – volume: 1606 start-page: 153 year: 2003 ident: ref_37 article-title: A tomato alternative oxidase protein with altered regulatory properties publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2728(03)00112-9 – volume: 329 start-page: 259 year: 1993 ident: ref_5 article-title: Organic-acid activation of the alternative oxidase of plant-mitochondria publication-title: FEBS Lett. doi: 10.1016/0014-5793(93)80233-K – volume: 111 start-page: 613 year: 1996 ident: ref_36 article-title: Specificity of the organic acid activation of alternative oxidase in plant mitochondria publication-title: Plant Physiol. doi: 10.1104/pp.111.2.613 – volume: 34 start-page: 59 year: 2012 ident: ref_54 article-title: cDNA cloning and expression analysis of a putative alternative oxidase HsAOX1 from wild barley (Hordeum spontaneum) publication-title: Genes Genom. doi: 10.1007/s13258-011-0164-4 – volume: 454 start-page: 220 year: 1999 ident: ref_34 article-title: A single amino acid change in the plant alternative oxidase alters the specificity of organic acid activation publication-title: FEBS Lett. doi: 10.1016/S0014-5793(99)00808-X – volume: 213 start-page: 560 year: 2017 ident: ref_48 article-title: Alternative oxidase respiration maintains both mitochondrial and chloroplast function during drought publication-title: New Phytol. doi: 10.1111/nph.14169 – volume: 68 start-page: 39 year: 2013 ident: ref_51 article-title: Cell death of rice roots under salt stress may be mediated by cyanide-resistant respiration publication-title: Z. Naturforsch. C doi: 10.1515/znc-2013-1-206 – volume: 162 start-page: 156 year: 1987 ident: ref_72 article-title: Single-step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction publication-title: Anal. Biochem. doi: 10.1016/0003-2697(87)90021-2 – volume: 20 start-page: 79 year: 1999 ident: ref_43 article-title: Homologues of yeast and bacterial rotenone-insensitive NADH dehydrogenases in higher eukaryotes: Two enzymes are present in potato mitochondria publication-title: Plant J. doi: 10.1046/j.1365-313X.1999.00576.x – volume: 139 start-page: 466 year: 2005 ident: ref_53 article-title: Effects of water stress on respiration in soybean leaves publication-title: Plant Physiol. doi: 10.1104/pp.105.065565 – volume: 35 start-page: 317 year: 2016 ident: ref_26 article-title: Alternative pathway is involved in the tolerance of highland barley to the low-nitrogen stress by maintaining the cellular redox homeostasis publication-title: Plant Cell Rep. doi: 10.1007/s00299-015-1886-6 – ident: ref_2 – volume: 12 start-page: 5424 year: 2013 ident: ref_22 article-title: Overexpression of an alternative oxidase gene, OsAOX1a, improves cold tolerance in Oryza sativa L. publication-title: Genet. Mol. Res. doi: 10.4238/2013.November.11.4 – volume: 142 start-page: 339 year: 2011 ident: ref_15 article-title: Impact of mitochondrial alternative oxidase expression on the response of Nicotiana tabacum to cold temperature publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2011.01471.x – volume: 100 start-page: 165 year: 1997 ident: ref_7 article-title: Role of the alternative oxidase in limiting superoxide production by plant mitochondria publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1997.tb03468.x – volume: 76 start-page: 89 year: 2001 ident: ref_12 article-title: The gene for alternative oxidase-2 (AOX2) from Arabidopsis thaliana consists of five exons unlike other AOX genes and is transcribed at an early stage during germination publication-title: Genes Genet. Syst. doi: 10.1266/ggs.76.89 – volume: 4 start-page: 25 year: 2011 ident: ref_70 article-title: Root-Specific Transcript Profiling of Contrasting Rice Genotypes in Response to Salinity Stress publication-title: Mol. Plant doi: 10.1093/mp/ssq056 – ident: ref_60 – volume: 37 start-page: 415 year: 2004 ident: ref_38 article-title: Identification of a mitochondrial external NADPH dehydrogenase by overexpression in transgenic Nicotiana sylvestris publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01970.x – volume: 1276 start-page: 133 year: 1996 ident: ref_41 article-title: Evidence for the presence of two rotenone-insensitive NAD(P)H dehydrogenases on the inner surface of the inner membrane of potato tuber mitochondria publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2728(96)00068-0 – ident: ref_57 – volume: 4 start-page: 406 year: 1987 ident: ref_61 article-title: The neighbor-joining method—A new method for reconstructing phylogenetic trees publication-title: Mol. Biol. Evol. – volume: 47 start-page: 43 year: 2006 ident: ref_11 article-title: Characterization of mitochondrial alternative NAD(P)H dehydrogenases in arabidopsis: Intraorganelle location and expression publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pci221 – volume: 582 start-page: 3073 year: 2008 ident: ref_30 article-title: Type II NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes in Arabidopsis thaliana publication-title: FEBS Lett. doi: 10.1016/j.febslet.2008.07.061 |
SSID | ssj0023259 |
Score | 2.3920026 |
Snippet | Plants have a non-energy conserving bypass of the classical mitochondrial cytochrome c pathway, known as the alternative respiratory pathway (AP). This... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 915 |
SubjectTerms | Barley Chromosomes Cytochrome Dehydrogenases Genes Oxidative stress Plant mitochondria Proteins Rice |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bSxwxFD54odAXUVvreCOFFlrK4CaZzGSeZL2sUqgtVmHfhpkk4so6q-6q7L_3nMzs6Cr6lmFCEnKSnO_cAb5Ja6IkUWmYRyiiRFFhQi25CK2weW6K88QJikb-cxwfnUW_u6pbK9yGtVvl5E30D7UdGNKRb6NooiOE50LvXN-EVDWKrKt1CY1ZmOfIacilS3cOG4FLCl8sjSMPCmOVxpXju0Qxf7t3eTVEXiiRXapplvQKZ750l3zGfzqLsFADR9auKL0EM65chg9VKcnxJ-i3-7Vq796xkyf7OfuHEO8hHzO6-IMSx2aUaXrIfrT_dlleWna8_5P1SnaCL4b_3iX7-9g3T8mK4Ecjn2s2GrD_PrTkM5x1Dk73jsK6kkJoIi5GoZPctbAplTUIuay25ygWO8ut03GhraUsMYUUhuLipUocohqurBD4-HHSlK7AXIlrXAWGojSCgCJv6aIVOZFox0Vu8OKn3CC9TQC_JpuZmTrNOFW76GcobtDWZ8-3PoDvTe_rKr3GG_02JnTJ6ks2zJ6ORABfm994PcjmkZducId9KFwLh0t5AF8qMjYTiVQpxIdJAMkUgZsOlHp7-k_Zu_ApuBWlUUzitfeXtQ4fcX4fwihaGzA3ur1zm4hhRsWWP6iP2nTwlw priority: 102 providerName: ProQuest |
Title | Alternative Respiratory Pathway Component Genes (AOX and ND) in Rice and Barley and Their Response to Stress |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29558397 https://www.proquest.com/docview/2108449928 https://www.proquest.com/docview/2016533991 https://pubmed.ncbi.nlm.nih.gov/PMC5877776 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_tQ0h7mYDxERiVkUACTYHasWPnAaGOrUyTVqZulfoWJbanFZUU1o6t_z13SRrWDfYSJYpjR3eJ7_fz-e4A3kTOSq1VEmYSKYqUuQ1NxEXohMsym59pLyga-agXHwzk4VANV2BRbbQW4PSf1I7qSQ0uxh-uf80_4w__iRgnUvaPo-8_pmjXIjR9ahXW0SZpqmVwJBt_AsKGsmwaR2sUxiqJqy3wd55eNk53EOftjZM3LFH3IWzWEJJ1Kp0_ghVfPIYHVVHJ-RaMO-N6ke-3Z_2_nnR2jGDvKpszmgImBfbNKOf0lL3rfBuyrHCst_eejQrWx7mjvN4lT_y8PD0lf0LZG-2-ZrMJOymDTJ7AoLt_-uUgrGsqhFZyMQt9xH0bTyPlLIIvZ9wZEmTvuPMmzo1zlC8mj4SlCPlIaY_4hisnBE6DnNZMn8Jage_4HBiSaoQDedY2eVt6oY3nIrM4BSTcouZtADsLYaa2TjhOdS_GKRIPEn16U_QBvG1a_6wSbfyn3fZCL-nia0mRtxqJ3E2YAF43t_FHIe9HVvjJJbahwC3sLuEBPKvU2AwkEqUQKeoA9JKCmwaUhHv5TjE6L5NxK0qoqOMX97_WS9jA8ctgRtHehrXZxaV_hWhmlrdgVQ81Hk33awvWd_d7x_0W2RfVKj_hP73e94s |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1dTxQxcIIYIy_ET1xArYkkGrNh223348GYUzwPgdPgkdzbutuWcObcA--Q3J_yNzrT_YDT6Btv3XQy23Sm89HpzAA8D42WcaxSP5fookhZaD8JufCNMHmui-PYCspGPuhHvSP5caiGS_CryYWhZ5WNTHSC2kw03ZFvo2uSSDTPRfLm9MynrlEUXW1aaFRssWfnF-iyTV_v7iB9t4Tovh-86_l1VwFfSy5mvg25DXAYKqPR_DCJOUYX0RpubBIViTFUMaUIhaYc8VDFFjU8V0YIFAScbg0R7w24KUPU5JSZ3v3QOnihcM3ZOOo8P1JpVD20R8Bge_Tt-xR1b4jqWS2qwL_s2j-fZ17Rd907sFobqqxTcdZdWLLlPbhVta6c34dxZ1xfJf607PAyXs8-o0l5kc8ZCZpJibgZVbaeshedT0OWl4b1d16yUckOUUK577cU75-74YCiFg4bvfFmswn74lJZHsDRtezxQ1gucY2PgKHrjkZHkQdJEUgr4sRykWsUNCnXyF_ag1fNZma6LmtO3TXGGbo3tPXZ1a33YKuFPq3KefwDbrOhS1Yf6ml2yYIePGun8ThSjCUv7eQcYSg9DNGl3IO1ioztj0SqFNqjsQfxAoFbACr1vThTjk5cyW9FZRvjaP3_y3oKt3uDg_1sf7e_twEruBaXPimCTVie_Ti3j9F-mhVPHNMy-Hrdp-Q3WuMs3g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbhMxcFRSgfpScXehgJGoBEKrrO31Hg8IpaRRSyFEoZXytuzajpoqbFqSUuXX-Dpm9moDgre-eeWR1xqP5_BcAK-k0X4YqthNfTRRfD_TbiS5cI0waaqzcWgFZSN_7gf7x_7HkRqtwa86F4bCKmueWDBqM9P0Rt5G0yTyUT0XUXtchUUMur33Z-cudZAiT2vdTqMkkUO7vETzbf7uoItnvSNEb-_ow75bdRhwtc_FwrWSWw-HUhmNqoiJzBjNRWu4sVGQRcZQ9ZRMCk354lKFFqU9V0YIZAqcXhBx3VuwHpJV1IL13b3-YNiYe1IUrdo4SkA3UHFQht1LGXvtyen3OUpiicJarQrEv7TcP4M1r0m_3l3YrNRW1inp7B6s2fw-3C4bWS4fwLQzrR4Wf1o2vPLeswEqmJfpkhHbmeW4NqM613P2uvNlxNLcsH73DZvkbIj8qvjeJe__shgekQ-jWI0ivtlixr4WiS0P4fhGsPwIWjnucQsYGvKogmSpF2Web0UYWS5SjWwn5hqpTTvwtkZmoqsi59RrY5qgsUOoT66j3oGdBvqsLO7xD7jt-lyS6orPkyuCdOBlM42XkzwuaW5nFwhDyWK4XMwdeFweY_MjESuF2mnoQLhywA0AFf5encknJ0UBcEVFHMPgyf-39QLu4A1JPh30D5_CBm6lyKUU3ja0Fj8u7DNUphbZ84pqGXy76YvyG1eIMnA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternative+Respiratory+Pathway+Component+Genes+%28AOX+and+ND%29+in+Rice+and+Barley+and+Their+Response+to+Stress&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Wanniarachchi%2C+Vajira+R&rft.au=Dametto%2C+Lettee&rft.au=Sweetman%2C+Crystal&rft.au=Shavrukov%2C+Yuri&rft.date=2018-03-20&rft.pub=MDPI+AG&rft.issn=1661-6596&rft.eissn=1422-0067&rft.volume=19&rft.issue=3&rft.spage=915&rft_id=info:doi/10.3390%2Fijms19030915&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |