Design and Characterization of Myristoylated and Non-Myristoylated Peptides Effective against Candida spp. Clinical Isolates

The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigat...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 23; no. 4; p. 2164
Main Authors Bugli, Francesca, Massaro, Federica, Buonocore, Francesco, Saraceni, Paolo Roberto, Borocci, Stefano, Ceccacci, Francesca, Bombelli, Cecilia, Di Vito, Maura, Marchitiello, Rosalba, Mariotti, Melinda, Torelli, Riccardo, Sanguinetti, Maurizio, Porcelli, Fernando
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 16.02.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigated the in vitro and in vivo antifungal activity of three short myristoylated and non-myristoylated peptides derived from a mutant of the AMP Chionodracine. We determined their interaction with anionic and zwitterionic membrane-mimicking vesicles and their structure during this interaction. We then investigated their cytotoxic and hemolytic activity against mammalian cells. Lipidated peptides showed a broad spectrum of activity against a relevant panel of pathogen fungi belonging to Candida spp., including the multidrug-resistant C. auris. The antifungal activity was also observed vs. biofilms of C. albicans, C. tropicalis, and C. auris. Finally, a pilot efficacy study was conducted on the in vivo model consisting of Galleria mellonella larvae. Treatment with the most-promising myristoylated peptide was effective in counteracting the infection from C. auris and C. albicans and the death of the larvae. Therefore, this myristoylated peptide is a potential candidate to develop antifungal agents against human fungal pathogens.
AbstractList The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigated the in vitro and in vivo antifungal activity of three short myristoylated and non-myristoylated peptides derived from a mutant of the AMP Chionodracine. We determined their interaction with anionic and zwitterionic membrane-mimicking vesicles and their structure during this interaction. We then investigated their cytotoxic and hemolytic activity against mammalian cells. Lipidated peptides showed a broad spectrum of activity against a relevant panel of pathogen fungi belonging to Candida spp., including the multidrug-resistant C. auris. The antifungal activity was also observed vs. biofilms of C. albicans, C. tropicalis, and C. auris. Finally, a pilot efficacy study was conducted on the in vivo model consisting of Galleria mellonella larvae. Treatment with the most-promising myristoylated peptide was effective in counteracting the infection from C. auris and C. albicans and the death of the larvae. Therefore, this myristoylated peptide is a potential candidate to develop antifungal agents against human fungal pathogens.The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigated the in vitro and in vivo antifungal activity of three short myristoylated and non-myristoylated peptides derived from a mutant of the AMP Chionodracine. We determined their interaction with anionic and zwitterionic membrane-mimicking vesicles and their structure during this interaction. We then investigated their cytotoxic and hemolytic activity against mammalian cells. Lipidated peptides showed a broad spectrum of activity against a relevant panel of pathogen fungi belonging to Candida spp., including the multidrug-resistant C. auris. The antifungal activity was also observed vs. biofilms of C. albicans, C. tropicalis, and C. auris. Finally, a pilot efficacy study was conducted on the in vivo model consisting of Galleria mellonella larvae. Treatment with the most-promising myristoylated peptide was effective in counteracting the infection from C. auris and C. albicans and the death of the larvae. Therefore, this myristoylated peptide is a potential candidate to develop antifungal agents against human fungal pathogens.
The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigated the in vitro and in vivo antifungal activity of three short myristoylated and non-myristoylated peptides derived from a mutant of the AMP Chionodracine. We determined their interaction with anionic and zwitterionic membrane-mimicking vesicles and their structure during this interaction. We then investigated their cytotoxic and hemolytic activity against mammalian cells. Lipidated peptides showed a broad spectrum of activity against a relevant panel of pathogen fungi belonging to Candida spp., including the multidrug-resistant C. auris. The antifungal activity was also observed vs. biofilms of C. albicans, C. tropicalis, and C. auris. Finally, a pilot efficacy study was conducted on the in vivo model consisting of Galleria mellonella larvae. Treatment with the most-promising myristoylated peptide was effective in counteracting the infection from C. auris and C. albicans and the death of the larvae. Therefore, this myristoylated peptide is a potential candidate to develop antifungal agents against human fungal pathogens.
The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigated the in vitro and in vivo antifungal activity of three short myristoylated and non-myristoylated peptides derived from a mutant of the AMP Chionodracine . We determined their interaction with anionic and zwitterionic membrane-mimicking vesicles and their structure during this interaction. We then investigated their cytotoxic and hemolytic activity against mammalian cells. Lipidated peptides showed a broad spectrum of activity against a relevant panel of pathogen fungi belonging to Candida spp., including the multidrug-resistant C. auris . The antifungal activity was also observed vs. biofilms of C. albicans , C. tropicalis , and C. auris . Finally, a pilot efficacy study was conducted on the in vivo model consisting of Galleria mellonella larvae. Treatment with the most-promising myristoylated peptide was effective in counteracting the infection from C. auris and C. albicans and the death of the larvae. Therefore, this myristoylated peptide is a potential candidate to develop antifungal agents against human fungal pathogens.
The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigated the in vitro and in vivo antifungal activity of three short myristoylated and non-myristoylated peptides derived from a mutant of the AMP . We determined their interaction with anionic and zwitterionic membrane-mimicking vesicles and their structure during this interaction. We then investigated their cytotoxic and hemolytic activity against mammalian cells. Lipidated peptides showed a broad spectrum of activity against a relevant panel of pathogen fungi belonging to spp., including the multidrug-resistant . The antifungal activity was also observed vs. biofilms of , , and . Finally, a pilot efficacy study was conducted on the in vivo model consisting of larvae. Treatment with the most-promising myristoylated peptide was effective in counteracting the infection from and and the death of the larvae. Therefore, this myristoylated peptide is a potential candidate to develop antifungal agents against human fungal pathogens.
Author Buonocore, Francesco
Mariotti, Melinda
Ceccacci, Francesca
Marchitiello, Rosalba
Bombelli, Cecilia
Torelli, Riccardo
Massaro, Federica
Sanguinetti, Maurizio
Porcelli, Fernando
Saraceni, Paolo Roberto
Borocci, Stefano
Bugli, Francesca
Di Vito, Maura
AuthorAffiliation 2 Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy; riccardo.torelli@policlinicogemelli.it
4 CNR—Institute for Biological Systems, Area Della Ricerca di Roma 1, SP35d 9, 00010 Montelibretti, Italy
5 CNR—Institute For Biological Systems, Sede Secondaria di Roma-Meccanismi di Reazione, c/o Università La Sapienza, 00185 Rome, Italy; francesca.ceccacci@cnr.it (F.C.); cecilia.bombelli@cnr.it (C.B.)
1 Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; francesca.bugli@unicatt.it (F.B.); wdivit@gmail.com (M.D.V.); rosalba.marchitiello01@unicatt.it (R.M.); melinda.mariotti@unicatt.it (M.M.)
3 Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; federica.massaro@studenti.unitus.it (F.M.); fbuono@unitus.it (F.B.); paoloroberto33@gmail.com (P.R.S.); borocci@unitu
AuthorAffiliation_xml – name: 3 Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; federica.massaro@studenti.unitus.it (F.M.); fbuono@unitus.it (F.B.); paoloroberto33@gmail.com (P.R.S.); borocci@unitus.it (S.B.)
– name: 5 CNR—Institute For Biological Systems, Sede Secondaria di Roma-Meccanismi di Reazione, c/o Università La Sapienza, 00185 Rome, Italy; francesca.ceccacci@cnr.it (F.C.); cecilia.bombelli@cnr.it (C.B.)
– name: 1 Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; francesca.bugli@unicatt.it (F.B.); wdivit@gmail.com (M.D.V.); rosalba.marchitiello01@unicatt.it (R.M.); melinda.mariotti@unicatt.it (M.M.)
– name: 4 CNR—Institute for Biological Systems, Area Della Ricerca di Roma 1, SP35d 9, 00010 Montelibretti, Italy
– name: 2 Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy; riccardo.torelli@policlinicogemelli.it
Author_xml – sequence: 1
  givenname: Francesca
  orcidid: 0000-0001-9038-3233
  surname: Bugli
  fullname: Bugli, Francesca
– sequence: 2
  givenname: Federica
  surname: Massaro
  fullname: Massaro, Federica
– sequence: 3
  givenname: Francesco
  orcidid: 0000-0001-8045-5651
  surname: Buonocore
  fullname: Buonocore, Francesco
– sequence: 4
  givenname: Paolo Roberto
  orcidid: 0000-0002-3225-0536
  surname: Saraceni
  fullname: Saraceni, Paolo Roberto
– sequence: 5
  givenname: Stefano
  orcidid: 0000-0003-4931-3019
  surname: Borocci
  fullname: Borocci, Stefano
– sequence: 6
  givenname: Francesca
  orcidid: 0000-0003-3191-8562
  surname: Ceccacci
  fullname: Ceccacci, Francesca
– sequence: 7
  givenname: Cecilia
  surname: Bombelli
  fullname: Bombelli, Cecilia
– sequence: 8
  givenname: Maura
  orcidid: 0000-0002-2991-0855
  surname: Di Vito
  fullname: Di Vito, Maura
– sequence: 9
  givenname: Rosalba
  surname: Marchitiello
  fullname: Marchitiello, Rosalba
– sequence: 10
  givenname: Melinda
  surname: Mariotti
  fullname: Mariotti, Melinda
– sequence: 11
  givenname: Riccardo
  surname: Torelli
  fullname: Torelli, Riccardo
– sequence: 12
  givenname: Maurizio
  orcidid: 0000-0002-9780-7059
  surname: Sanguinetti
  fullname: Sanguinetti, Maurizio
– sequence: 13
  givenname: Fernando
  orcidid: 0000-0003-3209-0074
  surname: Porcelli
  fullname: Porcelli, Fernando
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35216297$$D View this record in MEDLINE/PubMed
BookMark eNptkUlvFDEUhC0URBa4cUaWuHCgg7e2uy9IURMgUlgOcLY87ueJRz12Y3siDeLH48mCJhEnP_t9VSqrjtFBiAEQeknJKec9eedX68w4EYxK8QQdUcFYQ4hUB3vzITrOeUUI46ztn6FD3laa9eoI_fkA2S8DNmHEw5VJxhZI_rcpPgYcHf6yTT6XuJ1MgfGG-hpD8_D1O8zFj5DxuXNgi78GbJbGh1zwUBV-NDjP8ykeJh-8NRO-yHGnzM_RU2emDC_uzhP08-P5j-Fzc_nt08VwdtlYQVlpRqcsOAmLhSCEGssp9J2Vfaec7HsqqGgZKNl23BnaLcCyHshITL0o2RHOT9D7W995s1jDaCGUZCY9J782aauj8frhJvgrvYzXuutUy3tWDd7cGaT4awO56LXPFqbJBIibrJnkvJOqFTv09SN0FTcp1O_tKKaklKKt1Kv9RP-i3BdTAXYL2BRzTuC09eWmlRrQT5oSvWtf77dfRW8fie59_4v_Bbn9svo
CitedBy_id crossref_primary_10_1007_s10096_022_04497_2
crossref_primary_10_1002_advs_202410893
crossref_primary_10_3389_fmicb_2022_919501
crossref_primary_10_1016_j_ejmech_2023_115680
crossref_primary_10_61189_550782gbbqxs
crossref_primary_10_1016_j_apsb_2022_08_001
crossref_primary_10_1080_14756366_2022_2134359
crossref_primary_10_1016_j_bbamem_2025_184407
crossref_primary_10_1016_j_micpath_2023_106166
crossref_primary_10_1039_D3RA01950K
crossref_primary_10_3390_jof10060408
crossref_primary_10_3390_jof8090901
Cites_doi 10.3389/fmicb.2020.00103
10.1016/j.softx.2015.06.001
10.1016/S0969-2126(97)00251-7
10.1073/pnas.0606129103
10.1128/mBio.02123-20
10.1021/bi00164a017
10.1007/s00232-010-9321-y
10.1007/s00249-011-0700-9
10.1038/s41467-017-01447-x
10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
10.1039/C8RA08065H
10.1002/bip.360221211
10.1016/j.bbamem.2003.08.010
10.1016/j.ijantimicag.2017.09.002
10.1021/cb1001558
10.1002/jcc.540130805
10.1016/j.peptides.2018.03.011
10.1517/13543784.13.9.1159
10.1016/j.bbrc.2018.02.176
10.1021/acs.jpcb.8b11097
10.1021/acsami.0c17222
10.1002/psc.2770
10.1186/1758-2946-4-17
10.3389/fmicb.2019.02169
10.1021/bi00648a035
10.3109/02713688609015126
10.1063/1.448118
10.1016/j.mib.2018.02.005
10.1016/j.it.2008.12.003
10.1039/c1ob05652b
10.1016/S0076-6879(09)66002-X
10.1016/j.ijantimicag.2018.03.023
10.1063/1.2408420
10.1016/j.peptides.2015.06.001
10.1016/j.bbamem.2015.02.030
10.1016/S0005-2736(99)00200-X
10.1111/j.1574-6968.2002.tb11000.x
10.1016/j.biochi.2016.05.013
10.1021/bi9707133
10.1016/j.biomaterials.2013.10.053
10.1016/j.jhin.2019.06.006
10.1016/j.bbamem.2015.11.009
10.1021/acsami.9b10028
10.1038/nnano.2009.153
10.1006/abio.2000.4773
10.1007/978-94-015-7658-1_21
10.1021/bi972012b
10.1016/S0005-2736(99)00197-2
10.3389/fcimb.2021.759408
10.1063/1.464397
10.1016/0263-7855(96)00018-5
10.1021/bi00248a019
10.1021/ct700200b
10.1038/nrmicro1098
10.1016/S0014-5793(01)02648-5
10.1007/s11095-007-9516-9
10.1007/978-981-13-3588-4_4
10.1021/acs.jctc.9b00509
10.1111/j.1747-0285.2011.01086.x
10.1126/scitranslmed.3004404
10.3389/fmicb.2017.02295
10.1016/j.bbamem.2017.12.019
10.1186/1471-2105-9-40
10.3390/antibiotics9020066
10.3181/00379727-67-16367
10.1042/BJ20050520
10.1021/jp002115v
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms23042164
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC8875392
35216297
10_3390_ijms23042164
Genre Journal Article
GrantInformation_xml – fundername: Regione Lazio
  grantid: A0375-2020-36557
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c412t-df7cef6ebb4001ac31e98c6987f699141452e76583fa18bec29e0d0aa18768033
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 17:51:22 EDT 2025
Mon Jul 21 10:22:15 EDT 2025
Fri Jul 25 20:08:03 EDT 2025
Mon Jul 21 06:06:19 EDT 2025
Tue Jul 01 02:48:05 EDT 2025
Thu Apr 24 23:11:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords in vivo infection control
lipopeptide
myristoylation
antifungal activity
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-df7cef6ebb4001ac31e98c6987f699141452e76583fa18bec29e0d0aa18768033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-3225-0536
0000-0003-3191-8562
0000-0003-3209-0074
0000-0001-8045-5651
0000-0002-9780-7059
0000-0002-2991-0855
0000-0001-9038-3233
0000-0003-4931-3019
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms23042164
PMID 35216297
PQID 2632766645
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8875392
proquest_miscellaneous_2633867542
proquest_journals_2632766645
pubmed_primary_35216297
crossref_citationtrail_10_3390_ijms23042164
crossref_primary_10_3390_ijms23042164
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220216
PublicationDateYYYYMMDD 2022-02-16
PublicationDate_xml – month: 2
  year: 2022
  text: 20220216
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Rautenbach (ref_9) 2016; 130
Faruck (ref_6) 2016; 80
Pouny (ref_11) 1992; 31
Olivieri (ref_22) 2018; 8
Sharma (ref_48) 2015; 21
Kabsch (ref_68) 1983; 22
Ladokhin (ref_53) 2009; 466
Belokoneva (ref_71) 2003; 1617
Matsuzaki (ref_25) 1999; 1462
Wiederhold (ref_2) 2018; 51
ref_54
Dathe (ref_36) 2001; 501
Gong (ref_18) 2020; 12
White (ref_46) 2011; 239
Marzuoli (ref_58) 2019; 15
ref_59
Oshiro (ref_16) 2019; 10
Miyamoto (ref_64) 1992; 13
Hess (ref_63) 2007; 4
Ladokhin (ref_52) 2000; 285
ref_69
Reid (ref_34) 2018; 1860
Revie (ref_3) 2018; 45
Lai (ref_4) 2009; 30
Wimley (ref_26) 2010; 5
Gong (ref_27) 2019; 11
Brown (ref_1) 2012; 4
Wenzel (ref_30) 2016; 1858
Short (ref_49) 2019; 103
Scheidt (ref_35) 2011; 9
Berendsen (ref_66) 1984; 81
Saikia (ref_45) 2018; 498
Zhao (ref_13) 2018; 103
Schmid (ref_57) 2011; 40
Landy (ref_5) 1948; 67
Murray (ref_38) 1997; 5
Murray (ref_40) 1998; 37
Cools (ref_10) 2017; 8
Schnaider (ref_32) 2017; 8
Hess (ref_62) 1997; 18
Jiang (ref_8) 2011; 77
Hutchinson (ref_51) 2019; 123
Bussi (ref_65) 2007; 126
Humphrey (ref_67) 1996; 14
Brogden (ref_12) 2005; 3
Eisenstein (ref_17) 2004; 13
Malina (ref_21) 2005; 390
Harding (ref_70) 2013; 81
Darden (ref_61) 1993; 98
Cristy (ref_7) 2020; 11
Eftink (ref_44) 1976; 15
Fioroni (ref_60) 2000; 104
Hanwell (ref_55) 2012; 4
Yu (ref_14) 2020; 11
Makovitzki (ref_20) 2006; 103
Hancock (ref_23) 2002; 206
Olivieri (ref_37) 2015; 1848
ref_43
Yu (ref_15) 2018; 285
ref_42
Hawe (ref_33) 2008; 25
Murphy (ref_50) 2021; 11
Shai (ref_24) 1999; 1462
Luo (ref_47) 1997; 36
Abraham (ref_56) 2015; 1–2
Liu (ref_31) 2009; 4
Domhan (ref_29) 2018; 52
Ong (ref_28) 2014; 35
Aisenbrey (ref_19) 2019; 1117
Buser (ref_39) 1994; 33
Phillips (ref_41) 1986; 5
References_xml – volume: 11
  start-page: 103
  year: 2020
  ident: ref_14
  article-title: Resistance Evolution Against Antimicrobial Peptides in Staphylococcus aureus Alters Pharmacodynamics Beyond the MIC
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00103
– volume: 1–2
  start-page: 19
  year: 2015
  ident: ref_56
  article-title: Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2015.06.001
– volume: 5
  start-page: 985
  year: 1997
  ident: ref_38
  article-title: Electrostatic interaction of myristoylated proteins with membranes: Simple physics, complicated biology
  publication-title: Structure
  doi: 10.1016/S0969-2126(97)00251-7
– volume: 285
  start-page: 20172687
  year: 2018
  ident: ref_15
  article-title: Predicting drug resistance evolution: Insights from antimicrobial peptides and antibiotics
  publication-title: Proc. Biol. Sci.
– volume: 103
  start-page: 15997
  year: 2006
  ident: ref_20
  article-title: Ultrashort antibacterial and antifungal lipopeptides
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0606129103
– volume: 11
  start-page: e02123-20
  year: 2020
  ident: ref_7
  article-title: Antimicrobial Peptides: A New Frontier in Antifungal Therapy
  publication-title: mBio
  doi: 10.1128/mBio.02123-20
– volume: 31
  start-page: 12416
  year: 1992
  ident: ref_11
  article-title: Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes
  publication-title: Biochemistry
  doi: 10.1021/bi00164a017
– volume: 239
  start-page: 5
  year: 2011
  ident: ref_46
  article-title: Membrane partitioning: “Classical” and “nonclassical” hydrophobic effects
  publication-title: J. Membr. Biol.
  doi: 10.1007/s00232-010-9321-y
– volume: 40
  start-page: 843
  year: 2011
  ident: ref_57
  article-title: Definition and testing of the GROMOS force-field versions 54A7 and 54B7
  publication-title: Eur. Biophys. J.
  doi: 10.1007/s00249-011-0700-9
– volume: 8
  start-page: 1365
  year: 2017
  ident: ref_32
  article-title: Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01447-x
– volume: 18
  start-page: 1463
  year: 1997
  ident: ref_62
  article-title: LINCS: A linear constraint solver for molecular simulations
  publication-title: J. Comp. Chem.
  doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
– volume: 8
  start-page: 41331
  year: 2018
  ident: ref_22
  article-title: Design and characterization of chionodracine-derived antimicrobial peptides with enhanced activity against drug-resistant human pathogens
  publication-title: RSC Adv.
  doi: 10.1039/C8RA08065H
– volume: 22
  start-page: 2577
  year: 1983
  ident: ref_68
  article-title: Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features
  publication-title: Biopolymers
  doi: 10.1002/bip.360221211
– volume: 1617
  start-page: 22
  year: 2003
  ident: ref_71
  article-title: The hemolytic activity of six arachnid cationic peptides is affected by the phosphatidylcholine-to-sphingomyelin ratio in lipid bilayers
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2003.08.010
– volume: 51
  start-page: 333
  year: 2018
  ident: ref_2
  article-title: The antifungal arsenal: Alternative drugs and future targets
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2017.09.002
– volume: 5
  start-page: 905
  year: 2010
  ident: ref_26
  article-title: Describing the mechanism of antimicrobial peptide action with the interfacial activity model
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb1001558
– volume: 81
  start-page: e50964
  year: 2013
  ident: ref_70
  article-title: Use of Galleria mellonella as a model organism to study Legionella pneumophila infection
  publication-title: J. Vis. Exp.
– volume: 13
  start-page: 952
  year: 1992
  ident: ref_64
  article-title: SETTLE: An analytical version of the SHAKE and RATTLE algorithm for rigid water models
  publication-title: J. Comp. Chem.
  doi: 10.1002/jcc.540130805
– volume: 103
  start-page: 48
  year: 2018
  ident: ref_13
  article-title: Actinobacteria-Derived peptide antibiotics since 2000
  publication-title: Peptides
  doi: 10.1016/j.peptides.2018.03.011
– volume: 13
  start-page: 1159
  year: 2004
  ident: ref_17
  article-title: Lipopeptides, focusing on daptomycin, for the treatment of Gram-positive infections
  publication-title: Expert Opin. Investig. Drugs
  doi: 10.1517/13543784.13.9.1159
– volume: 498
  start-page: 58
  year: 2018
  ident: ref_45
  article-title: Interaction of MreB-derived antimicrobial peptides with membranes
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2018.02.176
– volume: 123
  start-page: 614
  year: 2019
  ident: ref_51
  article-title: Self-Assembly of Lipopeptides Containing Short Peptide Fragments Derived from the Gastrointestinal Hormone PYY3-36: From Micelles to Amyloid Fibrils
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b11097
– volume: 12
  start-page: 55675
  year: 2020
  ident: ref_18
  article-title: How do Self-Assembling Antimicrobial Lipopeptides Kill Bacteria?
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c17222
– volume: 21
  start-page: 501
  year: 2015
  ident: ref_48
  article-title: Engineering of a linear inactive analog of human beta-defensin 4 to generate peptides with potent antimicrobial activity
  publication-title: J. Pept. Sci.
  doi: 10.1002/psc.2770
– ident: ref_69
– volume: 4
  start-page: 17
  year: 2012
  ident: ref_55
  article-title: Avogadro: An advanced semantic chemical editor, visualization, and analysis platform
  publication-title: J. Cheminform.
  doi: 10.1186/1758-2946-4-17
– volume: 10
  start-page: 2169
  year: 2019
  ident: ref_16
  article-title: Bioactive Peptides Against Fungal Biofilms
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.02169
– volume: 15
  start-page: 672
  year: 1976
  ident: ref_44
  article-title: Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies
  publication-title: Biochemistry
  doi: 10.1021/bi00648a035
– volume: 5
  start-page: 611
  year: 1986
  ident: ref_41
  article-title: Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins
  publication-title: Curr. Eye Res.
  doi: 10.3109/02713688609015126
– volume: 81
  start-page: 3684
  year: 1984
  ident: ref_66
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– volume: 45
  start-page: 70
  year: 2018
  ident: ref_3
  article-title: Antifungal drug resistance: Evolution, mechanisms and impact
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2018.02.005
– volume: 30
  start-page: 131
  year: 2009
  ident: ref_4
  article-title: AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2008.12.003
– volume: 9
  start-page: 6998
  year: 2011
  ident: ref_35
  article-title: The interaction of lipid modified pseudopeptides with lipid membranes
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/c1ob05652b
– volume: 466
  start-page: 19
  year: 2009
  ident: ref_53
  article-title: Fluorescence spectroscopy in thermodynamic and kinetic analysis of pH-dependent membrane protein insertion
  publication-title: Meth. Enzymol.
  doi: 10.1016/S0076-6879(09)66002-X
– volume: 52
  start-page: 52
  year: 2018
  ident: ref_29
  article-title: A novel tool against multiresistant bacterial pathogens: Lipopeptide modification of the natural antimicrobial peptide ranalexin for enhanced antimicrobial activity and improved pharmacokinetics
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2018.03.023
– volume: 126
  start-page: 14101
  year: 2007
  ident: ref_65
  article-title: Canonical sampling through velocity rescaling
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
– volume: 80
  start-page: 80
  year: 2016
  ident: ref_6
  article-title: An overview of antifungal peptides derived from insect
  publication-title: Peptides
  doi: 10.1016/j.peptides.2015.06.001
– volume: 1848
  start-page: 1285
  year: 2015
  ident: ref_37
  article-title: Structure and membrane interactions of chionodracine, a piscidin-like antimicrobial peptide from the icefish Chionodraco hamatus
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2015.02.030
– volume: 1462
  start-page: 55
  year: 1999
  ident: ref_24
  article-title: Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2736(99)00200-X
– volume: 206
  start-page: 143
  year: 2002
  ident: ref_23
  article-title: Role of membranes in the activities of antimicrobial cationic peptides
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2002.tb11000.x
– volume: 130
  start-page: 132
  year: 2016
  ident: ref_9
  article-title: Antifungal peptides: To be or not to be membrane active
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2016.05.013
– volume: 36
  start-page: 8413
  year: 1997
  ident: ref_47
  article-title: Mechanism of helix induction by trifluoroethanol: A framework for extrapolating the helix-forming properties of peptides from trifluoroethanol/water mixtures back to water
  publication-title: Biochemistry
  doi: 10.1021/bi9707133
– volume: 35
  start-page: 1315
  year: 2014
  ident: ref_28
  article-title: Effect of stereochemistry, chain length and sequence pattern on antimicrobial properties of short synthetic beta-sheet forming peptide amphiphiles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.10.053
– volume: 103
  start-page: 92
  year: 2019
  ident: ref_49
  article-title: Candida auris exhibits resilient biofilm characteristics in vitro: Implications for environmental persistence
  publication-title: J. Hosp. Infect.
  doi: 10.1016/j.jhin.2019.06.006
– volume: 1858
  start-page: 1004
  year: 2016
  ident: ref_30
  article-title: Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2015.11.009
– volume: 11
  start-page: 34609
  year: 2019
  ident: ref_27
  article-title: Hydrophobic Control of the Bioactivity and Cytotoxicity of de Novo-Designed Antimicrobial Peptides
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10028
– volume: 4
  start-page: 457
  year: 2009
  ident: ref_31
  article-title: Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.153
– volume: 285
  start-page: 235
  year: 2000
  ident: ref_52
  article-title: How to measure and analyze tryptophan fluorescence in membranes properly, and why bother?
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2000.4773
– ident: ref_59
  doi: 10.1007/978-94-015-7658-1_21
– volume: 37
  start-page: 2145
  year: 1998
  ident: ref_40
  article-title: Electrostatics and the Membrane Association of Src: Theory and Experiment
  publication-title: Biochemistry
  doi: 10.1021/bi972012b
– volume: 1462
  start-page: 1
  year: 1999
  ident: ref_25
  article-title: Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2736(99)00197-2
– volume: 11
  start-page: 759408
  year: 2021
  ident: ref_50
  article-title: Drug Resistance and Novel Therapeutic Approaches in Invasive Candidiasis
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2021.759408
– volume: 98
  start-page: 10089
  year: 1993
  ident: ref_61
  article-title: Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464397
– volume: 14
  start-page: 33
  year: 1996
  ident: ref_67
  article-title: VMD: Visual molecular dynamics
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 33
  start-page: 13093
  year: 1994
  ident: ref_39
  article-title: Membrane binding of myristylated peptides corresponding to the NH2 terminus of Src
  publication-title: Biochemistry
  doi: 10.1021/bi00248a019
– volume: 4
  start-page: 116
  year: 2007
  ident: ref_63
  article-title: P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700200b
– volume: 3
  start-page: 238
  year: 2005
  ident: ref_12
  article-title: Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria?
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1098
– volume: 501
  start-page: 146
  year: 2001
  ident: ref_36
  article-title: Optimization of the antimicrobial activity of magainin peptides by modification of charge
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)02648-5
– volume: 25
  start-page: 1487
  year: 2008
  ident: ref_33
  article-title: Extrinsic fluorescent dyes as tools for protein characterization
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-007-9516-9
– volume: 1117
  start-page: 33
  year: 2019
  ident: ref_19
  article-title: The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-13-3588-4_4
– volume: 15
  start-page: 5175
  year: 2019
  ident: ref_58
  article-title: Lipid Head Group Parameterization for GROMOS 54A8: A Consistent Approach with Protein Force Field Description
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00509
– volume: 77
  start-page: 225
  year: 2011
  ident: ref_8
  article-title: Rational design of alpha-helical antimicrobial peptides to target Gram-negative pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: Utilization of charge, ‘specificity determinants,’ total hydrophobicity, hydrophobe type and location as design parameters to improve the therapeutic ratio
  publication-title: Chem. Biol. Drug Des.
  doi: 10.1111/j.1747-0285.2011.01086.x
– volume: 4
  start-page: 165rv113
  year: 2012
  ident: ref_1
  article-title: Hidden killers: Human fungal infections
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3004404
– volume: 8
  start-page: 2295
  year: 2017
  ident: ref_10
  article-title: The Antifungal Plant Defensin HsAFP1 Is a Phosphatidic Acid-Interacting Peptide Inducing Membrane Permeabilization
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.02295
– volume: 1860
  start-page: 792
  year: 2018
  ident: ref_34
  article-title: Binding, folding and insertion of a beta-hairpin peptide at a lipid bilayer surface: Influence of electrostatics and lipid tail packing
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2017.12.019
– ident: ref_54
  doi: 10.1186/1471-2105-9-40
– ident: ref_42
  doi: 10.3390/antibiotics9020066
– ident: ref_43
– volume: 67
  start-page: 539
  year: 1948
  ident: ref_5
  article-title: Bacillomycin: An antibiotic from Bacillus subtilis active against pathogenic fungi
  publication-title: Proc. Soc. Exp. Biol. Med.
  doi: 10.3181/00379727-67-16367
– volume: 390
  start-page: 695
  year: 2005
  ident: ref_21
  article-title: Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide
  publication-title: Biochem. J.
  doi: 10.1042/BJ20050520
– volume: 104
  start-page: 12347
  year: 2000
  ident: ref_60
  article-title: A new 2,2,2-Trifluoroethanol model for molecular dynamics simulations
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp002115v
SSID ssj0023259
Score 2.4003766
Snippet The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2164
SubjectTerms Animals
Antifungal Agents - chemistry
Antifungal Agents - pharmacology
Antimicrobial agents
Bacteria
Biofilms
Candida
Candida albicans
Design
Fatty acids
Fungal infections
Fungi
Gram-positive bacteria
Humans
Larva
Lipopeptides - pharmacology
Mammals
Membranes
Microbial Sensitivity Tests
Multidrug resistant organisms
Pathogens
Peptides
Spectrum analysis
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLKs-GFmQkOCHT-BE7OSG0sBQkKg5U6i3yK7DVkixke1iJH8-Mkw1dEByTjJQo39jzjT3-hpBnHv0i5I7lxnmmgnHMBWuY1VFDAAEO7FK1xak-OVMfzovzccGtH8sqt3NimqhD53GN_Bh1xQ1wbVW8Wn1n2DUKd1fHFhrXyQ0OkQZLusr5uynhkiI1S-MQg5guKj0UvktI848XF996XA8VXKvdkPQXz_yzXPJK_Jnvk9sjcaSvB6TvkGuxvUtuDq0kN_fIzzepFIPaNtDZJMI8nLGkXUM_bpKIwGYJ3DIkq9OuZbt3P2GFS4g9HSSNYR6k9otdAIGkMzz9EiztV6uXdNQSXdL34LjIVe-Ts_nbz7MTNnZWYF5xsWahMT42OjoHUHHrJY9V6XVVmkYDYVRcFSIaICeysbwEmEUV85BbuID0JJfyAdlruzYeEBqClt5UXnknVBEK1xRGGg7mvFFlaDLyYvtzaz_KjmP3i2UN6QdCUV-FIiPPJ-vVILfxD7ujLU71OOj6-reLZOTp9BiGC-6B2DZ2l8lGlhrb_mbk4QDr9CLgolyLymTE7AA-GaAU9-6TdvE1SXKXmPZV4tH_P-uQ3BJ4egL7yegjsrf-cRkfA6dZuyfJcX8B9nb4_Q
  priority: 102
  providerName: ProQuest
Title Design and Characterization of Myristoylated and Non-Myristoylated Peptides Effective against Candida spp. Clinical Isolates
URI https://www.ncbi.nlm.nih.gov/pubmed/35216297
https://www.proquest.com/docview/2632766645
https://www.proquest.com/docview/2633867542
https://pubmed.ncbi.nlm.nih.gov/PMC8875392
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB7yoNBL6btKU7OF9lQ21WO1Kx1CaN24aSEmlBp8E_tS6uLIbuxADfnxmZFkETct9CKQdoSEZqT5ZjX7fQBvLMWFCw0PlbFcOGW4cVpxLb3EBIIY2NTdFkN5MhJfx-l4C9Zqo-0DXPy1tCM9qdHl9OD3r9URvvCHVHFiyf5-8vNiQXObMUL_bdjFnKRIy-BUdP8TEDbUsmk04cHpA920wN85ezM53UGcfzZO3spEg4fwoIWQ7EPj80ew5avHcK8RlVw9getPdVMG05Vj_Y6OuVltyWYlO13VdAKrKaJMV1sNZxXfPHpGvS7OL1hDboxfRKbP9QShJOvTOhin2WI-P2Atq-iUfcEQJtT6FEaD4-_9E95qLHAronjJXamsL6U3Bp0WaZtEPs-szDNVSoSOIhJp7BXClKTUUYYOj3MfulDjDhYqYZI8g51qVvkXwJyTiVW5FdbEInWpKVOVqAjNo1Jkrgzg3frhFrYlICcdjGmBhQi5orjtigDedtbzhnjjH3b7az8V6-gpiIReYWEm0gBed8P44tDfEF352VVtk2SSBIADeN64tbsQotJIxrkKQG04vDMgUu7NkWryoybnzqgAzOO9_7z9l3A_pgUVJDEj92FneXnlXyHMWZoebKuxwm02-NyD3Y_Hw7NvPUo8aa-O7RvkyAKT
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLuBAkaiJ2QaO46dHBBCW5Zd2q44tFJvwbEdWLQkC9kKrcRv4jcykxddENx6TDxSnMzY840z8w0hzyzahQtzFurcMul0znJnNDPKK3AggIHzJttipian8t1ZfLZFfva1MJhW2e-JzUbtKotn5PvIK64Ba8v41fIrw65R-He1b6HRmsWhX3-HkK1-OT0A_e4JMX5zMpqwrqsAs5KLFXOFtr5QPs9hmtzYiPs0sQpi70IBWJJcxsJrcMxRYXgCryhSH7rQwAVA8xAPQGHLvyIj8ORYmT5-OwR4kWias3HweUzFqWoT7UEw3J9__lLj-avgSm66wL9w7Z_pmRf83fgmudEBVfq6taxbZMuXt8nVtnXl-g75cdCkflBTOjoaSJ_bmk5aFfR43ZAWrBeAZV0jNatKtnn3PWbUOF_TlkIZ9l1qPpo5AFY6wmobZ2i9XL6gHXfpgk5hoSA2vktOL-Wb3yPbZVX6HUKdU5HVqZU2FzJ2cV7EOtIcxHkhE1cE5Hn_cTPb0Zxjt41FBuEOqiK7qIqA7A3Sy5be4x9yu72esm6R19lvkwzI02EYlif-czGlr84bmShR2GY4IPdbtQ4PAuzLlUh1QPSGwgcBpP7eHCnnnxoK8ATDzFQ8-P-0npBrk5Pjo-xoOjt8SK4LrNzAXjZql2yvvp37R4CnVvnjxogp-XDZq-YXVT81bA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTiBeEN8EBhiJPSHT2HHs5AEhaFetDKoKMWlvwV-BTl1SSCdUib-Mv45zvlhB8LbHxCfFyd35fuecf4fQM-PtwoaahFIbwq3URFsliRJOQAABDKzraouZODzmb0_ikx30szsL48squzWxXqhtafwe-dDzikvA2jwe5m1ZxHw8ebX6SnwHKf-ntWun0ZjIkdt8h_Stejkdg673GZscfBwdkrbDADGcsjWxuTQuF05rmDJVJqIuTYyAPDwXAJw45TFzEoJ0lCuawOuy1IU2VHABMD30m6Gw_O9KnxUN0O6bg9n8Q5_uRaxu1UYhAhIRp6Ipu4-iNBwuTs8qvxvLqODbAfEvlPtnseaF6De5ga63sBW_buzsJtpxxS10pWlkubmNfozrQhCsCotHPQV0c8ITlzl-v6kpDDZLQLa2lpqVBdm-O_f1NdZVuCFUhlUYq89qAfAVj_zZG6twtVq9wC2T6RJPwW08Ur6Dji_lq99Fg6Is3H2ErRWRkanhRjMe21jnsYwkBXGa88TmAXrefdzMtKTnvvfGMoPkx6siu6iKAO330quG7OMfcnudnrLW5avst4EG6Gk_DM7q_8CowpXntUyUCN90OED3GrX2DwIkTAVLZYDklsJ7AU8Evj1SLL7UhOCJTzpT9uD_03qCroLHZO-ms6OH6Brzxzh8Yxuxhwbrb-fuEYCrtX7cWjFGny7bcX4BqeE6_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Characterization+of+Myristoylated+and+Non-Myristoylated+Peptides+Effective+against+Candida+spp.+Clinical+Isolates&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Bugli%2C+Francesca&rft.au=Massaro%2C+Federica&rft.au=Buonocore%2C+Francesco&rft.au=Saraceni%2C+Paolo+Roberto&rft.date=2022-02-16&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=23&rft.issue=4&rft.spage=2164&rft_id=info:doi/10.3390%2Fijms23042164&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms23042164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon