The Role and Mechanism of Epithelial-to-Mesenchymal Transition in Prostate Cancer Progression
In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer death. Many mechanisms have been identified in this process that can be rationalized into targeted therapy. Among them, epithelial-to-mesenc...
Saved in:
Published in | International journal of molecular sciences Vol. 18; no. 10; p. 2079 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
30.09.2017
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer death. Many mechanisms have been identified in this process that can be rationalized into targeted therapy. Among them, epithelial-to-mesenchymal transition (EMT) is originally characterized as a critical step for cell trans-differentiation during embryo development and now recognized in promoting cancer cells invasiveness because of high mobility and migratory abilities of mesenchymal cells once converted from carcinoma cells. Nevertheless, the underlying pathways leading to EMT appear to be very diverse in different cancer types, which certainly represent a challenge for developing effective intervention. In this article, we have carefully reviewed the key factors involved in EMT of PCa with clinical correlation in hope to facilitate the development of new therapeutic strategy that is expected to reduce the disease mortality. |
---|---|
AbstractList | In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer death. Many mechanisms have been identified in this process that can be rationalized into targeted therapy. Among them, epithelial-to-mesenchymal transition (EMT) is originally characterized as a critical step for cell trans-differentiation during embryo development and now recognized in promoting cancer cells invasiveness because of high mobility and migratory abilities of mesenchymal cells once converted from carcinoma cells. Nevertheless, the underlying pathways leading to EMT appear to be very diverse in different cancer types, which certainly represent a challenge for developing effective intervention. In this article, we have carefully reviewed the key factors involved in EMT of PCa with clinical correlation in hope to facilitate the development of new therapeutic strategy that is expected to reduce the disease mortality. In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer death. Many mechanisms have been identified in this process that can be rationalized into targeted therapy. Among them, epithelial-to-mesenchymal transition (EMT) is originally characterized as a critical step for cell trans-differentiation during embryo development and now recognized in promoting cancer cells invasiveness because of high mobility and migratory abilities of mesenchymal cells once converted from carcinoma cells. Nevertheless, the underlying pathways leading to EMT appear to be very diverse in different cancer types, which certainly represent a challenge for developing effective intervention. In this article, we have carefully reviewed the key factors involved in EMT of PCa with clinical correlation in hope to facilitate the development of new therapeutic strategy that is expected to reduce the disease mortality.In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer death. Many mechanisms have been identified in this process that can be rationalized into targeted therapy. Among them, epithelial-to-mesenchymal transition (EMT) is originally characterized as a critical step for cell trans-differentiation during embryo development and now recognized in promoting cancer cells invasiveness because of high mobility and migratory abilities of mesenchymal cells once converted from carcinoma cells. Nevertheless, the underlying pathways leading to EMT appear to be very diverse in different cancer types, which certainly represent a challenge for developing effective intervention. In this article, we have carefully reviewed the key factors involved in EMT of PCa with clinical correlation in hope to facilitate the development of new therapeutic strategy that is expected to reduce the disease mortality. |
Author | Lee, Ming-Shyue Hsieh, Jer-Tsong Lee, Cheng-Fan Lo, U-Ging |
AuthorAffiliation | 2 Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan; mslee2006@ntu.edu.tw 1 Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; U-Ging.Lo@utsouthwestern.edu (U.-G.L.); Cheng-Fan.Lee@utsouthwestern.edu (C.-F.L.) |
AuthorAffiliation_xml | – name: 2 Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan; mslee2006@ntu.edu.tw – name: 1 Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; U-Ging.Lo@utsouthwestern.edu (U.-G.L.); Cheng-Fan.Lee@utsouthwestern.edu (C.-F.L.) |
Author_xml | – sequence: 1 givenname: U-Ging surname: Lo fullname: Lo, U-Ging – sequence: 2 givenname: Cheng-Fan surname: Lee fullname: Lee, Cheng-Fan – sequence: 3 givenname: Ming-Shyue surname: Lee fullname: Lee, Ming-Shyue – sequence: 4 givenname: Jer-Tsong surname: Hsieh fullname: Hsieh, Jer-Tsong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28973968$$D View this record in MEDLINE/PubMed |
BookMark | eNptkcuLFDEQxoOsuA-9eZaAFw-25jV5XIRlWB-wiyLjUUI6Xb2dIZ2MSY-w_71Zdl3GxVMq1K8-vvrqFB2lnAChl5S849yQ92E7V6opYUSZJ-iECsY6QqQ6OqiP0WmtW0IYZyvzDB0zbRQ3Up-gn5sJ8PccAbs04Cvwk0uhzjiP-GIXlglicLFbcncFFZKfbmYX8aa4VMMScsIh4W8l18UtgNcueSi3_-sCtbb2c_R0dLHCi_v3DP34eLFZf-4uv376sj6_7LygbOkGr5Xjoxr0QIzXxvVj3zMtR3Cj6SUVZiC9YF5w3nMqPOVi9CC5WQmpgBp-hj7c6e72_QyDh7QUF-2uhNmVG5tdsP92Upjsdf5tV1JKJWkTeHMvUPKvPdTFzqF6iNElyPtqqRGKEqqJaujrR-g270tq6zVKrqQmzVCjXh06erDyN_kGvL0DfIuvFhgfEErs7WHt4WEbzh7hPrTQW8ZtnxD_P_QHmdKnyQ |
CitedBy_id | crossref_primary_10_1155_2020_7938280 crossref_primary_10_1016_j_bbadis_2022_166524 crossref_primary_10_1136_jim_2021_002016 crossref_primary_10_1016_j_biopha_2022_113774 crossref_primary_10_1016_j_critrevonc_2023_104232 crossref_primary_10_1016_j_scitotenv_2023_164748 crossref_primary_10_1002_jcp_26639 crossref_primary_10_1007_s13205_020_02362_7 crossref_primary_10_1016_j_lfs_2020_117449 crossref_primary_10_1088_2516_1091_ad9dcb crossref_primary_10_3389_fonc_2024_1361721 crossref_primary_10_3390_pharmaceutics13030380 crossref_primary_10_1177_1758835919878977 crossref_primary_10_1002_med_21948 crossref_primary_10_1016_j_cbi_2022_110224 crossref_primary_10_3390_cancers12030660 crossref_primary_10_1007_s10616_023_00612_z crossref_primary_10_1155_2020_8730608 crossref_primary_10_3347_kjp_2021_59_6_547 crossref_primary_10_1002_jcp_27222 crossref_primary_10_3390_antiox9030193 crossref_primary_10_1016_j_semcancer_2019_11_003 crossref_primary_10_1016_j_bmcl_2023_129369 crossref_primary_10_4103_cjop_CJOP_D_23_00063 crossref_primary_10_1016_j_urolonc_2020_03_007 crossref_primary_10_3390_ijms19010189 crossref_primary_10_1016_j_bpj_2022_01_003 crossref_primary_10_1016_j_bbrc_2018_06_012 crossref_primary_10_1016_j_joms_2018_12_021 crossref_primary_10_3390_cancers12051273 crossref_primary_10_1002_mc_22979 crossref_primary_10_1016_j_cellsig_2021_110240 crossref_primary_10_1016_j_semradonc_2021_03_007 crossref_primary_10_1016_j_urolonc_2019_01_011 crossref_primary_10_1016_j_biopha_2020_110909 crossref_primary_10_1021_acs_jafc_9b00251 crossref_primary_10_1080_21691401_2021_1912759 crossref_primary_10_1016_j_jddst_2024_105584 crossref_primary_10_1166_mex_2022_2295 crossref_primary_10_3389_fmolb_2022_939070 crossref_primary_10_1016_j_urolonc_2019_03_008 crossref_primary_10_1002_jcb_27030 crossref_primary_10_1186_s40659_024_00499_w crossref_primary_10_1016_j_ijbiomac_2024_138800 crossref_primary_10_1002_stem_2859 crossref_primary_10_3390_ijms24043974 crossref_primary_10_3389_fonc_2019_00131 crossref_primary_10_1186_s13046_019_1247_3 crossref_primary_10_12998_wjcc_v13_i12_100248 crossref_primary_10_1016_j_ccr_2019_213080 crossref_primary_10_3390_cancers13112795 crossref_primary_10_3390_md21060345 crossref_primary_10_1016_j_reprotox_2018_08_009 crossref_primary_10_3390_biomedicines10081872 crossref_primary_10_1007_s00018_024_05236_w crossref_primary_10_1007_s00018_022_04456_2 crossref_primary_10_1200_JCO_2017_76_5495 crossref_primary_10_3390_ijms20143492 crossref_primary_10_3389_fphar_2020_590723 crossref_primary_10_1002_cbf_3654 crossref_primary_10_3390_molecules25102380 crossref_primary_10_1186_s12964_019_0367_x crossref_primary_10_3390_jpm10030083 crossref_primary_10_1016_j_ijrobp_2022_12_006 crossref_primary_10_1016_j_tice_2021_101684 crossref_primary_10_1093_carcin_bgab101 crossref_primary_10_1016_j_biologicals_2022_02_001 crossref_primary_10_1016_j_eururo_2020_12_040 crossref_primary_10_3390_cancers14153744 crossref_primary_10_3390_molecules28062652 crossref_primary_10_1080_17435390_2024_2307616 crossref_primary_10_3389_fonc_2024_1365615 crossref_primary_10_1002_jcb_30496 crossref_primary_10_3390_ijms19061556 |
Cites_doi | 10.1158/2326-6066.CIR-15-0013 10.1016/j.ajpath.2011.11.020 10.1038/aja.2013.80 10.1038/emboj.2011.328 10.1038/onc.2012.58 10.1158/0008-5472.CAN-16-2169 10.18632/oncotarget.2736 10.1371/journal.pone.0027970 10.1186/1476-4598-10-139 10.1016/j.bbrc.2015.09.164 10.3390/microarrays4040503 10.1002/pros.22625 10.3892/ol.2013.1635 10.1371/journal.pone.0144073 10.1038/ncb1998 10.1158/0008-5472.CAN-10-4645 10.18632/oncotarget.5728 10.1038/32433 10.1016/j.canlet.2013.02.037 10.1158/1078-0432.CCR-15-0190 10.1016/j.ajpath.2012.08.011 10.3109/21681805.2014.909529 10.5534/wjmh.2013.31.1.36 10.1111/j.1440-169X.2008.01070.x 10.1016/j.humpath.2012.03.029 10.1007/s11033-013-2506-6 10.1016/j.juro.2015.10.172 10.7150/ijbs.12468 10.1158/0008-5472.CAN-05-3401 10.1159/000101298 10.1158/0008-5472.CAN-14-3297 10.1016/j.canlet.2013.04.024 10.1158/0008-5472.CAN-11-3546 10.1038/ng.2771 10.3349/ymj.2007.48.6.1009 10.1038/35000034 10.1158/1078-0432.CCR-12-2888 10.1186/1471-2407-13-61 10.1016/j.bbrc.2003.09.132 10.1158/1078-0432.CCR-14-0305 10.1038/sj.onc.1207128 10.1002/path.4913 10.1016/j.molimm.2014.12.017 10.1016/S1995-7645(13)60196-0 10.1016/j.urology.2007.09.056 10.1242/jcs.02594 10.1111/j.1582-4934.2008.00279.x 10.1002/pros.22970 10.1002/cncr.20946 10.1242/jcs.00389 10.3892/or.2014.3619 10.18632/oncotarget.1790 10.1210/en.2002-0157 10.1007/s12672-011-0084-4 10.1074/jbc.M113.492140 10.1038/ncomms14270 10.1136/thoraxjnl-2013-204608 10.1038/srep40633 10.1186/1756-9966-28-158 10.1038/onc.2012.297 10.18632/oncotarget.2280 10.1007/s00441-014-2001-y 10.3892/ijo.2015.3270 10.3892/mmr.2015.4733 10.1111/j.1365-2559.2007.02665.x 10.1096/fj.09-136994 10.3390/jcm5020027 10.1186/s40880-017-0203-x 10.1038/s41598-017-11914-6 10.1371/journal.pone.0083991 10.18632/oncotarget.3964 10.1038/onc.2013.508 10.1016/j.humpath.2006.10.004 10.18632/oncotarget.13786 10.1158/1535-7163.MCT-13-0605 10.1111/bju.12452 10.1158/1541-7786.MCR-14-0503 10.1158/0008-5472.CAN-03-2755 10.1038/onc.2010.605 10.1038/srep03151 10.1002/pros.21240 10.1002/stem.101 10.1530/ERC-13-0470 10.1016/j.ccr.2005.07.009 10.1016/j.cell.2005.08.011 10.1158/0008-5472.CAN-03-3972 10.1016/j.ccr.2009.03.017 10.1016/j.cellsig.2015.01.001 10.1007/s00109-012-0916-x 10.1091/mbc.e08-10-1076 10.18632/oncotarget.14161 10.1038/onc.2011.612 10.1073/pnas.1217982109 10.1016/S0092-8674(00)80595-4 10.1016/j.cell.2008.03.027 10.18632/oncotarget.15318 10.1083/jcb.200601018 10.1002/stem.154 10.1158/0008-5472.CAN-12-3468 10.1158/0008-5472.CAN-12-2181 10.12659/MSM.895312 10.1093/carcin/bgs153 10.1002/mc.22177 10.1038/nature10912 10.1038/srep02331 10.1158/1078-0432.CCR-13-1687 10.1242/jcs.01004 10.1016/S0002-9440(10)65177-2 10.1016/j.bbrc.2007.11.151 10.1371/journal.pone.0002888 10.1158/1078-0432.CCR-10-2619 10.3727/096504017X14944585873631 10.1158/0008-5472.CAN-14-3476 10.1007/s13277-016-5277-6 10.1038/onc.2016.185 10.1002/1878-0261.12030 10.3390/ijms141121414 10.1002/1873-3468.12603 10.1371/journal.pone.0046888 10.1038/cddis.2011.61 10.1038/onc.2017.64 10.1158/0008-5472.CAN-12-0254 10.3892/ol.2012.934 10.1002/pros.21388 10.1038/mt.2014.79 10.1158/1535-7163.MCT-12-0100 10.1016/j.canlet.2017.05.029 10.18632/oncotarget.10476 10.18632/oncotarget.4927 10.2147/OTT.S117338 10.1371/journal.pone.0030393 10.1038/srep38414 10.1158/0008-5472.CAN-04-3785 10.3892/mmr.2013.1501 10.1074/jbc.M109.022350 10.1158/0008-5472.CAN-12-3979 10.1016/j.ajur.2016.08.003 10.1371/journal.pone.0020341 10.1128/MCB.06306-11 10.18632/oncotarget.3477 10.1038/nm.2284 10.1007/s13277-016-5450-y 10.1159/000430139 10.1158/0008-5472.CAN-07-2559 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2017 2017 by the authors. 2017 |
Copyright_xml | – notice: Copyright MDPI AG 2017 – notice: 2017 by the authors. 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.3390/ijms18102079 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC5666761 28973968 10_3390_ijms18102079 |
Genre | Journal Article Review |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR IPNFZ ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c412t-dc87a3f7d8d09c89abfbb286feaf9b6149d0b42c433b314c134fce6395467e193 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:02:27 EDT 2025 Fri Jul 11 03:22:55 EDT 2025 Fri Jul 25 20:13:53 EDT 2025 Wed Feb 19 02:41:26 EST 2025 Tue Jul 01 03:30:05 EDT 2025 Thu Apr 24 22:52:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | metastasis prostate cancer progression epithelial-to-mesenchymal transition |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-dc87a3f7d8d09c89abfbb286feaf9b6149d0b42c433b314c134fce6395467e193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms18102079 |
PMID | 28973968 |
PQID | 1965680193 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5666761 proquest_miscellaneous_1947101807 proquest_journals_1965680193 pubmed_primary_28973968 crossref_primary_10_3390_ijms18102079 crossref_citationtrail_10_3390_ijms18102079 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170930 |
PublicationDateYYYYMMDD | 2017-09-30 |
PublicationDate_xml | – month: 9 year: 2017 text: 20170930 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2017 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Wang (ref_21) 2017; 36 Liu (ref_138) 2011; 17 ref_139 Kurrey (ref_19) 2009; 27 Dhar (ref_64) 2017; 591 Rood (ref_112) 2009; 284 Ren (ref_115) 2012; 72 Prensner (ref_140) 2013; 45 ref_12 Vadakekolathu (ref_17) 2017; 7 Yun (ref_54) 2016; 22 Rojas (ref_37) 2011; 30 Hao (ref_110) 2017; 242 Chen (ref_71) 2015; 54 Batlle (ref_72) 2000; 2 Shiota (ref_36) 2013; 73 Zhang (ref_90) 2007; 38 Drake (ref_76) 2009; 20 Byles (ref_117) 2012; 31 ref_125 Nakaya (ref_1) 2008; 50 Zong (ref_27) 2012; 109 ref_120 Kwon (ref_79) 2015; 6 Jung (ref_52) 2013; 31 Hou (ref_96) 2016; 13 ref_124 Liu (ref_119) 2017; 8 Hofer (ref_70) 2004; 64 Sasaki (ref_89) 2009; 28 Wang (ref_18) 2004; 23 Tran (ref_45) 1999; 155 Cortez (ref_146) 2014; 22 Wang (ref_143) 2015; 6 Sun (ref_50) 2014; 289 Mani (ref_11) 2008; 133 Ellinger (ref_107) 2008; 71 Cui (ref_118) 2016; 22 Dias (ref_68) 2013; 3 Perl (ref_7) 1998; 392 Zhang (ref_129) 2016; 9 Wellner (ref_13) 2009; 11 Lim (ref_59) 2011; 2 Lee (ref_6) 2006; 172 Liu (ref_134) 2013; 32 Huang (ref_39) 2015; 11 Zheng (ref_111) 2013; 19 Moody (ref_77) 2005; 8 Puhr (ref_135) 2012; 181 Evdokimova (ref_63) 2009; 15 Ohkubo (ref_84) 2004; 117 Graham (ref_95) 2008; 68 Bartis (ref_4) 2014; 69 Li (ref_51) 2008; 12 Ni (ref_102) 2014; 20 Kai (ref_69) 2011; 71 ref_141 Khan (ref_67) 2014; 5 Saini (ref_122) 2011; 17 Ruscetti (ref_16) 2015; 75 Gu (ref_34) 2014; 13 Josson (ref_130) 2014; 20 Chen (ref_28) 2015; 65 Sandsmark (ref_57) 2017; 8 Ru (ref_126) 2012; 11 Gao (ref_61) 2003; 310 Li (ref_55) 2017; 402 Ren (ref_131) 2014; 358 Liu (ref_74) 2014; 7 Uygur (ref_85) 2011; 10 Shigemura (ref_26) 2011; 71 Alexander (ref_94) 2006; 66 Raatikainen (ref_93) 2015; 49 Nakaya (ref_8) 2013; 341 Ruan (ref_22) 2017; 36 Baruah (ref_53) 2016; 37 Vesuna (ref_91) 2008; 367 Grant (ref_2) 2013; 2 Chen (ref_10) 2013; 73 Shiota (ref_29) 2012; 72 Hanrahan (ref_23) 2017; 11 Xu (ref_49) 2016; 3 Hu (ref_31) 2015; 36 Wang (ref_46) 2015; 467 Majid (ref_127) 2012; 72 Wang (ref_14) 2016; 48 Kalogirou (ref_123) 2013; 14 Liang (ref_128) 2015; 13 Tai (ref_56) 2014; 5 Nguyen (ref_33) 2014; 113 Aiello (ref_142) 2016; 6 Sheridan (ref_66) 2015; 6 Wang (ref_136) 2013; 15 Kong (ref_133) 2009; 27 Kaarbo (ref_60) 2010; 32 ref_65 Dong (ref_101) 2017; 8 Sebastian (ref_144) 2015; 4 Ibrahim (ref_147) 2011; 71 Sahu (ref_97) 2011; 30 Jin (ref_100) 2013; 73 Esposito (ref_86) 2015; 6 Ricke (ref_24) 2012; 33 Ezponda (ref_113) 2013; 32 Ko (ref_40) 2015; 75 Tam (ref_15) 2017; 7 Fan (ref_80) 2013; 44 Ware (ref_81) 2016; 7 Yegnasubramanian (ref_108) 2004; 64 Yao (ref_30) 2015; 75 Robinson (ref_98) 2014; 33 ref_114 Liao (ref_41) 2003; 144 Jones (ref_99) 2015; 6 Kwok (ref_75) 2005; 65 Yu (ref_25) 2015; 3 Angulo (ref_106) 2016; 195 Banyard (ref_121) 2013; 3 Shukla (ref_103) 2009; 34 Miao (ref_44) 2017; 77 Liu (ref_105) 2015; 27 Yuen (ref_92) 2007; 50 ref_38 Chen (ref_109) 2005; 123 Yang (ref_42) 2013; 40 Cho (ref_116) 2007; 48 Hsieh (ref_62) 2012; 485 Jin (ref_145) 2017; 8 Saxena (ref_20) 2011; 2 Elloul (ref_78) 2005; 103 ref_47 Wang (ref_88) 2012; 180 Song (ref_87) 2015; 33 Wu (ref_35) 2012; 90 Ikenouchi (ref_83) 2003; 116 ref_3 Zhu (ref_43) 2010; 24 Ware (ref_48) 2014; 21 Brunet (ref_104) 1999; 96 Cho (ref_32) 2013; 336 Selth (ref_132) 2017; 36 Chaffer (ref_5) 2007; 185 Vogelmann (ref_58) 2005; 118 Randle (ref_82) 2013; 6 Fan (ref_9) 2012; 4 Liu (ref_73) 2012; 32 Wu (ref_137) 2013; 8 10102273 - Cell. 1999 Mar 19;96(6):857-68 26336819 - Oncotarget. 2015 Oct 6;6(30):29782-94 26048576 - Cancer Immunol Res. 2015 Oct;3(10 ):1175-84 27922078 - Sci Rep. 2016 Dec 06;6:38414 21915096 - EMBO J. 2011 Sep 13;30(19):3962-76 28212533 - Oncotarget. 2017 Apr 18;8(16):26090-26099 26847404 - Med Sci Monit. 2016 Feb 05;22:380-6 16169465 - Cancer Cell. 2005 Sep;8(3):197-209 27600237 - Microarrays (Basel). 2015 Oct 29;4(4):503-19 26490309 - Clin Cancer Res. 2016 Feb 1;22(3):670-9 28346424 - Oncogene. 2017 Jul 27;36(30):4299-4310 21734725 - Cell Death Dis. 2011 Jul 07;2:e179 18242387 - Urology. 2008 Jan;71(1):161-7 14724576 - Oncogene. 2004 Jan 15;23 (2):474-82 21520153 - Prostate. 2011 Dec;71(16):1711-22 23652996 - Mol Biol Rep. 2013 Jul;40(7):4241-50 24173237 - Int J Mol Sci. 2013 Oct 29;14(11):21414-34 16567498 - J Cell Biol. 2006 Mar 27;172(7):973-81 22226740 - Am J Pathol. 2012 Mar;180(3):1170-8 24963047 - Clin Cancer Res. 2014 Sep 1;20(17):4636-46 15742334 - Cancer. 2005 Apr 15;103(8):1631-43 15958559 - Cancer Res. 2005 Jun 15;65(12 ):5153-62 22272343 - PLoS One. 2012;7(1):e30393 25296715 - Cell Tissue Res. 2014 Dec;358(3):763-78 12668723 - J Cell Sci. 2003 May 15;116(Pt 10):1959-67 26650737 - PLoS One. 2015 Dec 09;10 (12 ):e0144073 26015410 - Oncotarget. 2015 Aug 21;6(24):20312-26 26551297 - J Urol. 2016 Mar;195(3):619-26 14559232 - Biochem Biophys Res Commun. 2003 Oct 31;310(4):1124-32 18062917 - Biochem Biophys Res Commun. 2008 Mar 7;367 (2):235-41 19411069 - Cancer Cell. 2009 May 5;15(5):402-15 18682804 - PLoS One. 2008 Aug 06;3(8):e2888 23539448 - Cancer Res. 2013 Jun 15;73(12):3725-36 21948155 - Horm Cancer. 2011 Oct;2(5):298-309 25346895 - Transl Androl Urol. 2013 Sep 1;2(3):202-211 21240262 - Nat Med. 2011 Feb;17(2):211-5 23074286 - Cancer Res. 2012 Dec 15;72(24):6435-46 28356132 - Chin J Cancer. 2017 Mar 29;36(1):35 28231399 - FEBS Lett. 2017 Mar;591(6):924-933 24391862 - PLoS One. 2013 Dec 31;8(12):e83991 24193225 - Sci Rep. 2013 Nov 06;3:3151 26889270 - Oncol Lett. 2013 Dec;6(6):1767-1773 27409172 - Oncotarget. 2016 Aug 2;7(31):50507-50521 19225155 - Mol Biol Cell. 2009 Apr;20(8):2207-17 22402125 - Mol Cancer Ther. 2012 May;11(5):1166-73 24577942 - Mol Cancer Ther. 2014 May;13(5):1246-58 23340301 - Clin Cancer Res. 2013 Mar 15;19(6):1400-10 22370643 - Oncogene. 2013 Jan 17;32(3):296-306 27495232 - Tumour Biol. 2016 Oct;37(10 ):14025-14034 24297183 - J Biol Chem. 2014 Jan 17;289(3):1529-39 21647377 - PLoS One. 2011;6(5):e20341 24053309 - BJU Int. 2014 Jun;113(6):986-92 25587085 - Mol Cancer Res. 2015 Apr;13(4):681-8 26021267 - Cell Physiol Biochem. 2015 ;36(2):799-809 24076601 - Nat Genet. 2013 Nov;45(11):1392-8 24791940 - Mol Ther. 2014 Aug;22(8):1494-1503 14871807 - Cancer Res. 2004 Feb 1;64(3):825-9 27924058 - Oncotarget. 2017 Jan 3;8(1):1703-1713 19525223 - J Biol Chem. 2009 Jul 31;284(31):20927-35 24779451 - Scand J Urol. 2015 Feb;49(1):51-7 16219695 - J Cell Sci. 2005 Oct 15;118(Pt 20):4901-12 15075229 - J Cell Sci. 2004 Apr 1;117(Pt 9):1675-85 24486593 - Clin Cancer Res. 2014 Apr 1;20(7):1779-90 23900262 - Sci Rep. 2013;3:2331 23658864 - World J Mens Health. 2013 Apr;31(1):36-46 20717904 - Prostate. 2011 Feb 15;71(3):268-80 23462225 - Cancer Lett. 2013 Nov 28;341(1):9-15 26516927 - Oncotarget. 2015 Dec 1;6(38):41045-55 25618241 - Mol Immunol. 2015 May;65(1):34-42 16585154 - Cancer Res. 2006 Apr 1;66(7):3365-9 26907357 - J Clin Med. 2016 Feb 19;5(2):null 19046163 - Dev Growth Differ. 2008 Dec;50(9):755-66 25686823 - Oncotarget. 2015 Jul 10;6(19):17121-34 26647992 - Int J Oncol. 2016 Feb;48(2):595-606 12697668 - Endocrinology. 2003 May;144(5):1656-63 27270433 - Oncogene. 2017 Jan 5;36(1):24-34 23974361 - Asian J Androl. 2013 Nov;15(6):735-41 20025748 - J Exp Clin Cancer Res. 2009 Dec 21;28:158 10487836 - Am J Pathol. 1999 Sep;155(3):787-98 24334519 - Thorax. 2014 Aug;69(8):760-5 26717907 - Mol Med Rep. 2016 Feb;13(2):1681-8 25277191 - Oncotarget. 2014 Sep 15;5(17):7589-98 28602974 - Cancer Lett. 2017 Aug 28;402:166-176 27743381 - Tumour Biol. 2016 Oct 14;:null 22535887 - Carcinogenesis. 2012 Jul;33(7):1391-8 22074556 - Mol Cancer. 2011 Nov 10;10 :139 22367541 - Nature. 2012 Feb 22;485(7396):55-61 28112170 - Nat Commun. 2017 Jan 23;8:14270 19424579 - Int J Oncol. 2009 Jun;34(6):1613-20 9515965 - Nature. 1998 Mar 12;392(6672):190-3 25420482 - Oncol Rep. 2015 Feb;33(2):669-74 28492138 - Oncol Res. 2017 May 11;:null 23623921 - Cancer Lett. 2013 Aug 9;336(1):167-73 22114732 - PLoS One. 2011;6(11):e27970 24770864 - Oncotarget. 2014 May 15;5(9):2462-74 17394502 - Histopathology. 2007 Apr;50(5):648-58 28239558 - Asian J Urol. 2016 Oct;3(4):177-184 28904399 - Sci Rep. 2017 Sep 13;7(1):11501 17587803 - Cells Tissues Organs. 2007;185(1-3):7-19 19901020 - FASEB J. 2010 Mar;24(3):769-77 28133913 - Mol Oncol. 2017 Mar;11(3):251-265 21159887 - Clin Cancer Res. 2011 Aug 15;17(16):5287-98 23492367 - Cancer Res. 2013 May 15;73(10 ):3109-19 23041061 - Am J Pathol. 2012 Dec;181(6):2188-201 23205121 - Oncol Lett. 2012 Dec;4(6):1225-1233 22249256 - Oncogene. 2012 Oct 25;31(43):4619-29 21258401 - Oncogene. 2011 May 19;30(20):2345-55 22896337 - Cancer Res. 2012 Oct 15;72 (20):5261-72 21690566 - Cancer Res. 2011 Aug 1;71(15):5214-24 19544473 - Stem Cells. 2009 Sep;27(9):2059-68 18381457 - Cancer Res. 2008 Apr 1;68(7):2479-88 18159594 - Yonsei Med J. 2007 Dec 31;48(6):1009-14 25797255 - Oncotarget. 2015 Apr 10;6(10):7470-80 20203370 - Cell Oncol. 2010;32(1-2):11-27 25578861 - Cell Signal. 2015 Mar;27(3):510-8 28094783 - Sci Rep. 2017 Jan 17;7:40633 23280481 - Prostate. 2013 Jun;73(8):813-26 22797064 - Oncogene. 2013 Jun 6;32(23 ):2882-90 27877055 - Onco Targets Ther. 2016 Nov 08;9:6909-6914 28302679 - Cancer Res. 2017 Jun 1;77(11):3101-3112 19544444 - Stem Cells. 2009 Aug;27(8):1712-21 22660275 - J Mol Med (Berl). 2012 Nov;90(11):1343-55 22203039 - Mol Cell Biol. 2012 Mar;32(5):941-53 18485877 - Cell. 2008 May 16;133(4):704-15 23732700 - Mol Med Rep. 2013 Aug;8(2):626-30 10655587 - Nat Cell Biol. 2000 Feb;2(2):84-9 23227138 - PLoS One. 2012;7(12):e46888 28030815 - Oncotarget. 2017 Feb 7;8(6):9572-9586 25948589 - Cancer Res. 2015 Jul 1;75(13):2749-59 24418088 - Asian Pac J Trop Med. 2014 Jan;7(1):76-82 26435505 - Biochem Biophys Res Commun. 2015 Nov 13;467(2):310-5 15026333 - Cancer Res. 2004 Mar 15;64(6):1975-86 26018085 - Cancer Res. 2015 Jul 15;75(14):2949-60 23383988 - BMC Cancer. 2013 Feb 05;13:61 26157349 - Int J Biol Sci. 2015 Jun 11;11(8):948-60 22505648 - Cancer Res. 2012 Jun 15;72 (12 ):3091-104 16269335 - Cell. 2005 Nov 4;123(3):437-48 25728398 - Prostate. 2015 Jun;75(8):872-82 25043657 - Mol Carcinog. 2015 Oct;54(10):1086-95 17258791 - Hum Pathol. 2007 Apr;38(4):598-606 22974478 - Hum Pathol. 2013 Feb;44(2):173-80 24859991 - Endocr Relat Cancer. 2014 Aug;21(4):T87-T103 28466555 - J Pathol. 2017 Aug;242(4):409-420 18266956 - J Cell Mol Med. 2008 Dec;12(6B):2790-8 23184966 - Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):E3395-404 24292680 - Oncogene. 2014 Dec 11;33(50):5666-74 19935649 - Nat Cell Biol. 2009 Dec;11(12 ):1487-95 |
References_xml | – volume: 3 start-page: 1175 year: 2015 ident: ref_25 article-title: A paracrine role for il6 in prostate cancer patients: Lack of production by primary or metastatic tumor cells publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-15-0013 – volume: 180 start-page: 1170 year: 2012 ident: ref_88 article-title: Clinical and biological significance of kiss1 expression in prostate cancer publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2011.11.020 – volume: 15 start-page: 735 year: 2013 ident: ref_136 article-title: Mir-205 is frequently downregulated in prostate cancer and acts as a tumor suppressor by inhibiting tumor growth publication-title: Asian J. Androl. doi: 10.1038/aja.2013.80 – volume: 30 start-page: 3962 year: 2011 ident: ref_97 article-title: Dual role of foxa1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer publication-title: EMBO J. doi: 10.1038/emboj.2011.328 – volume: 32 start-page: 296 year: 2013 ident: ref_134 article-title: Mir-1 and mir-200 inhibit emt via slug-dependent and tumorigenesis via slug-independent mechanisms publication-title: Oncogene doi: 10.1038/onc.2012.58 – volume: 77 start-page: 3101 year: 2017 ident: ref_44 article-title: Disrupting androgen receptor signaling induces snail-mediated epithelial-mesenchymal plasticity in prostate cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-2169 – volume: 6 start-page: 17121 year: 2015 ident: ref_86 article-title: Snai2/slug gene is silenced in prostate cancer and regulates neuroendocrine differentiation, metastasis-suppressor and pluripotency gene expression publication-title: Oncotarget doi: 10.18632/oncotarget.2736 – ident: ref_47 doi: 10.1371/journal.pone.0027970 – volume: 10 start-page: 139 year: 2011 ident: ref_85 article-title: Slug promotes prostate cancer cell migration and invasion via cxcr4/cxcl12 axis publication-title: Mol. Cancer doi: 10.1186/1476-4598-10-139 – volume: 467 start-page: 310 year: 2015 ident: ref_46 article-title: Inhibition of lsd1 by pargyline inhibited process of emt and delayed progression of prostate cancer in vivo publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.09.164 – volume: 4 start-page: 503 year: 2015 ident: ref_144 article-title: Cancer-osteoblast interaction reduces Sost expression in osteoblasts and up-regulates lncRNA MALAT1 in prostate cancer publication-title: Microarrays doi: 10.3390/microarrays4040503 – volume: 73 start-page: 813 year: 2013 ident: ref_10 article-title: Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of emt-related genes in metastatic prostate cancer publication-title: Prostate doi: 10.1002/pros.22625 – volume: 6 start-page: 1767 year: 2013 ident: ref_82 article-title: Snail mediates invasion through upa/upar and the mapk signaling pathway in prostate cancer cells publication-title: Oncol. Lett. doi: 10.3892/ol.2013.1635 – ident: ref_38 doi: 10.1371/journal.pone.0144073 – volume: 11 start-page: 1487 year: 2009 ident: ref_13 article-title: The emt-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs publication-title: Nat. Cell Biol. doi: 10.1038/ncb1998 – volume: 71 start-page: 5214 year: 2011 ident: ref_147 article-title: MicroRNA replacement therapy for mir-145 and mir-33a is efficacious in a model of colon carcinoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-4645 – volume: 6 start-page: 41045 year: 2015 ident: ref_143 article-title: LncRNA MALAT1 enhances oncogenic activities of EZH2 in castration-resistant prostate cancer publication-title: Oncotarget doi: 10.18632/oncotarget.5728 – volume: 392 start-page: 190 year: 1998 ident: ref_7 article-title: A causal role for e-cadherin in the transition from adenoma to carcinoma publication-title: Nature doi: 10.1038/32433 – volume: 341 start-page: 9 year: 2013 ident: ref_8 article-title: Emt in developmental morphogenesis publication-title: Cancer Lett. doi: 10.1016/j.canlet.2013.02.037 – volume: 22 start-page: 670 year: 2016 ident: ref_54 article-title: Targeting cancer stem cells in castration-resistant prostate cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-0190 – volume: 181 start-page: 2188 year: 2012 ident: ref_135 article-title: Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of mir-200c and mir-205 publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2012.08.011 – volume: 49 start-page: 51 year: 2015 ident: ref_93 article-title: Twist overexpression predicts biochemical recurrence-free survival in prostate cancer patients treated with radical prostatectomy publication-title: Scand. J. Urol. doi: 10.3109/21681805.2014.909529 – volume: 31 start-page: 36 year: 2013 ident: ref_52 article-title: Clinical significance of WNT/beta-catenin signalling and androgen receptor expression in prostate cancer publication-title: World J. Mens Health doi: 10.5534/wjmh.2013.31.1.36 – volume: 50 start-page: 755 year: 2008 ident: ref_1 article-title: Epithelial to mesenchymal transition during gastrulation: An embryological view publication-title: Dev. Growth Differ. doi: 10.1111/j.1440-169X.2008.01070.x – volume: 44 start-page: 173 year: 2013 ident: ref_80 article-title: Snail promotes lymph node metastasis and twist enhances tumor deposit formation through epithelial-mesenchymal transition in colorectal cancer publication-title: Hum. Pathol. doi: 10.1016/j.humpath.2012.03.029 – volume: 40 start-page: 4241 year: 2013 ident: ref_42 article-title: Dishevelled-2 silencing reduces androgen-dependent prostate tumor cell proliferation and migration and expression of WNT-3a and matrix metalloproteinases publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-013-2506-6 – volume: 195 start-page: 619 year: 2016 ident: ref_106 article-title: Development of castration resistant prostate cancer can be predicted by a DNA hypermethylation profile publication-title: J. Urol. doi: 10.1016/j.juro.2015.10.172 – volume: 11 start-page: 948 year: 2015 ident: ref_39 article-title: Overexpression of FGF9 in prostate epithelial cells augments reactive stroma formation and promotes prostate cancer progression publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.12468 – volume: 66 start-page: 3365 year: 2006 ident: ref_94 article-title: N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of twist1 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-3401 – volume: 185 start-page: 7 year: 2007 ident: ref_5 article-title: Mesenchymal to epithelial transition in development and disease publication-title: Cells Tissues Organs doi: 10.1159/000101298 – volume: 75 start-page: 2949 year: 2015 ident: ref_40 article-title: Androgen-induced TMPRSS2 activates matriptase and promotes extracellular matrix degradation, prostate cancer cell invasion, tumor growth, and metastasis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-3297 – volume: 336 start-page: 167 year: 2013 ident: ref_32 article-title: STAT3 mediates tgf-beta1-induced twist1 expression and prostate cancer invasion publication-title: Cancer Lett. doi: 10.1016/j.canlet.2013.04.024 – volume: 72 start-page: 3091 year: 2012 ident: ref_115 article-title: Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor rkip in breast and prostate cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-3546 – volume: 45 start-page: 1392 year: 2013 ident: ref_140 article-title: The long noncoding RNA schlap1 promotes aggressive prostate cancer and antagonizes the swi/snf complex publication-title: Nat. Genet. doi: 10.1038/ng.2771 – volume: 48 start-page: 1009 year: 2007 ident: ref_116 article-title: Identification of enhancer of zeste homolog 2 expression in peripheral circulating tumor cells in metastatic prostate cancer patients: A preliminary study publication-title: Yonsei Med. J. doi: 10.3349/ymj.2007.48.6.1009 – volume: 2 start-page: 84 year: 2000 ident: ref_72 article-title: The transcription factor snail is a repressor of e-cadherin gene expression in epithelial tumour cells publication-title: Nat. Cell Biol. doi: 10.1038/35000034 – volume: 19 start-page: 1400 year: 2013 ident: ref_111 article-title: Hic1 modulates prostate cancer progression by epigenetic modification publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-12-2888 – ident: ref_124 doi: 10.1186/1471-2407-13-61 – volume: 310 start-page: 1124 year: 2003 ident: ref_61 article-title: Role of pi3k/akt/mtor signaling in the cell cycle progression of human prostate cancer publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2003.09.132 – volume: 20 start-page: 4636 year: 2014 ident: ref_130 article-title: Mir-409–3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-0305 – volume: 23 start-page: 474 year: 2004 ident: ref_18 article-title: Identification of a novel function of twist, a bhlh protein, in the development of acquired taxol resistance in human cancer cells publication-title: Oncogene doi: 10.1038/sj.onc.1207128 – volume: 242 start-page: 409 year: 2017 ident: ref_110 article-title: Hic1 loss promotes prostate cancer metastasis by triggering epithelial-mesenchymal transition publication-title: J. Pathol. doi: 10.1002/path.4913 – volume: 65 start-page: 34 year: 2015 ident: ref_28 article-title: Tgf-beta and egf induced hla-i downregulation is associated with epithelial-mesenchymal transition (EMT) through upregulation of snail in prostate cancer cells publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2014.12.017 – volume: 7 start-page: 76 year: 2014 ident: ref_74 article-title: Expression and significance of E-cadherin, N-cadherin, transforming growth factor-beta1 and twist in prostate cancer publication-title: Asian Pac. J. Trop. Med. doi: 10.1016/S1995-7645(13)60196-0 – volume: 71 start-page: 161 year: 2008 ident: ref_107 article-title: Cpg island hypermethylation at multiple gene sites in diagnosis and prognosis of prostate cancer publication-title: Urology doi: 10.1016/j.urology.2007.09.056 – volume: 118 start-page: 4901 year: 2005 ident: ref_58 article-title: Tgfbeta-induced downregulation of e-cadherin-based cell-cell adhesion depends on pi3-kinase and pten publication-title: J. Cell. Sci. doi: 10.1242/jcs.02594 – volume: 12 start-page: 2790 year: 2008 ident: ref_51 article-title: Decrease in stromal androgen receptor associates with androgen-independent disease and promotes prostate cancer cell proliferation and invasion publication-title: J. Cell. Mol. Med. doi: 10.1111/j.1582-4934.2008.00279.x – volume: 75 start-page: 872 year: 2015 ident: ref_30 article-title: ELF5 inhibits TGF-beta-driven epithelial-mesenchymal transition in prostate cancer by repressing SMAD3 activation publication-title: Prostate doi: 10.1002/pros.22970 – volume: 103 start-page: 1631 year: 2005 ident: ref_78 article-title: Snail, slug, and smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma publication-title: Cancer doi: 10.1002/cncr.20946 – volume: 116 start-page: 1959 year: 2003 ident: ref_83 article-title: Regulation of tight junctions during the epithelium-mesenchyme transition: Direct repression of the gene expression of claudins/occludin by snail publication-title: J. Cell. Sci. doi: 10.1242/jcs.00389 – volume: 33 start-page: 669 year: 2015 ident: ref_87 article-title: Kisspeptin-10 inhibits the migration of breast cancer cells by regulating epithelial-mesenchymal transition publication-title: Oncol. Rep. doi: 10.3892/or.2014.3619 – volume: 5 start-page: 2462 year: 2014 ident: ref_67 article-title: YB-1 expression promotes epithelial-to-mesenchymal transition in prostate cancer that is inhibited by a small molecule fisetin publication-title: Oncotarget doi: 10.18632/oncotarget.1790 – volume: 2 start-page: 202 year: 2013 ident: ref_2 article-title: Epithelial mesenchymal transition (EMT) in prostate growth and tumor progression publication-title: Transl. Androl. Urol. – volume: 144 start-page: 1656 year: 2003 ident: ref_41 article-title: Androgen stimulates matrix metalloproteinase-2 expression in human prostate cancer publication-title: Endocrinology doi: 10.1210/en.2002-0157 – volume: 2 start-page: 298 year: 2011 ident: ref_59 article-title: Pi3k, erk signaling in bmp7-induced epithelial-mesenchymal transition (emt) of PC-3 prostate cancer cells in 2- and 3-dimensional cultures publication-title: Horm. Cancer doi: 10.1007/s12672-011-0084-4 – volume: 289 start-page: 1529 year: 2014 ident: ref_50 article-title: Androgen receptor splice variant ar3 promotes prostate cancer via modulating expression of autocrine/paracrine factors publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.492140 – volume: 8 start-page: 14270 year: 2017 ident: ref_119 article-title: MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes publication-title: Nat. Commun. doi: 10.1038/ncomms14270 – volume: 69 start-page: 760 year: 2014 ident: ref_4 article-title: Epithelial-mesenchymal transition in lung development and disease: Does it exist and is it important? publication-title: Thorax doi: 10.1136/thoraxjnl-2013-204608 – volume: 7 start-page: 40633 year: 2017 ident: ref_17 article-title: A novel spontaneous model of epithelial-mesenchymal transition (EMT) using a primary prostate cancer derived cell line demonstrating distinct stem-like characteristics publication-title: Sci. Rep. doi: 10.1038/srep40633 – volume: 28 start-page: 158 year: 2009 ident: ref_89 article-title: Significance of twist expression and its association with e-cadherin in esophageal squamous cell carcinoma publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/1756-9966-28-158 – volume: 32 start-page: 2882 year: 2013 ident: ref_113 article-title: The histone methyltransferase MMSET/WHSC1 activates TWIST1 to promote an epithelial-mesenchymal transition and invasive properties of prostate cancer publication-title: Oncogene doi: 10.1038/onc.2012.297 – volume: 5 start-page: 7589 year: 2014 ident: ref_56 article-title: Osteoblast-derived wnt-induced secreted protein 1 increases VCAM-1 expression and enhances prostate cancer metastasis by down-regulating mir-126 publication-title: Oncotarget doi: 10.18632/oncotarget.2280 – volume: 358 start-page: 763 year: 2014 ident: ref_131 article-title: Double-negative feedback loop between ZEB2 and mir-145 regulates epithelial-mesenchymal transition and stem cell properties in prostate cancer cells publication-title: Cell Tissue Res. doi: 10.1007/s00441-014-2001-y – volume: 48 start-page: 595 year: 2016 ident: ref_14 article-title: N-cadherin promotes epithelial-mesenchymal transition and cancer stem cell-like traits via erbb signaling in prostate cancer cells publication-title: Int. J. Oncol. doi: 10.3892/ijo.2015.3270 – volume: 13 start-page: 1681 year: 2016 ident: ref_96 article-title: Set8 induces epithelialmesenchymal transition and enhances prostate cancer cell metastasis by cooperating with ZEB1 publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2015.4733 – volume: 50 start-page: 648 year: 2007 ident: ref_92 article-title: Significance of twist and e-cadherin expression in the metastatic progression of prostatic cancer publication-title: Histopathology doi: 10.1111/j.1365-2559.2007.02665.x – volume: 24 start-page: 769 year: 2010 ident: ref_43 article-title: Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells publication-title: FASEB J. doi: 10.1096/fj.09-136994 – ident: ref_3 doi: 10.3390/jcm5020027 – volume: 36 start-page: 35 year: 2017 ident: ref_21 article-title: Down-regulation of e-cadherin enhances prostate cancer chemoresistance via notch signaling publication-title: Chin. J. Cancer doi: 10.1186/s40880-017-0203-x – volume: 7 start-page: 11501 year: 2017 ident: ref_15 article-title: Semaphorin 3 c drives epithelial-to-mesenchymal transition, invasiveness, and stem-like characteristics in prostate cells publication-title: Sci. Rep. doi: 10.1038/s41598-017-11914-6 – ident: ref_120 doi: 10.1371/journal.pone.0083991 – volume: 6 start-page: 20312 year: 2015 ident: ref_79 article-title: Snail and serpina1 promote tumor progression and predict prognosis in colorectal cancer publication-title: Oncotarget doi: 10.18632/oncotarget.3964 – volume: 33 start-page: 5666 year: 2014 ident: ref_98 article-title: Elevated levels of foxa1 facilitate androgen receptor chromatin binding resulting in a crpc-like phenotype publication-title: Oncogene doi: 10.1038/onc.2013.508 – volume: 38 start-page: 598 year: 2007 ident: ref_90 article-title: Significance of twist expression and its association with e-cadherin in bladder cancer publication-title: Hum. Pathol. doi: 10.1016/j.humpath.2006.10.004 – volume: 8 start-page: 1703 year: 2017 ident: ref_101 article-title: FOXO1 inhibits the invasion and metastasis of hepatocellular carcinoma by reversing ZEB2-induced epithelial-mesenchymal transition publication-title: Oncotarget doi: 10.18632/oncotarget.13786 – volume: 13 start-page: 1246 year: 2014 ident: ref_34 article-title: Pharmacologic suppression of JAK1/2 by JAK1/2 inhibitor AZD1480 potently inhibits IL-6-induced experimental prostate cancer metastases formation publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-13-0605 – volume: 113 start-page: 986 year: 2014 ident: ref_33 article-title: Inflammation and prostate cancer: The role of interleukin 6 (IL-6) publication-title: BJU Int. doi: 10.1111/bju.12452 – volume: 13 start-page: 681 year: 2015 ident: ref_128 article-title: Lef1 targeting emt in prostate cancer invasion is regulated by mir-34a publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-14-0503 – volume: 64 start-page: 825 year: 2004 ident: ref_70 article-title: The role of metastasis-associated protein 1 in prostate cancer progression publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-03-2755 – volume: 30 start-page: 2345 year: 2011 ident: ref_37 article-title: IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR publication-title: Oncogene doi: 10.1038/onc.2010.605 – volume: 3 start-page: 3151 year: 2013 ident: ref_121 article-title: Regulation of epithelial plasticity by mir-424 and mir-200 in a new prostate cancer metastasis model publication-title: Sci. Rep. doi: 10.1038/srep03151 – volume: 71 start-page: 268 year: 2011 ident: ref_69 article-title: Targeting prostate cancer angiogenesis through metastasis-associated protein 1 (MTA1) publication-title: Prostate doi: 10.1002/pros.21240 – volume: 27 start-page: 1712 year: 2009 ident: ref_133 article-title: Mir-200 regulates pdgf-d-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells publication-title: Stem Cells doi: 10.1002/stem.101 – volume: 21 start-page: T87 year: 2014 ident: ref_48 article-title: Biologic and clinical significance of androgen receptor variants in castration resistant prostate cancer publication-title: Endocr. Relat. Cancer doi: 10.1530/ERC-13-0470 – volume: 8 start-page: 197 year: 2005 ident: ref_77 article-title: The transcriptional repressor snail promotes mammary tumor recurrence publication-title: Cancer Cell doi: 10.1016/j.ccr.2005.07.009 – volume: 123 start-page: 437 year: 2005 ident: ref_109 article-title: Tumor suppressor hic1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses publication-title: Cell doi: 10.1016/j.cell.2005.08.011 – volume: 64 start-page: 1975 year: 2004 ident: ref_108 article-title: Hypermethylation of CpG islands in primary and metastatic human prostate cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-03-3972 – volume: 15 start-page: 402 year: 2009 ident: ref_63 article-title: Translational activation of snail1 and other developmentally regulated transcription factors by yb-1 promotes an epithelial-mesenchymal transition publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.03.017 – volume: 34 start-page: 1613 year: 2009 ident: ref_103 article-title: Deregulation of FOXO3a during prostate cancer progression publication-title: Int. J. Oncol. – volume: 27 start-page: 510 year: 2015 ident: ref_105 article-title: FOXO3a modulates WNT/beta-catenin signaling and suppresses epithelial-to-mesenchymal transition in prostate cancer cells publication-title: Cell Signal. doi: 10.1016/j.cellsig.2015.01.001 – volume: 90 start-page: 1343 year: 2012 ident: ref_35 article-title: Significance of IL-6 in the transition of hormone-resistant prostate cancer and the induction of myeloid-derived suppressor cells publication-title: J. Mol. Med. doi: 10.1007/s00109-012-0916-x – volume: 20 start-page: 2207 year: 2009 ident: ref_76 article-title: Zeb1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e08-10-1076 – volume: 8 start-page: 9572 year: 2017 ident: ref_57 article-title: A novel non-canonical wnt signature for prostate cancer aggressiveness publication-title: Oncotarget doi: 10.18632/oncotarget.14161 – volume: 31 start-page: 4619 year: 2012 ident: ref_117 article-title: SIRT1 induces emt by cooperating with emt transcription factors and enhances prostate cancer cell migration and metastasis publication-title: Oncogene doi: 10.1038/onc.2011.612 – volume: 109 start-page: E3395 year: 2012 ident: ref_27 article-title: Stromal epigenetic dysregulation is sufficient to initiate mouse prostate cancer via paracrine WNT signaling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1217982109 – volume: 32 start-page: 11 year: 2010 ident: ref_60 article-title: Pi3k-akt-mtor pathway is dominant over androgen receptor signaling in prostate cancer cells publication-title: Cell Oncol. – volume: 96 start-page: 857 year: 1999 ident: ref_104 article-title: Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor publication-title: Cell doi: 10.1016/S0092-8674(00)80595-4 – volume: 133 start-page: 704 year: 2008 ident: ref_11 article-title: The epithelial-mesenchymal transition generates cells with properties of stem cells publication-title: Cell doi: 10.1016/j.cell.2008.03.027 – volume: 8 start-page: 26090 year: 2017 ident: ref_145 article-title: Upregulation of long non-coding RNA plncRNA-1 promotes proliferation and induces epithelial-mesenchymal transition in prostate cancer publication-title: Oncotarget doi: 10.18632/oncotarget.15318 – volume: 172 start-page: 973 year: 2006 ident: ref_6 article-title: The epithelial-mesenchymal transition: New insights in signaling, development, and disease publication-title: J. Cell Biol. doi: 10.1083/jcb.200601018 – volume: 27 start-page: 2059 year: 2009 ident: ref_19 article-title: Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells publication-title: Stem Cells doi: 10.1002/stem.154 – volume: 73 start-page: 3725 year: 2013 ident: ref_100 article-title: Androgen receptor-independent function of foxa1 in prostate cancer metastasis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-3468 – volume: 72 start-page: 6435 year: 2012 ident: ref_127 article-title: Mir-23b represses proto-oncogene src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-2181 – volume: 22 start-page: 380 year: 2016 ident: ref_118 article-title: Effect of SIRT1 gene on epithelial-mesenchymal transition of human prostate cancer PC-3 cells publication-title: Med. Sci. Monit. doi: 10.12659/MSM.895312 – volume: 33 start-page: 1391 year: 2012 ident: ref_24 article-title: Androgen hormone action in prostatic carcinogenesis: Stromal androgen receptors mediate prostate cancer progression, malignant transformation and metastasis publication-title: Carcinogenesis doi: 10.1093/carcin/bgs153 – volume: 54 start-page: 1086 year: 2015 ident: ref_71 article-title: Mtor regulate emt through rhoa and rac1 pathway in prostate cancer publication-title: Mol. Carcinog. doi: 10.1002/mc.22177 – volume: 485 start-page: 55 year: 2012 ident: ref_62 article-title: The translational landscape of mtor signalling steers cancer initiation and metastasis publication-title: Nature doi: 10.1038/nature10912 – volume: 3 start-page: 2331 year: 2013 ident: ref_68 article-title: Nuclear MTA1 overexpression is associated with aggressive prostate cancer, recurrence and metastasis in african americans publication-title: Sci. Rep. doi: 10.1038/srep02331 – volume: 20 start-page: 1779 year: 2014 ident: ref_102 article-title: Downregulation of FOXO3a promotes tumor metastasis and is associated with metastasis-free survival of patients with clear cell renal cell carcinoma publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-13-1687 – volume: 117 start-page: 1675 year: 2004 ident: ref_84 article-title: The transcription factor snail downregulates the tight junction components independently of e-cadherin downregulation publication-title: J. Cell. Sci. doi: 10.1242/jcs.01004 – volume: 155 start-page: 787 year: 1999 ident: ref_45 article-title: N-cadherin expression in human prostate carcinoma cell lines. An epithelial-mesenchymal transformation mediating adhesion withstromal cells publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)65177-2 – volume: 367 start-page: 235 year: 2008 ident: ref_91 article-title: Twist is a transcriptional repressor of e-cadherin gene expression in breast cancer publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2007.11.151 – ident: ref_12 doi: 10.1371/journal.pone.0002888 – volume: 17 start-page: 5287 year: 2011 ident: ref_122 article-title: Regulatory role of mir-203 in prostate cancer progression and metastasis publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-10-2619 – ident: ref_141 doi: 10.3727/096504017X14944585873631 – volume: 75 start-page: 2749 year: 2015 ident: ref_16 article-title: Tracking and functional characterization of epithelial-mesenchymal transition and mesenchymal tumor cells during prostate cancer metastasis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-3476 – volume: 37 start-page: 14025 year: 2016 ident: ref_53 article-title: Quercetin modulates wnt signaling components in prostate cancer cell line by inhibiting cell viability, migration, and metastases publication-title: Tumour Biol. doi: 10.1007/s13277-016-5277-6 – volume: 36 start-page: 24 year: 2017 ident: ref_132 article-title: A ZEB1-mir-375-YAP1 pathway regulates epithelial plasticity in prostate cancer publication-title: Oncogene doi: 10.1038/onc.2016.185 – volume: 11 start-page: 251 year: 2017 ident: ref_23 article-title: The role of epithelial-mesenchymal transition drivers ZEB1 and ZEB2 in mediating docetaxel-resistant prostate cancer publication-title: Mol. Oncol. doi: 10.1002/1878-0261.12030 – volume: 14 start-page: 21414 year: 2013 ident: ref_123 article-title: Mir-205 is progressively down-regulated in lymph node metastasis but fails as a prognostic biomarker in high-risk prostate cancer publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms141121414 – volume: 591 start-page: 924 year: 2017 ident: ref_64 article-title: MTA1-activated Epi-microRNA-22 regulates e-cadherin and prostate cancer invasiveness publication-title: FEBS Lett. doi: 10.1002/1873-3468.12603 – ident: ref_65 doi: 10.1371/journal.pone.0046888 – volume: 2 start-page: e179 year: 2011 ident: ref_20 article-title: Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating abc transporters publication-title: Cell Death Dis. doi: 10.1038/cddis.2011.61 – volume: 36 start-page: 4299 year: 2017 ident: ref_22 article-title: SKP2 deficiency restricts the progression and stem cell features of castration-resistant prostate cancer by destabilizing twist publication-title: Oncogene doi: 10.1038/onc.2017.64 – volume: 72 start-page: 5261 year: 2012 ident: ref_29 article-title: Clusterin mediates TGF-beta-induced epithelial-mesenchymal transition and metastasis via twist1 in prostate cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-0254 – volume: 4 start-page: 1225 year: 2012 ident: ref_9 article-title: Loss of e-cadherin promotes prostate cancer metastasis via upregulation of metastasis-associated gene 1 expression publication-title: Oncol. Lett. doi: 10.3892/ol.2012.934 – volume: 71 start-page: 1711 year: 2011 ident: ref_26 article-title: Active sonic hedgehog signaling between androgen independent human prostate cancer cells and normal/benign but not cancer-associated prostate stromal cells publication-title: Prostate doi: 10.1002/pros.21388 – volume: 22 start-page: 1494 year: 2014 ident: ref_146 article-title: Therapeutic delivery of mir-200c enhances radiosensitivity in lung cancer publication-title: Mol. Ther. doi: 10.1038/mt.2014.79 – volume: 11 start-page: 1166 year: 2012 ident: ref_126 article-title: MiRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-12-0100 – volume: 402 start-page: 166 year: 2017 ident: ref_55 article-title: Fzd8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical wnt/beta-catenin signaling publication-title: Cancer Lett. doi: 10.1016/j.canlet.2017.05.029 – volume: 7 start-page: 50507 year: 2016 ident: ref_81 article-title: Snail promotes resistance to enzalutamide through regulation of androgen receptor activity in prostate cancer publication-title: Oncotarget doi: 10.18632/oncotarget.10476 – volume: 6 start-page: 29782 year: 2015 ident: ref_99 article-title: Foxa1 regulates androgen receptor variant activity in models of castrate-resistant prostate cancer publication-title: Oncotarget doi: 10.18632/oncotarget.4927 – volume: 9 start-page: 6909 year: 2016 ident: ref_129 article-title: Mir-486–5p suppresses prostate cancer metastasis by targeting snail and regulating epithelial-mesenchymal transition publication-title: Onco Targets Ther. doi: 10.2147/OTT.S117338 – ident: ref_114 doi: 10.1371/journal.pone.0030393 – volume: 6 start-page: 38414 year: 2016 ident: ref_142 article-title: Malat1 and hotair long non-coding RNAs play opposite role in estrogen-mediated transcriptional regulation in prostate cancer cells publication-title: Sci. Rep. doi: 10.1038/srep38414 – volume: 65 start-page: 5153 year: 2005 ident: ref_75 article-title: Up-regulation of twist in prostate cancer and its implication as a therapeutic target publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-3785 – volume: 8 start-page: 626 year: 2013 ident: ref_137 article-title: MicroRNA-143 inhibits cell migration and invasion by targeting matrix metalloproteinase 13 in prostate cancer publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2013.1501 – volume: 284 start-page: 20927 year: 2009 ident: ref_112 article-title: Scavenger chemokine (CXC motif) receptor 7 (CXCR7) is a direct target gene of hic1 (hypermethylated in cancer 1) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.022350 – volume: 73 start-page: 3109 year: 2013 ident: ref_36 article-title: Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-3979 – volume: 3 start-page: 177 year: 2016 ident: ref_49 article-title: Role of androgen receptor splice variants in prostate cancer metastasis publication-title: Asian J. Urol. doi: 10.1016/j.ajur.2016.08.003 – ident: ref_125 doi: 10.1371/journal.pone.0020341 – volume: 32 start-page: 941 year: 2012 ident: ref_73 article-title: Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor beta-initiated prostate cancer epithelial-mesenchymal transition publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.06306-11 – volume: 6 start-page: 7470 year: 2015 ident: ref_66 article-title: YB-1 and MTA1 protein levels and not DNA or mRNA alterations predict for prostate cancer recurrence publication-title: Oncotarget doi: 10.18632/oncotarget.3477 – volume: 17 start-page: 211 year: 2011 ident: ref_138 article-title: The microRNA mir-34a inhibits prostate cancer stem cells and metastasis by directly repressing cd44 publication-title: Nat. Med. doi: 10.1038/nm.2284 – ident: ref_139 doi: 10.1007/s13277-016-5450-y – volume: 36 start-page: 799 year: 2015 ident: ref_31 article-title: Periostin mediates tgf-beta-induced epithelial mesenchymal transition in prostate cancer cells publication-title: Cell. Physiol. Biochem. doi: 10.1159/000430139 – volume: 68 start-page: 2479 year: 2008 ident: ref_95 article-title: Insulin-like growth factor-i-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-2559 – reference: 26015410 - Oncotarget. 2015 Aug 21;6(24):20312-26 – reference: 16567498 - J Cell Biol. 2006 Mar 27;172(7):973-81 – reference: 15075229 - J Cell Sci. 2004 Apr 1;117(Pt 9):1675-85 – reference: 27922078 - Sci Rep. 2016 Dec 06;6:38414 – reference: 26647992 - Int J Oncol. 2016 Feb;48(2):595-606 – reference: 23492367 - Cancer Res. 2013 May 15;73(10 ):3109-19 – reference: 16269335 - Cell. 2005 Nov 4;123(3):437-48 – reference: 22226740 - Am J Pathol. 2012 Mar;180(3):1170-8 – reference: 22249256 - Oncogene. 2012 Oct 25;31(43):4619-29 – reference: 21647377 - PLoS One. 2011;6(5):e20341 – reference: 25296715 - Cell Tissue Res. 2014 Dec;358(3):763-78 – reference: 28602974 - Cancer Lett. 2017 Aug 28;402:166-176 – reference: 14724576 - Oncogene. 2004 Jan 15;23 (2):474-82 – reference: 24779451 - Scand J Urol. 2015 Feb;49(1):51-7 – reference: 26717907 - Mol Med Rep. 2016 Feb;13(2):1681-8 – reference: 26157349 - Int J Biol Sci. 2015 Jun 11;11(8):948-60 – reference: 25728398 - Prostate. 2015 Jun;75(8):872-82 – reference: 28094783 - Sci Rep. 2017 Jan 17;7:40633 – reference: 19901020 - FASEB J. 2010 Mar;24(3):769-77 – reference: 23340301 - Clin Cancer Res. 2013 Mar 15;19(6):1400-10 – reference: 19424579 - Int J Oncol. 2009 Jun;34(6):1613-20 – reference: 22367541 - Nature. 2012 Feb 22;485(7396):55-61 – reference: 10655587 - Nat Cell Biol. 2000 Feb;2(2):84-9 – reference: 28466555 - J Pathol. 2017 Aug;242(4):409-420 – reference: 22535887 - Carcinogenesis. 2012 Jul;33(7):1391-8 – reference: 23732700 - Mol Med Rep. 2013 Aug;8(2):626-30 – reference: 26889270 - Oncol Lett. 2013 Dec;6(6):1767-1773 – reference: 23074286 - Cancer Res. 2012 Dec 15;72(24):6435-46 – reference: 24076601 - Nat Genet. 2013 Nov;45(11):1392-8 – reference: 25587085 - Mol Cancer Res. 2015 Apr;13(4):681-8 – reference: 18266956 - J Cell Mol Med. 2008 Dec;12(6B):2790-8 – reference: 21690566 - Cancer Res. 2011 Aug 1;71(15):5214-24 – reference: 24418088 - Asian Pac J Trop Med. 2014 Jan;7(1):76-82 – reference: 26435505 - Biochem Biophys Res Commun. 2015 Nov 13;467(2):310-5 – reference: 22114732 - PLoS One. 2011;6(11):e27970 – reference: 9515965 - Nature. 1998 Mar 12;392(6672):190-3 – reference: 23184966 - Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):E3395-404 – reference: 15026333 - Cancer Res. 2004 Mar 15;64(6):1975-86 – reference: 21520153 - Prostate. 2011 Dec;71(16):1711-22 – reference: 23383988 - BMC Cancer. 2013 Feb 05;13:61 – reference: 24193225 - Sci Rep. 2013 Nov 06;3:3151 – reference: 24486593 - Clin Cancer Res. 2014 Apr 1;20(7):1779-90 – reference: 19225155 - Mol Biol Cell. 2009 Apr;20(8):2207-17 – reference: 24334519 - Thorax. 2014 Aug;69(8):760-5 – reference: 19046163 - Dev Growth Differ. 2008 Dec;50(9):755-66 – reference: 24053309 - BJU Int. 2014 Jun;113(6):986-92 – reference: 27495232 - Tumour Biol. 2016 Oct;37(10 ):14025-14034 – reference: 23539448 - Cancer Res. 2013 Jun 15;73(12):3725-36 – reference: 28133913 - Mol Oncol. 2017 Mar;11(3):251-265 – reference: 26551297 - J Urol. 2016 Mar;195(3):619-26 – reference: 24770864 - Oncotarget. 2014 May 15;5(9):2462-74 – reference: 26847404 - Med Sci Monit. 2016 Feb 05;22:380-6 – reference: 28231399 - FEBS Lett. 2017 Mar;591(6):924-933 – reference: 19544444 - Stem Cells. 2009 Aug;27(8):1712-21 – reference: 28239558 - Asian J Urol. 2016 Oct;3(4):177-184 – reference: 25686823 - Oncotarget. 2015 Jul 10;6(19):17121-34 – reference: 24859991 - Endocr Relat Cancer. 2014 Aug;21(4):T87-T103 – reference: 25948589 - Cancer Res. 2015 Jul 1;75(13):2749-59 – reference: 27409172 - Oncotarget. 2016 Aug 2;7(31):50507-50521 – reference: 20717904 - Prostate. 2011 Feb 15;71(3):268-80 – reference: 22402125 - Mol Cancer Ther. 2012 May;11(5):1166-73 – reference: 26018085 - Cancer Res. 2015 Jul 15;75(14):2949-60 – reference: 20025748 - J Exp Clin Cancer Res. 2009 Dec 21;28:158 – reference: 18682804 - PLoS One. 2008 Aug 06;3(8):e2888 – reference: 23280481 - Prostate. 2013 Jun;73(8):813-26 – reference: 24577942 - Mol Cancer Ther. 2014 May;13(5):1246-58 – reference: 10487836 - Am J Pathol. 1999 Sep;155(3):787-98 – reference: 15742334 - Cancer. 2005 Apr 15;103(8):1631-43 – reference: 26907357 - J Clin Med. 2016 Feb 19;5(2):null – reference: 28356132 - Chin J Cancer. 2017 Mar 29;36(1):35 – reference: 17587803 - Cells Tissues Organs. 2007;185(1-3):7-19 – reference: 26516927 - Oncotarget. 2015 Dec 1;6(38):41045-55 – reference: 22660275 - J Mol Med (Berl). 2012 Nov;90(11):1343-55 – reference: 28302679 - Cancer Res. 2017 Jun 1;77(11):3101-3112 – reference: 19411069 - Cancer Cell. 2009 May 5;15(5):402-15 – reference: 21258401 - Oncogene. 2011 May 19;30(20):2345-55 – reference: 26021267 - Cell Physiol Biochem. 2015 ;36(2):799-809 – reference: 25578861 - Cell Signal. 2015 Mar;27(3):510-8 – reference: 26048576 - Cancer Immunol Res. 2015 Oct;3(10 ):1175-84 – reference: 26490309 - Clin Cancer Res. 2016 Feb 1;22(3):670-9 – reference: 25277191 - Oncotarget. 2014 Sep 15;5(17):7589-98 – reference: 25420482 - Oncol Rep. 2015 Feb;33(2):669-74 – reference: 14559232 - Biochem Biophys Res Commun. 2003 Oct 31;310(4):1124-32 – reference: 24297183 - J Biol Chem. 2014 Jan 17;289(3):1529-39 – reference: 18062917 - Biochem Biophys Res Commun. 2008 Mar 7;367 (2):235-41 – reference: 27600237 - Microarrays (Basel). 2015 Oct 29;4(4):503-19 – reference: 21240262 - Nat Med. 2011 Feb;17(2):211-5 – reference: 27270433 - Oncogene. 2017 Jan 5;36(1):24-34 – reference: 23041061 - Am J Pathol. 2012 Dec;181(6):2188-201 – reference: 18159594 - Yonsei Med J. 2007 Dec 31;48(6):1009-14 – reference: 18485877 - Cell. 2008 May 16;133(4):704-15 – reference: 22974478 - Hum Pathol. 2013 Feb;44(2):173-80 – reference: 22896337 - Cancer Res. 2012 Oct 15;72 (20):5261-72 – reference: 23974361 - Asian J Androl. 2013 Nov;15(6):735-41 – reference: 26336819 - Oncotarget. 2015 Oct 6;6(30):29782-94 – reference: 23205121 - Oncol Lett. 2012 Dec;4(6):1225-1233 – reference: 22203039 - Mol Cell Biol. 2012 Mar;32(5):941-53 – reference: 28212533 - Oncotarget. 2017 Apr 18;8(16):26090-26099 – reference: 12697668 - Endocrinology. 2003 May;144(5):1656-63 – reference: 19525223 - J Biol Chem. 2009 Jul 31;284(31):20927-35 – reference: 24963047 - Clin Cancer Res. 2014 Sep 1;20(17):4636-46 – reference: 21915096 - EMBO J. 2011 Sep 13;30(19):3962-76 – reference: 21948155 - Horm Cancer. 2011 Oct;2(5):298-309 – reference: 14871807 - Cancer Res. 2004 Feb 1;64(3):825-9 – reference: 24292680 - Oncogene. 2014 Dec 11;33(50):5666-74 – reference: 27877055 - Onco Targets Ther. 2016 Nov 08;9:6909-6914 – reference: 15958559 - Cancer Res. 2005 Jun 15;65(12 ):5153-62 – reference: 22074556 - Mol Cancer. 2011 Nov 10;10 :139 – reference: 27924058 - Oncotarget. 2017 Jan 3;8(1):1703-1713 – reference: 25797255 - Oncotarget. 2015 Apr 10;6(10):7470-80 – reference: 12668723 - J Cell Sci. 2003 May 15;116(Pt 10):1959-67 – reference: 23658864 - World J Mens Health. 2013 Apr;31(1):36-46 – reference: 25043657 - Mol Carcinog. 2015 Oct;54(10):1086-95 – reference: 23462225 - Cancer Lett. 2013 Nov 28;341(1):9-15 – reference: 19544473 - Stem Cells. 2009 Sep;27(9):2059-68 – reference: 18242387 - Urology. 2008 Jan;71(1):161-7 – reference: 22370643 - Oncogene. 2013 Jan 17;32(3):296-306 – reference: 28904399 - Sci Rep. 2017 Sep 13;7(1):11501 – reference: 16169465 - Cancer Cell. 2005 Sep;8(3):197-209 – reference: 23900262 - Sci Rep. 2013;3:2331 – reference: 20203370 - Cell Oncol. 2010;32(1-2):11-27 – reference: 24173237 - Int J Mol Sci. 2013 Oct 29;14(11):21414-34 – reference: 25618241 - Mol Immunol. 2015 May;65(1):34-42 – reference: 23623921 - Cancer Lett. 2013 Aug 9;336(1):167-73 – reference: 28030815 - Oncotarget. 2017 Feb 7;8(6):9572-9586 – reference: 21734725 - Cell Death Dis. 2011 Jul 07;2:e179 – reference: 24391862 - PLoS One. 2013 Dec 31;8(12):e83991 – reference: 23227138 - PLoS One. 2012;7(12):e46888 – reference: 28492138 - Oncol Res. 2017 May 11;:null – reference: 22505648 - Cancer Res. 2012 Jun 15;72 (12 ):3091-104 – reference: 21159887 - Clin Cancer Res. 2011 Aug 15;17(16):5287-98 – reference: 22797064 - Oncogene. 2013 Jun 6;32(23 ):2882-90 – reference: 19935649 - Nat Cell Biol. 2009 Dec;11(12 ):1487-95 – reference: 10102273 - Cell. 1999 Mar 19;96(6):857-68 – reference: 27743381 - Tumour Biol. 2016 Oct 14;:null – reference: 17394502 - Histopathology. 2007 Apr;50(5):648-58 – reference: 16219695 - J Cell Sci. 2005 Oct 15;118(Pt 20):4901-12 – reference: 18381457 - Cancer Res. 2008 Apr 1;68(7):2479-88 – reference: 23652996 - Mol Biol Rep. 2013 Jul;40(7):4241-50 – reference: 28112170 - Nat Commun. 2017 Jan 23;8:14270 – reference: 22272343 - PLoS One. 2012;7(1):e30393 – reference: 24791940 - Mol Ther. 2014 Aug;22(8):1494-1503 – reference: 16585154 - Cancer Res. 2006 Apr 1;66(7):3365-9 – reference: 17258791 - Hum Pathol. 2007 Apr;38(4):598-606 – reference: 25346895 - Transl Androl Urol. 2013 Sep 1;2(3):202-211 – reference: 28346424 - Oncogene. 2017 Jul 27;36(30):4299-4310 – reference: 26650737 - PLoS One. 2015 Dec 09;10 (12 ):e0144073 |
SSID | ssj0023259 |
Score | 2.492635 |
SecondaryResourceType | review_article |
Snippet | In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2079 |
SubjectTerms | Animals Cancer therapies Disease Progression Epigenesis, Genetic Epithelial-Mesenchymal Transition Gene Expression Regulation, Neoplastic Humans Male Metastasis MicroRNAs - genetics Neoplasm Invasiveness - genetics Neoplasm Invasiveness - pathology Prostate - metabolism Prostate - pathology Prostate cancer Prostatic Neoplasms - genetics Prostatic Neoplasms - pathology Review RNA, Long Noncoding - genetics |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA9-UPCltGrbs1ZSaJ8kuJtkk90nEfEU4aQUBV_Kks965W736p0P_vfO7O5tz5b6uCRswsxkfjPJfBDyhSciaBU9y7OQMck9Z1aKwFTmtM9yHaTBbOTRlbq4kZe32W134TbvwiqXOrFR1L52eEd-hJXvFKjTQhzPfjPsGoWvq10LjXWymQLSYEhXPjzvHS7Bm2ZpKWAQLF6oNvBdgJt_NP41nQO4gbGEQVyrkPSPnfl3uOQK_gzfkNed4UhPWk6_JWuh2iav2laSjzvkB_Cbfq8ngZrK01HAhN7xfErrSM9mmHcxAUFji5qNMN3I3T1O4WcNUDUxW3Rc0W-YAAKmJz1FSbjH759tlGy1S26GZ9enF6xrncCcTPmCeZdrI6L2uU8KlxfGRmt5rmIwsbAAyYVPrOROCmFFKl0qZHQBrJUMFGcAIr8jG1VdhQ-EumiTiCqRh0TaYI0BE0pJE8AV8dLkA3K4pF7purri2N5iUoJ_gbQuV2k9IF_72bO2nsZ_5u0vGVF2p2pe_pGBAfncD8N5wEcOU4X6AecA3GJVMj0g71u-9QuBc6lFoWDL-hlH-wlYa_v5SDW-a2pug9WrtEr3Xt7WR7LFEfabeJJ9srG4fwifwGhZ2INGMp8At3Dtqw priority: 102 providerName: ProQuest |
Title | The Role and Mechanism of Epithelial-to-Mesenchymal Transition in Prostate Cancer Progression |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28973968 https://www.proquest.com/docview/1965680193 https://www.proquest.com/docview/1947101807 https://pubmed.ncbi.nlm.nih.gov/PMC5666761 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_6wWAvY91ntjZosD0NbY4lS_bDKF1JVgYppSyQl2EkWWozErtLUlj--93ZiWnWDfZiMDrbQifp9zvrPgDexpHwWoWCp4lPuIyLmFspPFeJ00WSai8NRSMPz9XZSH4dJ-Md2FQbXQ_g4q-mHdWTGs2nH379XB3jgv9EFiea7B8nP2YLBCokPjrbhX3EJE21DIayPU9A2lCXTaMfHpw26MYF_t7T2-B0j3H-6Th5B4kGj-HRmkKyk0bnB7DjyyfwoCkquXoK31Hz7LKaembKgg09hfZOFjNWBda_oQiMKU45vqz4kAKP3PVqhi-rIav23mKTkl1QKAiSUHZKc2JO91eNv2z5DEaD_rfTM74uosCd7MVLXrhUGxF0kRZR5tLM2GBtnKrgTcgsgnNWRFbGTgphRU-6npDBeeQtCW6hHundc9grq9K_BOaCjQJtjrGPpPXWGCRTShqPRkkhTdqB95vRy906wzgVupjmaGnQWOd3x7oD71rpmyazxj_kDjeKyDfTI6c8iArBNRMdeNM248qg4w5T-uqWZBB4KT-Z7sCLRm_th9DM1CJT2GW9pdFWgLJub7eUk-s6-zbyX6VV79V_dv81PIyJCdQuJoewt5zf-iPkMUvbhV091nhNB1-6sP-5f35x2SVkSbr15P0N1v33PA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQguqLxDCywSPaFV7d312j4ghEpDSpsKoVbqBZl90qDEDk0qlD_V39gZOzYpCG49WjvyY2Z2vhnvPAh5zSPhUxUcyxKfMMkdZ0YKz1RiU5dkqZcaq5GHR2pwIj-dJqdr5LKthcG0ytYm1obaVRb_ke9g5zsF5jQX76Y_GU6NwtPVdoRGoxYHfvELQrbZ2_0PIN9tzvt7x7sDtpwqwKyM-Zw5m6VahNRlLsptlmsTjOGZCl6H3ABa5S4yklsphBGxtLGQwXoA8gRsio-x-RKY_FuwnGOwl_U_dgGe4PVwthgwDz42V02iPRBGO6MfkxmAKThnmDS2CoF_-bV_pmeu4F1_g9xbOqr0faNZ98maLx-Q283oysVD8hX0i36pxp7q0tGhxwLi0WxCq0D3pljnMQbFZvOKDbG8yZ4tJnCzGhjrHDE6KulnLDgBV5fuouad4_X3Jiu3fEROboSpj8l6WZX-KaE2mCigCeY-ksYbrcFlU1J7CH2c1FmPvGm5V9hlH3McpzEuIJ5BXhervO6R7Y562vTv-AfdViuIYrmLZ8VvneuRV90y7D88VNGlry6QBuAdu6ClPfKkkVv3IAhmU5EreOX0mkQ7AuztfX2lHJ3VPb7By1apip_9_7VekjuD4-Fhcbh_dLBJ7nJ0Oepcli2yPj-_8M_BYZqbF7WWUvLtprfFFUKEKzw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTiBeEHc6BhiJPSGrie3YyQNCsLXaGK2qiUl7QcF2HFbUJt3aCfWv8es4J5fSgeBtj5GtXM79xN85h5DXPBBeqzxjceQjJnnGmZXCMxU5nUWx9tJgNfJwpA5P5cez6GyL_GxrYRBW2drEylBnpcN_5D3sfKfAnCailzewiPHB4N38guEEKTxpbcdp1CJy7Fc_IH1bvD06AF7vcT7of94_ZM2EAeZkyJcsc7E2ItdZnAWJixNjc2t5rHJv8sSC50qywErupBBWhNKFQubOg1OPwL74EBsxgfnf1pgVdcj2h_5ofLJO9wSvRrWF4AHh0xNVw-6FSILe5PtsAa4VQjWEkG06xL-i3D_Bmhveb3CP3G3CVvq-lrP7ZMsXD8itepDl6iH5AtJGT8qpp6bI6NBjOfFkMaNlTvtzrPqYgpizZcmGWOzkzlczuFnlJivEGJ0UdIzlJxD40n2Uw0u8_lZjdItH5PRGyPqYdIqy8E8JdbkNcjTI3AfSemsMBHBKGg-JUCZN3CVvWuqlrulqjsM1pilkN0jrdJPWXbK33j2vu3n8Y99uy4i00elF-lsCu-TVehm0EY9YTOHLK9wDzh57oukueVLzbf0gSG21SBS8sr7G0fUG7PR9faWYnFcdvyHmVlqFO_9_rZfkNqhE-ulodPyM3OEYf1TAll3SWV5e-ecQPS3ti0ZMKfl605rxC-slMM4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+and+Mechanism+of+Epithelial-to-Mesenchymal+Transition+in+Prostate+Cancer+Progression&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Lo%2C+U-Ging&rft.au=Lee%2C+Cheng-Fan&rft.au=Lee%2C+Ming-Shyue&rft.au=Hsieh%2C+Jer-Tsong&rft.date=2017-09-30&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=18&rft.issue=10&rft.spage=2079&rft_id=info:doi/10.3390%2Fijms18102079&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms18102079 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |