The Role and Mechanism of Epithelial-to-Mesenchymal Transition in Prostate Cancer Progression

In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer death. Many mechanisms have been identified in this process that can be rationalized into targeted therapy. Among them, epithelial-to-mesenc...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 18; no. 10; p. 2079
Main Authors Lo, U-Ging, Lee, Cheng-Fan, Lee, Ming-Shyue, Hsieh, Jer-Tsong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 30.09.2017
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer death. Many mechanisms have been identified in this process that can be rationalized into targeted therapy. Among them, epithelial-to-mesenchymal transition (EMT) is originally characterized as a critical step for cell trans-differentiation during embryo development and now recognized in promoting cancer cells invasiveness because of high mobility and migratory abilities of mesenchymal cells once converted from carcinoma cells. Nevertheless, the underlying pathways leading to EMT appear to be very diverse in different cancer types, which certainly represent a challenge for developing effective intervention. In this article, we have carefully reviewed the key factors involved in EMT of PCa with clinical correlation in hope to facilitate the development of new therapeutic strategy that is expected to reduce the disease mortality.
AbstractList In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer death. Many mechanisms have been identified in this process that can be rationalized into targeted therapy. Among them, epithelial-to-mesenchymal transition (EMT) is originally characterized as a critical step for cell trans-differentiation during embryo development and now recognized in promoting cancer cells invasiveness because of high mobility and migratory abilities of mesenchymal cells once converted from carcinoma cells. Nevertheless, the underlying pathways leading to EMT appear to be very diverse in different cancer types, which certainly represent a challenge for developing effective intervention. In this article, we have carefully reviewed the key factors involved in EMT of PCa with clinical correlation in hope to facilitate the development of new therapeutic strategy that is expected to reduce the disease mortality.
In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer death. Many mechanisms have been identified in this process that can be rationalized into targeted therapy. Among them, epithelial-to-mesenchymal transition (EMT) is originally characterized as a critical step for cell trans-differentiation during embryo development and now recognized in promoting cancer cells invasiveness because of high mobility and migratory abilities of mesenchymal cells once converted from carcinoma cells. Nevertheless, the underlying pathways leading to EMT appear to be very diverse in different cancer types, which certainly represent a challenge for developing effective intervention. In this article, we have carefully reviewed the key factors involved in EMT of PCa with clinical correlation in hope to facilitate the development of new therapeutic strategy that is expected to reduce the disease mortality.In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer death. Many mechanisms have been identified in this process that can be rationalized into targeted therapy. Among them, epithelial-to-mesenchymal transition (EMT) is originally characterized as a critical step for cell trans-differentiation during embryo development and now recognized in promoting cancer cells invasiveness because of high mobility and migratory abilities of mesenchymal cells once converted from carcinoma cells. Nevertheless, the underlying pathways leading to EMT appear to be very diverse in different cancer types, which certainly represent a challenge for developing effective intervention. In this article, we have carefully reviewed the key factors involved in EMT of PCa with clinical correlation in hope to facilitate the development of new therapeutic strategy that is expected to reduce the disease mortality.
Author Lee, Ming-Shyue
Hsieh, Jer-Tsong
Lee, Cheng-Fan
Lo, U-Ging
AuthorAffiliation 2 Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan; mslee2006@ntu.edu.tw
1 Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; U-Ging.Lo@utsouthwestern.edu (U.-G.L.); Cheng-Fan.Lee@utsouthwestern.edu (C.-F.L.)
AuthorAffiliation_xml – name: 2 Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan; mslee2006@ntu.edu.tw
– name: 1 Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; U-Ging.Lo@utsouthwestern.edu (U.-G.L.); Cheng-Fan.Lee@utsouthwestern.edu (C.-F.L.)
Author_xml – sequence: 1
  givenname: U-Ging
  surname: Lo
  fullname: Lo, U-Ging
– sequence: 2
  givenname: Cheng-Fan
  surname: Lee
  fullname: Lee, Cheng-Fan
– sequence: 3
  givenname: Ming-Shyue
  surname: Lee
  fullname: Lee, Ming-Shyue
– sequence: 4
  givenname: Jer-Tsong
  surname: Hsieh
  fullname: Hsieh, Jer-Tsong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28973968$$D View this record in MEDLINE/PubMed
BookMark eNptkcuLFDEQxoOsuA-9eZaAFw-25jV5XIRlWB-wiyLjUUI6Xb2dIZ2MSY-w_71Zdl3GxVMq1K8-vvrqFB2lnAChl5S849yQ92E7V6opYUSZJ-iECsY6QqQ6OqiP0WmtW0IYZyvzDB0zbRQ3Up-gn5sJ8PccAbs04Cvwk0uhzjiP-GIXlglicLFbcncFFZKfbmYX8aa4VMMScsIh4W8l18UtgNcueSi3_-sCtbb2c_R0dLHCi_v3DP34eLFZf-4uv376sj6_7LygbOkGr5Xjoxr0QIzXxvVj3zMtR3Cj6SUVZiC9YF5w3nMqPOVi9CC5WQmpgBp-hj7c6e72_QyDh7QUF-2uhNmVG5tdsP92Upjsdf5tV1JKJWkTeHMvUPKvPdTFzqF6iNElyPtqqRGKEqqJaujrR-g270tq6zVKrqQmzVCjXh06erDyN_kGvL0DfIuvFhgfEErs7WHt4WEbzh7hPrTQW8ZtnxD_P_QHmdKnyQ
CitedBy_id crossref_primary_10_1155_2020_7938280
crossref_primary_10_1016_j_bbadis_2022_166524
crossref_primary_10_1136_jim_2021_002016
crossref_primary_10_1016_j_biopha_2022_113774
crossref_primary_10_1016_j_critrevonc_2023_104232
crossref_primary_10_1016_j_scitotenv_2023_164748
crossref_primary_10_1002_jcp_26639
crossref_primary_10_1007_s13205_020_02362_7
crossref_primary_10_1016_j_lfs_2020_117449
crossref_primary_10_1088_2516_1091_ad9dcb
crossref_primary_10_3389_fonc_2024_1361721
crossref_primary_10_3390_pharmaceutics13030380
crossref_primary_10_1177_1758835919878977
crossref_primary_10_1002_med_21948
crossref_primary_10_1016_j_cbi_2022_110224
crossref_primary_10_3390_cancers12030660
crossref_primary_10_1007_s10616_023_00612_z
crossref_primary_10_1155_2020_8730608
crossref_primary_10_3347_kjp_2021_59_6_547
crossref_primary_10_1002_jcp_27222
crossref_primary_10_3390_antiox9030193
crossref_primary_10_1016_j_semcancer_2019_11_003
crossref_primary_10_1016_j_bmcl_2023_129369
crossref_primary_10_4103_cjop_CJOP_D_23_00063
crossref_primary_10_1016_j_urolonc_2020_03_007
crossref_primary_10_3390_ijms19010189
crossref_primary_10_1016_j_bpj_2022_01_003
crossref_primary_10_1016_j_bbrc_2018_06_012
crossref_primary_10_1016_j_joms_2018_12_021
crossref_primary_10_3390_cancers12051273
crossref_primary_10_1002_mc_22979
crossref_primary_10_1016_j_cellsig_2021_110240
crossref_primary_10_1016_j_semradonc_2021_03_007
crossref_primary_10_1016_j_urolonc_2019_01_011
crossref_primary_10_1016_j_biopha_2020_110909
crossref_primary_10_1021_acs_jafc_9b00251
crossref_primary_10_1080_21691401_2021_1912759
crossref_primary_10_1016_j_jddst_2024_105584
crossref_primary_10_1166_mex_2022_2295
crossref_primary_10_3389_fmolb_2022_939070
crossref_primary_10_1016_j_urolonc_2019_03_008
crossref_primary_10_1002_jcb_27030
crossref_primary_10_1186_s40659_024_00499_w
crossref_primary_10_1016_j_ijbiomac_2024_138800
crossref_primary_10_1002_stem_2859
crossref_primary_10_3390_ijms24043974
crossref_primary_10_3389_fonc_2019_00131
crossref_primary_10_1186_s13046_019_1247_3
crossref_primary_10_12998_wjcc_v13_i12_100248
crossref_primary_10_1016_j_ccr_2019_213080
crossref_primary_10_3390_cancers13112795
crossref_primary_10_3390_md21060345
crossref_primary_10_1016_j_reprotox_2018_08_009
crossref_primary_10_3390_biomedicines10081872
crossref_primary_10_1007_s00018_024_05236_w
crossref_primary_10_1007_s00018_022_04456_2
crossref_primary_10_1200_JCO_2017_76_5495
crossref_primary_10_3390_ijms20143492
crossref_primary_10_3389_fphar_2020_590723
crossref_primary_10_1002_cbf_3654
crossref_primary_10_3390_molecules25102380
crossref_primary_10_1186_s12964_019_0367_x
crossref_primary_10_3390_jpm10030083
crossref_primary_10_1016_j_ijrobp_2022_12_006
crossref_primary_10_1016_j_tice_2021_101684
crossref_primary_10_1093_carcin_bgab101
crossref_primary_10_1016_j_biologicals_2022_02_001
crossref_primary_10_1016_j_eururo_2020_12_040
crossref_primary_10_3390_cancers14153744
crossref_primary_10_3390_molecules28062652
crossref_primary_10_1080_17435390_2024_2307616
crossref_primary_10_3389_fonc_2024_1365615
crossref_primary_10_1002_jcb_30496
crossref_primary_10_3390_ijms19061556
Cites_doi 10.1158/2326-6066.CIR-15-0013
10.1016/j.ajpath.2011.11.020
10.1038/aja.2013.80
10.1038/emboj.2011.328
10.1038/onc.2012.58
10.1158/0008-5472.CAN-16-2169
10.18632/oncotarget.2736
10.1371/journal.pone.0027970
10.1186/1476-4598-10-139
10.1016/j.bbrc.2015.09.164
10.3390/microarrays4040503
10.1002/pros.22625
10.3892/ol.2013.1635
10.1371/journal.pone.0144073
10.1038/ncb1998
10.1158/0008-5472.CAN-10-4645
10.18632/oncotarget.5728
10.1038/32433
10.1016/j.canlet.2013.02.037
10.1158/1078-0432.CCR-15-0190
10.1016/j.ajpath.2012.08.011
10.3109/21681805.2014.909529
10.5534/wjmh.2013.31.1.36
10.1111/j.1440-169X.2008.01070.x
10.1016/j.humpath.2012.03.029
10.1007/s11033-013-2506-6
10.1016/j.juro.2015.10.172
10.7150/ijbs.12468
10.1158/0008-5472.CAN-05-3401
10.1159/000101298
10.1158/0008-5472.CAN-14-3297
10.1016/j.canlet.2013.04.024
10.1158/0008-5472.CAN-11-3546
10.1038/ng.2771
10.3349/ymj.2007.48.6.1009
10.1038/35000034
10.1158/1078-0432.CCR-12-2888
10.1186/1471-2407-13-61
10.1016/j.bbrc.2003.09.132
10.1158/1078-0432.CCR-14-0305
10.1038/sj.onc.1207128
10.1002/path.4913
10.1016/j.molimm.2014.12.017
10.1016/S1995-7645(13)60196-0
10.1016/j.urology.2007.09.056
10.1242/jcs.02594
10.1111/j.1582-4934.2008.00279.x
10.1002/pros.22970
10.1002/cncr.20946
10.1242/jcs.00389
10.3892/or.2014.3619
10.18632/oncotarget.1790
10.1210/en.2002-0157
10.1007/s12672-011-0084-4
10.1074/jbc.M113.492140
10.1038/ncomms14270
10.1136/thoraxjnl-2013-204608
10.1038/srep40633
10.1186/1756-9966-28-158
10.1038/onc.2012.297
10.18632/oncotarget.2280
10.1007/s00441-014-2001-y
10.3892/ijo.2015.3270
10.3892/mmr.2015.4733
10.1111/j.1365-2559.2007.02665.x
10.1096/fj.09-136994
10.3390/jcm5020027
10.1186/s40880-017-0203-x
10.1038/s41598-017-11914-6
10.1371/journal.pone.0083991
10.18632/oncotarget.3964
10.1038/onc.2013.508
10.1016/j.humpath.2006.10.004
10.18632/oncotarget.13786
10.1158/1535-7163.MCT-13-0605
10.1111/bju.12452
10.1158/1541-7786.MCR-14-0503
10.1158/0008-5472.CAN-03-2755
10.1038/onc.2010.605
10.1038/srep03151
10.1002/pros.21240
10.1002/stem.101
10.1530/ERC-13-0470
10.1016/j.ccr.2005.07.009
10.1016/j.cell.2005.08.011
10.1158/0008-5472.CAN-03-3972
10.1016/j.ccr.2009.03.017
10.1016/j.cellsig.2015.01.001
10.1007/s00109-012-0916-x
10.1091/mbc.e08-10-1076
10.18632/oncotarget.14161
10.1038/onc.2011.612
10.1073/pnas.1217982109
10.1016/S0092-8674(00)80595-4
10.1016/j.cell.2008.03.027
10.18632/oncotarget.15318
10.1083/jcb.200601018
10.1002/stem.154
10.1158/0008-5472.CAN-12-3468
10.1158/0008-5472.CAN-12-2181
10.12659/MSM.895312
10.1093/carcin/bgs153
10.1002/mc.22177
10.1038/nature10912
10.1038/srep02331
10.1158/1078-0432.CCR-13-1687
10.1242/jcs.01004
10.1016/S0002-9440(10)65177-2
10.1016/j.bbrc.2007.11.151
10.1371/journal.pone.0002888
10.1158/1078-0432.CCR-10-2619
10.3727/096504017X14944585873631
10.1158/0008-5472.CAN-14-3476
10.1007/s13277-016-5277-6
10.1038/onc.2016.185
10.1002/1878-0261.12030
10.3390/ijms141121414
10.1002/1873-3468.12603
10.1371/journal.pone.0046888
10.1038/cddis.2011.61
10.1038/onc.2017.64
10.1158/0008-5472.CAN-12-0254
10.3892/ol.2012.934
10.1002/pros.21388
10.1038/mt.2014.79
10.1158/1535-7163.MCT-12-0100
10.1016/j.canlet.2017.05.029
10.18632/oncotarget.10476
10.18632/oncotarget.4927
10.2147/OTT.S117338
10.1371/journal.pone.0030393
10.1038/srep38414
10.1158/0008-5472.CAN-04-3785
10.3892/mmr.2013.1501
10.1074/jbc.M109.022350
10.1158/0008-5472.CAN-12-3979
10.1016/j.ajur.2016.08.003
10.1371/journal.pone.0020341
10.1128/MCB.06306-11
10.18632/oncotarget.3477
10.1038/nm.2284
10.1007/s13277-016-5450-y
10.1159/000430139
10.1158/0008-5472.CAN-07-2559
ContentType Journal Article
Copyright Copyright MDPI AG 2017
2017 by the authors. 2017
Copyright_xml – notice: Copyright MDPI AG 2017
– notice: 2017 by the authors. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.3390/ijms18102079
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC5666761
28973968
10_3390_ijms18102079
Genre Journal Article
Review
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
IPNFZ
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c412t-dc87a3f7d8d09c89abfbb286feaf9b6149d0b42c433b314c134fce6395467e193
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 18:02:27 EDT 2025
Fri Jul 11 03:22:55 EDT 2025
Fri Jul 25 20:13:53 EDT 2025
Wed Feb 19 02:41:26 EST 2025
Tue Jul 01 03:30:05 EDT 2025
Thu Apr 24 22:52:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords metastasis
prostate cancer progression
epithelial-to-mesenchymal transition
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-dc87a3f7d8d09c89abfbb286feaf9b6149d0b42c433b314c134fce6395467e193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms18102079
PMID 28973968
PQID 1965680193
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5666761
proquest_miscellaneous_1947101807
proquest_journals_1965680193
pubmed_primary_28973968
crossref_primary_10_3390_ijms18102079
crossref_citationtrail_10_3390_ijms18102079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170930
PublicationDateYYYYMMDD 2017-09-30
PublicationDate_xml – month: 9
  year: 2017
  text: 20170930
  day: 30
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2017
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Wang (ref_21) 2017; 36
Liu (ref_138) 2011; 17
ref_139
Kurrey (ref_19) 2009; 27
Dhar (ref_64) 2017; 591
Rood (ref_112) 2009; 284
Ren (ref_115) 2012; 72
Prensner (ref_140) 2013; 45
ref_12
Vadakekolathu (ref_17) 2017; 7
Yun (ref_54) 2016; 22
Rojas (ref_37) 2011; 30
Hao (ref_110) 2017; 242
Chen (ref_71) 2015; 54
Batlle (ref_72) 2000; 2
Shiota (ref_36) 2013; 73
Zhang (ref_90) 2007; 38
Drake (ref_76) 2009; 20
Byles (ref_117) 2012; 31
ref_125
Nakaya (ref_1) 2008; 50
Zong (ref_27) 2012; 109
ref_120
Kwon (ref_79) 2015; 6
Jung (ref_52) 2013; 31
Hou (ref_96) 2016; 13
ref_124
Liu (ref_119) 2017; 8
Hofer (ref_70) 2004; 64
Sasaki (ref_89) 2009; 28
Wang (ref_18) 2004; 23
Tran (ref_45) 1999; 155
Cortez (ref_146) 2014; 22
Wang (ref_143) 2015; 6
Sun (ref_50) 2014; 289
Mani (ref_11) 2008; 133
Ellinger (ref_107) 2008; 71
Cui (ref_118) 2016; 22
Dias (ref_68) 2013; 3
Perl (ref_7) 1998; 392
Zhang (ref_129) 2016; 9
Wellner (ref_13) 2009; 11
Lim (ref_59) 2011; 2
Lee (ref_6) 2006; 172
Liu (ref_134) 2013; 32
Huang (ref_39) 2015; 11
Zheng (ref_111) 2013; 19
Moody (ref_77) 2005; 8
Puhr (ref_135) 2012; 181
Evdokimova (ref_63) 2009; 15
Ohkubo (ref_84) 2004; 117
Graham (ref_95) 2008; 68
Bartis (ref_4) 2014; 69
Li (ref_51) 2008; 12
Ni (ref_102) 2014; 20
Kai (ref_69) 2011; 71
ref_141
Khan (ref_67) 2014; 5
Saini (ref_122) 2011; 17
Ruscetti (ref_16) 2015; 75
Gu (ref_34) 2014; 13
Josson (ref_130) 2014; 20
Chen (ref_28) 2015; 65
Sandsmark (ref_57) 2017; 8
Ru (ref_126) 2012; 11
Gao (ref_61) 2003; 310
Li (ref_55) 2017; 402
Ren (ref_131) 2014; 358
Liu (ref_74) 2014; 7
Uygur (ref_85) 2011; 10
Shigemura (ref_26) 2011; 71
Alexander (ref_94) 2006; 66
Raatikainen (ref_93) 2015; 49
Nakaya (ref_8) 2013; 341
Ruan (ref_22) 2017; 36
Baruah (ref_53) 2016; 37
Vesuna (ref_91) 2008; 367
Grant (ref_2) 2013; 2
Chen (ref_10) 2013; 73
Shiota (ref_29) 2012; 72
Hanrahan (ref_23) 2017; 11
Xu (ref_49) 2016; 3
Hu (ref_31) 2015; 36
Wang (ref_46) 2015; 467
Majid (ref_127) 2012; 72
Wang (ref_14) 2016; 48
Kalogirou (ref_123) 2013; 14
Liang (ref_128) 2015; 13
Tai (ref_56) 2014; 5
Nguyen (ref_33) 2014; 113
Aiello (ref_142) 2016; 6
Sheridan (ref_66) 2015; 6
Wang (ref_136) 2013; 15
Kong (ref_133) 2009; 27
Kaarbo (ref_60) 2010; 32
ref_65
Dong (ref_101) 2017; 8
Sebastian (ref_144) 2015; 4
Ibrahim (ref_147) 2011; 71
Sahu (ref_97) 2011; 30
Jin (ref_100) 2013; 73
Esposito (ref_86) 2015; 6
Ricke (ref_24) 2012; 33
Ezponda (ref_113) 2013; 32
Ko (ref_40) 2015; 75
Tam (ref_15) 2017; 7
Fan (ref_80) 2013; 44
Ware (ref_81) 2016; 7
Yegnasubramanian (ref_108) 2004; 64
Yao (ref_30) 2015; 75
Robinson (ref_98) 2014; 33
ref_114
Liao (ref_41) 2003; 144
Jones (ref_99) 2015; 6
Kwok (ref_75) 2005; 65
Yu (ref_25) 2015; 3
Angulo (ref_106) 2016; 195
Banyard (ref_121) 2013; 3
Shukla (ref_103) 2009; 34
Miao (ref_44) 2017; 77
Liu (ref_105) 2015; 27
Yuen (ref_92) 2007; 50
ref_38
Chen (ref_109) 2005; 123
Yang (ref_42) 2013; 40
Cho (ref_116) 2007; 48
Hsieh (ref_62) 2012; 485
Jin (ref_145) 2017; 8
Saxena (ref_20) 2011; 2
Elloul (ref_78) 2005; 103
ref_47
Wang (ref_88) 2012; 180
Song (ref_87) 2015; 33
Wu (ref_35) 2012; 90
Ikenouchi (ref_83) 2003; 116
ref_3
Zhu (ref_43) 2010; 24
Ware (ref_48) 2014; 21
Brunet (ref_104) 1999; 96
Cho (ref_32) 2013; 336
Selth (ref_132) 2017; 36
Chaffer (ref_5) 2007; 185
Vogelmann (ref_58) 2005; 118
Randle (ref_82) 2013; 6
Fan (ref_9) 2012; 4
Liu (ref_73) 2012; 32
Wu (ref_137) 2013; 8
10102273 - Cell. 1999 Mar 19;96(6):857-68
26336819 - Oncotarget. 2015 Oct 6;6(30):29782-94
26048576 - Cancer Immunol Res. 2015 Oct;3(10 ):1175-84
27922078 - Sci Rep. 2016 Dec 06;6:38414
21915096 - EMBO J. 2011 Sep 13;30(19):3962-76
28212533 - Oncotarget. 2017 Apr 18;8(16):26090-26099
26847404 - Med Sci Monit. 2016 Feb 05;22:380-6
16169465 - Cancer Cell. 2005 Sep;8(3):197-209
27600237 - Microarrays (Basel). 2015 Oct 29;4(4):503-19
26490309 - Clin Cancer Res. 2016 Feb 1;22(3):670-9
28346424 - Oncogene. 2017 Jul 27;36(30):4299-4310
21734725 - Cell Death Dis. 2011 Jul 07;2:e179
18242387 - Urology. 2008 Jan;71(1):161-7
14724576 - Oncogene. 2004 Jan 15;23 (2):474-82
21520153 - Prostate. 2011 Dec;71(16):1711-22
23652996 - Mol Biol Rep. 2013 Jul;40(7):4241-50
24173237 - Int J Mol Sci. 2013 Oct 29;14(11):21414-34
16567498 - J Cell Biol. 2006 Mar 27;172(7):973-81
22226740 - Am J Pathol. 2012 Mar;180(3):1170-8
24963047 - Clin Cancer Res. 2014 Sep 1;20(17):4636-46
15742334 - Cancer. 2005 Apr 15;103(8):1631-43
15958559 - Cancer Res. 2005 Jun 15;65(12 ):5153-62
22272343 - PLoS One. 2012;7(1):e30393
25296715 - Cell Tissue Res. 2014 Dec;358(3):763-78
12668723 - J Cell Sci. 2003 May 15;116(Pt 10):1959-67
26650737 - PLoS One. 2015 Dec 09;10 (12 ):e0144073
26015410 - Oncotarget. 2015 Aug 21;6(24):20312-26
26551297 - J Urol. 2016 Mar;195(3):619-26
14559232 - Biochem Biophys Res Commun. 2003 Oct 31;310(4):1124-32
18062917 - Biochem Biophys Res Commun. 2008 Mar 7;367 (2):235-41
19411069 - Cancer Cell. 2009 May 5;15(5):402-15
18682804 - PLoS One. 2008 Aug 06;3(8):e2888
23539448 - Cancer Res. 2013 Jun 15;73(12):3725-36
21948155 - Horm Cancer. 2011 Oct;2(5):298-309
25346895 - Transl Androl Urol. 2013 Sep 1;2(3):202-211
21240262 - Nat Med. 2011 Feb;17(2):211-5
23074286 - Cancer Res. 2012 Dec 15;72(24):6435-46
28356132 - Chin J Cancer. 2017 Mar 29;36(1):35
28231399 - FEBS Lett. 2017 Mar;591(6):924-933
24391862 - PLoS One. 2013 Dec 31;8(12):e83991
24193225 - Sci Rep. 2013 Nov 06;3:3151
26889270 - Oncol Lett. 2013 Dec;6(6):1767-1773
27409172 - Oncotarget. 2016 Aug 2;7(31):50507-50521
19225155 - Mol Biol Cell. 2009 Apr;20(8):2207-17
22402125 - Mol Cancer Ther. 2012 May;11(5):1166-73
24577942 - Mol Cancer Ther. 2014 May;13(5):1246-58
23340301 - Clin Cancer Res. 2013 Mar 15;19(6):1400-10
22370643 - Oncogene. 2013 Jan 17;32(3):296-306
27495232 - Tumour Biol. 2016 Oct;37(10 ):14025-14034
24297183 - J Biol Chem. 2014 Jan 17;289(3):1529-39
21647377 - PLoS One. 2011;6(5):e20341
24053309 - BJU Int. 2014 Jun;113(6):986-92
25587085 - Mol Cancer Res. 2015 Apr;13(4):681-8
26021267 - Cell Physiol Biochem. 2015 ;36(2):799-809
24076601 - Nat Genet. 2013 Nov;45(11):1392-8
24791940 - Mol Ther. 2014 Aug;22(8):1494-1503
14871807 - Cancer Res. 2004 Feb 1;64(3):825-9
27924058 - Oncotarget. 2017 Jan 3;8(1):1703-1713
19525223 - J Biol Chem. 2009 Jul 31;284(31):20927-35
24779451 - Scand J Urol. 2015 Feb;49(1):51-7
16219695 - J Cell Sci. 2005 Oct 15;118(Pt 20):4901-12
15075229 - J Cell Sci. 2004 Apr 1;117(Pt 9):1675-85
24486593 - Clin Cancer Res. 2014 Apr 1;20(7):1779-90
23900262 - Sci Rep. 2013;3:2331
23658864 - World J Mens Health. 2013 Apr;31(1):36-46
20717904 - Prostate. 2011 Feb 15;71(3):268-80
23462225 - Cancer Lett. 2013 Nov 28;341(1):9-15
26516927 - Oncotarget. 2015 Dec 1;6(38):41045-55
25618241 - Mol Immunol. 2015 May;65(1):34-42
16585154 - Cancer Res. 2006 Apr 1;66(7):3365-9
26907357 - J Clin Med. 2016 Feb 19;5(2):null
19046163 - Dev Growth Differ. 2008 Dec;50(9):755-66
25686823 - Oncotarget. 2015 Jul 10;6(19):17121-34
26647992 - Int J Oncol. 2016 Feb;48(2):595-606
12697668 - Endocrinology. 2003 May;144(5):1656-63
27270433 - Oncogene. 2017 Jan 5;36(1):24-34
23974361 - Asian J Androl. 2013 Nov;15(6):735-41
20025748 - J Exp Clin Cancer Res. 2009 Dec 21;28:158
10487836 - Am J Pathol. 1999 Sep;155(3):787-98
24334519 - Thorax. 2014 Aug;69(8):760-5
26717907 - Mol Med Rep. 2016 Feb;13(2):1681-8
25277191 - Oncotarget. 2014 Sep 15;5(17):7589-98
28602974 - Cancer Lett. 2017 Aug 28;402:166-176
27743381 - Tumour Biol. 2016 Oct 14;:null
22535887 - Carcinogenesis. 2012 Jul;33(7):1391-8
22074556 - Mol Cancer. 2011 Nov 10;10 :139
22367541 - Nature. 2012 Feb 22;485(7396):55-61
28112170 - Nat Commun. 2017 Jan 23;8:14270
19424579 - Int J Oncol. 2009 Jun;34(6):1613-20
9515965 - Nature. 1998 Mar 12;392(6672):190-3
25420482 - Oncol Rep. 2015 Feb;33(2):669-74
28492138 - Oncol Res. 2017 May 11;:null
23623921 - Cancer Lett. 2013 Aug 9;336(1):167-73
22114732 - PLoS One. 2011;6(11):e27970
24770864 - Oncotarget. 2014 May 15;5(9):2462-74
17394502 - Histopathology. 2007 Apr;50(5):648-58
28239558 - Asian J Urol. 2016 Oct;3(4):177-184
28904399 - Sci Rep. 2017 Sep 13;7(1):11501
17587803 - Cells Tissues Organs. 2007;185(1-3):7-19
19901020 - FASEB J. 2010 Mar;24(3):769-77
28133913 - Mol Oncol. 2017 Mar;11(3):251-265
21159887 - Clin Cancer Res. 2011 Aug 15;17(16):5287-98
23492367 - Cancer Res. 2013 May 15;73(10 ):3109-19
23041061 - Am J Pathol. 2012 Dec;181(6):2188-201
23205121 - Oncol Lett. 2012 Dec;4(6):1225-1233
22249256 - Oncogene. 2012 Oct 25;31(43):4619-29
21258401 - Oncogene. 2011 May 19;30(20):2345-55
22896337 - Cancer Res. 2012 Oct 15;72 (20):5261-72
21690566 - Cancer Res. 2011 Aug 1;71(15):5214-24
19544473 - Stem Cells. 2009 Sep;27(9):2059-68
18381457 - Cancer Res. 2008 Apr 1;68(7):2479-88
18159594 - Yonsei Med J. 2007 Dec 31;48(6):1009-14
25797255 - Oncotarget. 2015 Apr 10;6(10):7470-80
20203370 - Cell Oncol. 2010;32(1-2):11-27
25578861 - Cell Signal. 2015 Mar;27(3):510-8
28094783 - Sci Rep. 2017 Jan 17;7:40633
23280481 - Prostate. 2013 Jun;73(8):813-26
22797064 - Oncogene. 2013 Jun 6;32(23 ):2882-90
27877055 - Onco Targets Ther. 2016 Nov 08;9:6909-6914
28302679 - Cancer Res. 2017 Jun 1;77(11):3101-3112
19544444 - Stem Cells. 2009 Aug;27(8):1712-21
22660275 - J Mol Med (Berl). 2012 Nov;90(11):1343-55
22203039 - Mol Cell Biol. 2012 Mar;32(5):941-53
18485877 - Cell. 2008 May 16;133(4):704-15
23732700 - Mol Med Rep. 2013 Aug;8(2):626-30
10655587 - Nat Cell Biol. 2000 Feb;2(2):84-9
23227138 - PLoS One. 2012;7(12):e46888
28030815 - Oncotarget. 2017 Feb 7;8(6):9572-9586
25948589 - Cancer Res. 2015 Jul 1;75(13):2749-59
24418088 - Asian Pac J Trop Med. 2014 Jan;7(1):76-82
26435505 - Biochem Biophys Res Commun. 2015 Nov 13;467(2):310-5
15026333 - Cancer Res. 2004 Mar 15;64(6):1975-86
26018085 - Cancer Res. 2015 Jul 15;75(14):2949-60
23383988 - BMC Cancer. 2013 Feb 05;13:61
26157349 - Int J Biol Sci. 2015 Jun 11;11(8):948-60
22505648 - Cancer Res. 2012 Jun 15;72 (12 ):3091-104
16269335 - Cell. 2005 Nov 4;123(3):437-48
25728398 - Prostate. 2015 Jun;75(8):872-82
25043657 - Mol Carcinog. 2015 Oct;54(10):1086-95
17258791 - Hum Pathol. 2007 Apr;38(4):598-606
22974478 - Hum Pathol. 2013 Feb;44(2):173-80
24859991 - Endocr Relat Cancer. 2014 Aug;21(4):T87-T103
28466555 - J Pathol. 2017 Aug;242(4):409-420
18266956 - J Cell Mol Med. 2008 Dec;12(6B):2790-8
23184966 - Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):E3395-404
24292680 - Oncogene. 2014 Dec 11;33(50):5666-74
19935649 - Nat Cell Biol. 2009 Dec;11(12 ):1487-95
References_xml – volume: 3
  start-page: 1175
  year: 2015
  ident: ref_25
  article-title: A paracrine role for il6 in prostate cancer patients: Lack of production by primary or metastatic tumor cells
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-15-0013
– volume: 180
  start-page: 1170
  year: 2012
  ident: ref_88
  article-title: Clinical and biological significance of kiss1 expression in prostate cancer
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2011.11.020
– volume: 15
  start-page: 735
  year: 2013
  ident: ref_136
  article-title: Mir-205 is frequently downregulated in prostate cancer and acts as a tumor suppressor by inhibiting tumor growth
  publication-title: Asian J. Androl.
  doi: 10.1038/aja.2013.80
– volume: 30
  start-page: 3962
  year: 2011
  ident: ref_97
  article-title: Dual role of foxa1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.328
– volume: 32
  start-page: 296
  year: 2013
  ident: ref_134
  article-title: Mir-1 and mir-200 inhibit emt via slug-dependent and tumorigenesis via slug-independent mechanisms
  publication-title: Oncogene
  doi: 10.1038/onc.2012.58
– volume: 77
  start-page: 3101
  year: 2017
  ident: ref_44
  article-title: Disrupting androgen receptor signaling induces snail-mediated epithelial-mesenchymal plasticity in prostate cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-2169
– volume: 6
  start-page: 17121
  year: 2015
  ident: ref_86
  article-title: Snai2/slug gene is silenced in prostate cancer and regulates neuroendocrine differentiation, metastasis-suppressor and pluripotency gene expression
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.2736
– ident: ref_47
  doi: 10.1371/journal.pone.0027970
– volume: 10
  start-page: 139
  year: 2011
  ident: ref_85
  article-title: Slug promotes prostate cancer cell migration and invasion via cxcr4/cxcl12 axis
  publication-title: Mol. Cancer
  doi: 10.1186/1476-4598-10-139
– volume: 467
  start-page: 310
  year: 2015
  ident: ref_46
  article-title: Inhibition of lsd1 by pargyline inhibited process of emt and delayed progression of prostate cancer in vivo
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2015.09.164
– volume: 4
  start-page: 503
  year: 2015
  ident: ref_144
  article-title: Cancer-osteoblast interaction reduces Sost expression in osteoblasts and up-regulates lncRNA MALAT1 in prostate cancer
  publication-title: Microarrays
  doi: 10.3390/microarrays4040503
– volume: 73
  start-page: 813
  year: 2013
  ident: ref_10
  article-title: Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of emt-related genes in metastatic prostate cancer
  publication-title: Prostate
  doi: 10.1002/pros.22625
– volume: 6
  start-page: 1767
  year: 2013
  ident: ref_82
  article-title: Snail mediates invasion through upa/upar and the mapk signaling pathway in prostate cancer cells
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2013.1635
– ident: ref_38
  doi: 10.1371/journal.pone.0144073
– volume: 11
  start-page: 1487
  year: 2009
  ident: ref_13
  article-title: The emt-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1998
– volume: 71
  start-page: 5214
  year: 2011
  ident: ref_147
  article-title: MicroRNA replacement therapy for mir-145 and mir-33a is efficacious in a model of colon carcinoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-4645
– volume: 6
  start-page: 41045
  year: 2015
  ident: ref_143
  article-title: LncRNA MALAT1 enhances oncogenic activities of EZH2 in castration-resistant prostate cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5728
– volume: 392
  start-page: 190
  year: 1998
  ident: ref_7
  article-title: A causal role for e-cadherin in the transition from adenoma to carcinoma
  publication-title: Nature
  doi: 10.1038/32433
– volume: 341
  start-page: 9
  year: 2013
  ident: ref_8
  article-title: Emt in developmental morphogenesis
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2013.02.037
– volume: 22
  start-page: 670
  year: 2016
  ident: ref_54
  article-title: Targeting cancer stem cells in castration-resistant prostate cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-0190
– volume: 181
  start-page: 2188
  year: 2012
  ident: ref_135
  article-title: Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of mir-200c and mir-205
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2012.08.011
– volume: 49
  start-page: 51
  year: 2015
  ident: ref_93
  article-title: Twist overexpression predicts biochemical recurrence-free survival in prostate cancer patients treated with radical prostatectomy
  publication-title: Scand. J. Urol.
  doi: 10.3109/21681805.2014.909529
– volume: 31
  start-page: 36
  year: 2013
  ident: ref_52
  article-title: Clinical significance of WNT/beta-catenin signalling and androgen receptor expression in prostate cancer
  publication-title: World J. Mens Health
  doi: 10.5534/wjmh.2013.31.1.36
– volume: 50
  start-page: 755
  year: 2008
  ident: ref_1
  article-title: Epithelial to mesenchymal transition during gastrulation: An embryological view
  publication-title: Dev. Growth Differ.
  doi: 10.1111/j.1440-169X.2008.01070.x
– volume: 44
  start-page: 173
  year: 2013
  ident: ref_80
  article-title: Snail promotes lymph node metastasis and twist enhances tumor deposit formation through epithelial-mesenchymal transition in colorectal cancer
  publication-title: Hum. Pathol.
  doi: 10.1016/j.humpath.2012.03.029
– volume: 40
  start-page: 4241
  year: 2013
  ident: ref_42
  article-title: Dishevelled-2 silencing reduces androgen-dependent prostate tumor cell proliferation and migration and expression of WNT-3a and matrix metalloproteinases
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-013-2506-6
– volume: 195
  start-page: 619
  year: 2016
  ident: ref_106
  article-title: Development of castration resistant prostate cancer can be predicted by a DNA hypermethylation profile
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2015.10.172
– volume: 11
  start-page: 948
  year: 2015
  ident: ref_39
  article-title: Overexpression of FGF9 in prostate epithelial cells augments reactive stroma formation and promotes prostate cancer progression
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.12468
– volume: 66
  start-page: 3365
  year: 2006
  ident: ref_94
  article-title: N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of twist1
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-3401
– volume: 185
  start-page: 7
  year: 2007
  ident: ref_5
  article-title: Mesenchymal to epithelial transition in development and disease
  publication-title: Cells Tissues Organs
  doi: 10.1159/000101298
– volume: 75
  start-page: 2949
  year: 2015
  ident: ref_40
  article-title: Androgen-induced TMPRSS2 activates matriptase and promotes extracellular matrix degradation, prostate cancer cell invasion, tumor growth, and metastasis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-3297
– volume: 336
  start-page: 167
  year: 2013
  ident: ref_32
  article-title: STAT3 mediates tgf-beta1-induced twist1 expression and prostate cancer invasion
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2013.04.024
– volume: 72
  start-page: 3091
  year: 2012
  ident: ref_115
  article-title: Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor rkip in breast and prostate cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-3546
– volume: 45
  start-page: 1392
  year: 2013
  ident: ref_140
  article-title: The long noncoding RNA schlap1 promotes aggressive prostate cancer and antagonizes the swi/snf complex
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2771
– volume: 48
  start-page: 1009
  year: 2007
  ident: ref_116
  article-title: Identification of enhancer of zeste homolog 2 expression in peripheral circulating tumor cells in metastatic prostate cancer patients: A preliminary study
  publication-title: Yonsei Med. J.
  doi: 10.3349/ymj.2007.48.6.1009
– volume: 2
  start-page: 84
  year: 2000
  ident: ref_72
  article-title: The transcription factor snail is a repressor of e-cadherin gene expression in epithelial tumour cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/35000034
– volume: 19
  start-page: 1400
  year: 2013
  ident: ref_111
  article-title: Hic1 modulates prostate cancer progression by epigenetic modification
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-12-2888
– ident: ref_124
  doi: 10.1186/1471-2407-13-61
– volume: 310
  start-page: 1124
  year: 2003
  ident: ref_61
  article-title: Role of pi3k/akt/mtor signaling in the cell cycle progression of human prostate cancer
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2003.09.132
– volume: 20
  start-page: 4636
  year: 2014
  ident: ref_130
  article-title: Mir-409–3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-14-0305
– volume: 23
  start-page: 474
  year: 2004
  ident: ref_18
  article-title: Identification of a novel function of twist, a bhlh protein, in the development of acquired taxol resistance in human cancer cells
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207128
– volume: 242
  start-page: 409
  year: 2017
  ident: ref_110
  article-title: Hic1 loss promotes prostate cancer metastasis by triggering epithelial-mesenchymal transition
  publication-title: J. Pathol.
  doi: 10.1002/path.4913
– volume: 65
  start-page: 34
  year: 2015
  ident: ref_28
  article-title: Tgf-beta and egf induced hla-i downregulation is associated with epithelial-mesenchymal transition (EMT) through upregulation of snail in prostate cancer cells
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2014.12.017
– volume: 7
  start-page: 76
  year: 2014
  ident: ref_74
  article-title: Expression and significance of E-cadherin, N-cadherin, transforming growth factor-beta1 and twist in prostate cancer
  publication-title: Asian Pac. J. Trop. Med.
  doi: 10.1016/S1995-7645(13)60196-0
– volume: 71
  start-page: 161
  year: 2008
  ident: ref_107
  article-title: Cpg island hypermethylation at multiple gene sites in diagnosis and prognosis of prostate cancer
  publication-title: Urology
  doi: 10.1016/j.urology.2007.09.056
– volume: 118
  start-page: 4901
  year: 2005
  ident: ref_58
  article-title: Tgfbeta-induced downregulation of e-cadherin-based cell-cell adhesion depends on pi3-kinase and pten
  publication-title: J. Cell. Sci.
  doi: 10.1242/jcs.02594
– volume: 12
  start-page: 2790
  year: 2008
  ident: ref_51
  article-title: Decrease in stromal androgen receptor associates with androgen-independent disease and promotes prostate cancer cell proliferation and invasion
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/j.1582-4934.2008.00279.x
– volume: 75
  start-page: 872
  year: 2015
  ident: ref_30
  article-title: ELF5 inhibits TGF-beta-driven epithelial-mesenchymal transition in prostate cancer by repressing SMAD3 activation
  publication-title: Prostate
  doi: 10.1002/pros.22970
– volume: 103
  start-page: 1631
  year: 2005
  ident: ref_78
  article-title: Snail, slug, and smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma
  publication-title: Cancer
  doi: 10.1002/cncr.20946
– volume: 116
  start-page: 1959
  year: 2003
  ident: ref_83
  article-title: Regulation of tight junctions during the epithelium-mesenchyme transition: Direct repression of the gene expression of claudins/occludin by snail
  publication-title: J. Cell. Sci.
  doi: 10.1242/jcs.00389
– volume: 33
  start-page: 669
  year: 2015
  ident: ref_87
  article-title: Kisspeptin-10 inhibits the migration of breast cancer cells by regulating epithelial-mesenchymal transition
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2014.3619
– volume: 5
  start-page: 2462
  year: 2014
  ident: ref_67
  article-title: YB-1 expression promotes epithelial-to-mesenchymal transition in prostate cancer that is inhibited by a small molecule fisetin
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.1790
– volume: 2
  start-page: 202
  year: 2013
  ident: ref_2
  article-title: Epithelial mesenchymal transition (EMT) in prostate growth and tumor progression
  publication-title: Transl. Androl. Urol.
– volume: 144
  start-page: 1656
  year: 2003
  ident: ref_41
  article-title: Androgen stimulates matrix metalloproteinase-2 expression in human prostate cancer
  publication-title: Endocrinology
  doi: 10.1210/en.2002-0157
– volume: 2
  start-page: 298
  year: 2011
  ident: ref_59
  article-title: Pi3k, erk signaling in bmp7-induced epithelial-mesenchymal transition (emt) of PC-3 prostate cancer cells in 2- and 3-dimensional cultures
  publication-title: Horm. Cancer
  doi: 10.1007/s12672-011-0084-4
– volume: 289
  start-page: 1529
  year: 2014
  ident: ref_50
  article-title: Androgen receptor splice variant ar3 promotes prostate cancer via modulating expression of autocrine/paracrine factors
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.492140
– volume: 8
  start-page: 14270
  year: 2017
  ident: ref_119
  article-title: MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14270
– volume: 69
  start-page: 760
  year: 2014
  ident: ref_4
  article-title: Epithelial-mesenchymal transition in lung development and disease: Does it exist and is it important?
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2013-204608
– volume: 7
  start-page: 40633
  year: 2017
  ident: ref_17
  article-title: A novel spontaneous model of epithelial-mesenchymal transition (EMT) using a primary prostate cancer derived cell line demonstrating distinct stem-like characteristics
  publication-title: Sci. Rep.
  doi: 10.1038/srep40633
– volume: 28
  start-page: 158
  year: 2009
  ident: ref_89
  article-title: Significance of twist expression and its association with e-cadherin in esophageal squamous cell carcinoma
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/1756-9966-28-158
– volume: 32
  start-page: 2882
  year: 2013
  ident: ref_113
  article-title: The histone methyltransferase MMSET/WHSC1 activates TWIST1 to promote an epithelial-mesenchymal transition and invasive properties of prostate cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2012.297
– volume: 5
  start-page: 7589
  year: 2014
  ident: ref_56
  article-title: Osteoblast-derived wnt-induced secreted protein 1 increases VCAM-1 expression and enhances prostate cancer metastasis by down-regulating mir-126
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.2280
– volume: 358
  start-page: 763
  year: 2014
  ident: ref_131
  article-title: Double-negative feedback loop between ZEB2 and mir-145 regulates epithelial-mesenchymal transition and stem cell properties in prostate cancer cells
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-014-2001-y
– volume: 48
  start-page: 595
  year: 2016
  ident: ref_14
  article-title: N-cadherin promotes epithelial-mesenchymal transition and cancer stem cell-like traits via erbb signaling in prostate cancer cells
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2015.3270
– volume: 13
  start-page: 1681
  year: 2016
  ident: ref_96
  article-title: Set8 induces epithelialmesenchymal transition and enhances prostate cancer cell metastasis by cooperating with ZEB1
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2015.4733
– volume: 50
  start-page: 648
  year: 2007
  ident: ref_92
  article-title: Significance of twist and e-cadherin expression in the metastatic progression of prostatic cancer
  publication-title: Histopathology
  doi: 10.1111/j.1365-2559.2007.02665.x
– volume: 24
  start-page: 769
  year: 2010
  ident: ref_43
  article-title: Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells
  publication-title: FASEB J.
  doi: 10.1096/fj.09-136994
– ident: ref_3
  doi: 10.3390/jcm5020027
– volume: 36
  start-page: 35
  year: 2017
  ident: ref_21
  article-title: Down-regulation of e-cadherin enhances prostate cancer chemoresistance via notch signaling
  publication-title: Chin. J. Cancer
  doi: 10.1186/s40880-017-0203-x
– volume: 7
  start-page: 11501
  year: 2017
  ident: ref_15
  article-title: Semaphorin 3 c drives epithelial-to-mesenchymal transition, invasiveness, and stem-like characteristics in prostate cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11914-6
– ident: ref_120
  doi: 10.1371/journal.pone.0083991
– volume: 6
  start-page: 20312
  year: 2015
  ident: ref_79
  article-title: Snail and serpina1 promote tumor progression and predict prognosis in colorectal cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3964
– volume: 33
  start-page: 5666
  year: 2014
  ident: ref_98
  article-title: Elevated levels of foxa1 facilitate androgen receptor chromatin binding resulting in a crpc-like phenotype
  publication-title: Oncogene
  doi: 10.1038/onc.2013.508
– volume: 38
  start-page: 598
  year: 2007
  ident: ref_90
  article-title: Significance of twist expression and its association with e-cadherin in bladder cancer
  publication-title: Hum. Pathol.
  doi: 10.1016/j.humpath.2006.10.004
– volume: 8
  start-page: 1703
  year: 2017
  ident: ref_101
  article-title: FOXO1 inhibits the invasion and metastasis of hepatocellular carcinoma by reversing ZEB2-induced epithelial-mesenchymal transition
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.13786
– volume: 13
  start-page: 1246
  year: 2014
  ident: ref_34
  article-title: Pharmacologic suppression of JAK1/2 by JAK1/2 inhibitor AZD1480 potently inhibits IL-6-induced experimental prostate cancer metastases formation
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-13-0605
– volume: 113
  start-page: 986
  year: 2014
  ident: ref_33
  article-title: Inflammation and prostate cancer: The role of interleukin 6 (IL-6)
  publication-title: BJU Int.
  doi: 10.1111/bju.12452
– volume: 13
  start-page: 681
  year: 2015
  ident: ref_128
  article-title: Lef1 targeting emt in prostate cancer invasion is regulated by mir-34a
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-14-0503
– volume: 64
  start-page: 825
  year: 2004
  ident: ref_70
  article-title: The role of metastasis-associated protein 1 in prostate cancer progression
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-03-2755
– volume: 30
  start-page: 2345
  year: 2011
  ident: ref_37
  article-title: IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR
  publication-title: Oncogene
  doi: 10.1038/onc.2010.605
– volume: 3
  start-page: 3151
  year: 2013
  ident: ref_121
  article-title: Regulation of epithelial plasticity by mir-424 and mir-200 in a new prostate cancer metastasis model
  publication-title: Sci. Rep.
  doi: 10.1038/srep03151
– volume: 71
  start-page: 268
  year: 2011
  ident: ref_69
  article-title: Targeting prostate cancer angiogenesis through metastasis-associated protein 1 (MTA1)
  publication-title: Prostate
  doi: 10.1002/pros.21240
– volume: 27
  start-page: 1712
  year: 2009
  ident: ref_133
  article-title: Mir-200 regulates pdgf-d-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells
  publication-title: Stem Cells
  doi: 10.1002/stem.101
– volume: 21
  start-page: T87
  year: 2014
  ident: ref_48
  article-title: Biologic and clinical significance of androgen receptor variants in castration resistant prostate cancer
  publication-title: Endocr. Relat. Cancer
  doi: 10.1530/ERC-13-0470
– volume: 8
  start-page: 197
  year: 2005
  ident: ref_77
  article-title: The transcriptional repressor snail promotes mammary tumor recurrence
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2005.07.009
– volume: 123
  start-page: 437
  year: 2005
  ident: ref_109
  article-title: Tumor suppressor hic1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.011
– volume: 64
  start-page: 1975
  year: 2004
  ident: ref_108
  article-title: Hypermethylation of CpG islands in primary and metastatic human prostate cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-03-3972
– volume: 15
  start-page: 402
  year: 2009
  ident: ref_63
  article-title: Translational activation of snail1 and other developmentally regulated transcription factors by yb-1 promotes an epithelial-mesenchymal transition
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.03.017
– volume: 34
  start-page: 1613
  year: 2009
  ident: ref_103
  article-title: Deregulation of FOXO3a during prostate cancer progression
  publication-title: Int. J. Oncol.
– volume: 27
  start-page: 510
  year: 2015
  ident: ref_105
  article-title: FOXO3a modulates WNT/beta-catenin signaling and suppresses epithelial-to-mesenchymal transition in prostate cancer cells
  publication-title: Cell Signal.
  doi: 10.1016/j.cellsig.2015.01.001
– volume: 90
  start-page: 1343
  year: 2012
  ident: ref_35
  article-title: Significance of IL-6 in the transition of hormone-resistant prostate cancer and the induction of myeloid-derived suppressor cells
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-012-0916-x
– volume: 20
  start-page: 2207
  year: 2009
  ident: ref_76
  article-title: Zeb1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e08-10-1076
– volume: 8
  start-page: 9572
  year: 2017
  ident: ref_57
  article-title: A novel non-canonical wnt signature for prostate cancer aggressiveness
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14161
– volume: 31
  start-page: 4619
  year: 2012
  ident: ref_117
  article-title: SIRT1 induces emt by cooperating with emt transcription factors and enhances prostate cancer cell migration and metastasis
  publication-title: Oncogene
  doi: 10.1038/onc.2011.612
– volume: 109
  start-page: E3395
  year: 2012
  ident: ref_27
  article-title: Stromal epigenetic dysregulation is sufficient to initiate mouse prostate cancer via paracrine WNT signaling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1217982109
– volume: 32
  start-page: 11
  year: 2010
  ident: ref_60
  article-title: Pi3k-akt-mtor pathway is dominant over androgen receptor signaling in prostate cancer cells
  publication-title: Cell Oncol.
– volume: 96
  start-page: 857
  year: 1999
  ident: ref_104
  article-title: Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80595-4
– volume: 133
  start-page: 704
  year: 2008
  ident: ref_11
  article-title: The epithelial-mesenchymal transition generates cells with properties of stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.027
– volume: 8
  start-page: 26090
  year: 2017
  ident: ref_145
  article-title: Upregulation of long non-coding RNA plncRNA-1 promotes proliferation and induces epithelial-mesenchymal transition in prostate cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.15318
– volume: 172
  start-page: 973
  year: 2006
  ident: ref_6
  article-title: The epithelial-mesenchymal transition: New insights in signaling, development, and disease
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200601018
– volume: 27
  start-page: 2059
  year: 2009
  ident: ref_19
  article-title: Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells
  publication-title: Stem Cells
  doi: 10.1002/stem.154
– volume: 73
  start-page: 3725
  year: 2013
  ident: ref_100
  article-title: Androgen receptor-independent function of foxa1 in prostate cancer metastasis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3468
– volume: 72
  start-page: 6435
  year: 2012
  ident: ref_127
  article-title: Mir-23b represses proto-oncogene src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-2181
– volume: 22
  start-page: 380
  year: 2016
  ident: ref_118
  article-title: Effect of SIRT1 gene on epithelial-mesenchymal transition of human prostate cancer PC-3 cells
  publication-title: Med. Sci. Monit.
  doi: 10.12659/MSM.895312
– volume: 33
  start-page: 1391
  year: 2012
  ident: ref_24
  article-title: Androgen hormone action in prostatic carcinogenesis: Stromal androgen receptors mediate prostate cancer progression, malignant transformation and metastasis
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgs153
– volume: 54
  start-page: 1086
  year: 2015
  ident: ref_71
  article-title: Mtor regulate emt through rhoa and rac1 pathway in prostate cancer
  publication-title: Mol. Carcinog.
  doi: 10.1002/mc.22177
– volume: 485
  start-page: 55
  year: 2012
  ident: ref_62
  article-title: The translational landscape of mtor signalling steers cancer initiation and metastasis
  publication-title: Nature
  doi: 10.1038/nature10912
– volume: 3
  start-page: 2331
  year: 2013
  ident: ref_68
  article-title: Nuclear MTA1 overexpression is associated with aggressive prostate cancer, recurrence and metastasis in african americans
  publication-title: Sci. Rep.
  doi: 10.1038/srep02331
– volume: 20
  start-page: 1779
  year: 2014
  ident: ref_102
  article-title: Downregulation of FOXO3a promotes tumor metastasis and is associated with metastasis-free survival of patients with clear cell renal cell carcinoma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-13-1687
– volume: 117
  start-page: 1675
  year: 2004
  ident: ref_84
  article-title: The transcription factor snail downregulates the tight junction components independently of e-cadherin downregulation
  publication-title: J. Cell. Sci.
  doi: 10.1242/jcs.01004
– volume: 155
  start-page: 787
  year: 1999
  ident: ref_45
  article-title: N-cadherin expression in human prostate carcinoma cell lines. An epithelial-mesenchymal transformation mediating adhesion withstromal cells
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)65177-2
– volume: 367
  start-page: 235
  year: 2008
  ident: ref_91
  article-title: Twist is a transcriptional repressor of e-cadherin gene expression in breast cancer
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2007.11.151
– ident: ref_12
  doi: 10.1371/journal.pone.0002888
– volume: 17
  start-page: 5287
  year: 2011
  ident: ref_122
  article-title: Regulatory role of mir-203 in prostate cancer progression and metastasis
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-10-2619
– ident: ref_141
  doi: 10.3727/096504017X14944585873631
– volume: 75
  start-page: 2749
  year: 2015
  ident: ref_16
  article-title: Tracking and functional characterization of epithelial-mesenchymal transition and mesenchymal tumor cells during prostate cancer metastasis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-3476
– volume: 37
  start-page: 14025
  year: 2016
  ident: ref_53
  article-title: Quercetin modulates wnt signaling components in prostate cancer cell line by inhibiting cell viability, migration, and metastases
  publication-title: Tumour Biol.
  doi: 10.1007/s13277-016-5277-6
– volume: 36
  start-page: 24
  year: 2017
  ident: ref_132
  article-title: A ZEB1-mir-375-YAP1 pathway regulates epithelial plasticity in prostate cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2016.185
– volume: 11
  start-page: 251
  year: 2017
  ident: ref_23
  article-title: The role of epithelial-mesenchymal transition drivers ZEB1 and ZEB2 in mediating docetaxel-resistant prostate cancer
  publication-title: Mol. Oncol.
  doi: 10.1002/1878-0261.12030
– volume: 14
  start-page: 21414
  year: 2013
  ident: ref_123
  article-title: Mir-205 is progressively down-regulated in lymph node metastasis but fails as a prognostic biomarker in high-risk prostate cancer
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms141121414
– volume: 591
  start-page: 924
  year: 2017
  ident: ref_64
  article-title: MTA1-activated Epi-microRNA-22 regulates e-cadherin and prostate cancer invasiveness
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12603
– ident: ref_65
  doi: 10.1371/journal.pone.0046888
– volume: 2
  start-page: e179
  year: 2011
  ident: ref_20
  article-title: Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating abc transporters
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2011.61
– volume: 36
  start-page: 4299
  year: 2017
  ident: ref_22
  article-title: SKP2 deficiency restricts the progression and stem cell features of castration-resistant prostate cancer by destabilizing twist
  publication-title: Oncogene
  doi: 10.1038/onc.2017.64
– volume: 72
  start-page: 5261
  year: 2012
  ident: ref_29
  article-title: Clusterin mediates TGF-beta-induced epithelial-mesenchymal transition and metastasis via twist1 in prostate cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-0254
– volume: 4
  start-page: 1225
  year: 2012
  ident: ref_9
  article-title: Loss of e-cadherin promotes prostate cancer metastasis via upregulation of metastasis-associated gene 1 expression
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2012.934
– volume: 71
  start-page: 1711
  year: 2011
  ident: ref_26
  article-title: Active sonic hedgehog signaling between androgen independent human prostate cancer cells and normal/benign but not cancer-associated prostate stromal cells
  publication-title: Prostate
  doi: 10.1002/pros.21388
– volume: 22
  start-page: 1494
  year: 2014
  ident: ref_146
  article-title: Therapeutic delivery of mir-200c enhances radiosensitivity in lung cancer
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2014.79
– volume: 11
  start-page: 1166
  year: 2012
  ident: ref_126
  article-title: MiRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-12-0100
– volume: 402
  start-page: 166
  year: 2017
  ident: ref_55
  article-title: Fzd8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical wnt/beta-catenin signaling
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2017.05.029
– volume: 7
  start-page: 50507
  year: 2016
  ident: ref_81
  article-title: Snail promotes resistance to enzalutamide through regulation of androgen receptor activity in prostate cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.10476
– volume: 6
  start-page: 29782
  year: 2015
  ident: ref_99
  article-title: Foxa1 regulates androgen receptor variant activity in models of castrate-resistant prostate cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4927
– volume: 9
  start-page: 6909
  year: 2016
  ident: ref_129
  article-title: Mir-486–5p suppresses prostate cancer metastasis by targeting snail and regulating epithelial-mesenchymal transition
  publication-title: Onco Targets Ther.
  doi: 10.2147/OTT.S117338
– ident: ref_114
  doi: 10.1371/journal.pone.0030393
– volume: 6
  start-page: 38414
  year: 2016
  ident: ref_142
  article-title: Malat1 and hotair long non-coding RNAs play opposite role in estrogen-mediated transcriptional regulation in prostate cancer cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep38414
– volume: 65
  start-page: 5153
  year: 2005
  ident: ref_75
  article-title: Up-regulation of twist in prostate cancer and its implication as a therapeutic target
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-3785
– volume: 8
  start-page: 626
  year: 2013
  ident: ref_137
  article-title: MicroRNA-143 inhibits cell migration and invasion by targeting matrix metalloproteinase 13 in prostate cancer
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2013.1501
– volume: 284
  start-page: 20927
  year: 2009
  ident: ref_112
  article-title: Scavenger chemokine (CXC motif) receptor 7 (CXCR7) is a direct target gene of hic1 (hypermethylated in cancer 1)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.022350
– volume: 73
  start-page: 3109
  year: 2013
  ident: ref_36
  article-title: Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3979
– volume: 3
  start-page: 177
  year: 2016
  ident: ref_49
  article-title: Role of androgen receptor splice variants in prostate cancer metastasis
  publication-title: Asian J. Urol.
  doi: 10.1016/j.ajur.2016.08.003
– ident: ref_125
  doi: 10.1371/journal.pone.0020341
– volume: 32
  start-page: 941
  year: 2012
  ident: ref_73
  article-title: Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor beta-initiated prostate cancer epithelial-mesenchymal transition
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.06306-11
– volume: 6
  start-page: 7470
  year: 2015
  ident: ref_66
  article-title: YB-1 and MTA1 protein levels and not DNA or mRNA alterations predict for prostate cancer recurrence
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3477
– volume: 17
  start-page: 211
  year: 2011
  ident: ref_138
  article-title: The microRNA mir-34a inhibits prostate cancer stem cells and metastasis by directly repressing cd44
  publication-title: Nat. Med.
  doi: 10.1038/nm.2284
– ident: ref_139
  doi: 10.1007/s13277-016-5450-y
– volume: 36
  start-page: 799
  year: 2015
  ident: ref_31
  article-title: Periostin mediates tgf-beta-induced epithelial mesenchymal transition in prostate cancer cells
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000430139
– volume: 68
  start-page: 2479
  year: 2008
  ident: ref_95
  article-title: Insulin-like growth factor-i-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-2559
– reference: 26015410 - Oncotarget. 2015 Aug 21;6(24):20312-26
– reference: 16567498 - J Cell Biol. 2006 Mar 27;172(7):973-81
– reference: 15075229 - J Cell Sci. 2004 Apr 1;117(Pt 9):1675-85
– reference: 27922078 - Sci Rep. 2016 Dec 06;6:38414
– reference: 26647992 - Int J Oncol. 2016 Feb;48(2):595-606
– reference: 23492367 - Cancer Res. 2013 May 15;73(10 ):3109-19
– reference: 16269335 - Cell. 2005 Nov 4;123(3):437-48
– reference: 22226740 - Am J Pathol. 2012 Mar;180(3):1170-8
– reference: 22249256 - Oncogene. 2012 Oct 25;31(43):4619-29
– reference: 21647377 - PLoS One. 2011;6(5):e20341
– reference: 25296715 - Cell Tissue Res. 2014 Dec;358(3):763-78
– reference: 28602974 - Cancer Lett. 2017 Aug 28;402:166-176
– reference: 14724576 - Oncogene. 2004 Jan 15;23 (2):474-82
– reference: 24779451 - Scand J Urol. 2015 Feb;49(1):51-7
– reference: 26717907 - Mol Med Rep. 2016 Feb;13(2):1681-8
– reference: 26157349 - Int J Biol Sci. 2015 Jun 11;11(8):948-60
– reference: 25728398 - Prostate. 2015 Jun;75(8):872-82
– reference: 28094783 - Sci Rep. 2017 Jan 17;7:40633
– reference: 19901020 - FASEB J. 2010 Mar;24(3):769-77
– reference: 23340301 - Clin Cancer Res. 2013 Mar 15;19(6):1400-10
– reference: 19424579 - Int J Oncol. 2009 Jun;34(6):1613-20
– reference: 22367541 - Nature. 2012 Feb 22;485(7396):55-61
– reference: 10655587 - Nat Cell Biol. 2000 Feb;2(2):84-9
– reference: 28466555 - J Pathol. 2017 Aug;242(4):409-420
– reference: 22535887 - Carcinogenesis. 2012 Jul;33(7):1391-8
– reference: 23732700 - Mol Med Rep. 2013 Aug;8(2):626-30
– reference: 26889270 - Oncol Lett. 2013 Dec;6(6):1767-1773
– reference: 23074286 - Cancer Res. 2012 Dec 15;72(24):6435-46
– reference: 24076601 - Nat Genet. 2013 Nov;45(11):1392-8
– reference: 25587085 - Mol Cancer Res. 2015 Apr;13(4):681-8
– reference: 18266956 - J Cell Mol Med. 2008 Dec;12(6B):2790-8
– reference: 21690566 - Cancer Res. 2011 Aug 1;71(15):5214-24
– reference: 24418088 - Asian Pac J Trop Med. 2014 Jan;7(1):76-82
– reference: 26435505 - Biochem Biophys Res Commun. 2015 Nov 13;467(2):310-5
– reference: 22114732 - PLoS One. 2011;6(11):e27970
– reference: 9515965 - Nature. 1998 Mar 12;392(6672):190-3
– reference: 23184966 - Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):E3395-404
– reference: 15026333 - Cancer Res. 2004 Mar 15;64(6):1975-86
– reference: 21520153 - Prostate. 2011 Dec;71(16):1711-22
– reference: 23383988 - BMC Cancer. 2013 Feb 05;13:61
– reference: 24193225 - Sci Rep. 2013 Nov 06;3:3151
– reference: 24486593 - Clin Cancer Res. 2014 Apr 1;20(7):1779-90
– reference: 19225155 - Mol Biol Cell. 2009 Apr;20(8):2207-17
– reference: 24334519 - Thorax. 2014 Aug;69(8):760-5
– reference: 19046163 - Dev Growth Differ. 2008 Dec;50(9):755-66
– reference: 24053309 - BJU Int. 2014 Jun;113(6):986-92
– reference: 27495232 - Tumour Biol. 2016 Oct;37(10 ):14025-14034
– reference: 23539448 - Cancer Res. 2013 Jun 15;73(12):3725-36
– reference: 28133913 - Mol Oncol. 2017 Mar;11(3):251-265
– reference: 26551297 - J Urol. 2016 Mar;195(3):619-26
– reference: 24770864 - Oncotarget. 2014 May 15;5(9):2462-74
– reference: 26847404 - Med Sci Monit. 2016 Feb 05;22:380-6
– reference: 28231399 - FEBS Lett. 2017 Mar;591(6):924-933
– reference: 19544444 - Stem Cells. 2009 Aug;27(8):1712-21
– reference: 28239558 - Asian J Urol. 2016 Oct;3(4):177-184
– reference: 25686823 - Oncotarget. 2015 Jul 10;6(19):17121-34
– reference: 24859991 - Endocr Relat Cancer. 2014 Aug;21(4):T87-T103
– reference: 25948589 - Cancer Res. 2015 Jul 1;75(13):2749-59
– reference: 27409172 - Oncotarget. 2016 Aug 2;7(31):50507-50521
– reference: 20717904 - Prostate. 2011 Feb 15;71(3):268-80
– reference: 22402125 - Mol Cancer Ther. 2012 May;11(5):1166-73
– reference: 26018085 - Cancer Res. 2015 Jul 15;75(14):2949-60
– reference: 20025748 - J Exp Clin Cancer Res. 2009 Dec 21;28:158
– reference: 18682804 - PLoS One. 2008 Aug 06;3(8):e2888
– reference: 23280481 - Prostate. 2013 Jun;73(8):813-26
– reference: 24577942 - Mol Cancer Ther. 2014 May;13(5):1246-58
– reference: 10487836 - Am J Pathol. 1999 Sep;155(3):787-98
– reference: 15742334 - Cancer. 2005 Apr 15;103(8):1631-43
– reference: 26907357 - J Clin Med. 2016 Feb 19;5(2):null
– reference: 28356132 - Chin J Cancer. 2017 Mar 29;36(1):35
– reference: 17587803 - Cells Tissues Organs. 2007;185(1-3):7-19
– reference: 26516927 - Oncotarget. 2015 Dec 1;6(38):41045-55
– reference: 22660275 - J Mol Med (Berl). 2012 Nov;90(11):1343-55
– reference: 28302679 - Cancer Res. 2017 Jun 1;77(11):3101-3112
– reference: 19411069 - Cancer Cell. 2009 May 5;15(5):402-15
– reference: 21258401 - Oncogene. 2011 May 19;30(20):2345-55
– reference: 26021267 - Cell Physiol Biochem. 2015 ;36(2):799-809
– reference: 25578861 - Cell Signal. 2015 Mar;27(3):510-8
– reference: 26048576 - Cancer Immunol Res. 2015 Oct;3(10 ):1175-84
– reference: 26490309 - Clin Cancer Res. 2016 Feb 1;22(3):670-9
– reference: 25277191 - Oncotarget. 2014 Sep 15;5(17):7589-98
– reference: 25420482 - Oncol Rep. 2015 Feb;33(2):669-74
– reference: 14559232 - Biochem Biophys Res Commun. 2003 Oct 31;310(4):1124-32
– reference: 24297183 - J Biol Chem. 2014 Jan 17;289(3):1529-39
– reference: 18062917 - Biochem Biophys Res Commun. 2008 Mar 7;367 (2):235-41
– reference: 27600237 - Microarrays (Basel). 2015 Oct 29;4(4):503-19
– reference: 21240262 - Nat Med. 2011 Feb;17(2):211-5
– reference: 27270433 - Oncogene. 2017 Jan 5;36(1):24-34
– reference: 23041061 - Am J Pathol. 2012 Dec;181(6):2188-201
– reference: 18159594 - Yonsei Med J. 2007 Dec 31;48(6):1009-14
– reference: 18485877 - Cell. 2008 May 16;133(4):704-15
– reference: 22974478 - Hum Pathol. 2013 Feb;44(2):173-80
– reference: 22896337 - Cancer Res. 2012 Oct 15;72 (20):5261-72
– reference: 23974361 - Asian J Androl. 2013 Nov;15(6):735-41
– reference: 26336819 - Oncotarget. 2015 Oct 6;6(30):29782-94
– reference: 23205121 - Oncol Lett. 2012 Dec;4(6):1225-1233
– reference: 22203039 - Mol Cell Biol. 2012 Mar;32(5):941-53
– reference: 28212533 - Oncotarget. 2017 Apr 18;8(16):26090-26099
– reference: 12697668 - Endocrinology. 2003 May;144(5):1656-63
– reference: 19525223 - J Biol Chem. 2009 Jul 31;284(31):20927-35
– reference: 24963047 - Clin Cancer Res. 2014 Sep 1;20(17):4636-46
– reference: 21915096 - EMBO J. 2011 Sep 13;30(19):3962-76
– reference: 21948155 - Horm Cancer. 2011 Oct;2(5):298-309
– reference: 14871807 - Cancer Res. 2004 Feb 1;64(3):825-9
– reference: 24292680 - Oncogene. 2014 Dec 11;33(50):5666-74
– reference: 27877055 - Onco Targets Ther. 2016 Nov 08;9:6909-6914
– reference: 15958559 - Cancer Res. 2005 Jun 15;65(12 ):5153-62
– reference: 22074556 - Mol Cancer. 2011 Nov 10;10 :139
– reference: 27924058 - Oncotarget. 2017 Jan 3;8(1):1703-1713
– reference: 25797255 - Oncotarget. 2015 Apr 10;6(10):7470-80
– reference: 12668723 - J Cell Sci. 2003 May 15;116(Pt 10):1959-67
– reference: 23658864 - World J Mens Health. 2013 Apr;31(1):36-46
– reference: 25043657 - Mol Carcinog. 2015 Oct;54(10):1086-95
– reference: 23462225 - Cancer Lett. 2013 Nov 28;341(1):9-15
– reference: 19544473 - Stem Cells. 2009 Sep;27(9):2059-68
– reference: 18242387 - Urology. 2008 Jan;71(1):161-7
– reference: 22370643 - Oncogene. 2013 Jan 17;32(3):296-306
– reference: 28904399 - Sci Rep. 2017 Sep 13;7(1):11501
– reference: 16169465 - Cancer Cell. 2005 Sep;8(3):197-209
– reference: 23900262 - Sci Rep. 2013;3:2331
– reference: 20203370 - Cell Oncol. 2010;32(1-2):11-27
– reference: 24173237 - Int J Mol Sci. 2013 Oct 29;14(11):21414-34
– reference: 25618241 - Mol Immunol. 2015 May;65(1):34-42
– reference: 23623921 - Cancer Lett. 2013 Aug 9;336(1):167-73
– reference: 28030815 - Oncotarget. 2017 Feb 7;8(6):9572-9586
– reference: 21734725 - Cell Death Dis. 2011 Jul 07;2:e179
– reference: 24391862 - PLoS One. 2013 Dec 31;8(12):e83991
– reference: 23227138 - PLoS One. 2012;7(12):e46888
– reference: 28492138 - Oncol Res. 2017 May 11;:null
– reference: 22505648 - Cancer Res. 2012 Jun 15;72 (12 ):3091-104
– reference: 21159887 - Clin Cancer Res. 2011 Aug 15;17(16):5287-98
– reference: 22797064 - Oncogene. 2013 Jun 6;32(23 ):2882-90
– reference: 19935649 - Nat Cell Biol. 2009 Dec;11(12 ):1487-95
– reference: 10102273 - Cell. 1999 Mar 19;96(6):857-68
– reference: 27743381 - Tumour Biol. 2016 Oct 14;:null
– reference: 17394502 - Histopathology. 2007 Apr;50(5):648-58
– reference: 16219695 - J Cell Sci. 2005 Oct 15;118(Pt 20):4901-12
– reference: 18381457 - Cancer Res. 2008 Apr 1;68(7):2479-88
– reference: 23652996 - Mol Biol Rep. 2013 Jul;40(7):4241-50
– reference: 28112170 - Nat Commun. 2017 Jan 23;8:14270
– reference: 22272343 - PLoS One. 2012;7(1):e30393
– reference: 24791940 - Mol Ther. 2014 Aug;22(8):1494-1503
– reference: 16585154 - Cancer Res. 2006 Apr 1;66(7):3365-9
– reference: 17258791 - Hum Pathol. 2007 Apr;38(4):598-606
– reference: 25346895 - Transl Androl Urol. 2013 Sep 1;2(3):202-211
– reference: 28346424 - Oncogene. 2017 Jul 27;36(30):4299-4310
– reference: 26650737 - PLoS One. 2015 Dec 09;10 (12 ):e0144073
SSID ssj0023259
Score 2.492635
SecondaryResourceType review_article
Snippet In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2079
SubjectTerms Animals
Cancer therapies
Disease Progression
Epigenesis, Genetic
Epithelial-Mesenchymal Transition
Gene Expression Regulation, Neoplastic
Humans
Male
Metastasis
MicroRNAs - genetics
Neoplasm Invasiveness - genetics
Neoplasm Invasiveness - pathology
Prostate - metabolism
Prostate - pathology
Prostate cancer
Prostatic Neoplasms - genetics
Prostatic Neoplasms - pathology
Review
RNA, Long Noncoding - genetics
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA9-UPCltGrbs1ZSaJ8kuJtkk90nEfEU4aQUBV_Kks965W736p0P_vfO7O5tz5b6uCRswsxkfjPJfBDyhSciaBU9y7OQMck9Z1aKwFTmtM9yHaTBbOTRlbq4kZe32W134TbvwiqXOrFR1L52eEd-hJXvFKjTQhzPfjPsGoWvq10LjXWymQLSYEhXPjzvHS7Bm2ZpKWAQLF6oNvBdgJt_NP41nQO4gbGEQVyrkPSPnfl3uOQK_gzfkNed4UhPWk6_JWuh2iav2laSjzvkB_Cbfq8ngZrK01HAhN7xfErrSM9mmHcxAUFji5qNMN3I3T1O4WcNUDUxW3Rc0W-YAAKmJz1FSbjH759tlGy1S26GZ9enF6xrncCcTPmCeZdrI6L2uU8KlxfGRmt5rmIwsbAAyYVPrOROCmFFKl0qZHQBrJUMFGcAIr8jG1VdhQ-EumiTiCqRh0TaYI0BE0pJE8AV8dLkA3K4pF7purri2N5iUoJ_gbQuV2k9IF_72bO2nsZ_5u0vGVF2p2pe_pGBAfncD8N5wEcOU4X6AecA3GJVMj0g71u-9QuBc6lFoWDL-hlH-wlYa_v5SDW-a2pug9WrtEr3Xt7WR7LFEfabeJJ9srG4fwifwGhZ2INGMp8At3Dtqw
  priority: 102
  providerName: ProQuest
Title The Role and Mechanism of Epithelial-to-Mesenchymal Transition in Prostate Cancer Progression
URI https://www.ncbi.nlm.nih.gov/pubmed/28973968
https://www.proquest.com/docview/1965680193
https://www.proquest.com/docview/1947101807
https://pubmed.ncbi.nlm.nih.gov/PMC5666761
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_6wWAvY91ntjZosD0NbY4lS_bDKF1JVgYppSyQl2EkWWozErtLUlj--93ZiWnWDfZiMDrbQifp9zvrPgDexpHwWoWCp4lPuIyLmFspPFeJ00WSai8NRSMPz9XZSH4dJ-Md2FQbXQ_g4q-mHdWTGs2nH379XB3jgv9EFiea7B8nP2YLBCokPjrbhX3EJE21DIayPU9A2lCXTaMfHpw26MYF_t7T2-B0j3H-6Th5B4kGj-HRmkKyk0bnB7DjyyfwoCkquXoK31Hz7LKaembKgg09hfZOFjNWBda_oQiMKU45vqz4kAKP3PVqhi-rIav23mKTkl1QKAiSUHZKc2JO91eNv2z5DEaD_rfTM74uosCd7MVLXrhUGxF0kRZR5tLM2GBtnKrgTcgsgnNWRFbGTgphRU-6npDBeeQtCW6hHundc9grq9K_BOaCjQJtjrGPpPXWGCRTShqPRkkhTdqB95vRy906wzgVupjmaGnQWOd3x7oD71rpmyazxj_kDjeKyDfTI6c8iArBNRMdeNM248qg4w5T-uqWZBB4KT-Z7sCLRm_th9DM1CJT2GW9pdFWgLJub7eUk-s6-zbyX6VV79V_dv81PIyJCdQuJoewt5zf-iPkMUvbhV091nhNB1-6sP-5f35x2SVkSbr15P0N1v33PA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQguqLxDCywSPaFV7d312j4ghEpDSpsKoVbqBZl90qDEDk0qlD_V39gZOzYpCG49WjvyY2Z2vhnvPAh5zSPhUxUcyxKfMMkdZ0YKz1RiU5dkqZcaq5GHR2pwIj-dJqdr5LKthcG0ytYm1obaVRb_ke9g5zsF5jQX76Y_GU6NwtPVdoRGoxYHfvELQrbZ2_0PIN9tzvt7x7sDtpwqwKyM-Zw5m6VahNRlLsptlmsTjOGZCl6H3ABa5S4yklsphBGxtLGQwXoA8gRsio-x-RKY_FuwnGOwl_U_dgGe4PVwthgwDz42V02iPRBGO6MfkxmAKThnmDS2CoF_-bV_pmeu4F1_g9xbOqr0faNZ98maLx-Q283oysVD8hX0i36pxp7q0tGhxwLi0WxCq0D3pljnMQbFZvOKDbG8yZ4tJnCzGhjrHDE6KulnLDgBV5fuouad4_X3Jiu3fEROboSpj8l6WZX-KaE2mCigCeY-ksYbrcFlU1J7CH2c1FmPvGm5V9hlH3McpzEuIJ5BXhervO6R7Y562vTv-AfdViuIYrmLZ8VvneuRV90y7D88VNGlry6QBuAdu6ClPfKkkVv3IAhmU5EreOX0mkQ7AuztfX2lHJ3VPb7By1apip_9_7VekjuD4-Fhcbh_dLBJ7nJ0Oepcli2yPj-_8M_BYZqbF7WWUvLtprfFFUKEKzw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTiBeEHc6BhiJPSGrie3YyQNCsLXaGK2qiUl7QcF2HFbUJt3aCfWv8es4J5fSgeBtj5GtXM79xN85h5DXPBBeqzxjceQjJnnGmZXCMxU5nUWx9tJgNfJwpA5P5cez6GyL_GxrYRBW2drEylBnpcN_5D3sfKfAnCailzewiPHB4N38guEEKTxpbcdp1CJy7Fc_IH1bvD06AF7vcT7of94_ZM2EAeZkyJcsc7E2ItdZnAWJixNjc2t5rHJv8sSC50qywErupBBWhNKFQubOg1OPwL74EBsxgfnf1pgVdcj2h_5ofLJO9wSvRrWF4AHh0xNVw-6FSILe5PtsAa4VQjWEkG06xL-i3D_Bmhveb3CP3G3CVvq-lrP7ZMsXD8itepDl6iH5AtJGT8qpp6bI6NBjOfFkMaNlTvtzrPqYgpizZcmGWOzkzlczuFnlJivEGJ0UdIzlJxD40n2Uw0u8_lZjdItH5PRGyPqYdIqy8E8JdbkNcjTI3AfSemsMBHBKGg-JUCZN3CVvWuqlrulqjsM1pilkN0jrdJPWXbK33j2vu3n8Y99uy4i00elF-lsCu-TVehm0EY9YTOHLK9wDzh57oukueVLzbf0gSG21SBS8sr7G0fUG7PR9faWYnFcdvyHmVlqFO_9_rZfkNqhE-ulodPyM3OEYf1TAll3SWV5e-ecQPS3ti0ZMKfl605rxC-slMM4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+and+Mechanism+of+Epithelial-to-Mesenchymal+Transition+in+Prostate+Cancer+Progression&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Lo%2C+U-Ging&rft.au=Lee%2C+Cheng-Fan&rft.au=Lee%2C+Ming-Shyue&rft.au=Hsieh%2C+Jer-Tsong&rft.date=2017-09-30&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=18&rft.issue=10&rft.spage=2079&rft_id=info:doi/10.3390%2Fijms18102079&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms18102079
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon