Bioavailability, Biotransformation, and Excretion of the Covalent Bruton Tyrosine Kinase Inhibitor Acalabrutinib in Rats, Dogs, and Humans

Acalabrutinib is a targeted, covalent inhibitor of Bruton tyrosine kinase (BTK) with a unique 2-butynamide warhead that has relatively lower reactivity than other marketed acrylamide covalent inhibitors. A human [14C] microtracer bioavailability study in healthy subjects revealed moderate intravenou...

Full description

Saved in:
Bibliographic Details
Published inDrug metabolism and disposition Vol. 47; no. 2; pp. 145 - 154
Main Authors Podoll, Terry, Pearson, Paul G., Evarts, Jerry, Ingallinera, Tim, Bibikova, Elena, Sun, Hao, Gohdes, Mark, Cardinal, Kristen, Sanghvi, Mitesh, Slatter, J. Greg
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2019
American Society for Pharmacology and Experimental Therapeutics, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Acalabrutinib is a targeted, covalent inhibitor of Bruton tyrosine kinase (BTK) with a unique 2-butynamide warhead that has relatively lower reactivity than other marketed acrylamide covalent inhibitors. A human [14C] microtracer bioavailability study in healthy subjects revealed moderate intravenous clearance (39.4 l/h) and an absolute bioavailability of 25.3% ± 14.3% (n = 8). Absorption and elimination of acalabrutinib after a 100 mg [14C] microtracer acalabrutinib oral dose was rapid, with the maximum concentration reached in <1 hour and elimination half-life values of <2 hours. Low concentrations of radioactivity persisted longer in the blood cell fraction and a peripheral blood mononuclear cell subfraction (enriched in target BTK) relative to plasma. [14C]Acalabrutinib was metabolized to more than three dozen metabolites detectable by liquid chromatography–tandem mass spectrometry, with primary metabolism by CYP3A-mediated oxidation of the pyrrolidine ring, thiol conjugation of the butynamide warhead, and amide hydrolysis. A major active, circulating, pyrrolidine ring-opened metabolite, ACP-5862 (4-[8-amino-3-[4-(but-2-ynoylamino)butanoyl]imidazo[1,5-a]pyrazin-1-yl]-N-(2-pyridyl)benzamide), was produced by CYP3A oxidation.Novel enol thioethers from the 2-butynamide warhead arose from glutathione and/or cysteine Michael additions and were subject to hydrolysis to a β-ketoamide. Total radioactivity recovery was 95.7% ± 4.6% (n = 6), with 12.0% of dose in urine and 83.5% in feces. Excretion and metabolism characteristics were generally similar in rats and dogs. Acalabrutinib’s highly selective, covalent mechanism of action, coupled with rapid absorption and elimination, enables high and sustained BTK target occupancy after twice-daily administration.
AbstractList Acalabrutinib is a targeted, covalent inhibitor of Bruton tyrosine kinase (BTK) with a unique 2-butynamide warhead that has relatively lower reactivity than other marketed acrylamide covalent inhibitors. A human [14C] microtracer bioavailability study in healthy subjects revealed moderate intravenous clearance (39.4 l/h) and an absolute bioavailability of 25.3% ± 14.3% (n = 8). Absorption and elimination of acalabrutinib after a 100 mg [14C] microtracer acalabrutinib oral dose was rapid, with the maximum concentration reached in <1 hour and elimination half-life values of <2 hours. Low concentrations of radioactivity persisted longer in the blood cell fraction and a peripheral blood mononuclear cell subfraction (enriched in target BTK) relative to plasma. [14C]Acalabrutinib was metabolized to more than three dozen metabolites detectable by liquid chromatography–tandem mass spectrometry, with primary metabolism by CYP3A-mediated oxidation of the pyrrolidine ring, thiol conjugation of the butynamide warhead, and amide hydrolysis. A major active, circulating, pyrrolidine ring-opened metabolite, ACP-5862 (4-[8-amino-3-[4-(but-2-ynoylamino)butanoyl]imidazo[1,5-a]pyrazin-1-yl]-N-(2-pyridyl)benzamide), was produced by CYP3A oxidation.Novel enol thioethers from the 2-butynamide warhead arose from glutathione and/or cysteine Michael additions and were subject to hydrolysis to a β-ketoamide. Total radioactivity recovery was 95.7% ± 4.6% (n = 6), with 12.0% of dose in urine and 83.5% in feces. Excretion and metabolism characteristics were generally similar in rats and dogs. Acalabrutinib’s highly selective, covalent mechanism of action, coupled with rapid absorption and elimination, enables high and sustained BTK target occupancy after twice-daily administration.
Acalabrutinib
Acalabrutinib is a targeted, covalent inhibitor of Bruton tyrosine kinase (BTK) with a unique 2-butynamide warhead that has relatively lower reactivity than other marketed acrylamide covalent inhibitors. A human [14C] microtracer bioavailability study in healthy subjects revealed moderate intravenous clearance (39.4 l/h) and an absolute bioavailability of 25.3% ± 14.3% (n = 8). Absorption and elimination of acalabrutinib after a 100 mg [14C] microtracer acalabrutinib oral dose was rapid, with the maximum concentration reached in <1 hour and elimination half-life values of <2 hours. Low concentrations of radioactivity persisted longer in the blood cell fraction and a peripheral blood mononuclear cell subfraction (enriched in target BTK) relative to plasma. [14C]Acalabrutinib was metabolized to more than three dozen metabolites detectable by liquid chromatography-tandem mass spectrometry, with primary metabolism by CYP3A-mediated oxidation of the pyrrolidine ring, thiol conjugation of the butynamide warhead, and amide hydrolysis. A major active, circulating, pyrrolidine ring-opened metabolite, ACP-5862 (4-[8-amino-3-[4-(but-2-ynoylamino)butanoyl]imidazo[1,5-a]pyrazin-1-yl]-N-(2-pyridyl)benzamide), was produced by CYP3A oxidation.Novel enol thioethers from the 2-butynamide warhead arose from glutathione and/or cysteine Michael additions and were subject to hydrolysis to a β-ketoamide. Total radioactivity recovery was 95.7% ± 4.6% (n = 6), with 12.0% of dose in urine and 83.5% in feces. Excretion and metabolism characteristics were generally similar in rats and dogs. Acalabrutinib's highly selective, covalent mechanism of action, coupled with rapid absorption and elimination, enables high and sustained BTK target occupancy after twice-daily administration.Acalabrutinib is a targeted, covalent inhibitor of Bruton tyrosine kinase (BTK) with a unique 2-butynamide warhead that has relatively lower reactivity than other marketed acrylamide covalent inhibitors. A human [14C] microtracer bioavailability study in healthy subjects revealed moderate intravenous clearance (39.4 l/h) and an absolute bioavailability of 25.3% ± 14.3% (n = 8). Absorption and elimination of acalabrutinib after a 100 mg [14C] microtracer acalabrutinib oral dose was rapid, with the maximum concentration reached in <1 hour and elimination half-life values of <2 hours. Low concentrations of radioactivity persisted longer in the blood cell fraction and a peripheral blood mononuclear cell subfraction (enriched in target BTK) relative to plasma. [14C]Acalabrutinib was metabolized to more than three dozen metabolites detectable by liquid chromatography-tandem mass spectrometry, with primary metabolism by CYP3A-mediated oxidation of the pyrrolidine ring, thiol conjugation of the butynamide warhead, and amide hydrolysis. A major active, circulating, pyrrolidine ring-opened metabolite, ACP-5862 (4-[8-amino-3-[4-(but-2-ynoylamino)butanoyl]imidazo[1,5-a]pyrazin-1-yl]-N-(2-pyridyl)benzamide), was produced by CYP3A oxidation.Novel enol thioethers from the 2-butynamide warhead arose from glutathione and/or cysteine Michael additions and were subject to hydrolysis to a β-ketoamide. Total radioactivity recovery was 95.7% ± 4.6% (n = 6), with 12.0% of dose in urine and 83.5% in feces. Excretion and metabolism characteristics were generally similar in rats and dogs. Acalabrutinib's highly selective, covalent mechanism of action, coupled with rapid absorption and elimination, enables high and sustained BTK target occupancy after twice-daily administration.
Author Ingallinera, Tim
Evarts, Jerry
Cardinal, Kristen
Bibikova, Elena
Podoll, Terry
Slatter, J. Greg
Gohdes, Mark
Sun, Hao
Pearson, Paul G.
Sanghvi, Mitesh
Author_xml – sequence: 1
  givenname: Terry
  surname: Podoll
  fullname: Podoll, Terry
– sequence: 2
  givenname: Paul G.
  surname: Pearson
  fullname: Pearson, Paul G.
– sequence: 3
  givenname: Jerry
  surname: Evarts
  fullname: Evarts, Jerry
– sequence: 4
  givenname: Tim
  surname: Ingallinera
  fullname: Ingallinera, Tim
– sequence: 5
  givenname: Elena
  surname: Bibikova
  fullname: Bibikova, Elena
– sequence: 6
  givenname: Hao
  surname: Sun
  fullname: Sun, Hao
– sequence: 7
  givenname: Mark
  surname: Gohdes
  fullname: Gohdes, Mark
– sequence: 8
  givenname: Kristen
  surname: Cardinal
  fullname: Cardinal, Kristen
– sequence: 9
  givenname: Mitesh
  surname: Sanghvi
  fullname: Sanghvi, Mitesh
– sequence: 10
  givenname: J. Greg
  surname: Slatter
  fullname: Slatter, J. Greg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30442651$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9rFDEUx4NU7LZ69SgBLx521iSTbGaO7draYkGQCt5Cfry1KTNJTTKL-y_4Vzd1qodCD-G9PD7fb8L7HqGDEAMg9JaSFaWMf3Sjq023Ih3non-BFlQw2hDS_zhAi1pI0wuxPkRHOd8SQjlv-1fosCWcs7WgC_Tn1Ee9037Qxg--7Je4DkrSIW9jGnXxMSyxDg6f_bYJHq44bnG5AbyJOz1AKPg0TaWOr_cpZh8Af_FBZ8CX4cYbX2LCJ1ZX-0r54A32AX_TJS_xp_gzz94X01gffI1ebvWQ4c1jPUbfz8-uNxfN1dfPl5uTq8ZyykrjqGl7IIw6AK6ZboFaIAYkNW5trOxlJ1pBeR2ZtWz7jjtt2zVIQZ2ppz1GH2bfuxR_TZCLGn22MAw6QJyyYrTKW0qJrOj7J-htnFKov1OMESalFFJU6t0jNZkRnLpLftRpr_5tuQKrGbB1RTnB9j9CiXqIUdUYa9OpOcYq4E8E1pe_YdRo_PC8rJtlUNe385BUth6CBecT2KJc9M9J7wGaMbSb
CitedBy_id crossref_primary_10_2174_1389200221666200312104837
crossref_primary_10_3390_molecules28248038
crossref_primary_10_3390_pharmaceutics13081257
crossref_primary_10_1111_bcp_15278
crossref_primary_10_1080_14656566_2019_1689959
crossref_primary_10_1002_psp4_12408
crossref_primary_10_1002_jha2_269
crossref_primary_10_1124_dmd_122_000955
crossref_primary_10_1188_21_CJON_687_696
crossref_primary_10_1080_03602532_2019_1632891
crossref_primary_10_1080_17425255_2021_1955855
crossref_primary_10_1021_jacs_2c07307
crossref_primary_10_1007_s40262_022_01200_8
crossref_primary_10_1016_j_ejps_2023_106564
crossref_primary_10_1016_j_pharmthera_2022_108256
crossref_primary_10_3390_ijms222011199
crossref_primary_10_1016_j_bmc_2021_116457
crossref_primary_10_1039_D1RA09026G
crossref_primary_10_1016_j_bcp_2020_113796
crossref_primary_10_7554_eLife_95488
crossref_primary_10_1007_s00228_022_03338_7
crossref_primary_10_1080_14740338_2020_1826435
crossref_primary_10_1124_dmd_124_001841
crossref_primary_10_1016_j_dmd_2025_100067
crossref_primary_10_7554_eLife_95488_3
crossref_primary_10_1002_cpt_2691
crossref_primary_10_22376_ijpbs_lpr_2021_11_5_P41_50
crossref_primary_10_3389_fimmu_2021_766272
crossref_primary_10_1002_bcp_70018
crossref_primary_10_1016_j_ejmech_2023_115514
crossref_primary_10_1016_j_jpba_2025_116664
crossref_primary_10_1186_s11671_024_04157_8
crossref_primary_10_1021_acs_jmedchem_4c00776
crossref_primary_10_1080_17512433_2021_1978288
crossref_primary_10_1124_jpet_122_001116
crossref_primary_10_3389_fphar_2022_960186
crossref_primary_10_1007_s11095_022_03268_0
crossref_primary_10_1111_bcp_15087
crossref_primary_10_1002_cpdd_763
crossref_primary_10_1002_sscp_202400110
crossref_primary_10_3390_pharmaceutics13040557
crossref_primary_10_1002_jcph_2013
crossref_primary_10_1111_vde_12841
crossref_primary_10_1124_dmd_121_000798
crossref_primary_10_1016_j_jpba_2020_113613
crossref_primary_10_1002_cpdd_1153
crossref_primary_10_1002_cpdd_1271
crossref_primary_10_1016_j_jchromb_2020_122466
crossref_primary_10_1002_cpt_3121
Cites_doi 10.1124/dmd.110.032649
10.1517/17425255.4.8.1021
10.1124/dmd.116.072983
10.2174/187231210792928206
10.1517/phgs.5.3.243.29833
10.1007/s00280-011-1803-9
10.1021/jm3003203
10.1177/0091270005280051
10.1124/jpet.117.242909
10.2174/1872312808666140317151735
10.1200/JCO.2013.53.1046
10.1002/anie.201601091
10.1056/NEJMoa1509981
10.1038/nrd3410
10.1038/clpt.1981.56
10.1016/S0140-6736(17)33108-2
10.1124/dmd.114.062174
10.2174/157488612803251324
10.1016/j.chembiol.2012.12.006
10.1124/dmd.115.069203
10.1124/dmd.114.061424
10.1016/j.drudis.2018.01.035
10.3109/08830185.2012.664797
10.1124/dmd.114.060061
10.1039/C7CS00220C
ContentType Journal Article
Copyright 2019 American Society for Pharmacology and Experimental Therapeutics
Copyright © 2019 by The Author(s).
Copyright Lippincott Williams & Wilkins Ovid Technologies Feb 1, 2019
Copyright_xml – notice: 2019 American Society for Pharmacology and Experimental Therapeutics
– notice: Copyright © 2019 by The Author(s).
– notice: Copyright Lippincott Williams & Wilkins Ovid Technologies Feb 1, 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
7U7
8FD
C1K
FR3
P64
7X8
DOI 10.1124/dmd.118.084459
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1521-009X
EndPage 154
ExternalDocumentID 30442651
10_1124_dmd_118_084459
S0090955624079091
Genre Research Support, Non-U.S. Gov't
Journal Article
Clinical Trial, Phase I
GroupedDBID ---
.GJ
0R~
18M
2WC
4.4
53G
5GY
5RE
5VS
AAXUO
ABJNI
ABSQV
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
AENEX
AERNN
AFFNX
AFOSN
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
FDB
GX1
H13
HZ~
IH2
INIJC
KQ8
LSO
M41
O9-
OK1
P2P
R0Z
RHI
ROL
RPT
SJN
TR2
VH1
W8F
WH7
WOQ
YCJ
YHG
ZGI
ZXP
~KM
AALRI
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
7U7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c412t-d1b39e021dee4a2a3e1ce0be71bd6bc7978535140beb673984dac36e751db51d3
ISSN 0090-9556
1521-009X
IngestDate Thu Jul 10 21:11:18 EDT 2025
Mon Jun 30 12:03:12 EDT 2025
Mon Jul 21 05:43:53 EDT 2025
Tue Jul 01 05:26:25 EDT 2025
Thu Apr 24 22:55:45 EDT 2025
Sun Apr 06 06:53:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords FDA
MS/MS
AUC
t1/2
ACP-5862
ACP-5461
GSH
LSC
HPLC
BCRP
ADME
MS
AMS
CL
GST
PBMC
CV
HER
LC
Tmax
ACP-5530
ACP-5134
BTK
ACP-5531
PK
TCI
ACP-5197
Language English
License Copyright © 2019 by The Author(s).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-d1b39e021dee4a2a3e1ce0be71bd6bc7978535140beb673984dac36e751db51d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://dmd.aspetjournals.org/content/dmd/47/2/145.full.pdf
PMID 30442651
PQID 2202777575
PQPubID 2048316
PageCount 10
ParticipantIDs proquest_miscellaneous_2135131107
proquest_journals_2202777575
pubmed_primary_30442651
crossref_primary_10_1124_dmd_118_084459
crossref_citationtrail_10_1124_dmd_118_084459
elsevier_sciencedirect_doi_10_1124_dmd_118_084459
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle Drug metabolism and disposition
PublicationTitleAlternate Drug Metab Dispos
PublicationYear 2019
Publisher Elsevier Inc
American Society for Pharmacology and Experimental Therapeutics, Inc
Publisher_xml – name: Elsevier Inc
– name: American Society for Pharmacology and Experimental Therapeutics, Inc
References Sarapa, Hsyu, Lappin, Garner (bib18) 2005; 45
Barf, Kaptein (bib3) 2012; 55
Barf, Covey, Izumi, van de Kar, Gulrajani, van Lith, van Hoek, de Zwart, Mittag, Demont (bib2) 2017; 363
Gertz, Harrison, Houston, Galetin (bib8) 2010; 38
Hamilton, Garnett, Kline (bib9) 1981; 29
Shibata, Chiba (bib20) 2015; 43
Zhao, Bourne (bib25) 2018; 23
Lonsdale, Ward (bib15) 2018; 47
Baillie (bib1) 2016; 55
Scheers, Leclercq, de Jong, Bode, Bockx, Laenen, Cuyckens, Skee, Murphy, Sukbuntherng (bib19) 2015; 43
Leung, Yang, Strelevitz, Montgomery, Brown, Zientek, Banfield, Gilbert, Thorarensen, Dowty (bib13) 2017; 45
Stopfer, Marzin, Narjes, Gansser, Shahidi, Uttereuther-Fischer, Ebner (bib22) 2012; 69
Xie, Wood, Kim, Stein, Wilkinson (bib24) 2004; 5
Krivoy, Zuckerman, Elkin, Froymovich, Rowe, Efrati (bib10) 2012; 7
Singh, Petter, Baillie, Whitty (bib21) 2011; 10
Ponader, Burger (bib17) 2014; 32
Buggy, Elias (bib4) 2012; 31
Byrd, Harrington, O’Brien, Jones, Schuh, Devereux, Chaves, Wierda, Awan, Brown (bib5) 2016; 374
Moghaddam, Tang, O’Brien, Richardson, Bacolod, Chaturedi, Apuy, Kulkarni (bib16) 2014; 8
Dickinson, Cantarini, Collier, Frewer, Martin, Pickup, Ballard (bib7) 2016; 44
Wang, Rule, Zinzani, Goy, Casasnovas, Smith, Damaj, Doorduijn, Lamy, Morschhauser (bib23) 2018; 391
Lappin, Stevens (bib11) 2008; 4
Lee, O’Connor, Ritchie, Galetin, Cook, Ragueneau-Majlessi, Ellens, Feng, Taub, Paine (bib12) 2015; 43
Liu, Sabnis, Zhao, Zhang, Buhrlage, Jones, Gray (bib14) 2013; 20
Chandrasekaran, Shen, Lockhead, Oganesian, Wang, Scatina (bib6) 2010; 4
Baillie (10.1124/dmd.118.084459_bib1) 2016; 55
Liu (10.1124/dmd.118.084459_bib14) 2013; 20
Hamilton (10.1124/dmd.118.084459_bib9) 1981; 29
Scheers (10.1124/dmd.118.084459_bib19) 2015; 43
Lee (10.1124/dmd.118.084459_bib12) 2015; 43
Moghaddam (10.1124/dmd.118.084459_bib16) 2014; 8
Xie (10.1124/dmd.118.084459_bib24) 2004; 5
Byrd (10.1124/dmd.118.084459_bib5) 2016; 374
Sarapa (10.1124/dmd.118.084459_bib18) 2005; 45
Chandrasekaran (10.1124/dmd.118.084459_bib6) 2010; 4
Ponader (10.1124/dmd.118.084459_bib17) 2014; 32
Leung (10.1124/dmd.118.084459_bib13) 2017; 45
Wang (10.1124/dmd.118.084459_bib23) 2018; 391
Barf (10.1124/dmd.118.084459_bib2) 2017; 363
Gertz (10.1124/dmd.118.084459_bib8) 2010; 38
Stopfer (10.1124/dmd.118.084459_bib22) 2012; 69
Shibata (10.1124/dmd.118.084459_bib20) 2015; 43
Lonsdale (10.1124/dmd.118.084459_bib15) 2018; 47
Krivoy (10.1124/dmd.118.084459_bib10) 2012; 7
Lappin (10.1124/dmd.118.084459_bib11) 2008; 4
Singh (10.1124/dmd.118.084459_bib21) 2011; 10
Barf (10.1124/dmd.118.084459_bib3) 2012; 55
Zhao (10.1124/dmd.118.084459_bib25) 2018; 23
Buggy (10.1124/dmd.118.084459_bib4) 2012; 31
Dickinson (10.1124/dmd.118.084459_bib7) 2016; 44
References_xml – volume: 32
  start-page: 1830
  year: 2014
  end-page: 1839
  ident: bib17
  article-title: Bruton’s tyrosine kinase: from X-linked agammaglobulinemia toward targeted therapy for B-cell malignancies
  publication-title: J Clin Oncol
– volume: 43
  start-page: 375
  year: 2015
  end-page: 384
  ident: bib20
  article-title: The role of extrahepatic metabolism in the pharmacokinetics of the targeted covalent inhibitors afatinib, ibrutinib, and neratinib
  publication-title: Drug Metab Dispos
– volume: 43
  start-page: 490
  year: 2015
  end-page: 509
  ident: bib12
  article-title: Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design
  publication-title: Drug Metab Dispos
– volume: 4
  start-page: 220
  year: 2010
  end-page: 227
  ident: bib6
  article-title: Reversible covalent binding of neratinib to human serum albumin in vitro
  publication-title: Drug Metab Lett
– volume: 55
  start-page: 13408
  year: 2016
  end-page: 13421
  ident: bib1
  article-title: Targeted covalent inhibitors for drug design
  publication-title: Angew Chem Int Ed Engl
– volume: 55
  start-page: 6243
  year: 2012
  end-page: 6262
  ident: bib3
  article-title: Irreversible protein kinase inhibitors: balancing the benefits and risks
  publication-title: J Med Chem
– volume: 44
  start-page: 1201
  year: 2016
  end-page: 1212
  ident: bib7
  article-title: Metabolic disposition of osimertinib in rats, dogs, and humans: insights into a drug designed to bind covalently to a cysteine residue of epidermal growth factor receptor
  publication-title: Drug Metab Dispos
– volume: 7
  start-page: 211
  year: 2012
  end-page: 217
  ident: bib10
  article-title: Pharmacokinetic and pharmacogenetic analysis of oral busulfan in stem cell transplantation: prediction of poor drug metabolism to prevent drug toxicity
  publication-title: Curr Drug Saf
– volume: 20
  start-page: 146
  year: 2013
  end-page: 159
  ident: bib14
  article-title: Developing irreversible inhibitors of the protein kinase cysteinome
  publication-title: Chem Biol
– volume: 31
  start-page: 119
  year: 2012
  end-page: 132
  ident: bib4
  article-title: Bruton tyrosine kinase (BTK) and its role in B-cell malignancy
  publication-title: Int Rev Immunol
– volume: 45
  start-page: 1198
  year: 2005
  end-page: 1205
  ident: bib18
  article-title: The application of accelerator mass spectrometry to absolute bioavailability studies in humans: simultaneous administration of an intravenous microdose of 14C-nelfinavir mesylate solution and oral nelfinavir to healthy volunteers
  publication-title: J Clin Pharmacol
– volume: 391
  start-page: 659
  year: 2018
  end-page: 667
  ident: bib23
  article-title: Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial
  publication-title: Lancet
– volume: 363
  start-page: 240
  year: 2017
  end-page: 252
  ident: bib2
  article-title: Acalabrutinib (ACP-196): a covalent Bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile
  publication-title: J Pharmacol Exp Ther
– volume: 43
  start-page: 289
  year: 2015
  end-page: 297
  ident: bib19
  article-title: Absorption, metabolism, and excretion of oral 14C radiolabeled ibrutinib: an open-label, phase I, single-dose study in healthy men
  publication-title: Drug Metab Dispos
– volume: 4
  start-page: 1021
  year: 2008
  end-page: 1033
  ident: bib11
  article-title: Biomedical accelerator mass spectrometry: recent applications in metabolism and pharmacokinetics
  publication-title: Expert Opin Drug Metab Toxicol
– volume: 23
  start-page: 727
  year: 2018
  end-page: 735
  ident: bib25
  article-title: Progress with covalent small-molecule kinase inhibitors
  publication-title: Drug Discov Today
– volume: 69
  start-page: 1051
  year: 2012
  end-page: 1061
  ident: bib22
  article-title: Afatinib pharmacokinetics and metabolism after oral administration to healthy male volunteers
  publication-title: Cancer Chemother Pharmacol
– volume: 8
  start-page: 19
  year: 2014
  end-page: 30
  ident: bib16
  article-title: A proposed screening paradigm for discovery of covalent inhibitor drugs
  publication-title: Drug Metab Lett
– volume: 10
  start-page: 307
  year: 2011
  end-page: 317
  ident: bib21
  article-title: The resurgence of covalent drugs
  publication-title: Nat Rev Drug Discov
– volume: 45
  start-page: 1
  year: 2017
  end-page: 7
  ident: bib13
  article-title: Clearance prediction of targeted covalent inhibitors by in vitro-in vivo extrapolation of hepatic and extrahepatic clearance mechanisms
  publication-title: Drug Metab Dispos
– volume: 29
  start-page: 408
  year: 1981
  end-page: 413
  ident: bib9
  article-title: Determination of mean valproic acid serum level by assay of a single pooled sample
  publication-title: Clin Pharmacol Ther
– volume: 5
  start-page: 243
  year: 2004
  end-page: 272
  ident: bib24
  article-title: Genetic variability in CYP3A5 and its possible consequences
  publication-title: Pharmacogenomics
– volume: 38
  start-page: 1147
  year: 2010
  end-page: 1158
  ident: bib8
  article-title: Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data
  publication-title: Drug Metab Dispos
– volume: 374
  start-page: 323
  year: 2016
  end-page: 332
  ident: bib5
  article-title: Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia
  publication-title: N Engl J Med
– volume: 47
  start-page: 3816
  year: 2018
  end-page: 3830
  ident: bib15
  article-title: Structure-based design of targeted covalent inhibitors
  publication-title: Chem Soc Rev
– volume: 38
  start-page: 1147
  year: 2010
  ident: 10.1124/dmd.118.084459_bib8
  article-title: Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.110.032649
– volume: 4
  start-page: 1021
  year: 2008
  ident: 10.1124/dmd.118.084459_bib11
  article-title: Biomedical accelerator mass spectrometry: recent applications in metabolism and pharmacokinetics
  publication-title: Expert Opin Drug Metab Toxicol
  doi: 10.1517/17425255.4.8.1021
– volume: 45
  start-page: 1
  year: 2017
  ident: 10.1124/dmd.118.084459_bib13
  article-title: Clearance prediction of targeted covalent inhibitors by in vitro-in vivo extrapolation of hepatic and extrahepatic clearance mechanisms
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.116.072983
– volume: 4
  start-page: 220
  year: 2010
  ident: 10.1124/dmd.118.084459_bib6
  article-title: Reversible covalent binding of neratinib to human serum albumin in vitro
  publication-title: Drug Metab Lett
  doi: 10.2174/187231210792928206
– volume: 5
  start-page: 243
  year: 2004
  ident: 10.1124/dmd.118.084459_bib24
  article-title: Genetic variability in CYP3A5 and its possible consequences
  publication-title: Pharmacogenomics
  doi: 10.1517/phgs.5.3.243.29833
– volume: 69
  start-page: 1051
  year: 2012
  ident: 10.1124/dmd.118.084459_bib22
  article-title: Afatinib pharmacokinetics and metabolism after oral administration to healthy male volunteers
  publication-title: Cancer Chemother Pharmacol
  doi: 10.1007/s00280-011-1803-9
– volume: 55
  start-page: 6243
  year: 2012
  ident: 10.1124/dmd.118.084459_bib3
  article-title: Irreversible protein kinase inhibitors: balancing the benefits and risks
  publication-title: J Med Chem
  doi: 10.1021/jm3003203
– volume: 45
  start-page: 1198
  year: 2005
  ident: 10.1124/dmd.118.084459_bib18
  article-title: The application of accelerator mass spectrometry to absolute bioavailability studies in humans: simultaneous administration of an intravenous microdose of 14C-nelfinavir mesylate solution and oral nelfinavir to healthy volunteers
  publication-title: J Clin Pharmacol
  doi: 10.1177/0091270005280051
– volume: 363
  start-page: 240
  year: 2017
  ident: 10.1124/dmd.118.084459_bib2
  article-title: Acalabrutinib (ACP-196): a covalent Bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.117.242909
– volume: 8
  start-page: 19
  year: 2014
  ident: 10.1124/dmd.118.084459_bib16
  article-title: A proposed screening paradigm for discovery of covalent inhibitor drugs
  publication-title: Drug Metab Lett
  doi: 10.2174/1872312808666140317151735
– volume: 32
  start-page: 1830
  year: 2014
  ident: 10.1124/dmd.118.084459_bib17
  article-title: Bruton’s tyrosine kinase: from X-linked agammaglobulinemia toward targeted therapy for B-cell malignancies
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2013.53.1046
– volume: 55
  start-page: 13408
  year: 2016
  ident: 10.1124/dmd.118.084459_bib1
  article-title: Targeted covalent inhibitors for drug design
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201601091
– volume: 374
  start-page: 323
  year: 2016
  ident: 10.1124/dmd.118.084459_bib5
  article-title: Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1509981
– volume: 10
  start-page: 307
  year: 2011
  ident: 10.1124/dmd.118.084459_bib21
  article-title: The resurgence of covalent drugs
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3410
– volume: 29
  start-page: 408
  year: 1981
  ident: 10.1124/dmd.118.084459_bib9
  article-title: Determination of mean valproic acid serum level by assay of a single pooled sample
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.1981.56
– volume: 391
  start-page: 659
  year: 2018
  ident: 10.1124/dmd.118.084459_bib23
  article-title: Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)33108-2
– volume: 43
  start-page: 490
  year: 2015
  ident: 10.1124/dmd.118.084459_bib12
  article-title: Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.114.062174
– volume: 7
  start-page: 211
  year: 2012
  ident: 10.1124/dmd.118.084459_bib10
  article-title: Pharmacokinetic and pharmacogenetic analysis of oral busulfan in stem cell transplantation: prediction of poor drug metabolism to prevent drug toxicity
  publication-title: Curr Drug Saf
  doi: 10.2174/157488612803251324
– volume: 20
  start-page: 146
  year: 2013
  ident: 10.1124/dmd.118.084459_bib14
  article-title: Developing irreversible inhibitors of the protein kinase cysteinome
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2012.12.006
– volume: 44
  start-page: 1201
  year: 2016
  ident: 10.1124/dmd.118.084459_bib7
  article-title: Metabolic disposition of osimertinib in rats, dogs, and humans: insights into a drug designed to bind covalently to a cysteine residue of epidermal growth factor receptor
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.115.069203
– volume: 43
  start-page: 375
  year: 2015
  ident: 10.1124/dmd.118.084459_bib20
  article-title: The role of extrahepatic metabolism in the pharmacokinetics of the targeted covalent inhibitors afatinib, ibrutinib, and neratinib
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.114.061424
– volume: 23
  start-page: 727
  year: 2018
  ident: 10.1124/dmd.118.084459_bib25
  article-title: Progress with covalent small-molecule kinase inhibitors
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2018.01.035
– volume: 31
  start-page: 119
  year: 2012
  ident: 10.1124/dmd.118.084459_bib4
  article-title: Bruton tyrosine kinase (BTK) and its role in B-cell malignancy
  publication-title: Int Rev Immunol
  doi: 10.3109/08830185.2012.664797
– volume: 43
  start-page: 289
  year: 2015
  ident: 10.1124/dmd.118.084459_bib19
  article-title: Absorption, metabolism, and excretion of oral 14C radiolabeled ibrutinib: an open-label, phase I, single-dose study in healthy men
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.114.060061
– volume: 47
  start-page: 3816
  year: 2018
  ident: 10.1124/dmd.118.084459_bib15
  article-title: Structure-based design of targeted covalent inhibitors
  publication-title: Chem Soc Rev
  doi: 10.1039/C7CS00220C
SSID ssj0014439
Score 2.486489
Snippet Acalabrutinib is a targeted, covalent inhibitor of Bruton tyrosine kinase (BTK) with a unique 2-butynamide warhead that has relatively lower reactivity than...
Acalabrutinib
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 145
SubjectTerms Absorption
Acrylamide
Administration, Oral
Adult
Agammaglobulinaemia Tyrosine Kinase - antagonists & inhibitors
Animals
Antineoplastic Agents - analysis
Antineoplastic Agents - metabolism
Antineoplastic Agents - pharmacology
Benzamide
Benzamides - analysis
Benzamides - metabolism
Benzamides - pharmacology
Bioavailability
Biological Availability
Biotransformation
Blood cells
Bruton's tyrosine kinase
Carbon 14
Conjugation
Covalence
Cytochrome P-450 CYP3A - metabolism
Dogs
Economic conditions
Enzyme inhibitors
Excretion
Feces - chemistry
Female
Glutathione
Half-Life
Healthy Volunteers
Humans
Hydrolysis
Inhibitors
Intestinal Absorption
Intravenous administration
Kinases
Liquid chromatography
Low concentrations
Lymphoma, Mantle-Cell - drug therapy
Male
Mass spectrometry
Mass spectroscopy
Metabolism
Metabolites
Middle Aged
Occupancy
Oxidation
Oxidation-Reduction
Peripheral blood
Protein Kinase Inhibitors - analysis
Protein Kinase Inhibitors - metabolism
Protein Kinase Inhibitors - pharmacology
Pyrazines - analysis
Pyrazines - metabolism
Pyrazines - pharmacology
Pyrrolidine
Radioactive half-life
Radioactivity
Rats
Rats, Sprague-Dawley
Thioethers
Tyrosine
Tyrosine kinase inhibitors
Urine
Urine - chemistry
Young Adult
Title Bioavailability, Biotransformation, and Excretion of the Covalent Bruton Tyrosine Kinase Inhibitor Acalabrutinib in Rats, Dogs, and Humans
URI https://dx.doi.org/10.1124/dmd.118.084459
https://www.ncbi.nlm.nih.gov/pubmed/30442651
https://www.proquest.com/docview/2202777575
https://www.proquest.com/docview/2135131107
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFjXthICOh8UBT4sS5PXIZDCahgTppb5GduBCpJFObIspP4PfwAzknx0nTbZUGD42i1HbSni_H37HPhbFnMvaFB-BxtNKeA_bX1Il1Lp0o0XHuChWH5CD7KTw8kR9Pg9PB4E_Pa2lZ63H269K4kv-RKlwDuWKU7D9IthsULsA5yBeOIGE4XknGr4tK_VDFjHJtU8nooqp7XJT21HFx_OBnhgGLRA_rplodPAp6AoB4MbfGZAUTJnLOo6KEqQ00x7dCw_ve-NDDLaBVURYaF0i-qNqyb1pYx_Gb3YBFn-u-nS-_YoVqgNmsLcWRF52bWKeUwTCmvY-Jma-dkkFXz200GHovvng_7pH_eW3D0HodPpToRICxjMqCsL-igUFUnXeI1dKJ6yQBJRxvtTTl5bRo9HoqV1A6Sjt7C0pJfXFi8CRIM_-ew2k8dmMpbSLyjQzc52bGzl-xsZQ8mUJ_OIlT6n-NXffAOEHtevR5vXclpU9Gl_0VNlUo9H-5ef9tVGibqdNQnskuu2ltFf6KgHeLDUx5m-0fU7Lz1YhP1rF7ixHf58frNOirO-z3OXSO-AVsjjhggnfI5NWUAzJ5i0xOyOQtMjkhk3fI5BvI5EXJEZkjjriksQmVd9nJu4PJm0PHVv5wMim82smF9hMD9DM3RipP-UZkxtUmEjoPdRYlEbBMoPpwSYeRn8QyV5kfmigQuYaPf4_tlFVpHjAeyyBTuBmdTafwpwcqdDOlI5V4MZgCyh0ypxVCmtm0-FidZZZeLvQhe961P6OEMFtbilamqaWzRFNTAOXWPnut8FOraBaphwuUUQSG1ZA97b6GaQD39lRpqiW0wUqbPi7mDNl9Ak33eL4rgYcH4uGVH_0Ru7F-MffYTj1fmsdAvmv9pMH6X5LU3HI
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioavailability%2C+Biotransformation%2C+and+Excretion+of+the+Covalent+Bruton+Tyrosine+Kinase+Inhibitor+Acalabrutinib+in+Rats%2C+Dogs%2C+and+Humans&rft.jtitle=Drug+metabolism+and+disposition&rft.au=Podoll%2C+Terry&rft.au=Pearson%2C+Paul+G.&rft.au=Evarts%2C+Jerry&rft.au=Ingallinera%2C+Tim&rft.date=2019-02-01&rft.issn=0090-9556&rft.volume=47&rft.issue=2&rft.spage=145&rft.epage=154&rft_id=info:doi/10.1124%2Fdmd.118.084459&rft.externalDBID=n%2Fa&rft.externalDocID=10_1124_dmd_118_084459
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-9556&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-9556&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-9556&client=summon