Bioavailability, Biotransformation, and Excretion of the Covalent Bruton Tyrosine Kinase Inhibitor Acalabrutinib in Rats, Dogs, and Humans
Acalabrutinib is a targeted, covalent inhibitor of Bruton tyrosine kinase (BTK) with a unique 2-butynamide warhead that has relatively lower reactivity than other marketed acrylamide covalent inhibitors. A human [14C] microtracer bioavailability study in healthy subjects revealed moderate intravenou...
Saved in:
Published in | Drug metabolism and disposition Vol. 47; no. 2; pp. 145 - 154 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.02.2019
American Society for Pharmacology and Experimental Therapeutics, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acalabrutinib is a targeted, covalent inhibitor of Bruton tyrosine kinase (BTK) with a unique 2-butynamide warhead that has relatively lower reactivity than other marketed acrylamide covalent inhibitors. A human [14C] microtracer bioavailability study in healthy subjects revealed moderate intravenous clearance (39.4 l/h) and an absolute bioavailability of 25.3% ± 14.3% (n = 8). Absorption and elimination of acalabrutinib after a 100 mg [14C] microtracer acalabrutinib oral dose was rapid, with the maximum concentration reached in <1 hour and elimination half-life values of <2 hours. Low concentrations of radioactivity persisted longer in the blood cell fraction and a peripheral blood mononuclear cell subfraction (enriched in target BTK) relative to plasma. [14C]Acalabrutinib was metabolized to more than three dozen metabolites detectable by liquid chromatography–tandem mass spectrometry, with primary metabolism by CYP3A-mediated oxidation of the pyrrolidine ring, thiol conjugation of the butynamide warhead, and amide hydrolysis. A major active, circulating, pyrrolidine ring-opened metabolite, ACP-5862 (4-[8-amino-3-[4-(but-2-ynoylamino)butanoyl]imidazo[1,5-a]pyrazin-1-yl]-N-(2-pyridyl)benzamide), was produced by CYP3A oxidation.Novel enol thioethers from the 2-butynamide warhead arose from glutathione and/or cysteine Michael additions and were subject to hydrolysis to a β-ketoamide. Total radioactivity recovery was 95.7% ± 4.6% (n = 6), with 12.0% of dose in urine and 83.5% in feces. Excretion and metabolism characteristics were generally similar in rats and dogs. Acalabrutinib’s highly selective, covalent mechanism of action, coupled with rapid absorption and elimination, enables high and sustained BTK target occupancy after twice-daily administration. |
---|---|
AbstractList | Acalabrutinib is a targeted, covalent inhibitor of Bruton tyrosine kinase (BTK) with a unique 2-butynamide warhead that has relatively lower reactivity than other marketed acrylamide covalent inhibitors. A human [14C] microtracer bioavailability study in healthy subjects revealed moderate intravenous clearance (39.4 l/h) and an absolute bioavailability of 25.3% ± 14.3% (n = 8). Absorption and elimination of acalabrutinib after a 100 mg [14C] microtracer acalabrutinib oral dose was rapid, with the maximum concentration reached in <1 hour and elimination half-life values of <2 hours. Low concentrations of radioactivity persisted longer in the blood cell fraction and a peripheral blood mononuclear cell subfraction (enriched in target BTK) relative to plasma. [14C]Acalabrutinib was metabolized to more than three dozen metabolites detectable by liquid chromatography–tandem mass spectrometry, with primary metabolism by CYP3A-mediated oxidation of the pyrrolidine ring, thiol conjugation of the butynamide warhead, and amide hydrolysis. A major active, circulating, pyrrolidine ring-opened metabolite, ACP-5862 (4-[8-amino-3-[4-(but-2-ynoylamino)butanoyl]imidazo[1,5-a]pyrazin-1-yl]-N-(2-pyridyl)benzamide), was produced by CYP3A oxidation.Novel enol thioethers from the 2-butynamide warhead arose from glutathione and/or cysteine Michael additions and were subject to hydrolysis to a β-ketoamide. Total radioactivity recovery was 95.7% ± 4.6% (n = 6), with 12.0% of dose in urine and 83.5% in feces. Excretion and metabolism characteristics were generally similar in rats and dogs. Acalabrutinib’s highly selective, covalent mechanism of action, coupled with rapid absorption and elimination, enables high and sustained BTK target occupancy after twice-daily administration. Acalabrutinib Acalabrutinib is a targeted, covalent inhibitor of Bruton tyrosine kinase (BTK) with a unique 2-butynamide warhead that has relatively lower reactivity than other marketed acrylamide covalent inhibitors. A human [14C] microtracer bioavailability study in healthy subjects revealed moderate intravenous clearance (39.4 l/h) and an absolute bioavailability of 25.3% ± 14.3% (n = 8). Absorption and elimination of acalabrutinib after a 100 mg [14C] microtracer acalabrutinib oral dose was rapid, with the maximum concentration reached in <1 hour and elimination half-life values of <2 hours. Low concentrations of radioactivity persisted longer in the blood cell fraction and a peripheral blood mononuclear cell subfraction (enriched in target BTK) relative to plasma. [14C]Acalabrutinib was metabolized to more than three dozen metabolites detectable by liquid chromatography-tandem mass spectrometry, with primary metabolism by CYP3A-mediated oxidation of the pyrrolidine ring, thiol conjugation of the butynamide warhead, and amide hydrolysis. A major active, circulating, pyrrolidine ring-opened metabolite, ACP-5862 (4-[8-amino-3-[4-(but-2-ynoylamino)butanoyl]imidazo[1,5-a]pyrazin-1-yl]-N-(2-pyridyl)benzamide), was produced by CYP3A oxidation.Novel enol thioethers from the 2-butynamide warhead arose from glutathione and/or cysteine Michael additions and were subject to hydrolysis to a β-ketoamide. Total radioactivity recovery was 95.7% ± 4.6% (n = 6), with 12.0% of dose in urine and 83.5% in feces. Excretion and metabolism characteristics were generally similar in rats and dogs. Acalabrutinib's highly selective, covalent mechanism of action, coupled with rapid absorption and elimination, enables high and sustained BTK target occupancy after twice-daily administration.Acalabrutinib is a targeted, covalent inhibitor of Bruton tyrosine kinase (BTK) with a unique 2-butynamide warhead that has relatively lower reactivity than other marketed acrylamide covalent inhibitors. A human [14C] microtracer bioavailability study in healthy subjects revealed moderate intravenous clearance (39.4 l/h) and an absolute bioavailability of 25.3% ± 14.3% (n = 8). Absorption and elimination of acalabrutinib after a 100 mg [14C] microtracer acalabrutinib oral dose was rapid, with the maximum concentration reached in <1 hour and elimination half-life values of <2 hours. Low concentrations of radioactivity persisted longer in the blood cell fraction and a peripheral blood mononuclear cell subfraction (enriched in target BTK) relative to plasma. [14C]Acalabrutinib was metabolized to more than three dozen metabolites detectable by liquid chromatography-tandem mass spectrometry, with primary metabolism by CYP3A-mediated oxidation of the pyrrolidine ring, thiol conjugation of the butynamide warhead, and amide hydrolysis. A major active, circulating, pyrrolidine ring-opened metabolite, ACP-5862 (4-[8-amino-3-[4-(but-2-ynoylamino)butanoyl]imidazo[1,5-a]pyrazin-1-yl]-N-(2-pyridyl)benzamide), was produced by CYP3A oxidation.Novel enol thioethers from the 2-butynamide warhead arose from glutathione and/or cysteine Michael additions and were subject to hydrolysis to a β-ketoamide. Total radioactivity recovery was 95.7% ± 4.6% (n = 6), with 12.0% of dose in urine and 83.5% in feces. Excretion and metabolism characteristics were generally similar in rats and dogs. Acalabrutinib's highly selective, covalent mechanism of action, coupled with rapid absorption and elimination, enables high and sustained BTK target occupancy after twice-daily administration. |
Author | Ingallinera, Tim Evarts, Jerry Cardinal, Kristen Bibikova, Elena Podoll, Terry Slatter, J. Greg Gohdes, Mark Sun, Hao Pearson, Paul G. Sanghvi, Mitesh |
Author_xml | – sequence: 1 givenname: Terry surname: Podoll fullname: Podoll, Terry – sequence: 2 givenname: Paul G. surname: Pearson fullname: Pearson, Paul G. – sequence: 3 givenname: Jerry surname: Evarts fullname: Evarts, Jerry – sequence: 4 givenname: Tim surname: Ingallinera fullname: Ingallinera, Tim – sequence: 5 givenname: Elena surname: Bibikova fullname: Bibikova, Elena – sequence: 6 givenname: Hao surname: Sun fullname: Sun, Hao – sequence: 7 givenname: Mark surname: Gohdes fullname: Gohdes, Mark – sequence: 8 givenname: Kristen surname: Cardinal fullname: Cardinal, Kristen – sequence: 9 givenname: Mitesh surname: Sanghvi fullname: Sanghvi, Mitesh – sequence: 10 givenname: J. Greg surname: Slatter fullname: Slatter, J. Greg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30442651$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9rFDEUx4NU7LZ69SgBLx521iSTbGaO7draYkGQCt5Cfry1KTNJTTKL-y_4Vzd1qodCD-G9PD7fb8L7HqGDEAMg9JaSFaWMf3Sjq023Ih3non-BFlQw2hDS_zhAi1pI0wuxPkRHOd8SQjlv-1fosCWcs7WgC_Tn1Ee9037Qxg--7Je4DkrSIW9jGnXxMSyxDg6f_bYJHq44bnG5AbyJOz1AKPg0TaWOr_cpZh8Af_FBZ8CX4cYbX2LCJ1ZX-0r54A32AX_TJS_xp_gzz94X01gffI1ebvWQ4c1jPUbfz8-uNxfN1dfPl5uTq8ZyykrjqGl7IIw6AK6ZboFaIAYkNW5trOxlJ1pBeR2ZtWz7jjtt2zVIQZ2ppz1GH2bfuxR_TZCLGn22MAw6QJyyYrTKW0qJrOj7J-htnFKov1OMESalFFJU6t0jNZkRnLpLftRpr_5tuQKrGbB1RTnB9j9CiXqIUdUYa9OpOcYq4E8E1pe_YdRo_PC8rJtlUNe385BUth6CBecT2KJc9M9J7wGaMbSb |
CitedBy_id | crossref_primary_10_2174_1389200221666200312104837 crossref_primary_10_3390_molecules28248038 crossref_primary_10_3390_pharmaceutics13081257 crossref_primary_10_1111_bcp_15278 crossref_primary_10_1080_14656566_2019_1689959 crossref_primary_10_1002_psp4_12408 crossref_primary_10_1002_jha2_269 crossref_primary_10_1124_dmd_122_000955 crossref_primary_10_1188_21_CJON_687_696 crossref_primary_10_1080_03602532_2019_1632891 crossref_primary_10_1080_17425255_2021_1955855 crossref_primary_10_1021_jacs_2c07307 crossref_primary_10_1007_s40262_022_01200_8 crossref_primary_10_1016_j_ejps_2023_106564 crossref_primary_10_1016_j_pharmthera_2022_108256 crossref_primary_10_3390_ijms222011199 crossref_primary_10_1016_j_bmc_2021_116457 crossref_primary_10_1039_D1RA09026G crossref_primary_10_1016_j_bcp_2020_113796 crossref_primary_10_7554_eLife_95488 crossref_primary_10_1007_s00228_022_03338_7 crossref_primary_10_1080_14740338_2020_1826435 crossref_primary_10_1124_dmd_124_001841 crossref_primary_10_1016_j_dmd_2025_100067 crossref_primary_10_7554_eLife_95488_3 crossref_primary_10_1002_cpt_2691 crossref_primary_10_22376_ijpbs_lpr_2021_11_5_P41_50 crossref_primary_10_3389_fimmu_2021_766272 crossref_primary_10_1002_bcp_70018 crossref_primary_10_1016_j_ejmech_2023_115514 crossref_primary_10_1016_j_jpba_2025_116664 crossref_primary_10_1186_s11671_024_04157_8 crossref_primary_10_1021_acs_jmedchem_4c00776 crossref_primary_10_1080_17512433_2021_1978288 crossref_primary_10_1124_jpet_122_001116 crossref_primary_10_3389_fphar_2022_960186 crossref_primary_10_1007_s11095_022_03268_0 crossref_primary_10_1111_bcp_15087 crossref_primary_10_1002_cpdd_763 crossref_primary_10_1002_sscp_202400110 crossref_primary_10_3390_pharmaceutics13040557 crossref_primary_10_1002_jcph_2013 crossref_primary_10_1111_vde_12841 crossref_primary_10_1124_dmd_121_000798 crossref_primary_10_1016_j_jpba_2020_113613 crossref_primary_10_1002_cpdd_1153 crossref_primary_10_1002_cpdd_1271 crossref_primary_10_1016_j_jchromb_2020_122466 crossref_primary_10_1002_cpt_3121 |
Cites_doi | 10.1124/dmd.110.032649 10.1517/17425255.4.8.1021 10.1124/dmd.116.072983 10.2174/187231210792928206 10.1517/phgs.5.3.243.29833 10.1007/s00280-011-1803-9 10.1021/jm3003203 10.1177/0091270005280051 10.1124/jpet.117.242909 10.2174/1872312808666140317151735 10.1200/JCO.2013.53.1046 10.1002/anie.201601091 10.1056/NEJMoa1509981 10.1038/nrd3410 10.1038/clpt.1981.56 10.1016/S0140-6736(17)33108-2 10.1124/dmd.114.062174 10.2174/157488612803251324 10.1016/j.chembiol.2012.12.006 10.1124/dmd.115.069203 10.1124/dmd.114.061424 10.1016/j.drudis.2018.01.035 10.3109/08830185.2012.664797 10.1124/dmd.114.060061 10.1039/C7CS00220C |
ContentType | Journal Article |
Copyright | 2019 American Society for Pharmacology and Experimental Therapeutics Copyright © 2019 by The Author(s). Copyright Lippincott Williams & Wilkins Ovid Technologies Feb 1, 2019 |
Copyright_xml | – notice: 2019 American Society for Pharmacology and Experimental Therapeutics – notice: Copyright © 2019 by The Author(s). – notice: Copyright Lippincott Williams & Wilkins Ovid Technologies Feb 1, 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 7U7 8FD C1K FR3 P64 7X8 |
DOI | 10.1124/dmd.118.084459 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1521-009X |
EndPage | 154 |
ExternalDocumentID | 30442651 10_1124_dmd_118_084459 S0090955624079091 |
Genre | Research Support, Non-U.S. Gov't Journal Article Clinical Trial, Phase I |
GroupedDBID | --- .GJ 0R~ 18M 2WC 4.4 53G 5GY 5RE 5VS AAXUO ABJNI ABSQV ACGFO ACGFS ACIWK ACPRK ADBBV AENEX AERNN AFFNX AFOSN AFRAH AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CS3 DIK DU5 E3Z EBS EJD F5P F9R FDB GX1 H13 HZ~ IH2 INIJC KQ8 LSO M41 O9- OK1 P2P R0Z RHI ROL RPT SJN TR2 VH1 W8F WH7 WOQ YCJ YHG ZGI ZXP ~KM AALRI AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 7U7 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c412t-d1b39e021dee4a2a3e1ce0be71bd6bc7978535140beb673984dac36e751db51d3 |
ISSN | 0090-9556 1521-009X |
IngestDate | Thu Jul 10 21:11:18 EDT 2025 Mon Jun 30 12:03:12 EDT 2025 Mon Jul 21 05:43:53 EDT 2025 Tue Jul 01 05:26:25 EDT 2025 Thu Apr 24 22:55:45 EDT 2025 Sun Apr 06 06:53:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | FDA MS/MS AUC t1/2 ACP-5862 ACP-5461 GSH LSC HPLC BCRP ADME MS AMS CL GST PBMC CV HER LC Tmax ACP-5530 ACP-5134 BTK ACP-5531 PK TCI ACP-5197 |
Language | English |
License | Copyright © 2019 by The Author(s). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c412t-d1b39e021dee4a2a3e1ce0be71bd6bc7978535140beb673984dac36e751db51d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://dmd.aspetjournals.org/content/dmd/47/2/145.full.pdf |
PMID | 30442651 |
PQID | 2202777575 |
PQPubID | 2048316 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2135131107 proquest_journals_2202777575 pubmed_primary_30442651 crossref_primary_10_1124_dmd_118_084459 crossref_citationtrail_10_1124_dmd_118_084459 elsevier_sciencedirect_doi_10_1124_dmd_118_084459 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2019 2019-02-00 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | Drug metabolism and disposition |
PublicationTitleAlternate | Drug Metab Dispos |
PublicationYear | 2019 |
Publisher | Elsevier Inc American Society for Pharmacology and Experimental Therapeutics, Inc |
Publisher_xml | – name: Elsevier Inc – name: American Society for Pharmacology and Experimental Therapeutics, Inc |
References | Sarapa, Hsyu, Lappin, Garner (bib18) 2005; 45 Barf, Kaptein (bib3) 2012; 55 Barf, Covey, Izumi, van de Kar, Gulrajani, van Lith, van Hoek, de Zwart, Mittag, Demont (bib2) 2017; 363 Gertz, Harrison, Houston, Galetin (bib8) 2010; 38 Hamilton, Garnett, Kline (bib9) 1981; 29 Shibata, Chiba (bib20) 2015; 43 Zhao, Bourne (bib25) 2018; 23 Lonsdale, Ward (bib15) 2018; 47 Baillie (bib1) 2016; 55 Scheers, Leclercq, de Jong, Bode, Bockx, Laenen, Cuyckens, Skee, Murphy, Sukbuntherng (bib19) 2015; 43 Leung, Yang, Strelevitz, Montgomery, Brown, Zientek, Banfield, Gilbert, Thorarensen, Dowty (bib13) 2017; 45 Stopfer, Marzin, Narjes, Gansser, Shahidi, Uttereuther-Fischer, Ebner (bib22) 2012; 69 Xie, Wood, Kim, Stein, Wilkinson (bib24) 2004; 5 Krivoy, Zuckerman, Elkin, Froymovich, Rowe, Efrati (bib10) 2012; 7 Singh, Petter, Baillie, Whitty (bib21) 2011; 10 Ponader, Burger (bib17) 2014; 32 Buggy, Elias (bib4) 2012; 31 Byrd, Harrington, O’Brien, Jones, Schuh, Devereux, Chaves, Wierda, Awan, Brown (bib5) 2016; 374 Moghaddam, Tang, O’Brien, Richardson, Bacolod, Chaturedi, Apuy, Kulkarni (bib16) 2014; 8 Dickinson, Cantarini, Collier, Frewer, Martin, Pickup, Ballard (bib7) 2016; 44 Wang, Rule, Zinzani, Goy, Casasnovas, Smith, Damaj, Doorduijn, Lamy, Morschhauser (bib23) 2018; 391 Lappin, Stevens (bib11) 2008; 4 Lee, O’Connor, Ritchie, Galetin, Cook, Ragueneau-Majlessi, Ellens, Feng, Taub, Paine (bib12) 2015; 43 Liu, Sabnis, Zhao, Zhang, Buhrlage, Jones, Gray (bib14) 2013; 20 Chandrasekaran, Shen, Lockhead, Oganesian, Wang, Scatina (bib6) 2010; 4 Baillie (10.1124/dmd.118.084459_bib1) 2016; 55 Liu (10.1124/dmd.118.084459_bib14) 2013; 20 Hamilton (10.1124/dmd.118.084459_bib9) 1981; 29 Scheers (10.1124/dmd.118.084459_bib19) 2015; 43 Lee (10.1124/dmd.118.084459_bib12) 2015; 43 Moghaddam (10.1124/dmd.118.084459_bib16) 2014; 8 Xie (10.1124/dmd.118.084459_bib24) 2004; 5 Byrd (10.1124/dmd.118.084459_bib5) 2016; 374 Sarapa (10.1124/dmd.118.084459_bib18) 2005; 45 Chandrasekaran (10.1124/dmd.118.084459_bib6) 2010; 4 Ponader (10.1124/dmd.118.084459_bib17) 2014; 32 Leung (10.1124/dmd.118.084459_bib13) 2017; 45 Wang (10.1124/dmd.118.084459_bib23) 2018; 391 Barf (10.1124/dmd.118.084459_bib2) 2017; 363 Gertz (10.1124/dmd.118.084459_bib8) 2010; 38 Stopfer (10.1124/dmd.118.084459_bib22) 2012; 69 Shibata (10.1124/dmd.118.084459_bib20) 2015; 43 Lonsdale (10.1124/dmd.118.084459_bib15) 2018; 47 Krivoy (10.1124/dmd.118.084459_bib10) 2012; 7 Lappin (10.1124/dmd.118.084459_bib11) 2008; 4 Singh (10.1124/dmd.118.084459_bib21) 2011; 10 Barf (10.1124/dmd.118.084459_bib3) 2012; 55 Zhao (10.1124/dmd.118.084459_bib25) 2018; 23 Buggy (10.1124/dmd.118.084459_bib4) 2012; 31 Dickinson (10.1124/dmd.118.084459_bib7) 2016; 44 |
References_xml | – volume: 32 start-page: 1830 year: 2014 end-page: 1839 ident: bib17 article-title: Bruton’s tyrosine kinase: from X-linked agammaglobulinemia toward targeted therapy for B-cell malignancies publication-title: J Clin Oncol – volume: 43 start-page: 375 year: 2015 end-page: 384 ident: bib20 article-title: The role of extrahepatic metabolism in the pharmacokinetics of the targeted covalent inhibitors afatinib, ibrutinib, and neratinib publication-title: Drug Metab Dispos – volume: 43 start-page: 490 year: 2015 end-page: 509 ident: bib12 article-title: Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design publication-title: Drug Metab Dispos – volume: 4 start-page: 220 year: 2010 end-page: 227 ident: bib6 article-title: Reversible covalent binding of neratinib to human serum albumin in vitro publication-title: Drug Metab Lett – volume: 55 start-page: 13408 year: 2016 end-page: 13421 ident: bib1 article-title: Targeted covalent inhibitors for drug design publication-title: Angew Chem Int Ed Engl – volume: 55 start-page: 6243 year: 2012 end-page: 6262 ident: bib3 article-title: Irreversible protein kinase inhibitors: balancing the benefits and risks publication-title: J Med Chem – volume: 44 start-page: 1201 year: 2016 end-page: 1212 ident: bib7 article-title: Metabolic disposition of osimertinib in rats, dogs, and humans: insights into a drug designed to bind covalently to a cysteine residue of epidermal growth factor receptor publication-title: Drug Metab Dispos – volume: 7 start-page: 211 year: 2012 end-page: 217 ident: bib10 article-title: Pharmacokinetic and pharmacogenetic analysis of oral busulfan in stem cell transplantation: prediction of poor drug metabolism to prevent drug toxicity publication-title: Curr Drug Saf – volume: 20 start-page: 146 year: 2013 end-page: 159 ident: bib14 article-title: Developing irreversible inhibitors of the protein kinase cysteinome publication-title: Chem Biol – volume: 31 start-page: 119 year: 2012 end-page: 132 ident: bib4 article-title: Bruton tyrosine kinase (BTK) and its role in B-cell malignancy publication-title: Int Rev Immunol – volume: 45 start-page: 1198 year: 2005 end-page: 1205 ident: bib18 article-title: The application of accelerator mass spectrometry to absolute bioavailability studies in humans: simultaneous administration of an intravenous microdose of 14C-nelfinavir mesylate solution and oral nelfinavir to healthy volunteers publication-title: J Clin Pharmacol – volume: 391 start-page: 659 year: 2018 end-page: 667 ident: bib23 article-title: Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial publication-title: Lancet – volume: 363 start-page: 240 year: 2017 end-page: 252 ident: bib2 article-title: Acalabrutinib (ACP-196): a covalent Bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile publication-title: J Pharmacol Exp Ther – volume: 43 start-page: 289 year: 2015 end-page: 297 ident: bib19 article-title: Absorption, metabolism, and excretion of oral 14C radiolabeled ibrutinib: an open-label, phase I, single-dose study in healthy men publication-title: Drug Metab Dispos – volume: 4 start-page: 1021 year: 2008 end-page: 1033 ident: bib11 article-title: Biomedical accelerator mass spectrometry: recent applications in metabolism and pharmacokinetics publication-title: Expert Opin Drug Metab Toxicol – volume: 23 start-page: 727 year: 2018 end-page: 735 ident: bib25 article-title: Progress with covalent small-molecule kinase inhibitors publication-title: Drug Discov Today – volume: 69 start-page: 1051 year: 2012 end-page: 1061 ident: bib22 article-title: Afatinib pharmacokinetics and metabolism after oral administration to healthy male volunteers publication-title: Cancer Chemother Pharmacol – volume: 8 start-page: 19 year: 2014 end-page: 30 ident: bib16 article-title: A proposed screening paradigm for discovery of covalent inhibitor drugs publication-title: Drug Metab Lett – volume: 10 start-page: 307 year: 2011 end-page: 317 ident: bib21 article-title: The resurgence of covalent drugs publication-title: Nat Rev Drug Discov – volume: 45 start-page: 1 year: 2017 end-page: 7 ident: bib13 article-title: Clearance prediction of targeted covalent inhibitors by in vitro-in vivo extrapolation of hepatic and extrahepatic clearance mechanisms publication-title: Drug Metab Dispos – volume: 29 start-page: 408 year: 1981 end-page: 413 ident: bib9 article-title: Determination of mean valproic acid serum level by assay of a single pooled sample publication-title: Clin Pharmacol Ther – volume: 5 start-page: 243 year: 2004 end-page: 272 ident: bib24 article-title: Genetic variability in CYP3A5 and its possible consequences publication-title: Pharmacogenomics – volume: 38 start-page: 1147 year: 2010 end-page: 1158 ident: bib8 article-title: Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data publication-title: Drug Metab Dispos – volume: 374 start-page: 323 year: 2016 end-page: 332 ident: bib5 article-title: Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia publication-title: N Engl J Med – volume: 47 start-page: 3816 year: 2018 end-page: 3830 ident: bib15 article-title: Structure-based design of targeted covalent inhibitors publication-title: Chem Soc Rev – volume: 38 start-page: 1147 year: 2010 ident: 10.1124/dmd.118.084459_bib8 article-title: Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data publication-title: Drug Metab Dispos doi: 10.1124/dmd.110.032649 – volume: 4 start-page: 1021 year: 2008 ident: 10.1124/dmd.118.084459_bib11 article-title: Biomedical accelerator mass spectrometry: recent applications in metabolism and pharmacokinetics publication-title: Expert Opin Drug Metab Toxicol doi: 10.1517/17425255.4.8.1021 – volume: 45 start-page: 1 year: 2017 ident: 10.1124/dmd.118.084459_bib13 article-title: Clearance prediction of targeted covalent inhibitors by in vitro-in vivo extrapolation of hepatic and extrahepatic clearance mechanisms publication-title: Drug Metab Dispos doi: 10.1124/dmd.116.072983 – volume: 4 start-page: 220 year: 2010 ident: 10.1124/dmd.118.084459_bib6 article-title: Reversible covalent binding of neratinib to human serum albumin in vitro publication-title: Drug Metab Lett doi: 10.2174/187231210792928206 – volume: 5 start-page: 243 year: 2004 ident: 10.1124/dmd.118.084459_bib24 article-title: Genetic variability in CYP3A5 and its possible consequences publication-title: Pharmacogenomics doi: 10.1517/phgs.5.3.243.29833 – volume: 69 start-page: 1051 year: 2012 ident: 10.1124/dmd.118.084459_bib22 article-title: Afatinib pharmacokinetics and metabolism after oral administration to healthy male volunteers publication-title: Cancer Chemother Pharmacol doi: 10.1007/s00280-011-1803-9 – volume: 55 start-page: 6243 year: 2012 ident: 10.1124/dmd.118.084459_bib3 article-title: Irreversible protein kinase inhibitors: balancing the benefits and risks publication-title: J Med Chem doi: 10.1021/jm3003203 – volume: 45 start-page: 1198 year: 2005 ident: 10.1124/dmd.118.084459_bib18 article-title: The application of accelerator mass spectrometry to absolute bioavailability studies in humans: simultaneous administration of an intravenous microdose of 14C-nelfinavir mesylate solution and oral nelfinavir to healthy volunteers publication-title: J Clin Pharmacol doi: 10.1177/0091270005280051 – volume: 363 start-page: 240 year: 2017 ident: 10.1124/dmd.118.084459_bib2 article-title: Acalabrutinib (ACP-196): a covalent Bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.117.242909 – volume: 8 start-page: 19 year: 2014 ident: 10.1124/dmd.118.084459_bib16 article-title: A proposed screening paradigm for discovery of covalent inhibitor drugs publication-title: Drug Metab Lett doi: 10.2174/1872312808666140317151735 – volume: 32 start-page: 1830 year: 2014 ident: 10.1124/dmd.118.084459_bib17 article-title: Bruton’s tyrosine kinase: from X-linked agammaglobulinemia toward targeted therapy for B-cell malignancies publication-title: J Clin Oncol doi: 10.1200/JCO.2013.53.1046 – volume: 55 start-page: 13408 year: 2016 ident: 10.1124/dmd.118.084459_bib1 article-title: Targeted covalent inhibitors for drug design publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201601091 – volume: 374 start-page: 323 year: 2016 ident: 10.1124/dmd.118.084459_bib5 article-title: Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia publication-title: N Engl J Med doi: 10.1056/NEJMoa1509981 – volume: 10 start-page: 307 year: 2011 ident: 10.1124/dmd.118.084459_bib21 article-title: The resurgence of covalent drugs publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3410 – volume: 29 start-page: 408 year: 1981 ident: 10.1124/dmd.118.084459_bib9 article-title: Determination of mean valproic acid serum level by assay of a single pooled sample publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.1981.56 – volume: 391 start-page: 659 year: 2018 ident: 10.1124/dmd.118.084459_bib23 article-title: Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial publication-title: Lancet doi: 10.1016/S0140-6736(17)33108-2 – volume: 43 start-page: 490 year: 2015 ident: 10.1124/dmd.118.084459_bib12 article-title: Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design publication-title: Drug Metab Dispos doi: 10.1124/dmd.114.062174 – volume: 7 start-page: 211 year: 2012 ident: 10.1124/dmd.118.084459_bib10 article-title: Pharmacokinetic and pharmacogenetic analysis of oral busulfan in stem cell transplantation: prediction of poor drug metabolism to prevent drug toxicity publication-title: Curr Drug Saf doi: 10.2174/157488612803251324 – volume: 20 start-page: 146 year: 2013 ident: 10.1124/dmd.118.084459_bib14 article-title: Developing irreversible inhibitors of the protein kinase cysteinome publication-title: Chem Biol doi: 10.1016/j.chembiol.2012.12.006 – volume: 44 start-page: 1201 year: 2016 ident: 10.1124/dmd.118.084459_bib7 article-title: Metabolic disposition of osimertinib in rats, dogs, and humans: insights into a drug designed to bind covalently to a cysteine residue of epidermal growth factor receptor publication-title: Drug Metab Dispos doi: 10.1124/dmd.115.069203 – volume: 43 start-page: 375 year: 2015 ident: 10.1124/dmd.118.084459_bib20 article-title: The role of extrahepatic metabolism in the pharmacokinetics of the targeted covalent inhibitors afatinib, ibrutinib, and neratinib publication-title: Drug Metab Dispos doi: 10.1124/dmd.114.061424 – volume: 23 start-page: 727 year: 2018 ident: 10.1124/dmd.118.084459_bib25 article-title: Progress with covalent small-molecule kinase inhibitors publication-title: Drug Discov Today doi: 10.1016/j.drudis.2018.01.035 – volume: 31 start-page: 119 year: 2012 ident: 10.1124/dmd.118.084459_bib4 article-title: Bruton tyrosine kinase (BTK) and its role in B-cell malignancy publication-title: Int Rev Immunol doi: 10.3109/08830185.2012.664797 – volume: 43 start-page: 289 year: 2015 ident: 10.1124/dmd.118.084459_bib19 article-title: Absorption, metabolism, and excretion of oral 14C radiolabeled ibrutinib: an open-label, phase I, single-dose study in healthy men publication-title: Drug Metab Dispos doi: 10.1124/dmd.114.060061 – volume: 47 start-page: 3816 year: 2018 ident: 10.1124/dmd.118.084459_bib15 article-title: Structure-based design of targeted covalent inhibitors publication-title: Chem Soc Rev doi: 10.1039/C7CS00220C |
SSID | ssj0014439 |
Score | 2.486489 |
Snippet | Acalabrutinib is a targeted, covalent inhibitor of Bruton tyrosine kinase (BTK) with a unique 2-butynamide warhead that has relatively lower reactivity than... Acalabrutinib |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 145 |
SubjectTerms | Absorption Acrylamide Administration, Oral Adult Agammaglobulinaemia Tyrosine Kinase - antagonists & inhibitors Animals Antineoplastic Agents - analysis Antineoplastic Agents - metabolism Antineoplastic Agents - pharmacology Benzamide Benzamides - analysis Benzamides - metabolism Benzamides - pharmacology Bioavailability Biological Availability Biotransformation Blood cells Bruton's tyrosine kinase Carbon 14 Conjugation Covalence Cytochrome P-450 CYP3A - metabolism Dogs Economic conditions Enzyme inhibitors Excretion Feces - chemistry Female Glutathione Half-Life Healthy Volunteers Humans Hydrolysis Inhibitors Intestinal Absorption Intravenous administration Kinases Liquid chromatography Low concentrations Lymphoma, Mantle-Cell - drug therapy Male Mass spectrometry Mass spectroscopy Metabolism Metabolites Middle Aged Occupancy Oxidation Oxidation-Reduction Peripheral blood Protein Kinase Inhibitors - analysis Protein Kinase Inhibitors - metabolism Protein Kinase Inhibitors - pharmacology Pyrazines - analysis Pyrazines - metabolism Pyrazines - pharmacology Pyrrolidine Radioactive half-life Radioactivity Rats Rats, Sprague-Dawley Thioethers Tyrosine Tyrosine kinase inhibitors Urine Urine - chemistry Young Adult |
Title | Bioavailability, Biotransformation, and Excretion of the Covalent Bruton Tyrosine Kinase Inhibitor Acalabrutinib in Rats, Dogs, and Humans |
URI | https://dx.doi.org/10.1124/dmd.118.084459 https://www.ncbi.nlm.nih.gov/pubmed/30442651 https://www.proquest.com/docview/2202777575 https://www.proquest.com/docview/2135131107 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFjXthICOh8UBT4sS5PXIZDCahgTppb5GduBCpJFObIspP4PfwAzknx0nTbZUGD42i1HbSni_H37HPhbFnMvaFB-BxtNKeA_bX1Il1Lp0o0XHuChWH5CD7KTw8kR9Pg9PB4E_Pa2lZ63H269K4kv-RKlwDuWKU7D9IthsULsA5yBeOIGE4XknGr4tK_VDFjHJtU8nooqp7XJT21HFx_OBnhgGLRA_rplodPAp6AoB4MbfGZAUTJnLOo6KEqQ00x7dCw_ve-NDDLaBVURYaF0i-qNqyb1pYx_Gb3YBFn-u-nS-_YoVqgNmsLcWRF52bWKeUwTCmvY-Jma-dkkFXz200GHovvng_7pH_eW3D0HodPpToRICxjMqCsL-igUFUnXeI1dKJ6yQBJRxvtTTl5bRo9HoqV1A6Sjt7C0pJfXFi8CRIM_-ew2k8dmMpbSLyjQzc52bGzl-xsZQ8mUJ_OIlT6n-NXffAOEHtevR5vXclpU9Gl_0VNlUo9H-5ef9tVGibqdNQnskuu2ltFf6KgHeLDUx5m-0fU7Lz1YhP1rF7ixHf58frNOirO-z3OXSO-AVsjjhggnfI5NWUAzJ5i0xOyOQtMjkhk3fI5BvI5EXJEZkjjriksQmVd9nJu4PJm0PHVv5wMim82smF9hMD9DM3RipP-UZkxtUmEjoPdRYlEbBMoPpwSYeRn8QyV5kfmigQuYaPf4_tlFVpHjAeyyBTuBmdTafwpwcqdDOlI5V4MZgCyh0ypxVCmtm0-FidZZZeLvQhe961P6OEMFtbilamqaWzRFNTAOXWPnut8FOraBaphwuUUQSG1ZA97b6GaQD39lRpqiW0wUqbPi7mDNl9Ak33eL4rgYcH4uGVH_0Ru7F-MffYTj1fmsdAvmv9pMH6X5LU3HI |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioavailability%2C+Biotransformation%2C+and+Excretion+of+the+Covalent+Bruton+Tyrosine+Kinase+Inhibitor+Acalabrutinib+in+Rats%2C+Dogs%2C+and+Humans&rft.jtitle=Drug+metabolism+and+disposition&rft.au=Podoll%2C+Terry&rft.au=Pearson%2C+Paul+G.&rft.au=Evarts%2C+Jerry&rft.au=Ingallinera%2C+Tim&rft.date=2019-02-01&rft.issn=0090-9556&rft.volume=47&rft.issue=2&rft.spage=145&rft.epage=154&rft_id=info:doi/10.1124%2Fdmd.118.084459&rft.externalDBID=n%2Fa&rft.externalDocID=10_1124_dmd_118_084459 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-9556&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-9556&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-9556&client=summon |