Nuclear quantum effects in molecular dynamics simulations
To take into account nuclear quantum effects on the dynamics of atoms, the path integral molecular dynamics (PIMD) method used since 1980s is based on the formalism developed by R. P. Feynman. However, the huge computation time required for the PIMD reduces its range of applicability. Another drawba...
Saved in:
Published in | Journal of physics. Conference series Vol. 1136; no. 1; pp. 12014 - 12022 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.12.2018
IOP Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To take into account nuclear quantum effects on the dynamics of atoms, the path integral molecular dynamics (PIMD) method used since 1980s is based on the formalism developed by R. P. Feynman. However, the huge computation time required for the PIMD reduces its range of applicability. Another drawback is the requirement of additional techniques to access time correlation functions (ring polymer MD or centroid MD). We developed an alternative technique based on a quantum thermal bath (QTB) which reduces the computation time by a factor of ∼20. The QTB approach consists in a classical Langevin dynamics in which the white noise random force is replaced by a Gaussian random force having the power spectral density given by the quantum fluctuation-dissipation theorem. The method has yielded satisfactory results for weakly anharmonic systems: the quantum harmonic oscillator, the heat capacity of a MgO crystal, and isotope effects in 7LiH and 7LiD. Unfortunately, the QTB is subject to the problem of zero-point energy leakage (ZPEL) in highly anharmonic systems, which is inherent in the use of classical mechanics. Indeed, a part of the energy of the high-frequency modes is transferred to the low-frequency modes leading to a wrong energy distribution. We have shown that in order to reduce or even eliminate ZPEL, it is sufficient to increase the value of the frictional coefficient. Another way to solve the ZPEL problem is to combine the QTB and PIMD techniques. It requires the modification of the power spectral density of the random force within the QTB. This combination can also be seen as a way to speed up the PIMD. |
---|---|
AbstractList | To take into account nuclear quantum effects on the dynamics of atoms, the path integral molecular dynamics (PIMD) method used since 1980s is based on the formalism developed by R. P. Feynman. However, the huge computation time required for the PIMD reduces its range of applicability. Another drawback is the requirement of additional techniques to access time correlation functions (ring polymer MD or centroid MD). We developed an alternative technique based on a quantum thermal bath (QTB) which reduces the computation time by a factor of ~20. The QTB approach consists in a classical Langevin dynamics in which the white noise random force is replaced by a Gaussian random force having the power spectral density given by the quantum fluctuation-dissipation theorem. The method has yielded satisfactory results for weakly anharmonic systems: the quantum harmonic oscillator, the heat capacity of a MgO crystal, and isotope effects in 7 LiH and 7 LiD. Unfortunately, the QTB is subject to the problem of zero-point energy leakage (ZPEL) in highly anharmonic systems, which is inherent in the use of classical mechanics. Indeed, a part of the energy of the high-frequency modes is transferred to the low-frequency modes leading to a wrong energy distribution. We have shown that in order to reduce or even eliminate ZPEL, it is sufficient to increase the value of the frictional coefficient. Another way to solve the ZPEL problem is to combine the QTB and PIMD techniques. It requires the modification of the power spectral density of the random force within the QTB. This combination can also be seen as a way to speed up the PIMD. To take into account nuclear quantum effects on the dynamics of atoms, the path integral molecular dynamics (PIMD) method used since 1980s is based on the formalism developed by R. P. Feynman. However, the huge computation time required for the PIMD reduces its range of applicability. Another drawback is the requirement of additional techniques to access time correlation functions (ring polymer MD or centroid MD). We developed an alternative technique based on a quantum thermal bath (QTB) which reduces the computation time by a factor of ∼20. The QTB approach consists in a classical Langevin dynamics in which the white noise random force is replaced by a Gaussian random force having the power spectral density given by the quantum fluctuation-dissipation theorem. The method has yielded satisfactory results for weakly anharmonic systems: the quantum harmonic oscillator, the heat capacity of a MgO crystal, and isotope effects in 7LiH and 7LiD. Unfortunately, the QTB is subject to the problem of zero-point energy leakage (ZPEL) in highly anharmonic systems, which is inherent in the use of classical mechanics. Indeed, a part of the energy of the high-frequency modes is transferred to the low-frequency modes leading to a wrong energy distribution. We have shown that in order to reduce or even eliminate ZPEL, it is sufficient to increase the value of the frictional coefficient. Another way to solve the ZPEL problem is to combine the QTB and PIMD techniques. It requires the modification of the power spectral density of the random force within the QTB. This combination can also be seen as a way to speed up the PIMD. |
Author | Brieuc, F Hayoun, M Dammak, H Geneste, G |
Author_xml | – sequence: 1 givenname: H surname: Dammak fullname: Dammak, H email: hichem.dammak@centralesupelec.fr organization: Laboratoire Structures Propriétés et Modélisation des Solides, CentraleSupélec, CNRS, Université Paris-Saclay , France – sequence: 2 givenname: M surname: Hayoun fullname: Hayoun, M organization: Laboratoire des Solides Irradiés, Ecole Polytechnique, CNRS, CEA, Université Paris-Saclay , France – sequence: 3 givenname: F surname: Brieuc fullname: Brieuc, F organization: Laboratoire Structures Propriétés et Modélisation des Solides, CentraleSupélec, CNRS, Université Paris-Saclay , France – sequence: 4 givenname: G surname: Geneste fullname: Geneste, G organization: CEA, DAM, DIF , France |
BackLink | https://hal.science/hal-02121517$$DView record in HAL |
BookMark | eNqNkE1LAzEQhoNUsFV_gwuePKzNx2aTHDyUolYoetFzSPOBKfvRJrtC_71ZVyp40Tlkhpn3nQzPDEyatrEAXCF4iyDnc8QKnJdUlHOESHrmEGGIihMwPU4mx5rzMzCLcQshScGmQDz3urIqZPteNV1fZ9Y5q7uY-Sar28rqvkpDc2hU7XXMoq9To_NtEy_AqVNVtJff-Ry8Pdy_Llf5-uXxablY57pAuMu1IcaxojBaU7NRUJfQCJf-L4UyG7NxG0EFJYpjywuhIeSMEM4cwY5qrRU5Bzfj3ndVyV3wtQoH2SovV4u1HHoQI4woYh8oaa9H7S60-97GTm7bPjTpPIlpSQuERMmSio0qHdoYg3XHtQjKgakcaMmBnByYSiRHpsl598upffeFowvKV__wk9Hv293PaX-5PgEvOozF |
CitedBy_id | crossref_primary_10_3390_e26030214 crossref_primary_10_1103_PhysRevB_105_064104 crossref_primary_10_1021_acs_jpca_1c07727 crossref_primary_10_1088_1361_648X_ad68b0 crossref_primary_10_1088_1361_648X_adbb9c |
Cites_doi | 10.1016/j.cplett.2012.09.013 10.1029/JB088iB04p03549 10.1088/0953-8984/24/43/435402 10.1103/PhysRev.83.34 10.1103/PhysRevE.76.026706 10.1103/PhysRevB.87.014113 10.1103/PhysRevB.76.094105 10.1016/j.cpc.2005.03.072 10.1039/c3cp50493j 10.1103/PhysRevB.89.214101 10.1063/1.468071 10.1039/c2cp41663h 10.1103/PhysRevLett.103.190601 10.1107/S0021889868005418 10.1063/1.1755657 10.1021/acs.jctc.6b00684 10.1103/PhysRevB.52.6301 10.1103/PhysRevB.50.11313 10.1103/PhysRevB.53.5047 10.1103/PhysRevB.84.224301 10.1021/acs.jctc.5b01146 10.1103/PhysRevB.86.064305 |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd 2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC VOOES |
DOI | 10.1088/1742-6596/1136/1/012014 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Nuclear quantum effects in molecular dynamics simulations |
EISSN | 1742-6596 |
ExternalDocumentID | oai_HAL_hal_02121517v1 10_1088_1742_6596_1136_1_012014 JPCS_1136_1_012014 |
GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP AALHV ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EJD EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 02O 1WK AAYXX ACARI AERVB AGQPQ AHSEE ARNYC BBWZM C1A CITATION FEDTE H13 HVGLF JCGBZ M48 OVT PHGZM PHGZT Q02 S3P 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC VOOES |
ID | FETCH-LOGICAL-c412t-cd3df744dcc5dba0c60d9f00369adbdbfb95953a82e849c00873387f32f5ccca3 |
IEDL.DBID | O3W |
ISSN | 1742-6588 |
IngestDate | Fri May 09 12:17:39 EDT 2025 Mon Jul 14 10:35:00 EDT 2025 Tue Jul 01 04:14:33 EDT 2025 Thu Apr 24 22:52:15 EDT 2025 Wed Aug 21 03:33:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. http://iopscience.iop.org/info/page/text-and-data-mining http://creativecommons.org/licenses/by/3.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-cd3df744dcc5dba0c60d9f00369adbdbfb95953a82e849c00873387f32f5ccca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5744-4206 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1742-6596/1136/1/012014 |
PQID | 2565411967 |
PQPubID | 4998668 |
PageCount | 9 |
ParticipantIDs | hal_primary_oai_HAL_hal_02121517v1 crossref_primary_10_1088_1742_6596_1136_1_012014 iop_journals_10_1088_1742_6596_1136_1_012014 crossref_citationtrail_10_1088_1742_6596_1136_1_012014 proquest_journals_2565411967 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20181201 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 20181201 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of physics. Conference series |
PublicationTitleAlternate | J. Phys.: Conf. Ser |
PublicationYear | 2018 |
Publisher | IOP Publishing IOP Science |
Publisher_xml | – name: IOP Publishing – name: IOP Science |
References | 22 23 24 25 27 28 Ashcroft N W (1) 1976 Dammak H (20) 2012; 24 11 12 13 14 15 16 17 18 19 Brieuc F (26) 2016 2 Tuckerman M E (4) 2010 3 5 6 7 8 9 Lines E (10) 1979 21 |
References_xml | – year: 1976 ident: 1 publication-title: Solid State Physics – ident: 28 doi: 10.1016/j.cplett.2012.09.013 – ident: 2 doi: 10.1029/JB088iB04p03549 – volume: 24 issn: 0953-8984 year: 2012 ident: 20 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/24/43/435402 – ident: 17 doi: 10.1103/PhysRev.83.34 – ident: 27 doi: 10.1103/PhysRevE.76.026706 – ident: 8 doi: 10.1103/PhysRevB.87.014113 – ident: 9 doi: 10.1103/PhysRevB.76.094105 – ident: 12 doi: 10.1016/j.cpc.2005.03.072 – ident: 23 doi: 10.1039/c3cp50493j – ident: 24 doi: 10.1103/PhysRevB.89.214101 – start-page: 475 year: 2010 ident: 4 publication-title: Statistical Mechanics: Theory and Molecular simulation – ident: 5 doi: 10.1103/PhysRev.83.34 – ident: 25 doi: 10.1063/1.468071 – ident: 21 doi: 10.1039/c2cp41663h – ident: 6 doi: 10.1103/PhysRevLett.103.190601 – ident: 15 – ident: 3 doi: 10.1107/S0021889868005418 – ident: 11 doi: 10.1063/1.1755657 – ident: 19 doi: 10.1021/acs.jctc.6b00684 – year: 1979 ident: 10 publication-title: Principles and Applications of Ferroelectrics and Related Materials – ident: 14 doi: 10.1103/PhysRevB.52.6301 – ident: 16 doi: 10.1103/PhysRevB.50.11313 – ident: 13 doi: 10.1103/PhysRevB.53.5047 – ident: 18 doi: 10.1103/PhysRevB.84.224301 – ident: 7 doi: 10.1021/acs.jctc.5b01146 – ident: 22 doi: 10.1103/PhysRevB.86.064305 – year: 2016 ident: 26 |
SSID | ssj0033337 |
Score | 2.224789 |
Snippet | To take into account nuclear quantum effects on the dynamics of atoms, the path integral molecular dynamics (PIMD) method used since 1980s is based on the... |
SourceID | hal proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12014 |
SubjectTerms | Access time Anharmonicity Centroids Chemical Sciences Classical mechanics Computational Physics Computing time Condensed Matter Cristallography Energy distribution Harmonic oscillators Material chemistry Molecular dynamics Physics Power spectral density Quantum mechanics Quantum Physics Statistical Mechanics Thermal baths Time correlation functions White noise Zero point energy |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA9uQ_BF_MTplCI-WtaPtE2eZMrGEB0iDvYWmqTBgfvs5t_vXZtuiOD60Ic0ycNdepdL7n4_Qu5M4qWIouJSYyi8VOpypWNX8URHPJCJLmphXgdxf0ifR9HIHrjlNq2ysomFodYzhWfkbXDNEfVhvSQP84WLrFF4u2opNGqkASaYQfDVeOwO3t4rWxzCk5QlkYELvpZVGV4Q9tk2HreR1qTtt7GM1Ke__FPtE7Mja-PZ_I-pLvxP74gc2o2j0yk1fUz2sukJ2S8SOFV-SvgAgYnTpbNYg6zWE8cmajjjqTOpKHAdXfLP504-nljervyMDHvdj6e-a2kRXEX9YOUqHWqTUKqVirRMPRV7mhsEluGplloaySMehSkLMka5QtA5iEMTEwYmUqCw8JzUp7NpdkGc0EgpKfTSscLAhPE08jIaaJn5KWdek8SVMISymOFIXfElirtrxgRKUaAUBUpR-KKUYpN4m4HzEjZj95BbkPamN8Je9zsvAtsQhh52Jsm33yT3oAxh_7N895ytSmvbMduVdPn_5ytyAJOwMnmlReqr5Tq7hi3ISt7YdfYD9QbR7w priority: 102 providerName: ProQuest |
Title | Nuclear quantum effects in molecular dynamics simulations |
URI | https://iopscience.iop.org/article/10.1088/1742-6596/1136/1/012014 https://www.proquest.com/docview/2565411967 https://hal.science/hal-02121517 |
Volume | 1136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5uIvgiXnE6RxEfreslaZNHFecUnSKKvoUmaXDgurlu_n7P6cULImIfeqMnhC_tyQk95_sIObCxlyCLikutpbDTiSu0iVwtYsNEoGJT1MJcD6L-A718Yk9fa2HGk8r1H8FpSRRcQlglxPEuxNCBGzERdVGPpOt3sf4TtawXQx5xXIDdhI-1Nw5hi8uiSDTivM7x-r2hbzNU4xnzIxvQlx_OupiBeqtkpQodneOyo2tkIc3WyVKRwqnzDSIGSE2cTJ3XOaA1HzlVqoYzzJxRLYLrmFKBPnfy4ahS7so3yUPv7P6071bCCK6mfjBztQmNjSk1WjOjEk9HnhEWqWVEYpRRVgkmWJjwIOVUaKSdg5VobMPAMg1DFm6RZjbO0m3ihFYpReEpE2lcmnCRMC-lgVGpnwjutUhUgyF1xRqO4hUvsvh7zblEFCWiKBFF6csSxRbxPgwnJXHG3yb7gPbH00h83T--kngPieghNonf_BY5hMGQ1ZeW_91mux61TxsI8xj1wffEO_9rbZcsw4GX6Sxt0pxN5-keBCUz1SEN3jvvkMWTs8HtHVxd3Nx2ijfxHeQg1D0 |
linkProvider | IOP Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6xIASXqlBQF2ixEL0RbR5OYh9QhVqWBZY9gcTNxHYsVuq-yC5V_1R_IzN5gKpKcCKHHBLbUmbGHk88830Ahy71M0JR8bhzHG8m86SxiWdkamMZ6tSWtTBXg6R3wy9u49sl-NvUwlBaZbMmlgu1nRj6R95B1xzzAO0l_T6decQaRaerDYVGZRaX-Z_fGLIVx-c_Ub_fwrB7ev2j59WsAp7hQTj3jI2sSzm3xsRWZ75JfCsd4bLIzGqrnZaxjKNMhLng0hBmG4ZxqYtCFxv83gjHbcEKjyJJM0p0z5qVP8IrrQowQw89u2jyyTDIrJ_JpEMkKp2gQ0WrAf_HG7buKRezNZxM_3MMpbfrfoQP9TaVnVR2tQFL-XgTVst0UVN8AjkgGOTsgc0WqJnFiNVpIWw4ZqOGcJfZiu2-YMVwVLOEFVtw8y7i2obl8WScfwYWOa01x1Y2MRQGCZnFfs5Dq_Mgk8JvQ9IIQ5kaoZyIMn6p8qRcCEVSVCRFRVJUgaqk2Ab_ueO0Aul4u8sBSvu5NYFs9076ip4R6D3ug9LHoA1HqAxVz-ri7TH3Gq299Hmx253XX-_DWu_6qq_654PLXVjHAUWVNrMHy_OHRf4FNz9z_bW0OAZ3723iT05wDx4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5cRfEiPnF9FvFo7StJk6Ooy_paPSh6C03S4IK7rnbX32-mjxUREXsoJWRC-NJOJnTm-wAObRpmyKLiE2uJu-nMF9owX4vUUBGr1JS1MDc91n0gl0_0aQY601qY11Ht-o_dY0UUXEFYJ8TxwMXQsc-oYAHqkQRRgPWfEQlGxrZgjiaMoYTDbfLYeOTEXWlVGImGnDd5Xr8P9m2Xaj1jjmTLzeeHwy53oc4yLNXho3dSTXYFZvLhKsyXaZy6WAPRQ3ri7N17mzjEJgOvTtfw-kNv0AjheqZSoS-8oj-o1buKdXjonN-fdv1aHMHXJIrHvjaJsSkhRmtqVBZqFhphkV5GZEYZZZWggiYZj3NOhEbqOXcaTW0SW6rdsiUbMDt8Heab4CVWKUVcL8M0Hk-4yGiYk9ioPMoED9vAGjCkrpnDUcDiRZZ_sDmXiKJEFCWiKCNZodiGcGo4qsgz_jY5cGhPeyP5dffkWmIbktG7-CT9iNpw5BZD1l9b8feYO82qfdm4UI-SyPmfdOt_o-3Dwt1ZR15f9K62YdG18Cq7ZQdmx--TfNfFKGO1V76An5DW1KM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+quantum+effects+in+molecular+dynamics+simulations&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Dammak%2C+H.&rft.au=Hayoun%2C+M.&rft.au=Brieuc%2C+F&rft.au=Geneste%2C+G.&rft.date=2018-12-01&rft.pub=IOP+Science&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1136&rft_id=info:doi/10.1088%2F1742-6596%2F1136%2F1%2F012014&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02121517v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |