Isothermal analysis of nanofluid flow inside HyperVapotrons using particle image velocimetry

Nanofluids are advanced two-phase coolants that exhibit heat transfer augmentation phenomena. Extensive research has been performed since the year 2000 onwards to understand the physical mechanisms of heat transfer in nanofluids when employed inside traditional heat exchanging geometries. The focus...

Full description

Saved in:
Bibliographic Details
Published inExperimental thermal and fluid science Vol. 93; pp. 32 - 44
Main Authors Sergis, A., Hardalupas, Y., Barrett, T.R.
Format Journal Article
LanguageEnglish
Published Philadelphia Elsevier Inc 01.05.2018
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanofluids are advanced two-phase coolants that exhibit heat transfer augmentation phenomena. Extensive research has been performed since the year 2000 onwards to understand the physical mechanisms of heat transfer in nanofluids when employed inside traditional heat exchanging geometries. The focus of this paper is to understand if and how the geometry of heat exchangers might be potentially affecting the nanofluid coolant flow boundary conditions established and how this might be hence further affecting their thermal characteristics. HyperVapotrons are highly robust and efficient heat exchangers able to transfer high heat fluxes of the order of 10–20 MW/m2. They employ a complex two-phase heat transfer mechanism which is strongly linked to the hydrodynamic structures present in the coolant flow inside the devices. A cold isothermal nanofluid flow is established inside two HyperVapotron model replicas. A high spatial resolution (30 μm) visualisation of the nanofluid flow fields inside each replica is measured and compared to those present during the use of a traditional coolant (water). Significant geometry specific changes are evident with the use of dilute nanofluids which is something unexpected and novel. Evidence of a shear thinning mechanism is found inside the momentum boundary layer of the nanofluid flows that might prove beneficial to the coolant pumping power losses when using nanofluids instead of water and is expected to affect their thermal performance from a hydrodynamic point of view.
AbstractList Nanofluids are advanced two-phase coolants that exhibit heat transfer augmentation phenomena. Extensive research has been performed since the year 2000 onwards to understand the physical mechanisms of heat transfer in nanofluids when employed inside traditional heat exchanging geometries. The focus of this paper is to understand if and how the geometry of heat exchangers might be potentially affecting the nanofluid coolant flow boundary conditions established and how this might be hence further affecting their thermal characteristics. HyperVapotrons are highly robust and efficient heat exchangers able to transfer high heat fluxes of the order of 10-20 MW/m2. They employ a complex two-phase heat transfer mechanism which is strongly linked to the hydrodynamic structures present in the coolant flow inside the devices. A cold isothermal nanofluid flow is established inside two HyperVapotron model replicas. A high spatial resolution (30 nm) visualisation of the nanofluid flow fields inside each replica is measured and compared to those present during the use of a traditional coolant (water). Significant geometry specific changes are evident with the use of dilute nanofluids which is something unexpected and novel. Evidence of a shear thinning mechanism is found inside the momentum boundary layer of the nanofluid flows that might prove beneficial to the coolant pumping power losses when using nanofluids instead of water and is expected to affect their thermal performance from a hydrodynamic point of view.
Nanofluids are advanced two-phase coolants that exhibit heat transfer augmentation phenomena. Extensive research has been performed since the year 2000 onwards to understand the physical mechanisms of heat transfer in nanofluids when employed inside traditional heat exchanging geometries. The focus of this paper is to understand if and how the geometry of heat exchangers might be potentially affecting the nanofluid coolant flow boundary conditions established and how this might be hence further affecting their thermal characteristics. HyperVapotrons are highly robust and efficient heat exchangers able to transfer high heat fluxes of the order of 10–20 MW/m2. They employ a complex two-phase heat transfer mechanism which is strongly linked to the hydrodynamic structures present in the coolant flow inside the devices. A cold isothermal nanofluid flow is established inside two HyperVapotron model replicas. A high spatial resolution (30 μm) visualisation of the nanofluid flow fields inside each replica is measured and compared to those present during the use of a traditional coolant (water). Significant geometry specific changes are evident with the use of dilute nanofluids which is something unexpected and novel. Evidence of a shear thinning mechanism is found inside the momentum boundary layer of the nanofluid flows that might prove beneficial to the coolant pumping power losses when using nanofluids instead of water and is expected to affect their thermal performance from a hydrodynamic point of view.
Author Hardalupas, Y.
Barrett, T.R.
Sergis, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Sergis
  fullname: Sergis, A.
  email: a.sergis09@imperial.ac.uk
  organization: The Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
– sequence: 2
  givenname: Y.
  surname: Hardalupas
  fullname: Hardalupas, Y.
  organization: The Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
– sequence: 3
  givenname: T.R.
  surname: Barrett
  fullname: Barrett, T.R.
  organization: EURATOM/CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK
BookMark eNqNkD1PwzAURS1UJNrCf7AEa4KfE_IhsaCKUqRKLMCEZDnOS3GV2sFOCvn3uJSFjekt5x3de2dkYqxBQq6AxcAgu97G-NX17-h2TTt4pWPOII-BxwzSEzKFIi8jzotsQqasKNMI8jw_IzPvt4yxggObkrdHb38MsqXSyHb02lPbUCONDVJd06a1n1Qbr2ukq7FD9yo72ztrPB28NhvaSddr1SLVO7lBusfWKr3D3o3n5LSRrceL3zsnL8v758UqWj89PC7u1pFKgfeRqqBRVYIMocBSYl2wJMsrlaQcy7KCIquakJ9jXjPkIBXcYEBr1VQ8ReTJnFwevZ2zHwP6Xmzt4EIbLzhLOeehbBGo2yOlnPXeYSM6FyK7UQAThz3FVvzdUxz2FMBF2DO8L4_vGJrsNToRCDQKa-1Q9aK2-n-ib7kijII
CitedBy_id crossref_primary_10_1016_j_powtec_2023_119090
crossref_primary_10_1007_s10894_022_00316_w
crossref_primary_10_1007_s12648_019_01510_x
crossref_primary_10_3390_pr10010177
Cites_doi 10.1016/j.ijheatmasstransfer.2008.06.032
10.13182/FST96-A30700
10.1016/j.fusengdes.2006.12.011
10.1016/j.ijheatmasstransfer.2016.12.071
10.1016/j.fusengdes.2015.04.063
10.1088/0029-5515/53/11/113019
10.1115/1.2150834
10.12921/cmst.2014.20.04.113-127
10.1186/1556-276X-6-391
10.1016/j.ijthermalsci.2006.06.010
10.1016/j.fusengdes.2015.04.029
10.1186/s11671-015-0954-8
10.1016/j.ijheatmasstransfer.2008.10.025
10.1016/S0920-3796(03)00172-8
10.1016/j.expthermflusci.2014.10.003
10.1016/j.nanoen.2017.04.025
10.1016/j.partic.2009.01.007
10.1016/j.ijheatmasstransfer.2012.10.037
10.1186/1556-276X-6-247
10.1007/s00339-003-2264-8
10.1007/s10404-009-0553-z
10.1016/j.ijheatmasstransfer.2005.07.009
10.1186/1556-276X-6-181
10.1016/j.fusengdes.2013.03.058
10.1063/1.4939986
10.1016/j.ijheatmasstransfer.2008.01.034
10.1063/1.1613374
10.1016/j.ijthermalsci.2009.03.016
10.1002/andp.19063240204
10.1016/j.ijheatmasstransfer.2009.03.073
10.1016/j.ijmultiphaseflow.2009.02.004
10.1007/s11051-005-3478-9
10.1007/s00231-004-0539-z
ContentType Journal Article
Copyright 2018 The Authors
Copyright Elsevier Science Ltd. May 2018
Copyright_xml – notice: 2018 The Authors
– notice: Copyright Elsevier Science Ltd. May 2018
DBID 6I.
AAFTH
AAYXX
CITATION
7QH
7TB
7U5
7UA
8FD
C1K
FR3
H8D
KR7
L7M
DOI 10.1016/j.expthermflusci.2017.12.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Aqualine
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Aqualine
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2286
EndPage 44
ExternalDocumentID 10_1016_j_expthermflusci_2017_12_014
S0894177717303977
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
UHS
VH1
WUQ
XPP
ZMT
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7QH
7TB
7U5
7UA
8FD
C1K
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c412t-cb1fcb3e0e18e9aed80367bc342e99b186bf0892e7d0e21ac15ee18dcfb24ee23
IEDL.DBID AIKHN
ISSN 0894-1777
IngestDate Thu Oct 10 19:53:57 EDT 2024
Thu Sep 26 15:56:41 EDT 2024
Fri Feb 23 02:31:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Viscosity
Cooling
PIV
HV
Nanofluids
HHF
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-cb1fcb3e0e18e9aed80367bc342e99b186bf0892e7d0e21ac15ee18dcfb24ee23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0894177717303977
PQID 2042220828
PQPubID 2047468
PageCount 13
ParticipantIDs proquest_journals_2042220828
crossref_primary_10_1016_j_expthermflusci_2017_12_014
elsevier_sciencedirect_doi_10_1016_j_expthermflusci_2017_12_014
PublicationCentury 2000
PublicationDate May 2018
2018-05-00
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Experimental thermal and fluid science
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Das (b0025) 2007
Sergis, Hardalupas, Barrett (b0125) 2013; 53
Warrier, Teja (b0045) 2011; 6
Xie (b0035) 2003; 94
Kanjirakat, Sadr (b0155) 2016; 6
Xuan, Yao (b0085) 2004
Sergis, Hardalupas (b0160) 2014; 20
Sergis, Hardalupas, Barrett (b0020) 2015; 61
Falter, Thompson (b0015) 1996
Wang (b0080) 2003; 80
Einstein (b0135) 1906; 324
Kim (b0075) 2009; 35
Ding (b0145) 2006; 49
Mahian (b0090) 2017; 36
Walsh, Egan, Walsh (b0130) 2009; 8
Daviran (b0050) 2017; 108
Sergis, Hardalupas (b0110) 2011; 6
Hwang, Jang, Choi (b0150) 2009; 52
Sergis (b0115) 2015
Wen (b0095) 2009; 7
Rea (b0070) 2009; 52
Wen (b0060) 2008; 51
Pascal-Ribot (b0005) 2007; 82
Wang, Bao (b0065) 2009; 48
Savoldi (b0120) 2015; 100
Mahian (b0105) 2013; 57
Wei (b0040) 2009; 52
Barrett (b0170) 2013; 88
Buongiorno (b0140) 2006; 128
Wang, Mujumdar (b0100) 2007; 46
Wen, Ding (b0055) 2005; 7
Escourbiac (b0010) 2003; 66–68
Sergis, Hardalupas (b0165) 2015; 10
Zhu (b0030) 2011; 6
Einstein (10.1016/j.expthermflusci.2017.12.014_b0135) 1906; 324
Warrier (10.1016/j.expthermflusci.2017.12.014_b0045) 2011; 6
Daviran (10.1016/j.expthermflusci.2017.12.014_b0050) 2017; 108
Wen (10.1016/j.expthermflusci.2017.12.014_b0055) 2005; 7
Wang (10.1016/j.expthermflusci.2017.12.014_b0080) 2003; 80
Wei (10.1016/j.expthermflusci.2017.12.014_b0040) 2009; 52
Xuan (10.1016/j.expthermflusci.2017.12.014_b0085) 2004
Sergis (10.1016/j.expthermflusci.2017.12.014_b0115) 2015
Sergis (10.1016/j.expthermflusci.2017.12.014_b0165) 2015; 10
Savoldi (10.1016/j.expthermflusci.2017.12.014_b0120) 2015; 100
Wen (10.1016/j.expthermflusci.2017.12.014_b0060) 2008; 51
Sergis (10.1016/j.expthermflusci.2017.12.014_b0110) 2011; 6
Escourbiac (10.1016/j.expthermflusci.2017.12.014_b0010) 2003; 66–68
Falter (10.1016/j.expthermflusci.2017.12.014_b0015) 1996
Mahian (10.1016/j.expthermflusci.2017.12.014_b0105) 2013; 57
Barrett (10.1016/j.expthermflusci.2017.12.014_b0170) 2013; 88
Kim (10.1016/j.expthermflusci.2017.12.014_b0075) 2009; 35
Wang (10.1016/j.expthermflusci.2017.12.014_b0100) 2007; 46
Sergis (10.1016/j.expthermflusci.2017.12.014_b0125) 2013; 53
Kanjirakat (10.1016/j.expthermflusci.2017.12.014_b0155) 2016; 6
Buongiorno (10.1016/j.expthermflusci.2017.12.014_b0140) 2006; 128
Wang (10.1016/j.expthermflusci.2017.12.014_b0065) 2009; 48
Xie (10.1016/j.expthermflusci.2017.12.014_b0035) 2003; 94
Hwang (10.1016/j.expthermflusci.2017.12.014_b0150) 2009; 52
Mahian (10.1016/j.expthermflusci.2017.12.014_b0090) 2017; 36
Ding (10.1016/j.expthermflusci.2017.12.014_b0145) 2006; 49
Das (10.1016/j.expthermflusci.2017.12.014_b0025) 2007
Rea (10.1016/j.expthermflusci.2017.12.014_b0070) 2009; 52
Walsh (10.1016/j.expthermflusci.2017.12.014_b0130) 2009; 8
Sergis (10.1016/j.expthermflusci.2017.12.014_b0020) 2015; 61
Sergis (10.1016/j.expthermflusci.2017.12.014_b0160) 2014; 20
Zhu (10.1016/j.expthermflusci.2017.12.014_b0030) 2011; 6
Wen (10.1016/j.expthermflusci.2017.12.014_b0095) 2009; 7
Pascal-Ribot (10.1016/j.expthermflusci.2017.12.014_b0005) 2007; 82
References_xml – year: 1996
  ident: b0015
  article-title: Performance of hypervapotron beam-stopping elements at JET
  publication-title: Fusion Technol.
  contributor:
    fullname: Thompson
– year: 2015
  ident: b0115
  article-title: Comparison of measurements and computations of isothermal flow velocity inside HyperVapotrons
  publication-title: Fusion Eng. Des.
  contributor:
    fullname: Sergis
– year: 2004
  ident: b0085
  article-title: Lattice Boltzmann model for nanofluids
  publication-title: Heat Mass Transf.
  contributor:
    fullname: Yao
– volume: 49
  start-page: 240
  year: 2006
  end-page: 250
  ident: b0145
  article-title: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Ding
– volume: 100
  start-page: 112
  year: 2015
  end-page: 119
  ident: b0120
  article-title: Numerical investigation of collector cooling for a 1 MW ITER gyrotron operated with vertical sweeping
  publication-title: Fusion Eng. Des.
  contributor:
    fullname: Savoldi
– volume: 8
  start-page: 837
  year: 2009
  end-page: 842
  ident: b0130
  article-title: Novel micro-PIV study enables a greater understanding of nanoparticle suspension flows: nanofluids
  publication-title: Microfluid. Nanofluid.
  contributor:
    fullname: Walsh
– volume: 53
  year: 2013
  ident: b0125
  article-title: Potential for improvement in high heat flux HyperVapotron element performance using nanofluids
  publication-title: Nucl. Fusion
  contributor:
    fullname: Barrett
– volume: 6
  start-page: 391
  year: 2011
  ident: b0110
  article-title: Anomalous heat transfer modes of nanofluids: a review based on statistical analysis
  publication-title: Nanoscale Res. Lett.
  contributor:
    fullname: Hardalupas
– volume: 6
  year: 2016
  ident: b0155
  article-title: Near-wall velocity profile measurement for nanofluids
  publication-title: AIP Adv.
  contributor:
    fullname: Sadr
– volume: 7
  start-page: 265
  year: 2005
  end-page: 274
  ident: b0055
  article-title: Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids
  publication-title: J. Nanopart. Res.
  contributor:
    fullname: Ding
– volume: 61
  start-page: 48
  year: 2015
  end-page: 58
  ident: b0020
  article-title: Isothermal velocity measurements in two HyperVapotron geometries using particle image velocimetry (PIV)
  publication-title: Exp. Therm. Fluid Sci.
  contributor:
    fullname: Barrett
– volume: 66–68
  start-page: 301
  year: 2003
  end-page: 304
  ident: b0010
  article-title: Experimental optimisation of a hypervapotron® concept for ITER plasma facing components
  publication-title: Fusion Eng. Des.
  contributor:
    fullname: Escourbiac
– volume: 88
  start-page: 2594
  year: 2013
  end-page: 2597
  ident: b0170
  article-title: Investigating the use of nanofluids to improve high heat flux cooling systems
  publication-title: Fusion Eng. Des.
  contributor:
    fullname: Barrett
– volume: 128
  year: 2006
  ident: b0140
  article-title: Convective transport in nanofluids
  publication-title: J. Heat Transf.
  contributor:
    fullname: Buongiorno
– volume: 20
  start-page: 14
  year: 2014
  ident: b0160
  article-title: Molecular dynamic simulations of a simplified nanofluid
  publication-title: Comput. Methods Sci. Technol.
  contributor:
    fullname: Hardalupas
– volume: 36
  start-page: 134
  year: 2017
  end-page: 155
  ident: b0090
  article-title: Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger
  publication-title: Nano Energy
  contributor:
    fullname: Mahian
– volume: 52
  start-page: 2042
  year: 2009
  end-page: 2048
  ident: b0070
  article-title: Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Rea
– volume: 324
  start-page: 289
  year: 1906
  end-page: 306
  ident: b0135
  article-title: Eine neue Bestimmung der Moleküldimensionen
  publication-title: Ann. Phys.
  contributor:
    fullname: Einstein
– volume: 82
  start-page: 1781
  year: 2007
  end-page: 1785
  ident: b0005
  article-title: 3D numerical simulations of hypervapotron cooling concept
  publication-title: Fusion Eng. Des.
  contributor:
    fullname: Pascal-Ribot
– volume: 7
  start-page: 141
  year: 2009
  end-page: 150
  ident: b0095
  article-title: Review of nanofluids for heat transfer applications
  publication-title: Particuology
  contributor:
    fullname: Wen
– volume: 6
  start-page: 247
  year: 2011
  ident: b0045
  article-title: Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles
  publication-title: Nanoscale Res. Lett.
  contributor:
    fullname: Teja
– year: 2007
  ident: b0025
  article-title: Nanofluids
  contributor:
    fullname: Das
– volume: 52
  start-page: 193
  year: 2009
  end-page: 199
  ident: b0150
  article-title: Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Choi
– volume: 57
  start-page: 582
  year: 2013
  end-page: 594
  ident: b0105
  article-title: A review of the applications of nanofluids in solar energy
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Mahian
– volume: 108
  start-page: 822
  year: 2017
  end-page: 829
  ident: b0050
  article-title: Evaluation of clustering role versus Brownian motion effect on the heat conduction in nanofluids: a novel approach
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Daviran
– volume: 35
  start-page: 427
  year: 2009
  end-page: 438
  ident: b0075
  article-title: On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles
  publication-title: Int. J. Multiphase Flow
  contributor:
    fullname: Kim
– volume: 51
  start-page: 4958
  year: 2008
  end-page: 4965
  ident: b0060
  article-title: Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF)
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Wen
– volume: 48
  start-page: 2074
  year: 2009
  end-page: 2079
  ident: b0065
  article-title: Two-phase flow patterns of nitrogen and nanofluids in a vertically capillary tube
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Bao
– volume: 46
  start-page: 1
  year: 2007
  end-page: 19
  ident: b0100
  article-title: Heat transfer characteristics of nanofluids: a review
  publication-title: Int. J. Therm. Sci.
  contributor:
    fullname: Mujumdar
– volume: 94
  start-page: 4967
  year: 2003
  ident: b0035
  article-title: Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Xie
– volume: 6
  start-page: 181
  year: 2011
  ident: b0030
  article-title: Preparation and thermal conductivity of CuO nanofluid via a wet chemical method
  publication-title: Nanoscale Res. Lett.
  contributor:
    fullname: Zhu
– volume: 80
  start-page: 637
  year: 2003
  end-page: 639
  ident: b0080
  article-title: Nanofluids in carbon nanotubes using supercritical CO
  publication-title: Appl. Phys. A
  contributor:
    fullname: Wang
– volume: 52
  start-page: 4371
  year: 2009
  end-page: 4374
  ident: b0040
  article-title: Synthesis and thermal conductivity of Cu
  publication-title: Int. J. Heat Mass Transf.
  contributor:
    fullname: Wei
– volume: 10
  start-page: 954
  year: 2015
  ident: b0165
  article-title: Revealing the complex conduction heat transfer mechanism of nanofluids
  publication-title: Nanoscale Res. Lett.
  contributor:
    fullname: Hardalupas
– year: 2007
  ident: 10.1016/j.expthermflusci.2017.12.014_b0025
  contributor:
    fullname: Das
– volume: 52
  start-page: 193
  issue: 1–2
  year: 2009
  ident: 10.1016/j.expthermflusci.2017.12.014_b0150
  article-title: Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.06.032
  contributor:
    fullname: Hwang
– year: 1996
  ident: 10.1016/j.expthermflusci.2017.12.014_b0015
  article-title: Performance of hypervapotron beam-stopping elements at JET
  publication-title: Fusion Technol.
  doi: 10.13182/FST96-A30700
  contributor:
    fullname: Falter
– volume: 82
  start-page: 1781
  issue: 15–24
  year: 2007
  ident: 10.1016/j.expthermflusci.2017.12.014_b0005
  article-title: 3D numerical simulations of hypervapotron cooling concept
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2006.12.011
  contributor:
    fullname: Pascal-Ribot
– volume: 108
  start-page: 822
  year: 2017
  ident: 10.1016/j.expthermflusci.2017.12.014_b0050
  article-title: Evaluation of clustering role versus Brownian motion effect on the heat conduction in nanofluids: a novel approach
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.12.071
  contributor:
    fullname: Daviran
– volume: 100
  start-page: 112
  year: 2015
  ident: 10.1016/j.expthermflusci.2017.12.014_b0120
  article-title: Numerical investigation of collector cooling for a 1 MW ITER gyrotron operated with vertical sweeping
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2015.04.063
  contributor:
    fullname: Savoldi
– volume: 53
  issue: 11
  year: 2013
  ident: 10.1016/j.expthermflusci.2017.12.014_b0125
  article-title: Potential for improvement in high heat flux HyperVapotron element performance using nanofluids
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/53/11/113019
  contributor:
    fullname: Sergis
– volume: 128
  issue: 3
  year: 2006
  ident: 10.1016/j.expthermflusci.2017.12.014_b0140
  article-title: Convective transport in nanofluids
  publication-title: J. Heat Transf.
  doi: 10.1115/1.2150834
  contributor:
    fullname: Buongiorno
– volume: 20
  start-page: 14
  issue: 4
  year: 2014
  ident: 10.1016/j.expthermflusci.2017.12.014_b0160
  article-title: Molecular dynamic simulations of a simplified nanofluid
  publication-title: Comput. Methods Sci. Technol.
  doi: 10.12921/cmst.2014.20.04.113-127
  contributor:
    fullname: Sergis
– volume: 6
  start-page: 391
  issue: 1
  year: 2011
  ident: 10.1016/j.expthermflusci.2017.12.014_b0110
  article-title: Anomalous heat transfer modes of nanofluids: a review based on statistical analysis
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-391
  contributor:
    fullname: Sergis
– volume: 46
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.expthermflusci.2017.12.014_b0100
  article-title: Heat transfer characteristics of nanofluids: a review
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2006.06.010
  contributor:
    fullname: Wang
– year: 2015
  ident: 10.1016/j.expthermflusci.2017.12.014_b0115
  article-title: Comparison of measurements and computations of isothermal flow velocity inside HyperVapotrons
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2015.04.029
  contributor:
    fullname: Sergis
– volume: 10
  start-page: 954
  issue: 1
  year: 2015
  ident: 10.1016/j.expthermflusci.2017.12.014_b0165
  article-title: Revealing the complex conduction heat transfer mechanism of nanofluids
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-015-0954-8
  contributor:
    fullname: Sergis
– volume: 52
  start-page: 2042
  issue: 7–8
  year: 2009
  ident: 10.1016/j.expthermflusci.2017.12.014_b0070
  article-title: Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.10.025
  contributor:
    fullname: Rea
– volume: 66–68
  start-page: 301
  year: 2003
  ident: 10.1016/j.expthermflusci.2017.12.014_b0010
  article-title: Experimental optimisation of a hypervapotron® concept for ITER plasma facing components
  publication-title: Fusion Eng. Des.
  doi: 10.1016/S0920-3796(03)00172-8
  contributor:
    fullname: Escourbiac
– volume: 61
  start-page: 48
  year: 2015
  ident: 10.1016/j.expthermflusci.2017.12.014_b0020
  article-title: Isothermal velocity measurements in two HyperVapotron geometries using particle image velocimetry (PIV)
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2014.10.003
  contributor:
    fullname: Sergis
– volume: 36
  start-page: 134
  issue: April
  year: 2017
  ident: 10.1016/j.expthermflusci.2017.12.014_b0090
  article-title: Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.025
  contributor:
    fullname: Mahian
– volume: 7
  start-page: 141
  issue: 2
  year: 2009
  ident: 10.1016/j.expthermflusci.2017.12.014_b0095
  article-title: Review of nanofluids for heat transfer applications
  publication-title: Particuology
  doi: 10.1016/j.partic.2009.01.007
  contributor:
    fullname: Wen
– volume: 57
  start-page: 582
  issue: 2
  year: 2013
  ident: 10.1016/j.expthermflusci.2017.12.014_b0105
  article-title: A review of the applications of nanofluids in solar energy
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.10.037
  contributor:
    fullname: Mahian
– volume: 6
  start-page: 247
  issue: 1
  year: 2011
  ident: 10.1016/j.expthermflusci.2017.12.014_b0045
  article-title: Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-247
  contributor:
    fullname: Warrier
– volume: 80
  start-page: 637
  issue: 3
  year: 2003
  ident: 10.1016/j.expthermflusci.2017.12.014_b0080
  article-title: Nanofluids in carbon nanotubes using supercritical CO2: a first step towards a nanochemical reaction
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-003-2264-8
  contributor:
    fullname: Wang
– volume: 8
  start-page: 837
  issue: 6
  year: 2009
  ident: 10.1016/j.expthermflusci.2017.12.014_b0130
  article-title: Novel micro-PIV study enables a greater understanding of nanoparticle suspension flows: nanofluids
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-009-0553-z
  contributor:
    fullname: Walsh
– volume: 49
  start-page: 240
  issue: 1–2
  year: 2006
  ident: 10.1016/j.expthermflusci.2017.12.014_b0145
  article-title: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2005.07.009
  contributor:
    fullname: Ding
– volume: 6
  start-page: 181
  issue: 1
  year: 2011
  ident: 10.1016/j.expthermflusci.2017.12.014_b0030
  article-title: Preparation and thermal conductivity of CuO nanofluid via a wet chemical method
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-181
  contributor:
    fullname: Zhu
– volume: 88
  start-page: 2594
  issue: 9–10
  year: 2013
  ident: 10.1016/j.expthermflusci.2017.12.014_b0170
  article-title: Investigating the use of nanofluids to improve high heat flux cooling systems
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2013.03.058
  contributor:
    fullname: Barrett
– volume: 6
  issue: 1
  year: 2016
  ident: 10.1016/j.expthermflusci.2017.12.014_b0155
  article-title: Near-wall velocity profile measurement for nanofluids
  publication-title: AIP Adv.
  doi: 10.1063/1.4939986
  contributor:
    fullname: Kanjirakat
– volume: 51
  start-page: 4958
  issue: 19–20
  year: 2008
  ident: 10.1016/j.expthermflusci.2017.12.014_b0060
  article-title: Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF)
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2008.01.034
  contributor:
    fullname: Wen
– volume: 94
  start-page: 4967
  issue: 8
  year: 2003
  ident: 10.1016/j.expthermflusci.2017.12.014_b0035
  article-title: Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1613374
  contributor:
    fullname: Xie
– volume: 48
  start-page: 2074
  issue: 11
  year: 2009
  ident: 10.1016/j.expthermflusci.2017.12.014_b0065
  article-title: Two-phase flow patterns of nitrogen and nanofluids in a vertically capillary tube
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2009.03.016
  contributor:
    fullname: Wang
– volume: 324
  start-page: 289
  issue: 2
  year: 1906
  ident: 10.1016/j.expthermflusci.2017.12.014_b0135
  article-title: Eine neue Bestimmung der Moleküldimensionen
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19063240204
  contributor:
    fullname: Einstein
– volume: 52
  start-page: 4371
  issue: 19–20
  year: 2009
  ident: 10.1016/j.expthermflusci.2017.12.014_b0040
  article-title: Synthesis and thermal conductivity of Cu2O nanofluids
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2009.03.073
  contributor:
    fullname: Wei
– volume: 35
  start-page: 427
  issue: 5
  year: 2009
  ident: 10.1016/j.expthermflusci.2017.12.014_b0075
  article-title: On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2009.02.004
  contributor:
    fullname: Kim
– volume: 7
  start-page: 265
  issue: 2–3
  year: 2005
  ident: 10.1016/j.expthermflusci.2017.12.014_b0055
  article-title: Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-005-3478-9
  contributor:
    fullname: Wen
– year: 2004
  ident: 10.1016/j.expthermflusci.2017.12.014_b0085
  article-title: Lattice Boltzmann model for nanofluids
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-004-0539-z
  contributor:
    fullname: Xuan
SSID ssj0008210
Score 2.2609024
Snippet Nanofluids are advanced two-phase coolants that exhibit heat transfer augmentation phenomena. Extensive research has been performed since the year 2000 onwards...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 32
SubjectTerms Boundary conditions
Boundary layers
Cold flow
Computational fluid dynamics
Coolants
Cooling
Dilution
Fluid flow
Heat exchange
Heat exchangers
Heat flux
Heat transfer
HHF
Nanofluids
Nuclear fission
Particle image velocimetry
PIV
Shear thinning (liquids)
Spatial discrimination
Spatial resolution
Velocity measurement
Viscosity
Title Isothermal analysis of nanofluid flow inside HyperVapotrons using particle image velocimetry
URI https://dx.doi.org/10.1016/j.expthermflusci.2017.12.014
https://www.proquest.com/docview/2042220828
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS-QwFH7oCIseRHdX_E0OXrszSVOTnkREGV304rp4WAhJ-rJUnLbMjKgX_3aTTuovWBD22DZtwpf2y-vL994D2AspsVyepQkXoYSZdCLR1hYJFWgyZMxZGwKczy_2h1f87Dq7noOjLhYmyCoj9884vWXreKYf0ew3Zdm_HMicUyHCNvIgmDHzsNBuEvVg4fD05_DihZAla5MShPZJuOEL7L3KvPChCZbWyN3e-V6C1ku0_kHK_7VSfeDsdiE6WYHlaEGSw9kgV2EOq6-w9Cav4Df4czppA6tGvp2OWUdI7Uilq9qPoCyIu63vSdnW6iRD_ys6_q2bOnjFJyQo4f-SJoJAypFnHBKURbYc4XT8-B2uTo5_HQ2TWEYhsZyyaWINddakOEAqMddYSL9qCWNTzjDPDZX7xnlsGIpigIxqSzP0TQvrDOOILF2DXlVXuA5EpNxpK5G5zHpLRhtZZFzkMtW5tprJDcg6yFQzy5ahOhnZjXoPtQpQK8qUh3oDDjp81bvZV57YP_mE7W5aVPwKJ_56cHCFJH2b_93BFiz6IznTOm5Dbzq-wx1vj0zNLsz_eKK78a17Bj7x5dk
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB3BIkF7qEqhKi1tfeAa7dpxsHOqVqgoW2AvBcQBybKdMUrFJtHuIuDvsbNOWypVqtRr7MTWs_NmMnkzBjgIJbFcnqUJF-EIM-lEoq0tEyrQZMiYszYkOJ9ND4sL_u0qu1qDoz4XJsgqI_evOL1j63hlGNEctlU1_D6SOadChN_Io-DGrMOG9wZyv9k3xpOTYvqTkCXrihKE_km4YRMOfsm88KENntbM3d75UYLWS3TxQcr_Zqn-4OzOEB2_hlfRgyTj1SS3YQ3rN_Dyt7qCO3A9WXSJVTPfT8eqI6RxpNZ142dQlcTdNvek6s7qJIX_FJ1f6rYJUfEFCUr4G9JGEEg184xDgrLIVjNczh934eL46_lRkcRjFBLLKVsm1lBnTYojpBJzjaX0VksYm3KGeW6oPDTOY8NQlCNkVFuaoe9aWmcYR2TpWxjUTY3vgIiUO20lMpdZ78loI8uMi1ymOtdWM7kHWQ-ZalfVMlQvI_uhnkOtAtSKMuWh3oMvPb7q2eorT-z_-IT9fllUfAsXvj0EuEKRvvf_PcBn2CrOz07V6WR68gFe-Ba50j3uw2A5v8OP3jdZmk9x7z0B5gnn1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isothermal+analysis+of+nanofluid+flow+inside+HyperVapotrons+using+particle+image+velocimetry&rft.jtitle=Experimental+thermal+and+fluid+science&rft.au=Sergis%2C+A.&rft.au=Hardalupas%2C+Y.&rft.au=Barrett%2C+T.R.&rft.date=2018-05-01&rft.pub=Elsevier+Inc&rft.issn=0894-1777&rft.eissn=1879-2286&rft.volume=93&rft.spage=32&rft.epage=44&rft_id=info:doi/10.1016%2Fj.expthermflusci.2017.12.014&rft.externalDocID=S0894177717303977
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1777&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1777&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1777&client=summon