Isothermal analysis of nanofluid flow inside HyperVapotrons using particle image velocimetry
Nanofluids are advanced two-phase coolants that exhibit heat transfer augmentation phenomena. Extensive research has been performed since the year 2000 onwards to understand the physical mechanisms of heat transfer in nanofluids when employed inside traditional heat exchanging geometries. The focus...
Saved in:
Published in | Experimental thermal and fluid science Vol. 93; pp. 32 - 44 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Elsevier Inc
01.05.2018
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanofluids are advanced two-phase coolants that exhibit heat transfer augmentation phenomena. Extensive research has been performed since the year 2000 onwards to understand the physical mechanisms of heat transfer in nanofluids when employed inside traditional heat exchanging geometries. The focus of this paper is to understand if and how the geometry of heat exchangers might be potentially affecting the nanofluid coolant flow boundary conditions established and how this might be hence further affecting their thermal characteristics. HyperVapotrons are highly robust and efficient heat exchangers able to transfer high heat fluxes of the order of 10–20 MW/m2. They employ a complex two-phase heat transfer mechanism which is strongly linked to the hydrodynamic structures present in the coolant flow inside the devices. A cold isothermal nanofluid flow is established inside two HyperVapotron model replicas. A high spatial resolution (30 μm) visualisation of the nanofluid flow fields inside each replica is measured and compared to those present during the use of a traditional coolant (water). Significant geometry specific changes are evident with the use of dilute nanofluids which is something unexpected and novel. Evidence of a shear thinning mechanism is found inside the momentum boundary layer of the nanofluid flows that might prove beneficial to the coolant pumping power losses when using nanofluids instead of water and is expected to affect their thermal performance from a hydrodynamic point of view. |
---|---|
AbstractList | Nanofluids are advanced two-phase coolants that exhibit heat transfer augmentation phenomena. Extensive research has been performed since the year 2000 onwards to understand the physical mechanisms of heat transfer in nanofluids when employed inside traditional heat exchanging geometries. The focus of this paper is to understand if and how the geometry of heat exchangers might be potentially affecting the nanofluid coolant flow boundary conditions established and how this might be hence further affecting their thermal characteristics. HyperVapotrons are highly robust and efficient heat exchangers able to transfer high heat fluxes of the order of 10-20 MW/m2. They employ a complex two-phase heat transfer mechanism which is strongly linked to the hydrodynamic structures present in the coolant flow inside the devices. A cold isothermal nanofluid flow is established inside two HyperVapotron model replicas. A high spatial resolution (30 nm) visualisation of the nanofluid flow fields inside each replica is measured and compared to those present during the use of a traditional coolant (water). Significant geometry specific changes are evident with the use of dilute nanofluids which is something unexpected and novel. Evidence of a shear thinning mechanism is found inside the momentum boundary layer of the nanofluid flows that might prove beneficial to the coolant pumping power losses when using nanofluids instead of water and is expected to affect their thermal performance from a hydrodynamic point of view. Nanofluids are advanced two-phase coolants that exhibit heat transfer augmentation phenomena. Extensive research has been performed since the year 2000 onwards to understand the physical mechanisms of heat transfer in nanofluids when employed inside traditional heat exchanging geometries. The focus of this paper is to understand if and how the geometry of heat exchangers might be potentially affecting the nanofluid coolant flow boundary conditions established and how this might be hence further affecting their thermal characteristics. HyperVapotrons are highly robust and efficient heat exchangers able to transfer high heat fluxes of the order of 10–20 MW/m2. They employ a complex two-phase heat transfer mechanism which is strongly linked to the hydrodynamic structures present in the coolant flow inside the devices. A cold isothermal nanofluid flow is established inside two HyperVapotron model replicas. A high spatial resolution (30 μm) visualisation of the nanofluid flow fields inside each replica is measured and compared to those present during the use of a traditional coolant (water). Significant geometry specific changes are evident with the use of dilute nanofluids which is something unexpected and novel. Evidence of a shear thinning mechanism is found inside the momentum boundary layer of the nanofluid flows that might prove beneficial to the coolant pumping power losses when using nanofluids instead of water and is expected to affect their thermal performance from a hydrodynamic point of view. |
Author | Hardalupas, Y. Barrett, T.R. Sergis, A. |
Author_xml | – sequence: 1 givenname: A. surname: Sergis fullname: Sergis, A. email: a.sergis09@imperial.ac.uk organization: The Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK – sequence: 2 givenname: Y. surname: Hardalupas fullname: Hardalupas, Y. organization: The Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK – sequence: 3 givenname: T.R. surname: Barrett fullname: Barrett, T.R. organization: EURATOM/CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK |
BookMark | eNqNkD1PwzAURS1UJNrCf7AEa4KfE_IhsaCKUqRKLMCEZDnOS3GV2sFOCvn3uJSFjekt5x3de2dkYqxBQq6AxcAgu97G-NX17-h2TTt4pWPOII-BxwzSEzKFIi8jzotsQqasKNMI8jw_IzPvt4yxggObkrdHb38MsqXSyHb02lPbUCONDVJd06a1n1Qbr2ukq7FD9yo72ztrPB28NhvaSddr1SLVO7lBusfWKr3D3o3n5LSRrceL3zsnL8v758UqWj89PC7u1pFKgfeRqqBRVYIMocBSYl2wJMsrlaQcy7KCIquakJ9jXjPkIBXcYEBr1VQ8ReTJnFwevZ2zHwP6Xmzt4EIbLzhLOeehbBGo2yOlnPXeYSM6FyK7UQAThz3FVvzdUxz2FMBF2DO8L4_vGJrsNToRCDQKa-1Q9aK2-n-ib7kijII |
CitedBy_id | crossref_primary_10_1016_j_powtec_2023_119090 crossref_primary_10_1007_s10894_022_00316_w crossref_primary_10_1007_s12648_019_01510_x crossref_primary_10_3390_pr10010177 |
Cites_doi | 10.1016/j.ijheatmasstransfer.2008.06.032 10.13182/FST96-A30700 10.1016/j.fusengdes.2006.12.011 10.1016/j.ijheatmasstransfer.2016.12.071 10.1016/j.fusengdes.2015.04.063 10.1088/0029-5515/53/11/113019 10.1115/1.2150834 10.12921/cmst.2014.20.04.113-127 10.1186/1556-276X-6-391 10.1016/j.ijthermalsci.2006.06.010 10.1016/j.fusengdes.2015.04.029 10.1186/s11671-015-0954-8 10.1016/j.ijheatmasstransfer.2008.10.025 10.1016/S0920-3796(03)00172-8 10.1016/j.expthermflusci.2014.10.003 10.1016/j.nanoen.2017.04.025 10.1016/j.partic.2009.01.007 10.1016/j.ijheatmasstransfer.2012.10.037 10.1186/1556-276X-6-247 10.1007/s00339-003-2264-8 10.1007/s10404-009-0553-z 10.1016/j.ijheatmasstransfer.2005.07.009 10.1186/1556-276X-6-181 10.1016/j.fusengdes.2013.03.058 10.1063/1.4939986 10.1016/j.ijheatmasstransfer.2008.01.034 10.1063/1.1613374 10.1016/j.ijthermalsci.2009.03.016 10.1002/andp.19063240204 10.1016/j.ijheatmasstransfer.2009.03.073 10.1016/j.ijmultiphaseflow.2009.02.004 10.1007/s11051-005-3478-9 10.1007/s00231-004-0539-z |
ContentType | Journal Article |
Copyright | 2018 The Authors Copyright Elsevier Science Ltd. May 2018 |
Copyright_xml | – notice: 2018 The Authors – notice: Copyright Elsevier Science Ltd. May 2018 |
DBID | 6I. AAFTH AAYXX CITATION 7QH 7TB 7U5 7UA 8FD C1K FR3 H8D KR7 L7M |
DOI | 10.1016/j.expthermflusci.2017.12.014 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Aqualine Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Aqualine Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2286 |
EndPage | 44 |
ExternalDocumentID | 10_1016_j_expthermflusci_2017_12_014 S0894177717303977 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 UHS VH1 WUQ XPP ZMT ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7QH 7TB 7U5 7UA 8FD C1K FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c412t-cb1fcb3e0e18e9aed80367bc342e99b186bf0892e7d0e21ac15ee18dcfb24ee23 |
IEDL.DBID | AIKHN |
ISSN | 0894-1777 |
IngestDate | Thu Oct 10 19:53:57 EDT 2024 Thu Sep 26 15:56:41 EDT 2024 Fri Feb 23 02:31:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Viscosity Cooling PIV HV Nanofluids HHF |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-cb1fcb3e0e18e9aed80367bc342e99b186bf0892e7d0e21ac15ee18dcfb24ee23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0894177717303977 |
PQID | 2042220828 |
PQPubID | 2047468 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2042220828 crossref_primary_10_1016_j_expthermflusci_2017_12_014 elsevier_sciencedirect_doi_10_1016_j_expthermflusci_2017_12_014 |
PublicationCentury | 2000 |
PublicationDate | May 2018 2018-05-00 20180501 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Experimental thermal and fluid science |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
References | Das (b0025) 2007 Sergis, Hardalupas, Barrett (b0125) 2013; 53 Warrier, Teja (b0045) 2011; 6 Xie (b0035) 2003; 94 Kanjirakat, Sadr (b0155) 2016; 6 Xuan, Yao (b0085) 2004 Sergis, Hardalupas (b0160) 2014; 20 Sergis, Hardalupas, Barrett (b0020) 2015; 61 Falter, Thompson (b0015) 1996 Wang (b0080) 2003; 80 Einstein (b0135) 1906; 324 Kim (b0075) 2009; 35 Ding (b0145) 2006; 49 Mahian (b0090) 2017; 36 Walsh, Egan, Walsh (b0130) 2009; 8 Daviran (b0050) 2017; 108 Sergis, Hardalupas (b0110) 2011; 6 Hwang, Jang, Choi (b0150) 2009; 52 Sergis (b0115) 2015 Wen (b0095) 2009; 7 Rea (b0070) 2009; 52 Wen (b0060) 2008; 51 Pascal-Ribot (b0005) 2007; 82 Wang, Bao (b0065) 2009; 48 Savoldi (b0120) 2015; 100 Mahian (b0105) 2013; 57 Wei (b0040) 2009; 52 Barrett (b0170) 2013; 88 Buongiorno (b0140) 2006; 128 Wang, Mujumdar (b0100) 2007; 46 Wen, Ding (b0055) 2005; 7 Escourbiac (b0010) 2003; 66–68 Sergis, Hardalupas (b0165) 2015; 10 Zhu (b0030) 2011; 6 Einstein (10.1016/j.expthermflusci.2017.12.014_b0135) 1906; 324 Warrier (10.1016/j.expthermflusci.2017.12.014_b0045) 2011; 6 Daviran (10.1016/j.expthermflusci.2017.12.014_b0050) 2017; 108 Wen (10.1016/j.expthermflusci.2017.12.014_b0055) 2005; 7 Wang (10.1016/j.expthermflusci.2017.12.014_b0080) 2003; 80 Wei (10.1016/j.expthermflusci.2017.12.014_b0040) 2009; 52 Xuan (10.1016/j.expthermflusci.2017.12.014_b0085) 2004 Sergis (10.1016/j.expthermflusci.2017.12.014_b0115) 2015 Sergis (10.1016/j.expthermflusci.2017.12.014_b0165) 2015; 10 Savoldi (10.1016/j.expthermflusci.2017.12.014_b0120) 2015; 100 Wen (10.1016/j.expthermflusci.2017.12.014_b0060) 2008; 51 Sergis (10.1016/j.expthermflusci.2017.12.014_b0110) 2011; 6 Escourbiac (10.1016/j.expthermflusci.2017.12.014_b0010) 2003; 66–68 Falter (10.1016/j.expthermflusci.2017.12.014_b0015) 1996 Mahian (10.1016/j.expthermflusci.2017.12.014_b0105) 2013; 57 Barrett (10.1016/j.expthermflusci.2017.12.014_b0170) 2013; 88 Kim (10.1016/j.expthermflusci.2017.12.014_b0075) 2009; 35 Wang (10.1016/j.expthermflusci.2017.12.014_b0100) 2007; 46 Sergis (10.1016/j.expthermflusci.2017.12.014_b0125) 2013; 53 Kanjirakat (10.1016/j.expthermflusci.2017.12.014_b0155) 2016; 6 Buongiorno (10.1016/j.expthermflusci.2017.12.014_b0140) 2006; 128 Wang (10.1016/j.expthermflusci.2017.12.014_b0065) 2009; 48 Xie (10.1016/j.expthermflusci.2017.12.014_b0035) 2003; 94 Hwang (10.1016/j.expthermflusci.2017.12.014_b0150) 2009; 52 Mahian (10.1016/j.expthermflusci.2017.12.014_b0090) 2017; 36 Ding (10.1016/j.expthermflusci.2017.12.014_b0145) 2006; 49 Das (10.1016/j.expthermflusci.2017.12.014_b0025) 2007 Rea (10.1016/j.expthermflusci.2017.12.014_b0070) 2009; 52 Walsh (10.1016/j.expthermflusci.2017.12.014_b0130) 2009; 8 Sergis (10.1016/j.expthermflusci.2017.12.014_b0020) 2015; 61 Sergis (10.1016/j.expthermflusci.2017.12.014_b0160) 2014; 20 Zhu (10.1016/j.expthermflusci.2017.12.014_b0030) 2011; 6 Wen (10.1016/j.expthermflusci.2017.12.014_b0095) 2009; 7 Pascal-Ribot (10.1016/j.expthermflusci.2017.12.014_b0005) 2007; 82 |
References_xml | – year: 1996 ident: b0015 article-title: Performance of hypervapotron beam-stopping elements at JET publication-title: Fusion Technol. contributor: fullname: Thompson – year: 2015 ident: b0115 article-title: Comparison of measurements and computations of isothermal flow velocity inside HyperVapotrons publication-title: Fusion Eng. Des. contributor: fullname: Sergis – year: 2004 ident: b0085 article-title: Lattice Boltzmann model for nanofluids publication-title: Heat Mass Transf. contributor: fullname: Yao – volume: 49 start-page: 240 year: 2006 end-page: 250 ident: b0145 article-title: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) publication-title: Int. J. Heat Mass Transf. contributor: fullname: Ding – volume: 100 start-page: 112 year: 2015 end-page: 119 ident: b0120 article-title: Numerical investigation of collector cooling for a 1 MW ITER gyrotron operated with vertical sweeping publication-title: Fusion Eng. Des. contributor: fullname: Savoldi – volume: 8 start-page: 837 year: 2009 end-page: 842 ident: b0130 article-title: Novel micro-PIV study enables a greater understanding of nanoparticle suspension flows: nanofluids publication-title: Microfluid. Nanofluid. contributor: fullname: Walsh – volume: 53 year: 2013 ident: b0125 article-title: Potential for improvement in high heat flux HyperVapotron element performance using nanofluids publication-title: Nucl. Fusion contributor: fullname: Barrett – volume: 6 start-page: 391 year: 2011 ident: b0110 article-title: Anomalous heat transfer modes of nanofluids: a review based on statistical analysis publication-title: Nanoscale Res. Lett. contributor: fullname: Hardalupas – volume: 6 year: 2016 ident: b0155 article-title: Near-wall velocity profile measurement for nanofluids publication-title: AIP Adv. contributor: fullname: Sadr – volume: 7 start-page: 265 year: 2005 end-page: 274 ident: b0055 article-title: Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids publication-title: J. Nanopart. Res. contributor: fullname: Ding – volume: 61 start-page: 48 year: 2015 end-page: 58 ident: b0020 article-title: Isothermal velocity measurements in two HyperVapotron geometries using particle image velocimetry (PIV) publication-title: Exp. Therm. Fluid Sci. contributor: fullname: Barrett – volume: 66–68 start-page: 301 year: 2003 end-page: 304 ident: b0010 article-title: Experimental optimisation of a hypervapotron® concept for ITER plasma facing components publication-title: Fusion Eng. Des. contributor: fullname: Escourbiac – volume: 88 start-page: 2594 year: 2013 end-page: 2597 ident: b0170 article-title: Investigating the use of nanofluids to improve high heat flux cooling systems publication-title: Fusion Eng. Des. contributor: fullname: Barrett – volume: 128 year: 2006 ident: b0140 article-title: Convective transport in nanofluids publication-title: J. Heat Transf. contributor: fullname: Buongiorno – volume: 20 start-page: 14 year: 2014 ident: b0160 article-title: Molecular dynamic simulations of a simplified nanofluid publication-title: Comput. Methods Sci. Technol. contributor: fullname: Hardalupas – volume: 36 start-page: 134 year: 2017 end-page: 155 ident: b0090 article-title: Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger publication-title: Nano Energy contributor: fullname: Mahian – volume: 52 start-page: 2042 year: 2009 end-page: 2048 ident: b0070 article-title: Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids publication-title: Int. J. Heat Mass Transf. contributor: fullname: Rea – volume: 324 start-page: 289 year: 1906 end-page: 306 ident: b0135 article-title: Eine neue Bestimmung der Moleküldimensionen publication-title: Ann. Phys. contributor: fullname: Einstein – volume: 82 start-page: 1781 year: 2007 end-page: 1785 ident: b0005 article-title: 3D numerical simulations of hypervapotron cooling concept publication-title: Fusion Eng. Des. contributor: fullname: Pascal-Ribot – volume: 7 start-page: 141 year: 2009 end-page: 150 ident: b0095 article-title: Review of nanofluids for heat transfer applications publication-title: Particuology contributor: fullname: Wen – volume: 6 start-page: 247 year: 2011 ident: b0045 article-title: Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles publication-title: Nanoscale Res. Lett. contributor: fullname: Teja – year: 2007 ident: b0025 article-title: Nanofluids contributor: fullname: Das – volume: 52 start-page: 193 year: 2009 end-page: 199 ident: b0150 article-title: Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime publication-title: Int. J. Heat Mass Transf. contributor: fullname: Choi – volume: 57 start-page: 582 year: 2013 end-page: 594 ident: b0105 article-title: A review of the applications of nanofluids in solar energy publication-title: Int. J. Heat Mass Transf. contributor: fullname: Mahian – volume: 108 start-page: 822 year: 2017 end-page: 829 ident: b0050 article-title: Evaluation of clustering role versus Brownian motion effect on the heat conduction in nanofluids: a novel approach publication-title: Int. J. Heat Mass Transf. contributor: fullname: Daviran – volume: 35 start-page: 427 year: 2009 end-page: 438 ident: b0075 article-title: On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles publication-title: Int. J. Multiphase Flow contributor: fullname: Kim – volume: 51 start-page: 4958 year: 2008 end-page: 4965 ident: b0060 article-title: Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF) publication-title: Int. J. Heat Mass Transf. contributor: fullname: Wen – volume: 48 start-page: 2074 year: 2009 end-page: 2079 ident: b0065 article-title: Two-phase flow patterns of nitrogen and nanofluids in a vertically capillary tube publication-title: Int. J. Therm. Sci. contributor: fullname: Bao – volume: 46 start-page: 1 year: 2007 end-page: 19 ident: b0100 article-title: Heat transfer characteristics of nanofluids: a review publication-title: Int. J. Therm. Sci. contributor: fullname: Mujumdar – volume: 94 start-page: 4967 year: 2003 ident: b0035 article-title: Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities publication-title: J. Appl. Phys. contributor: fullname: Xie – volume: 6 start-page: 181 year: 2011 ident: b0030 article-title: Preparation and thermal conductivity of CuO nanofluid via a wet chemical method publication-title: Nanoscale Res. Lett. contributor: fullname: Zhu – volume: 80 start-page: 637 year: 2003 end-page: 639 ident: b0080 article-title: Nanofluids in carbon nanotubes using supercritical CO publication-title: Appl. Phys. A contributor: fullname: Wang – volume: 52 start-page: 4371 year: 2009 end-page: 4374 ident: b0040 article-title: Synthesis and thermal conductivity of Cu publication-title: Int. J. Heat Mass Transf. contributor: fullname: Wei – volume: 10 start-page: 954 year: 2015 ident: b0165 article-title: Revealing the complex conduction heat transfer mechanism of nanofluids publication-title: Nanoscale Res. Lett. contributor: fullname: Hardalupas – year: 2007 ident: 10.1016/j.expthermflusci.2017.12.014_b0025 contributor: fullname: Das – volume: 52 start-page: 193 issue: 1–2 year: 2009 ident: 10.1016/j.expthermflusci.2017.12.014_b0150 article-title: Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.06.032 contributor: fullname: Hwang – year: 1996 ident: 10.1016/j.expthermflusci.2017.12.014_b0015 article-title: Performance of hypervapotron beam-stopping elements at JET publication-title: Fusion Technol. doi: 10.13182/FST96-A30700 contributor: fullname: Falter – volume: 82 start-page: 1781 issue: 15–24 year: 2007 ident: 10.1016/j.expthermflusci.2017.12.014_b0005 article-title: 3D numerical simulations of hypervapotron cooling concept publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2006.12.011 contributor: fullname: Pascal-Ribot – volume: 108 start-page: 822 year: 2017 ident: 10.1016/j.expthermflusci.2017.12.014_b0050 article-title: Evaluation of clustering role versus Brownian motion effect on the heat conduction in nanofluids: a novel approach publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.12.071 contributor: fullname: Daviran – volume: 100 start-page: 112 year: 2015 ident: 10.1016/j.expthermflusci.2017.12.014_b0120 article-title: Numerical investigation of collector cooling for a 1 MW ITER gyrotron operated with vertical sweeping publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2015.04.063 contributor: fullname: Savoldi – volume: 53 issue: 11 year: 2013 ident: 10.1016/j.expthermflusci.2017.12.014_b0125 article-title: Potential for improvement in high heat flux HyperVapotron element performance using nanofluids publication-title: Nucl. Fusion doi: 10.1088/0029-5515/53/11/113019 contributor: fullname: Sergis – volume: 128 issue: 3 year: 2006 ident: 10.1016/j.expthermflusci.2017.12.014_b0140 article-title: Convective transport in nanofluids publication-title: J. Heat Transf. doi: 10.1115/1.2150834 contributor: fullname: Buongiorno – volume: 20 start-page: 14 issue: 4 year: 2014 ident: 10.1016/j.expthermflusci.2017.12.014_b0160 article-title: Molecular dynamic simulations of a simplified nanofluid publication-title: Comput. Methods Sci. Technol. doi: 10.12921/cmst.2014.20.04.113-127 contributor: fullname: Sergis – volume: 6 start-page: 391 issue: 1 year: 2011 ident: 10.1016/j.expthermflusci.2017.12.014_b0110 article-title: Anomalous heat transfer modes of nanofluids: a review based on statistical analysis publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-6-391 contributor: fullname: Sergis – volume: 46 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.expthermflusci.2017.12.014_b0100 article-title: Heat transfer characteristics of nanofluids: a review publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2006.06.010 contributor: fullname: Wang – year: 2015 ident: 10.1016/j.expthermflusci.2017.12.014_b0115 article-title: Comparison of measurements and computations of isothermal flow velocity inside HyperVapotrons publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2015.04.029 contributor: fullname: Sergis – volume: 10 start-page: 954 issue: 1 year: 2015 ident: 10.1016/j.expthermflusci.2017.12.014_b0165 article-title: Revealing the complex conduction heat transfer mechanism of nanofluids publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-015-0954-8 contributor: fullname: Sergis – volume: 52 start-page: 2042 issue: 7–8 year: 2009 ident: 10.1016/j.expthermflusci.2017.12.014_b0070 article-title: Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.10.025 contributor: fullname: Rea – volume: 66–68 start-page: 301 year: 2003 ident: 10.1016/j.expthermflusci.2017.12.014_b0010 article-title: Experimental optimisation of a hypervapotron® concept for ITER plasma facing components publication-title: Fusion Eng. Des. doi: 10.1016/S0920-3796(03)00172-8 contributor: fullname: Escourbiac – volume: 61 start-page: 48 year: 2015 ident: 10.1016/j.expthermflusci.2017.12.014_b0020 article-title: Isothermal velocity measurements in two HyperVapotron geometries using particle image velocimetry (PIV) publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2014.10.003 contributor: fullname: Sergis – volume: 36 start-page: 134 issue: April year: 2017 ident: 10.1016/j.expthermflusci.2017.12.014_b0090 article-title: Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.025 contributor: fullname: Mahian – volume: 7 start-page: 141 issue: 2 year: 2009 ident: 10.1016/j.expthermflusci.2017.12.014_b0095 article-title: Review of nanofluids for heat transfer applications publication-title: Particuology doi: 10.1016/j.partic.2009.01.007 contributor: fullname: Wen – volume: 57 start-page: 582 issue: 2 year: 2013 ident: 10.1016/j.expthermflusci.2017.12.014_b0105 article-title: A review of the applications of nanofluids in solar energy publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.10.037 contributor: fullname: Mahian – volume: 6 start-page: 247 issue: 1 year: 2011 ident: 10.1016/j.expthermflusci.2017.12.014_b0045 article-title: Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-6-247 contributor: fullname: Warrier – volume: 80 start-page: 637 issue: 3 year: 2003 ident: 10.1016/j.expthermflusci.2017.12.014_b0080 article-title: Nanofluids in carbon nanotubes using supercritical CO2: a first step towards a nanochemical reaction publication-title: Appl. Phys. A doi: 10.1007/s00339-003-2264-8 contributor: fullname: Wang – volume: 8 start-page: 837 issue: 6 year: 2009 ident: 10.1016/j.expthermflusci.2017.12.014_b0130 article-title: Novel micro-PIV study enables a greater understanding of nanoparticle suspension flows: nanofluids publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-009-0553-z contributor: fullname: Walsh – volume: 49 start-page: 240 issue: 1–2 year: 2006 ident: 10.1016/j.expthermflusci.2017.12.014_b0145 article-title: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2005.07.009 contributor: fullname: Ding – volume: 6 start-page: 181 issue: 1 year: 2011 ident: 10.1016/j.expthermflusci.2017.12.014_b0030 article-title: Preparation and thermal conductivity of CuO nanofluid via a wet chemical method publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-6-181 contributor: fullname: Zhu – volume: 88 start-page: 2594 issue: 9–10 year: 2013 ident: 10.1016/j.expthermflusci.2017.12.014_b0170 article-title: Investigating the use of nanofluids to improve high heat flux cooling systems publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2013.03.058 contributor: fullname: Barrett – volume: 6 issue: 1 year: 2016 ident: 10.1016/j.expthermflusci.2017.12.014_b0155 article-title: Near-wall velocity profile measurement for nanofluids publication-title: AIP Adv. doi: 10.1063/1.4939986 contributor: fullname: Kanjirakat – volume: 51 start-page: 4958 issue: 19–20 year: 2008 ident: 10.1016/j.expthermflusci.2017.12.014_b0060 article-title: Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF) publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2008.01.034 contributor: fullname: Wen – volume: 94 start-page: 4967 issue: 8 year: 2003 ident: 10.1016/j.expthermflusci.2017.12.014_b0035 article-title: Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities publication-title: J. Appl. Phys. doi: 10.1063/1.1613374 contributor: fullname: Xie – volume: 48 start-page: 2074 issue: 11 year: 2009 ident: 10.1016/j.expthermflusci.2017.12.014_b0065 article-title: Two-phase flow patterns of nitrogen and nanofluids in a vertically capillary tube publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2009.03.016 contributor: fullname: Wang – volume: 324 start-page: 289 issue: 2 year: 1906 ident: 10.1016/j.expthermflusci.2017.12.014_b0135 article-title: Eine neue Bestimmung der Moleküldimensionen publication-title: Ann. Phys. doi: 10.1002/andp.19063240204 contributor: fullname: Einstein – volume: 52 start-page: 4371 issue: 19–20 year: 2009 ident: 10.1016/j.expthermflusci.2017.12.014_b0040 article-title: Synthesis and thermal conductivity of Cu2O nanofluids publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2009.03.073 contributor: fullname: Wei – volume: 35 start-page: 427 issue: 5 year: 2009 ident: 10.1016/j.expthermflusci.2017.12.014_b0075 article-title: On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2009.02.004 contributor: fullname: Kim – volume: 7 start-page: 265 issue: 2–3 year: 2005 ident: 10.1016/j.expthermflusci.2017.12.014_b0055 article-title: Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids publication-title: J. Nanopart. Res. doi: 10.1007/s11051-005-3478-9 contributor: fullname: Wen – year: 2004 ident: 10.1016/j.expthermflusci.2017.12.014_b0085 article-title: Lattice Boltzmann model for nanofluids publication-title: Heat Mass Transf. doi: 10.1007/s00231-004-0539-z contributor: fullname: Xuan |
SSID | ssj0008210 |
Score | 2.2609024 |
Snippet | Nanofluids are advanced two-phase coolants that exhibit heat transfer augmentation phenomena. Extensive research has been performed since the year 2000 onwards... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 32 |
SubjectTerms | Boundary conditions Boundary layers Cold flow Computational fluid dynamics Coolants Cooling Dilution Fluid flow Heat exchange Heat exchangers Heat flux Heat transfer HHF Nanofluids Nuclear fission Particle image velocimetry PIV Shear thinning (liquids) Spatial discrimination Spatial resolution Velocity measurement Viscosity |
Title | Isothermal analysis of nanofluid flow inside HyperVapotrons using particle image velocimetry |
URI | https://dx.doi.org/10.1016/j.expthermflusci.2017.12.014 https://www.proquest.com/docview/2042220828 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS-QwFH7oCIseRHdX_E0OXrszSVOTnkREGV304rp4WAhJ-rJUnLbMjKgX_3aTTuovWBD22DZtwpf2y-vL994D2AspsVyepQkXoYSZdCLR1hYJFWgyZMxZGwKczy_2h1f87Dq7noOjLhYmyCoj9884vWXreKYf0ew3Zdm_HMicUyHCNvIgmDHzsNBuEvVg4fD05_DihZAla5MShPZJuOEL7L3KvPChCZbWyN3e-V6C1ku0_kHK_7VSfeDsdiE6WYHlaEGSw9kgV2EOq6-w9Cav4Df4czppA6tGvp2OWUdI7Uilq9qPoCyIu63vSdnW6iRD_ys6_q2bOnjFJyQo4f-SJoJAypFnHBKURbYc4XT8-B2uTo5_HQ2TWEYhsZyyaWINddakOEAqMddYSL9qCWNTzjDPDZX7xnlsGIpigIxqSzP0TQvrDOOILF2DXlVXuA5EpNxpK5G5zHpLRhtZZFzkMtW5tprJDcg6yFQzy5ahOhnZjXoPtQpQK8qUh3oDDjp81bvZV57YP_mE7W5aVPwKJ_56cHCFJH2b_93BFiz6IznTOm5Dbzq-wx1vj0zNLsz_eKK78a17Bj7x5dk |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwEB3BIkF7qEqhKi1tfeAa7dpxsHOqVqgoW2AvBcQBybKdMUrFJtHuIuDvsbNOWypVqtRr7MTWs_NmMnkzBjgIJbFcnqUJF-EIM-lEoq0tEyrQZMiYszYkOJ9ND4sL_u0qu1qDoz4XJsgqI_evOL1j63hlGNEctlU1_D6SOadChN_Io-DGrMOG9wZyv9k3xpOTYvqTkCXrihKE_km4YRMOfsm88KENntbM3d75UYLWS3TxQcr_Zqn-4OzOEB2_hlfRgyTj1SS3YQ3rN_Dyt7qCO3A9WXSJVTPfT8eqI6RxpNZ142dQlcTdNvek6s7qJIX_FJ1f6rYJUfEFCUr4G9JGEEg184xDgrLIVjNczh934eL46_lRkcRjFBLLKVsm1lBnTYojpBJzjaX0VksYm3KGeW6oPDTOY8NQlCNkVFuaoe9aWmcYR2TpWxjUTY3vgIiUO20lMpdZ78loI8uMi1ymOtdWM7kHWQ-ZalfVMlQvI_uhnkOtAtSKMuWh3oMvPb7q2eorT-z_-IT9fllUfAsXvj0EuEKRvvf_PcBn2CrOz07V6WR68gFe-Ba50j3uw2A5v8OP3jdZmk9x7z0B5gnn1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isothermal+analysis+of+nanofluid+flow+inside+HyperVapotrons+using+particle+image+velocimetry&rft.jtitle=Experimental+thermal+and+fluid+science&rft.au=Sergis%2C+A.&rft.au=Hardalupas%2C+Y.&rft.au=Barrett%2C+T.R.&rft.date=2018-05-01&rft.pub=Elsevier+Inc&rft.issn=0894-1777&rft.eissn=1879-2286&rft.volume=93&rft.spage=32&rft.epage=44&rft_id=info:doi/10.1016%2Fj.expthermflusci.2017.12.014&rft.externalDocID=S0894177717303977 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1777&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1777&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1777&client=summon |