Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications
The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution of the European Space Agency (ESA) launched Sentinel-2 A + B twin platform is paving the way to their popularization in precision agriculture...
Saved in:
Published in | Agronomy (Basel) Vol. 10; no. 5; p. 641 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution of the European Space Agency (ESA) launched Sentinel-2 A + B twin platform is paving the way to their popularization in precision agriculture. Besides the Sentinel-2 A + B constellation technical features the open-access nature of the information they generate, and the available support software are a significant improvement for agricultural monitoring. This paper was motivated by the challenges faced by researchers and agrarian institutions entering this field; it aims to frame remote sensing principles and Sentinel-2 applications in agriculture. Thus, we reviewed the features and uses of Sentinel-2 in precision agriculture, including abiotic and biotic stress detection, and agricultural management. We also compared the panoply of satellites currently in use for land remote sensing that are relevant for agriculture to the Sentinel-2 A + B constellation features. Contrasted with previous satellite image systems, the Sentinel-2 A + B twin platform has dramatically increased the capabilities for agricultural monitoring and crop management worldwide. Regarding crop stress monitoring, Sentinel-2 capacities for abiotic and biotic stresses detection represent a great step forward in many ways though not without its limitations; therefore, combinations of field data and different remote sensing techniques may still be needed. We conclude that Sentinel-2 has a wide range of useful applications in agriculture, yet still with room for further improvements. Current and future ways that Sentinel-2 can be utilized are also discussed. |
---|---|
AbstractList | The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution of the European Space Agency (ESA) launched Sentinel-2 A + B twin platform is paving the way to their popularization in precision agriculture. Besides the Sentinel-2 A + B constellation technical features the open-access nature of the information they generate, and the available support software are a significant improvement for agricultural monitoring. This paper was motivated by the challenges faced by researchers and agrarian institutions entering this field; it aims to frame remote sensing principles and Sentinel-2 applications in agriculture. Thus, we reviewed the features and uses of Sentinel-2 in precision agriculture, including abiotic and biotic stress detection, and agricultural management. We also compared the panoply of satellites currently in use for land remote sensing that are relevant for agriculture to the Sentinel-2 A + B constellation features. Contrasted with previous satellite image systems, the Sentinel-2 A + B twin platform has dramatically increased the capabilities for agricultural monitoring and crop management worldwide. Regarding crop stress monitoring, Sentinel-2 capacities for abiotic and biotic stresses detection represent a great step forward in many ways though not without its limitations; therefore, combinations of field data and different remote sensing techniques may still be needed. We conclude that Sentinel-2 has a wide range of useful applications in agriculture, yet still with room for further improvements. Current and future ways that Sentinel-2 can be utilized are also discussed. |
Author | Kefauver, Shawn C. Buchaillot, Maria Luisa Segarra, Joel Araus, Jose Luis |
Author_xml | – sequence: 1 givenname: Joel surname: Segarra fullname: Segarra, Joel – sequence: 2 givenname: Maria Luisa orcidid: 0000-0003-4668-5458 surname: Buchaillot fullname: Buchaillot, Maria Luisa – sequence: 3 givenname: Jose Luis orcidid: 0000-0002-8866-2388 surname: Araus fullname: Araus, Jose Luis – sequence: 4 givenname: Shawn C. surname: Kefauver fullname: Kefauver, Shawn C. |
BookMark | eNp1kc1rGzEQxUVJoWmae48LvfSyib5WH72Z0DSGQEPa0qPQyiMjsyu5kraQ_75ynEIxdC4aZn7vwdO8RWcxRUDoPcFXjGl8bbc5xTQ_EYwHLDh5hc4plqznTA9n__Rv0GUpO9xKE6awPEc_H2FOFbpvEEuI286n3D1kcKGEFLvVNge3THXJ8OmA1BBh6mm3nvc5_YZNdwv2sCydjZtutd9PwdnalOUdeu3tVODy5b1AP24_f7-56--_flnfrO57xwmtvcPEc2XpiIGNjoPVYiAeezwKRinmjIwb7bTQRHPvKNEgFcGSYjtA23t2gdZH302yO7PPYbb5ySQbzPMg5a2xuQY3gdGSYEuUEs4P3Do1NhcppbDSDlSOvHl9PHq1cL8WKNXMoTiYJhshLcVQrYTiehCyoR9O0F1acmxJDWVa6UFrcqDEkXI5lZLBGxfq8__UbMNkCDaH85nT8zUhPhH-TfZfyR-uFp_Q |
CitedBy_id | crossref_primary_10_1016_j_jag_2024_104338 crossref_primary_10_1016_j_ecolind_2024_112654 crossref_primary_10_1007_s12524_021_01361_2 crossref_primary_10_3390_rs15235602 crossref_primary_10_1007_s11273_022_09875_3 crossref_primary_10_3390_rs16010061 crossref_primary_10_3389_feart_2023_1183834 crossref_primary_10_1007_s00425_022_03867_6 crossref_primary_10_1080_10106049_2022_2146764 crossref_primary_10_1109_TGRS_2023_3348974 crossref_primary_10_3390_agriculture14101753 crossref_primary_10_1016_j_ejrs_2024_06_003 crossref_primary_10_3390_challe14010012 crossref_primary_10_3390_fire7020058 crossref_primary_10_1088_2515_7620_adb9c0 crossref_primary_10_1016_j_inpa_2022_05_004 crossref_primary_10_1016_j_jag_2022_103124 crossref_primary_10_3390_su15043557 crossref_primary_10_3390_rs12152504 crossref_primary_10_3390_ijgi11020121 crossref_primary_10_3390_rs12162654 crossref_primary_10_4236_ars_2024_132003 crossref_primary_10_3390_rs17010148 crossref_primary_10_1088_1755_1315_623_1_012037 crossref_primary_10_1038_s41598_024_63650_3 crossref_primary_10_3390_rs15030824 crossref_primary_10_3390_app112411769 crossref_primary_10_3390_rs14010216 crossref_primary_10_3390_rs16213921 crossref_primary_10_1007_s10661_025_13880_3 crossref_primary_10_1016_j_agwat_2025_109347 crossref_primary_10_3390_agriculture15020186 crossref_primary_10_1111_gcb_17461 crossref_primary_10_1016_j_rsase_2021_100557 crossref_primary_10_1080_15427528_2022_2080784 crossref_primary_10_1007_s11119_021_09789_9 crossref_primary_10_1007_s40808_024_01963_y crossref_primary_10_3390_plants10091945 crossref_primary_10_1007_s11356_023_26289_7 crossref_primary_10_1007_s11119_024_10176_3 crossref_primary_10_3390_rs12142278 crossref_primary_10_1016_j_still_2024_106266 crossref_primary_10_1016_j_compag_2024_109394 crossref_primary_10_3390_rs14225730 crossref_primary_10_1007_s11042_024_18955_w crossref_primary_10_1016_j_srs_2024_100133 crossref_primary_10_1016_j_rsase_2024_101259 crossref_primary_10_3390_rs16081392 crossref_primary_10_3390_rs17030550 crossref_primary_10_3390_rs14215430 crossref_primary_10_1016_j_jag_2023_103418 crossref_primary_10_3390_rs17030432 crossref_primary_10_7235_HORT_20250006 crossref_primary_10_3390_informatics9040080 crossref_primary_10_3389_fenvs_2021_800179 crossref_primary_10_3390_plants14010039 crossref_primary_10_1016_j_fcr_2025_109857 crossref_primary_10_3390_land13030335 crossref_primary_10_3390_su14041993 crossref_primary_10_1016_j_rsase_2025_101509 crossref_primary_10_3390_rs13132584 crossref_primary_10_3390_rs17030362 crossref_primary_10_1016_j_scitotenv_2023_161716 crossref_primary_10_3390_rs13061219 crossref_primary_10_3390_rs15061640 crossref_primary_10_3390_rs15143664 crossref_primary_10_3390_rs15123017 crossref_primary_10_1002_iroh_202402172 crossref_primary_10_1007_s13218_023_00826_5 crossref_primary_10_1016_j_gecco_2022_e02011 crossref_primary_10_3390_rs15164008 crossref_primary_10_3390_rs15061633 crossref_primary_10_1016_j_rsase_2024_101358 crossref_primary_10_3390_agronomy11071365 crossref_primary_10_3390_su14084412 crossref_primary_10_1016_j_agee_2024_109027 crossref_primary_10_1145_3579358 crossref_primary_10_3390_agriculture14081294 crossref_primary_10_3390_agriculture11050457 crossref_primary_10_3390_ijgi9110628 crossref_primary_10_3390_s22176507 crossref_primary_10_3390_rs15235476 crossref_primary_10_1109_TGRS_2023_3333391 crossref_primary_10_3390_agronomy14010075 crossref_primary_10_1016_j_gexplo_2022_107110 crossref_primary_10_1080_1747423X_2023_2234921 crossref_primary_10_2166_wcc_2023_501 crossref_primary_10_1016_j_isprsjprs_2025_02_024 crossref_primary_10_1016_j_compag_2024_109329 crossref_primary_10_3390_rs13091837 crossref_primary_10_1177_27539687241269331 crossref_primary_10_1016_j_jag_2022_102692 crossref_primary_10_3390_rs16050735 crossref_primary_10_1093_jas_skab038 crossref_primary_10_1007_s43657_022_00048_z crossref_primary_10_3390_rs15133283 crossref_primary_10_1111_jipb_13191 crossref_primary_10_1109_TGRS_2023_3297363 crossref_primary_10_3389_fpls_2023_1230012 crossref_primary_10_1186_s12859_024_05970_9 crossref_primary_10_1080_07038992_2023_2259504 crossref_primary_10_3389_fenvs_2023_1179328 crossref_primary_10_3390_resources13070095 crossref_primary_10_1007_s11277_021_08712_9 crossref_primary_10_1016_j_jenvman_2021_113121 crossref_primary_10_3390_rs15235573 crossref_primary_10_1016_j_atech_2023_100193 crossref_primary_10_1038_s41597_024_03273_5 crossref_primary_10_3390_agronomy13102467 crossref_primary_10_1016_j_agwat_2023_108317 crossref_primary_10_3390_land12061142 crossref_primary_10_35633_inmateh_72_68 crossref_primary_10_3390_agriculture11080785 crossref_primary_10_3389_fsufs_2023_1088640 crossref_primary_10_1088_1755_1315_1418_1_012054 crossref_primary_10_1155_2024_6668228 crossref_primary_10_48044_jauf_2022_012 crossref_primary_10_3390_rs16173145 crossref_primary_10_1016_j_rsase_2024_101320 crossref_primary_10_3390_su14169974 crossref_primary_10_3390_s23041779 crossref_primary_10_5937_gp26_37964 crossref_primary_10_1186_s13007_024_01292_2 crossref_primary_10_3389_frans_2022_872646 crossref_primary_10_1145_3698589 crossref_primary_10_3390_agronomy13123040 crossref_primary_10_3390_land13030386 crossref_primary_10_1016_j_isprsjprs_2022_03_012 crossref_primary_10_3390_su16041612 crossref_primary_10_1007_s11263_025_02390_x crossref_primary_10_1007_s12145_024_01427_y crossref_primary_10_15407_itm2023_04_031 crossref_primary_10_3390_rs15092350 crossref_primary_10_1002_ird_2757 crossref_primary_10_1016_j_heliyon_2023_e17432 crossref_primary_10_3390_agriculture14040546 crossref_primary_10_3390_land13020232 crossref_primary_10_1016_j_geomat_2024_100040 crossref_primary_10_3390_rs14195003 crossref_primary_10_1007_s41348_022_00600_z crossref_primary_10_1007_s11119_021_09845_4 crossref_primary_10_3390_rs14174202 crossref_primary_10_1016_j_compag_2024_109092 crossref_primary_10_1016_j_jag_2023_103597 crossref_primary_10_1080_15481603_2024_2367808 crossref_primary_10_3390_agriculture12081128 crossref_primary_10_3390_rs14051163 crossref_primary_10_3390_w17030323 crossref_primary_10_3389_fpls_2023_1297569 crossref_primary_10_1016_j_compag_2024_109764 crossref_primary_10_1016_j_asr_2024_01_040 crossref_primary_10_2174_0115734137275111231206072049 crossref_primary_10_3390_s23020847 crossref_primary_10_1109_TGRS_2020_3042607 crossref_primary_10_3390_agriculture11111104 crossref_primary_10_3390_rs16050818 crossref_primary_10_3390_land13111818 crossref_primary_10_1109_TGRS_2023_3311622 crossref_primary_10_1002_eng2_13031 crossref_primary_10_1007_s40808_022_01401_x crossref_primary_10_1080_01431161_2021_1998714 crossref_primary_10_3390_s24030834 crossref_primary_10_3390_rs14194859 crossref_primary_10_1007_s12517_023_11497_9 crossref_primary_10_1016_j_fcr_2022_108538 crossref_primary_10_1016_j_envadv_2024_100528 crossref_primary_10_1038_s41598_022_17454_y crossref_primary_10_3390_su13147722 crossref_primary_10_2478_tar_2024_0019 crossref_primary_10_3390_drones8030081 crossref_primary_10_1016_j_array_2022_100257 crossref_primary_10_1109_LGRS_2023_3295742 crossref_primary_10_3390_agronomy12102276 crossref_primary_10_1109_JSTARS_2022_3200713 crossref_primary_10_3390_horticulturae8090759 crossref_primary_10_1016_j_asr_2021_10_020 crossref_primary_10_3390_rs16071199 crossref_primary_10_1016_j_compag_2023_108275 crossref_primary_10_1080_22797254_2023_2267169 crossref_primary_10_3390_drones8090452 crossref_primary_10_3390_rs14112621 crossref_primary_10_24857_rgsa_v18n7_161 crossref_primary_10_3390_s24082647 crossref_primary_10_3390_rs16111870 crossref_primary_10_3390_su15010469 crossref_primary_10_3390_rs15010053 crossref_primary_10_3390_s24237736 crossref_primary_10_47836_pjst_32_6_09 crossref_primary_10_3390_rs14102507 crossref_primary_10_1016_j_isprsjprs_2024_10_016 crossref_primary_10_3390_agronomy13071942 crossref_primary_10_1016_j_rsase_2025_101472 crossref_primary_10_48123_rsgis_1508139 crossref_primary_10_3390_ijgi10110793 crossref_primary_10_3390_rs16213953 crossref_primary_10_1016_j_jii_2024_100699 crossref_primary_10_1007_s12524_020_01266_6 crossref_primary_10_3390_rs17010105 crossref_primary_10_3390_plants13162319 crossref_primary_10_1080_2150704X_2022_2114108 crossref_primary_10_1038_s41598_024_56879_5 crossref_primary_10_1016_j_softx_2023_101421 crossref_primary_10_1017_wsc_2023_36 crossref_primary_10_3390_s24113488 crossref_primary_10_3390_electronics11030325 crossref_primary_10_3390_w16131762 crossref_primary_10_3390_rs14225801 crossref_primary_10_1007_s11119_022_09893_4 crossref_primary_10_1016_j_eja_2022_126677 crossref_primary_10_3390_agriculture14010161 crossref_primary_10_1007_s12355_023_01247_2 crossref_primary_10_3390_agronomy12071518 crossref_primary_10_3390_rs15051461 crossref_primary_10_3390_agronomy12051228 crossref_primary_10_1007_s40808_022_01371_0 crossref_primary_10_1007_s41748_024_00548_0 crossref_primary_10_3390_agronomy12020406 crossref_primary_10_1080_01431161_2024_2370503 crossref_primary_10_3390_bios14050226 crossref_primary_10_3390_rs14071720 crossref_primary_10_3390_agriculture13071417 crossref_primary_10_3390_rs12183030 crossref_primary_10_1016_j_eja_2021_126369 crossref_primary_10_3390_s24248088 crossref_primary_10_3390_rs14030778 crossref_primary_10_1016_j_rsase_2022_100703 crossref_primary_10_3390_s22134721 crossref_primary_10_3390_agronomy12081773 crossref_primary_10_3390_agronomy11061156 crossref_primary_10_3390_data7070096 crossref_primary_10_1177_14034948231178076 crossref_primary_10_3390_rs16244784 crossref_primary_10_1007_s40808_024_02182_1 crossref_primary_10_1016_j_gsd_2025_101436 crossref_primary_10_1371_journal_pone_0282364 crossref_primary_10_1109_JSTARS_2024_3426671 crossref_primary_10_1016_j_compag_2020_105787 crossref_primary_10_3389_fpls_2023_1228590 crossref_primary_10_3390_app15052746 |
Cites_doi | 10.3390/s18072172 10.1016/j.rse.2019.01.006 10.3390/agronomy9090556 10.1016/j.rse.2018.11.019 10.5696/2156-9614-8.17.53 10.1094/Phyto-75-936 10.3390/rs10121953 10.1016/S0065-2113(08)60513-1 10.3390/w10070838 10.3390/rs71013208 10.3390/rs11182121 10.1016/j.isprsjprs.2013.04.007 10.1016/j.rse.2017.10.005 10.1016/j.rse.2018.06.037 10.1016/j.rse.2018.06.035 10.1080/01431169508954588 10.3390/rs5020949 10.1016/j.isprsjprs.2019.06.011 10.3390/rs11182143 10.3390/agronomy9040203 10.1016/j.asr.2020.01.028 10.3390/rs11101257 10.3390/s18030868 10.3390/rs9090906 10.1016/j.isprsjprs.2015.04.013 10.3390/rs11151745 10.1016/j.compag.2018.08.008 10.1017/CBO9780511617195 10.1016/S0176-1617(96)80284-7 10.1117/1.JRS.13.024519 10.1016/j.landusepol.2019.104190 10.1007/s11119-016-9495-0 10.1016/j.pbi.2018.05.003 10.1016/j.scitotenv.2018.04.415 10.1029/2005GL022688 10.1007/s11119-008-9075-z 10.3390/agronomy9070404 10.1016/j.rse.2010.04.006 10.3390/s110707063 10.1016/j.rse.2018.06.036 10.1016/j.rse.2005.10.003 10.3390/agronomy9100663 10.1016/j.asr.2006.02.034 10.1016/0034-4257(79)90013-0 10.1016/j.isprsjprs.2018.02.004 10.1007/s11119-005-2324-5 10.1016/j.rse.2018.11.007 10.3390/agronomy9080437 10.1016/0034-4257(91)90066-F 10.1111/1365-2664.13173 10.1016/j.rse.2011.11.026 10.1016/j.sysarc.2014.01.004 10.3390/rs11172000 10.3390/agronomy10030327 10.3390/agronomy9060278 10.1016/j.rse.2018.09.015 10.3390/rs9050405 10.1016/j.rse.2003.09.004 10.1016/j.agwat.2019.105715 10.1016/j.isprsjprs.2018.11.026 10.1016/j.biosystemseng.2012.08.009 10.1080/22797254.2018.1482524 10.1016/j.asr.2019.08.042 10.1016/j.rse.2016.07.030 10.1038/nclimate1908 10.1038/s41598-019-42620-0 10.1016/j.rse.2005.02.009 10.3390/agronomy9050255 10.1080/02757259509532298 10.1117/1.JRS.12.042803 10.3390/rs10010099 10.1016/S0168-1699(02)00096-0 10.1016/j.rse.2019.111402 10.1016/j.rse.2019.111410 10.1093/treephys/7.1-2-3-4.33 10.1016/S0034-4257(02)00018-4 10.1016/j.ecocom.2013.06.003 10.1094/PD-89-0153 10.1080/01431161.2019.1587205 10.1155/2017/1353691 10.3390/drones3020045 10.2135/cropsci2002.1547 10.1016/S0034-4257(00)00163-2 10.3390/rs10020269 10.1080/01431169008955128 10.1111/j.1744-7348.1986.tb07646.x 10.1016/j.agwat.2018.05.017 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PYCSY SOI 7S9 L.6 DOA |
DOI | 10.3390/agronomy10050641 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Agriculture Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2073-4395 |
ExternalDocumentID | oai_doaj_org_article_9710a1886cf54ac8b20a7776a7a527b4 10_3390_agronomy10050641 |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO KQ8 M0K MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PROAC PYCSY 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c412t-c01f48a2b0e3bc4ea9651f0f0b63220431bd9c969194fc219e7810720a5e220f3 |
IEDL.DBID | DOA |
ISSN | 2073-4395 |
IngestDate | Wed Aug 27 01:21:41 EDT 2025 Thu Jul 10 23:48:24 EDT 2025 Mon Jun 30 11:12:07 EDT 2025 Tue Jul 01 02:34:21 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-c01f48a2b0e3bc4ea9651f0f0b63220431bd9c969194fc219e7810720a5e220f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4668-5458 0000-0002-8866-2388 |
OpenAccessLink | https://doaj.org/article/9710a1886cf54ac8b20a7776a7a527b4 |
PQID | 2398959917 |
PQPubID | 2032440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9710a1886cf54ac8b20a7776a7a527b4 proquest_miscellaneous_2986849567 proquest_journals_2398959917 crossref_citationtrail_10_3390_agronomy10050641 crossref_primary_10_3390_agronomy10050641 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agronomy (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Hunt (ref_33) 2005; 6 Dash (ref_36) 2007; 39 ref_90 Gholizadeh (ref_66) 2018; 218 Defourny (ref_44) 2019; 221 Battude (ref_59) 2016; 184 Pierce (ref_4) 1999; 67 Sharp (ref_18) 1985; 75 Curran (ref_20) 1991; 35 ref_99 ref_10 Hunt (ref_56) 2019; 233 ref_95 Noi (ref_54) 2018; 18 Chemura (ref_83) 2017; 18 Davis (ref_93) 2019; 40 Steddom (ref_14) 2005; 89 Matton (ref_3) 2015; 7 Clevers (ref_27) 2013; 15 Cai (ref_51) 2019; 64 Frampton (ref_39) 2013; 82 Sodango (ref_100) 2018; 8 Xue (ref_31) 2017; 2017 ref_23 Tucker (ref_11) 1979; 8 Aparicio (ref_15) 2002; 42 Lambert (ref_45) 2018; 216 (ref_69) 2019; 52 ref_29 ref_26 Vlassova (ref_68) 2018; 12 Gitelson (ref_25) 1996; 148 Drusch (ref_28) 2012; 120 ref_72 ref_71 Piikki (ref_81) 2017; 67 Filella (ref_16) 1995; 16 ref_79 ref_78 Vanino (ref_70) 2018; 215 ref_75 Mananze (ref_94) 2019; 13 Delloye (ref_77) 2018; 216 Meivel (ref_88) 2016; 1 Berthet (ref_1) 2019; 56 Hunt (ref_34) 2012; 21 Nutini (ref_76) 2018; 154 Sun (ref_92) 2018; 12 Chen (ref_24) 2010; 114 Mulla (ref_6) 2013; 114 Blazquez (ref_17) 1986; 108 Vaudour (ref_67) 2019; 223 Belgiu (ref_53) 2018; 204 Miller (ref_19) 1990; 11 Rozenstein (ref_74) 2019; 223 ref_87 ref_86 ref_85 Yang (ref_7) 2013; 3 Zhang (ref_8) 2002; 36 Curran (ref_21) 1990; 7 ref_58 ref_57 Liu (ref_91) 2018; 637–638 Disney (ref_13) 2006; 100 ref_55 Chemura (ref_80) 2018; 138 Son (ref_49) 2020; 65 ref_52 Castaldi (ref_63) 2019; 147 Delegido (ref_82) 2011; 11 Haboudane (ref_35) 2002; 81 Vincini (ref_38) 2008; 9 Weiss (ref_103) 2020; 236 ref_61 ref_60 Bannari (ref_32) 1995; 13 Kokaly (ref_22) 2001; 75 Rautiainen (ref_12) 2005; 96 Vuolo (ref_48) 2018; 72 ref_65 Mokhtari (ref_97) 2019; 154 ref_64 ref_62 Wang (ref_50) 2019; 88 ref_37 Verrelst (ref_43) 2015; 108 Bhattarai (ref_84) 2019; 9 Guzinski (ref_98) 2019; 221 ref_47 ref_46 Xie (ref_96) 2019; 80 ref_42 ref_41 ref_102 ref_40 Costa (ref_89) 2014; 60 ref_2 Araus (ref_5) 2018; 45 Rozenstein (ref_73) 2018; 207 Atzberger (ref_101) 2013; 5 ref_9 (ref_30) 2004; 89 |
References_xml | – ident: ref_90 doi: 10.3390/s18072172 – volume: 223 start-page: 21 year: 2019 ident: ref_67 article-title: Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.006 – ident: ref_47 doi: 10.3390/agronomy9090556 – volume: 221 start-page: 157 year: 2019 ident: ref_98 article-title: Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution evapotranspiration estimations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.019 – volume: 8 start-page: 53 year: 2018 ident: ref_100 article-title: Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: Impacts and mitigation approaches publication-title: J. Heal. Pollut. doi: 10.5696/2156-9614-8.17.53 – volume: 75 start-page: 936 year: 1985 ident: ref_18 article-title: Monitoring Cereal Rust Development with a Spectral Radiometer publication-title: Phytopathology doi: 10.1094/Phyto-75-936 – ident: ref_99 doi: 10.3390/rs10121953 – volume: 67 start-page: 1 year: 1999 ident: ref_4 article-title: Aspects of Precision Agriculture publication-title: Adv. Agron. doi: 10.1016/S0065-2113(08)60513-1 – ident: ref_95 doi: 10.3390/w10070838 – volume: 7 start-page: 13208 year: 2015 ident: ref_3 article-title: An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series publication-title: Remote Sens. doi: 10.3390/rs71013208 – ident: ref_42 – ident: ref_64 doi: 10.3390/rs11182121 – volume: 82 start-page: 83 year: 2013 ident: ref_39 article-title: Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.04.007 – volume: 204 start-page: 509 year: 2018 ident: ref_53 article-title: Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.10.005 – volume: 216 start-page: 245 year: 2018 ident: ref_77 article-title: Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.037 – volume: 80 start-page: 187 year: 2019 ident: ref_96 article-title: Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 215 start-page: 452 year: 2018 ident: ref_70 article-title: Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.035 – volume: 16 start-page: 2727 year: 1995 ident: ref_16 article-title: Reflectance assessment of mite effects on apple trees publication-title: Int. J. Remote Sens. doi: 10.1080/01431169508954588 – volume: 5 start-page: 949 year: 2013 ident: ref_101 article-title: Correction: Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs publication-title: Remote Sens. doi: 10.3390/rs5020949 – ident: ref_10 – volume: 154 start-page: 231 year: 2019 ident: ref_97 article-title: Calculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2 publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.06.011 – ident: ref_65 doi: 10.3390/rs11182143 – ident: ref_61 doi: 10.3390/agronomy9040203 – volume: 65 start-page: 1910 year: 2020 ident: ref_49 article-title: Classification of multitemporal Sentinel-2 data for field-level monitoring of rice cropping practices in Taiwan publication-title: Adv. Sp. Res. doi: 10.1016/j.asr.2020.01.028 – ident: ref_52 doi: 10.3390/rs11101257 – ident: ref_85 doi: 10.3390/s18030868 – ident: ref_86 doi: 10.3390/rs9090906 – volume: 108 start-page: 260 year: 2015 ident: ref_43 article-title: Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods—A comparison publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.04.013 – ident: ref_55 doi: 10.3390/rs11151745 – volume: 154 start-page: 80 year: 2018 ident: ref_76 article-title: An operational workflow to assess rice nutritional status based on satellite imagery and smartphone apps publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.08.008 – ident: ref_9 doi: 10.1017/CBO9780511617195 – volume: 148 start-page: 494 year: 1996 ident: ref_25 article-title: Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(96)80284-7 – volume: 13 start-page: 1 year: 2019 ident: ref_94 article-title: Agricultural drought monitoring based on soil moisture derived from the optical trapezoid model in Mozambique publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.13.024519 – volume: 88 start-page: 104190 year: 2019 ident: ref_50 article-title: Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms publication-title: Land Use Policy doi: 10.1016/j.landusepol.2019.104190 – volume: 18 start-page: 859 year: 2017 ident: ref_83 article-title: Separability of coffee leaf rust infection levels with machine learning methods at Sentinel-2 MSI spectral resolutions publication-title: Precis. Agric. doi: 10.1007/s11119-016-9495-0 – volume: 45 start-page: 237 year: 2018 ident: ref_5 article-title: Breeding to adapt agriculture to climate change: Affordable phenotyping solutions publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2018.05.003 – volume: 637–638 start-page: 18 year: 2018 ident: ref_91 article-title: Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.415 – ident: ref_37 doi: 10.1029/2005GL022688 – volume: 9 start-page: 303 year: 2008 ident: ref_38 article-title: A broad-band leaf chlorophyll vegetation index at the canopy scale publication-title: Precis. Agric. doi: 10.1007/s11119-008-9075-z – ident: ref_71 doi: 10.3390/agronomy9070404 – volume: 114 start-page: 1987 year: 2010 ident: ref_24 article-title: New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.04.006 – volume: 72 start-page: 122 year: 2018 ident: ref_48 article-title: How much does multi-temporal Sentinel-2 data improve crop type classification? publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 11 start-page: 7063 year: 2011 ident: ref_82 article-title: Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content publication-title: Sensors doi: 10.3390/s110707063 – volume: 216 start-page: 647 year: 2018 ident: ref_45 article-title: Estimating smallholder crops production at village level from Sentinel-2 time series in Mali’s cotton belt publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.036 – volume: 18 start-page: 18 year: 2018 ident: ref_54 article-title: Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery publication-title: Sensors – volume: 100 start-page: 114 year: 2006 ident: ref_13 article-title: 3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.10.003 – ident: ref_72 doi: 10.3390/agronomy9100663 – volume: 39 start-page: 100 year: 2007 ident: ref_36 article-title: Evaluation of the MERIS terrestrial chlorophyll index (MTCI) publication-title: Adv. Sp. Res. doi: 10.1016/j.asr.2006.02.034 – volume: 8 start-page: 127 year: 1979 ident: ref_11 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90013-0 – volume: 138 start-page: 1 year: 2018 ident: ref_80 article-title: Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.02.004 – volume: 21 start-page: 103 year: 2012 ident: ref_34 article-title: A visible band index for remote sensing leaf chlorophyll content at the Canopy scale publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_26 – volume: 6 start-page: 359 year: 2005 ident: ref_33 article-title: Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status publication-title: Precis. Agric. doi: 10.1007/s11119-005-2324-5 – volume: 221 start-page: 551 year: 2019 ident: ref_44 article-title: Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.11.007 – ident: ref_58 doi: 10.3390/agronomy9080437 – volume: 35 start-page: 69 year: 1991 ident: ref_20 article-title: The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(91)90066-F – volume: 56 start-page: 44 year: 2019 ident: ref_1 article-title: Applying ecological knowledge to the innovative design of sustainable agroecosystems publication-title: J. Appl. Ecol. doi: 10.1111/1365-2664.13173 – volume: 120 start-page: 25 year: 2012 ident: ref_28 article-title: Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.026 – volume: 60 start-page: 393 year: 2014 ident: ref_89 article-title: The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2014.01.004 – ident: ref_62 doi: 10.3390/rs11172000 – ident: ref_23 – volume: 67 start-page: 637 year: 2017 ident: ref_81 article-title: Producing nitrogen (N) uptake maps in winter wheat by combining proximal crop measurements with Sentinel-2 and DMC satellite images in a decision support system for farmers publication-title: Acta Agric. Scand. Sect. B Soil Plant Sci. – ident: ref_57 doi: 10.3390/agronomy10030327 – ident: ref_78 doi: 10.3390/agronomy9060278 – volume: 218 start-page: 89 year: 2018 ident: ref_66 article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.015 – ident: ref_75 doi: 10.3390/rs9050405 – volume: 89 start-page: 1 year: 2004 ident: ref_30 article-title: Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.09.004 – volume: 223 start-page: 105715 year: 2019 ident: ref_74 article-title: Validation of the cotton crop coefficient estimation model based on Sentinel-2 imagery and eddy covariance measurements publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2019.105715 – ident: ref_41 – volume: 147 start-page: 267 year: 2019 ident: ref_63 article-title: Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.11.026 – volume: 114 start-page: 358 year: 2013 ident: ref_6 article-title: Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2012.08.009 – volume: 52 start-page: 108 year: 2019 ident: ref_69 article-title: Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2018.1482524 – volume: 64 start-page: 2233 year: 2019 ident: ref_51 article-title: Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data publication-title: Adv. Sp. Res. doi: 10.1016/j.asr.2019.08.042 – volume: 184 start-page: 668 year: 2016 ident: ref_59 article-title: Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.07.030 – volume: 3 start-page: 875 year: 2013 ident: ref_7 article-title: The role of satellite remote sensing in climate change studies publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1908 – volume: 9 start-page: 6109 year: 2019 ident: ref_84 article-title: Remote Sensing Data to Detect Hessian Fly Infestation in Commercial Wheat Fields publication-title: Sci. Rep. doi: 10.1038/s41598-019-42620-0 – volume: 96 start-page: 98 year: 2005 ident: ref_12 article-title: Application of photon recollision probability in coniferous canopy reflectance simulations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.02.009 – ident: ref_60 doi: 10.3390/agronomy9050255 – volume: 13 start-page: 95 year: 1995 ident: ref_32 article-title: A review of vegetation indices publication-title: Remote Sens. Rev. doi: 10.1080/02757259509532298 – volume: 12 start-page: 1 year: 2018 ident: ref_68 article-title: Modeling soil organic matter and texture from satellite data in areas affected by wildfires and cropland abandonment in Aragón, Northern Spain publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.12.042803 – ident: ref_40 – ident: ref_102 doi: 10.3390/rs10010099 – volume: 36 start-page: 113 year: 2002 ident: ref_8 article-title: Precision agriculture—A worldwide overview publication-title: Comput. Electron. Agric. doi: 10.1016/S0168-1699(02)00096-0 – volume: 236 start-page: 111402 year: 2020 ident: ref_103 article-title: Remote sensing for agricultural applications: A meta-review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111402 – volume: 233 start-page: 111410 year: 2019 ident: ref_56 article-title: High resolution wheat yield mapping using Sentinel-2 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111410 – volume: 7 start-page: 33 year: 1990 ident: ref_21 article-title: Exploring the relationship between reflectance red edge and chlorophyll content in slash pine publication-title: Tree Physiol. doi: 10.1093/treephys/7.1-2-3-4.33 – volume: 81 start-page: 416 year: 2002 ident: ref_35 article-title: Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00018-4 – volume: 15 start-page: 1 year: 2013 ident: ref_27 article-title: Review of optical-based remote sensing for plant trait mapping publication-title: Ecol. Complex. doi: 10.1016/j.ecocom.2013.06.003 – volume: 89 start-page: 153 year: 2005 ident: ref_14 article-title: Comparison of visual and multispectral radiometric disease evaluations of Cercospora leaf spot of sugar beet publication-title: Plant Dis. doi: 10.1094/PD-89-0153 – ident: ref_29 – volume: 40 start-page: 6134 year: 2019 ident: ref_93 article-title: Comparing Sentinel-2 MSI and Landsat 8 OLI in soil salinity detection: A case study of agricultural lands in coastal North Carolina publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1587205 – ident: ref_2 – volume: 2017 start-page: 1353691 year: 2017 ident: ref_31 article-title: Significant remote sensing vegetation indices: A review of developments and applications publication-title: J. Sens. doi: 10.1155/2017/1353691 – ident: ref_46 – volume: 1 start-page: 2414 year: 2016 ident: ref_88 article-title: Quadcopter UAV Based Fertilizer and Pesticide Spraying System publication-title: Int. Acad. Res. J. Eng. Sci. – ident: ref_87 doi: 10.3390/drones3020045 – volume: 42 start-page: 1547 year: 2002 ident: ref_15 article-title: Relationship between growth traits and spectral vegetation indices in durum wheat publication-title: Crop Sci. doi: 10.2135/cropsci2002.1547 – volume: 75 start-page: 153 year: 2001 ident: ref_22 article-title: Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00163-2 – ident: ref_79 doi: 10.3390/rs10020269 – volume: 11 start-page: 1755 year: 1990 ident: ref_19 article-title: Quantitative characterization of the vegetation red edge reflectance 1. An inverted-gaussian reflectance model publication-title: Int. J. Remote Sens. doi: 10.1080/01431169008955128 – volume: 108 start-page: 243 year: 1986 ident: ref_17 article-title: Spectral reflectance of healthy and diseased watermelon leaves publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.1986.tb07646.x – volume: 207 start-page: 44 year: 2018 ident: ref_73 article-title: Estimating cotton water consumption using a time series of Sentinel-2 imagery publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2018.05.017 – volume: 12 start-page: 1 year: 2018 ident: ref_92 article-title: Developing an integrated index based on phenological metrics for evaluating cadmium stress in rice using Sentinel-2 data publication-title: J. Appl. Remote Sens. |
SSID | ssj0000913807 |
Score | 2.6013594 |
SecondaryResourceType | review_article |
Snippet | The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 641 |
SubjectTerms | abiotic stress Agricultural management Agriculture biotic stress Climate change computer software Crop management crop monitoring Crops Detection Farmers Monitoring Photosynthesis Physiology Precision agriculture Remote sensing Researchers Satellite constellations Satellite imagery Satellites Sensors Sentinel-2 spectral analysis Spectral resolution Spectrum analysis Vegetation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61y6U9VFBaseUhI_XCwdo8HD-4oAWBEBII0aJyi2zH3gvKQnb5_8xkvQsUiWs8iaKxZ_zNjP0NwG_cRHwwjeHRVxkn_nLuRCy5KhGte1PKUtBF4csreX4rLu6qu5Rwm6VjlUuf2DvqZuopRz4injpTIZpRRw-PnLpGUXU1tdD4DGvogrUewNrx6dX1zSrLQqyXOlOL-mSJ8f3ITrr-tkBOzCdS5G_2o562_51X7reas3X4ljAiGy8mdQM-hfY7fB1PusSTETbh301AHQf2h86ftxOG0JNdd6lfDnslekgic4SS97xgiwxCaBgBPxycMds2bPyqhv0Dbs9O_56c89QjgXuRF3PuszwKbQuXhdJ5EayRVR6zmDmJpkrMOa5BnUuTGxE9uqegNEZ8RWargOOx_AmDdtqGLWClidIFIUVUVOQNJrcqE41wznsUtUMYLTVV-0QgTn0s7msMJEi39f-6HcLB6o2HBXnGB7LHpPyVHNFe9w-m3aROVlQbxEM211r6WAnrtcPfUkpJq2xVKCeGsLOcujrZ4qx-WTlD2F8NoxVRacS2YfqEMkZLTbGi-vXxJ7bhS0ERd3_kcQcG8-4p7CIsmbu9tPaeAWQh4yo priority: 102 providerName: ProQuest |
Title | Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications |
URI | https://www.proquest.com/docview/2398959917 https://www.proquest.com/docview/2986849567 https://doaj.org/article/9710a1886cf54ac8b20a7776a7a527b4 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2iFz2In7h-LBG8eCjbtGnSeNsVFxGUZVX0VpI02Yt0pVv_vzNtd6kKevHaTCG8TjJvOskbQi4giFinchV4m4QB6pcHhvs4kDGwdatiEXO8KHz_IG6f-d1r8tpp9YVnwhp54Aa4gYIQqFmaCusTrm1qolBLKYWWOomkqZVAIeZ1kql6D1YMldSbumQMef1Az8r6lgBDxRPB2Zc4VMv1_9iN6xAz3iHbLTekw2ZOu2TNFXtkazgrW30Mt09epg6wdfQRz50XMwqUk07Ktk8O7ZheoUkFFPItiGjz58DlFAkfDC6oLnI67NSuD8jz-Obp-jZoeyMElrOoCmzIPE91ZEIXG8udViJhPvShEbBEUTHH5IC1UExxb2FbcjKFTA_ASxyM-_iQrBfzwh0RGisvjOOCe4nFXaeYliHPuTHWgqnukcESqcy2wuHYv-ItgwQCsc2-Y9sjl6s33hvRjF9sRwj-yg7lrusH4ARZ6wTZX07QI6fLT5e1a3CRobKhSoD_yh45Xw3D6sGSiC7c_ANsVCpSzBHl8X_M44RsRpiP1wciT8l6VX64MyAtlemTjdHNw2Tar_30E_4v6xI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4VDzF0gJGggOHaJ3EsWMkhLbQakvbVVVa0VtqO_ZeqmzJboX4U_xGZvJYCki99RpPLGs8Y3_jsb8BeIObiPO61FFwGY-IvzyyIqSRShGtO53KVNBD4cOpnJyKL2fZ2Rr86t_C0LXKfk1sFupy7uiMfEQ8dTpDNKM-Xn6PqGoUZVf7EhqtWez7nz8wZFt82PuM8_s2SXZ3Tj5Noq6qQOREnCwjx-MgcpNY7lPrhDdaZnHggVuJxk1cM7bEUUqN4X1w6NBe5RgjJdxkHttDiv3egXWRSp4MYH17Z3p0vDrVIZbNnKs2H5qmmo_MrG5eJ8TEtCJF_Nf-15QJ-G8XaLa23Qew0WFSNm6N6CGs-eoR3B_P6o6Xwz-Gb8ce59Szr3TfvZoxhLrsqO7q87Brou9JZInQ9SJKWHti4UtGQBMbF8xUJRtfy5k_gdNb0d5TGFTzyj8DluogrRdSBEVJZa9jo7gohbXOoagZwqjXVOE6wnKqm3FRYOBCui3-1e0Q3q3-uGzJOm6Q3Sblr-SIZrv5MK9nRee1hUb8ZeI8ly5kwrjc4rCUUtIokyXKiiFs9VNXdL6_KP5Y6hBer5rRaykVYyo_v0IZncucYlP1_OYuXsHdycnhQXGwN93fhHsJRfvNdcstGCzrK_8CIdHSvuzskMH5bZv-b8-6Hnw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgUPEUSwsYCQ4conUSx46RENrSrloKq1WhorfUduy9VNmS3Qrx1_h1zOSxFJB66zWeWNZ4bH_jGX8D8AoPEed1qaPgMh4Rf3lkRUgjlSJadzqVqaCHwp-n8uBEfDzNTjfgV_8WhtIq-z2x2ajLhaM78hHx1OkM0YwahS4tYrY3eX_xPaIKUhRp7ctptCZy5H_-QPdt-e5wD-f6dZJM9r9-OIi6CgORE3GyihyPg8hNYrlPrRPeaJnFgQduJRo68c7YEkcsNbr6weHi9ipHfynhJvPYHlLs9xZsKvKKBrC5uz-dHa9veIhxM-eqjY2mqeYjM6-blwoxsa5IEf91FjYlA_47EZpjbnIPtjp8ysatQd2HDV89gLvjed1xdPiH8O3Y4_x69oVy36s5Q9jLZnVXq4ddEX1LIiuEsedRwtrbC18yAp3YuGSmKtn4Svz8EZzciPYew6BaVP4JsFQHab2QIigKMHsdG8VFKax1DkXNEEa9pgrXkZdTDY3zAp0Y0m3xr26H8Gb9x0VL3HGN7C4pfy1HlNvNh0U9L7oVXGjEYibOc-lCJozLLQ5LKSWNMlmirBjCTj91RbcPLIs_VjuEl-tmXMEUljGVX1yijM5lTn6qenp9Fy_gNpp88elwerQNdxJy_JvMyx0YrOpL_wzR0co-78yQwdlNW_5v9ssisQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+Sensing+for+Precision+Agriculture%3A+Sentinel-2+Improved+Features+and+Applications&rft.jtitle=Agronomy+%28Basel%29&rft.au=Joel+Segarra&rft.au=Maria+Luisa+Buchaillot&rft.au=Jose+Luis+Araus&rft.au=Shawn+C.+Kefauver&rft.date=2020-05-01&rft.pub=MDPI+AG&rft.eissn=2073-4395&rft.volume=10&rft.issue=5&rft.spage=641&rft_id=info:doi/10.3390%2Fagronomy10050641&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9710a1886cf54ac8b20a7776a7a527b4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |