Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications

The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution of the European Space Agency (ESA) launched Sentinel-2 A + B twin platform is paving the way to their popularization in precision agriculture...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 10; no. 5; p. 641
Main Authors Segarra, Joel, Buchaillot, Maria Luisa, Araus, Jose Luis, Kefauver, Shawn C.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution of the European Space Agency (ESA) launched Sentinel-2 A + B twin platform is paving the way to their popularization in precision agriculture. Besides the Sentinel-2 A + B constellation technical features the open-access nature of the information they generate, and the available support software are a significant improvement for agricultural monitoring. This paper was motivated by the challenges faced by researchers and agrarian institutions entering this field; it aims to frame remote sensing principles and Sentinel-2 applications in agriculture. Thus, we reviewed the features and uses of Sentinel-2 in precision agriculture, including abiotic and biotic stress detection, and agricultural management. We also compared the panoply of satellites currently in use for land remote sensing that are relevant for agriculture to the Sentinel-2 A + B constellation features. Contrasted with previous satellite image systems, the Sentinel-2 A + B twin platform has dramatically increased the capabilities for agricultural monitoring and crop management worldwide. Regarding crop stress monitoring, Sentinel-2 capacities for abiotic and biotic stresses detection represent a great step forward in many ways though not without its limitations; therefore, combinations of field data and different remote sensing techniques may still be needed. We conclude that Sentinel-2 has a wide range of useful applications in agriculture, yet still with room for further improvements. Current and future ways that Sentinel-2 can be utilized are also discussed.
AbstractList The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution of the European Space Agency (ESA) launched Sentinel-2 A + B twin platform is paving the way to their popularization in precision agriculture. Besides the Sentinel-2 A + B constellation technical features the open-access nature of the information they generate, and the available support software are a significant improvement for agricultural monitoring. This paper was motivated by the challenges faced by researchers and agrarian institutions entering this field; it aims to frame remote sensing principles and Sentinel-2 applications in agriculture. Thus, we reviewed the features and uses of Sentinel-2 in precision agriculture, including abiotic and biotic stress detection, and agricultural management. We also compared the panoply of satellites currently in use for land remote sensing that are relevant for agriculture to the Sentinel-2 A + B constellation features. Contrasted with previous satellite image systems, the Sentinel-2 A + B twin platform has dramatically increased the capabilities for agricultural monitoring and crop management worldwide. Regarding crop stress monitoring, Sentinel-2 capacities for abiotic and biotic stresses detection represent a great step forward in many ways though not without its limitations; therefore, combinations of field data and different remote sensing techniques may still be needed. We conclude that Sentinel-2 has a wide range of useful applications in agriculture, yet still with room for further improvements. Current and future ways that Sentinel-2 can be utilized are also discussed.
Author Kefauver, Shawn C.
Buchaillot, Maria Luisa
Segarra, Joel
Araus, Jose Luis
Author_xml – sequence: 1
  givenname: Joel
  surname: Segarra
  fullname: Segarra, Joel
– sequence: 2
  givenname: Maria Luisa
  orcidid: 0000-0003-4668-5458
  surname: Buchaillot
  fullname: Buchaillot, Maria Luisa
– sequence: 3
  givenname: Jose Luis
  orcidid: 0000-0002-8866-2388
  surname: Araus
  fullname: Araus, Jose Luis
– sequence: 4
  givenname: Shawn C.
  surname: Kefauver
  fullname: Kefauver, Shawn C.
BookMark eNp1kc1rGzEQxUVJoWmae48LvfSyib5WH72Z0DSGQEPa0qPQyiMjsyu5kraQ_75ynEIxdC4aZn7vwdO8RWcxRUDoPcFXjGl8bbc5xTQ_EYwHLDh5hc4plqznTA9n__Rv0GUpO9xKE6awPEc_H2FOFbpvEEuI286n3D1kcKGEFLvVNge3THXJ8OmA1BBh6mm3nvc5_YZNdwv2sCydjZtutd9PwdnalOUdeu3tVODy5b1AP24_f7-56--_flnfrO57xwmtvcPEc2XpiIGNjoPVYiAeezwKRinmjIwb7bTQRHPvKNEgFcGSYjtA23t2gdZH302yO7PPYbb5ySQbzPMg5a2xuQY3gdGSYEuUEs4P3Do1NhcppbDSDlSOvHl9PHq1cL8WKNXMoTiYJhshLcVQrYTiehCyoR9O0F1acmxJDWVa6UFrcqDEkXI5lZLBGxfq8__UbMNkCDaH85nT8zUhPhH-TfZfyR-uFp_Q
CitedBy_id crossref_primary_10_1016_j_jag_2024_104338
crossref_primary_10_1016_j_ecolind_2024_112654
crossref_primary_10_1007_s12524_021_01361_2
crossref_primary_10_3390_rs15235602
crossref_primary_10_1007_s11273_022_09875_3
crossref_primary_10_3390_rs16010061
crossref_primary_10_3389_feart_2023_1183834
crossref_primary_10_1007_s00425_022_03867_6
crossref_primary_10_1080_10106049_2022_2146764
crossref_primary_10_1109_TGRS_2023_3348974
crossref_primary_10_3390_agriculture14101753
crossref_primary_10_1016_j_ejrs_2024_06_003
crossref_primary_10_3390_challe14010012
crossref_primary_10_3390_fire7020058
crossref_primary_10_1088_2515_7620_adb9c0
crossref_primary_10_1016_j_inpa_2022_05_004
crossref_primary_10_1016_j_jag_2022_103124
crossref_primary_10_3390_su15043557
crossref_primary_10_3390_rs12152504
crossref_primary_10_3390_ijgi11020121
crossref_primary_10_3390_rs12162654
crossref_primary_10_4236_ars_2024_132003
crossref_primary_10_3390_rs17010148
crossref_primary_10_1088_1755_1315_623_1_012037
crossref_primary_10_1038_s41598_024_63650_3
crossref_primary_10_3390_rs15030824
crossref_primary_10_3390_app112411769
crossref_primary_10_3390_rs14010216
crossref_primary_10_3390_rs16213921
crossref_primary_10_1007_s10661_025_13880_3
crossref_primary_10_1016_j_agwat_2025_109347
crossref_primary_10_3390_agriculture15020186
crossref_primary_10_1111_gcb_17461
crossref_primary_10_1016_j_rsase_2021_100557
crossref_primary_10_1080_15427528_2022_2080784
crossref_primary_10_1007_s11119_021_09789_9
crossref_primary_10_1007_s40808_024_01963_y
crossref_primary_10_3390_plants10091945
crossref_primary_10_1007_s11356_023_26289_7
crossref_primary_10_1007_s11119_024_10176_3
crossref_primary_10_3390_rs12142278
crossref_primary_10_1016_j_still_2024_106266
crossref_primary_10_1016_j_compag_2024_109394
crossref_primary_10_3390_rs14225730
crossref_primary_10_1007_s11042_024_18955_w
crossref_primary_10_1016_j_srs_2024_100133
crossref_primary_10_1016_j_rsase_2024_101259
crossref_primary_10_3390_rs16081392
crossref_primary_10_3390_rs17030550
crossref_primary_10_3390_rs14215430
crossref_primary_10_1016_j_jag_2023_103418
crossref_primary_10_3390_rs17030432
crossref_primary_10_7235_HORT_20250006
crossref_primary_10_3390_informatics9040080
crossref_primary_10_3389_fenvs_2021_800179
crossref_primary_10_3390_plants14010039
crossref_primary_10_1016_j_fcr_2025_109857
crossref_primary_10_3390_land13030335
crossref_primary_10_3390_su14041993
crossref_primary_10_1016_j_rsase_2025_101509
crossref_primary_10_3390_rs13132584
crossref_primary_10_3390_rs17030362
crossref_primary_10_1016_j_scitotenv_2023_161716
crossref_primary_10_3390_rs13061219
crossref_primary_10_3390_rs15061640
crossref_primary_10_3390_rs15143664
crossref_primary_10_3390_rs15123017
crossref_primary_10_1002_iroh_202402172
crossref_primary_10_1007_s13218_023_00826_5
crossref_primary_10_1016_j_gecco_2022_e02011
crossref_primary_10_3390_rs15164008
crossref_primary_10_3390_rs15061633
crossref_primary_10_1016_j_rsase_2024_101358
crossref_primary_10_3390_agronomy11071365
crossref_primary_10_3390_su14084412
crossref_primary_10_1016_j_agee_2024_109027
crossref_primary_10_1145_3579358
crossref_primary_10_3390_agriculture14081294
crossref_primary_10_3390_agriculture11050457
crossref_primary_10_3390_ijgi9110628
crossref_primary_10_3390_s22176507
crossref_primary_10_3390_rs15235476
crossref_primary_10_1109_TGRS_2023_3333391
crossref_primary_10_3390_agronomy14010075
crossref_primary_10_1016_j_gexplo_2022_107110
crossref_primary_10_1080_1747423X_2023_2234921
crossref_primary_10_2166_wcc_2023_501
crossref_primary_10_1016_j_isprsjprs_2025_02_024
crossref_primary_10_1016_j_compag_2024_109329
crossref_primary_10_3390_rs13091837
crossref_primary_10_1177_27539687241269331
crossref_primary_10_1016_j_jag_2022_102692
crossref_primary_10_3390_rs16050735
crossref_primary_10_1093_jas_skab038
crossref_primary_10_1007_s43657_022_00048_z
crossref_primary_10_3390_rs15133283
crossref_primary_10_1111_jipb_13191
crossref_primary_10_1109_TGRS_2023_3297363
crossref_primary_10_3389_fpls_2023_1230012
crossref_primary_10_1186_s12859_024_05970_9
crossref_primary_10_1080_07038992_2023_2259504
crossref_primary_10_3389_fenvs_2023_1179328
crossref_primary_10_3390_resources13070095
crossref_primary_10_1007_s11277_021_08712_9
crossref_primary_10_1016_j_jenvman_2021_113121
crossref_primary_10_3390_rs15235573
crossref_primary_10_1016_j_atech_2023_100193
crossref_primary_10_1038_s41597_024_03273_5
crossref_primary_10_3390_agronomy13102467
crossref_primary_10_1016_j_agwat_2023_108317
crossref_primary_10_3390_land12061142
crossref_primary_10_35633_inmateh_72_68
crossref_primary_10_3390_agriculture11080785
crossref_primary_10_3389_fsufs_2023_1088640
crossref_primary_10_1088_1755_1315_1418_1_012054
crossref_primary_10_1155_2024_6668228
crossref_primary_10_48044_jauf_2022_012
crossref_primary_10_3390_rs16173145
crossref_primary_10_1016_j_rsase_2024_101320
crossref_primary_10_3390_su14169974
crossref_primary_10_3390_s23041779
crossref_primary_10_5937_gp26_37964
crossref_primary_10_1186_s13007_024_01292_2
crossref_primary_10_3389_frans_2022_872646
crossref_primary_10_1145_3698589
crossref_primary_10_3390_agronomy13123040
crossref_primary_10_3390_land13030386
crossref_primary_10_1016_j_isprsjprs_2022_03_012
crossref_primary_10_3390_su16041612
crossref_primary_10_1007_s11263_025_02390_x
crossref_primary_10_1007_s12145_024_01427_y
crossref_primary_10_15407_itm2023_04_031
crossref_primary_10_3390_rs15092350
crossref_primary_10_1002_ird_2757
crossref_primary_10_1016_j_heliyon_2023_e17432
crossref_primary_10_3390_agriculture14040546
crossref_primary_10_3390_land13020232
crossref_primary_10_1016_j_geomat_2024_100040
crossref_primary_10_3390_rs14195003
crossref_primary_10_1007_s41348_022_00600_z
crossref_primary_10_1007_s11119_021_09845_4
crossref_primary_10_3390_rs14174202
crossref_primary_10_1016_j_compag_2024_109092
crossref_primary_10_1016_j_jag_2023_103597
crossref_primary_10_1080_15481603_2024_2367808
crossref_primary_10_3390_agriculture12081128
crossref_primary_10_3390_rs14051163
crossref_primary_10_3390_w17030323
crossref_primary_10_3389_fpls_2023_1297569
crossref_primary_10_1016_j_compag_2024_109764
crossref_primary_10_1016_j_asr_2024_01_040
crossref_primary_10_2174_0115734137275111231206072049
crossref_primary_10_3390_s23020847
crossref_primary_10_1109_TGRS_2020_3042607
crossref_primary_10_3390_agriculture11111104
crossref_primary_10_3390_rs16050818
crossref_primary_10_3390_land13111818
crossref_primary_10_1109_TGRS_2023_3311622
crossref_primary_10_1002_eng2_13031
crossref_primary_10_1007_s40808_022_01401_x
crossref_primary_10_1080_01431161_2021_1998714
crossref_primary_10_3390_s24030834
crossref_primary_10_3390_rs14194859
crossref_primary_10_1007_s12517_023_11497_9
crossref_primary_10_1016_j_fcr_2022_108538
crossref_primary_10_1016_j_envadv_2024_100528
crossref_primary_10_1038_s41598_022_17454_y
crossref_primary_10_3390_su13147722
crossref_primary_10_2478_tar_2024_0019
crossref_primary_10_3390_drones8030081
crossref_primary_10_1016_j_array_2022_100257
crossref_primary_10_1109_LGRS_2023_3295742
crossref_primary_10_3390_agronomy12102276
crossref_primary_10_1109_JSTARS_2022_3200713
crossref_primary_10_3390_horticulturae8090759
crossref_primary_10_1016_j_asr_2021_10_020
crossref_primary_10_3390_rs16071199
crossref_primary_10_1016_j_compag_2023_108275
crossref_primary_10_1080_22797254_2023_2267169
crossref_primary_10_3390_drones8090452
crossref_primary_10_3390_rs14112621
crossref_primary_10_24857_rgsa_v18n7_161
crossref_primary_10_3390_s24082647
crossref_primary_10_3390_rs16111870
crossref_primary_10_3390_su15010469
crossref_primary_10_3390_rs15010053
crossref_primary_10_3390_s24237736
crossref_primary_10_47836_pjst_32_6_09
crossref_primary_10_3390_rs14102507
crossref_primary_10_1016_j_isprsjprs_2024_10_016
crossref_primary_10_3390_agronomy13071942
crossref_primary_10_1016_j_rsase_2025_101472
crossref_primary_10_48123_rsgis_1508139
crossref_primary_10_3390_ijgi10110793
crossref_primary_10_3390_rs16213953
crossref_primary_10_1016_j_jii_2024_100699
crossref_primary_10_1007_s12524_020_01266_6
crossref_primary_10_3390_rs17010105
crossref_primary_10_3390_plants13162319
crossref_primary_10_1080_2150704X_2022_2114108
crossref_primary_10_1038_s41598_024_56879_5
crossref_primary_10_1016_j_softx_2023_101421
crossref_primary_10_1017_wsc_2023_36
crossref_primary_10_3390_s24113488
crossref_primary_10_3390_electronics11030325
crossref_primary_10_3390_w16131762
crossref_primary_10_3390_rs14225801
crossref_primary_10_1007_s11119_022_09893_4
crossref_primary_10_1016_j_eja_2022_126677
crossref_primary_10_3390_agriculture14010161
crossref_primary_10_1007_s12355_023_01247_2
crossref_primary_10_3390_agronomy12071518
crossref_primary_10_3390_rs15051461
crossref_primary_10_3390_agronomy12051228
crossref_primary_10_1007_s40808_022_01371_0
crossref_primary_10_1007_s41748_024_00548_0
crossref_primary_10_3390_agronomy12020406
crossref_primary_10_1080_01431161_2024_2370503
crossref_primary_10_3390_bios14050226
crossref_primary_10_3390_rs14071720
crossref_primary_10_3390_agriculture13071417
crossref_primary_10_3390_rs12183030
crossref_primary_10_1016_j_eja_2021_126369
crossref_primary_10_3390_s24248088
crossref_primary_10_3390_rs14030778
crossref_primary_10_1016_j_rsase_2022_100703
crossref_primary_10_3390_s22134721
crossref_primary_10_3390_agronomy12081773
crossref_primary_10_3390_agronomy11061156
crossref_primary_10_3390_data7070096
crossref_primary_10_1177_14034948231178076
crossref_primary_10_3390_rs16244784
crossref_primary_10_1007_s40808_024_02182_1
crossref_primary_10_1016_j_gsd_2025_101436
crossref_primary_10_1371_journal_pone_0282364
crossref_primary_10_1109_JSTARS_2024_3426671
crossref_primary_10_1016_j_compag_2020_105787
crossref_primary_10_3389_fpls_2023_1228590
crossref_primary_10_3390_app15052746
Cites_doi 10.3390/s18072172
10.1016/j.rse.2019.01.006
10.3390/agronomy9090556
10.1016/j.rse.2018.11.019
10.5696/2156-9614-8.17.53
10.1094/Phyto-75-936
10.3390/rs10121953
10.1016/S0065-2113(08)60513-1
10.3390/w10070838
10.3390/rs71013208
10.3390/rs11182121
10.1016/j.isprsjprs.2013.04.007
10.1016/j.rse.2017.10.005
10.1016/j.rse.2018.06.037
10.1016/j.rse.2018.06.035
10.1080/01431169508954588
10.3390/rs5020949
10.1016/j.isprsjprs.2019.06.011
10.3390/rs11182143
10.3390/agronomy9040203
10.1016/j.asr.2020.01.028
10.3390/rs11101257
10.3390/s18030868
10.3390/rs9090906
10.1016/j.isprsjprs.2015.04.013
10.3390/rs11151745
10.1016/j.compag.2018.08.008
10.1017/CBO9780511617195
10.1016/S0176-1617(96)80284-7
10.1117/1.JRS.13.024519
10.1016/j.landusepol.2019.104190
10.1007/s11119-016-9495-0
10.1016/j.pbi.2018.05.003
10.1016/j.scitotenv.2018.04.415
10.1029/2005GL022688
10.1007/s11119-008-9075-z
10.3390/agronomy9070404
10.1016/j.rse.2010.04.006
10.3390/s110707063
10.1016/j.rse.2018.06.036
10.1016/j.rse.2005.10.003
10.3390/agronomy9100663
10.1016/j.asr.2006.02.034
10.1016/0034-4257(79)90013-0
10.1016/j.isprsjprs.2018.02.004
10.1007/s11119-005-2324-5
10.1016/j.rse.2018.11.007
10.3390/agronomy9080437
10.1016/0034-4257(91)90066-F
10.1111/1365-2664.13173
10.1016/j.rse.2011.11.026
10.1016/j.sysarc.2014.01.004
10.3390/rs11172000
10.3390/agronomy10030327
10.3390/agronomy9060278
10.1016/j.rse.2018.09.015
10.3390/rs9050405
10.1016/j.rse.2003.09.004
10.1016/j.agwat.2019.105715
10.1016/j.isprsjprs.2018.11.026
10.1016/j.biosystemseng.2012.08.009
10.1080/22797254.2018.1482524
10.1016/j.asr.2019.08.042
10.1016/j.rse.2016.07.030
10.1038/nclimate1908
10.1038/s41598-019-42620-0
10.1016/j.rse.2005.02.009
10.3390/agronomy9050255
10.1080/02757259509532298
10.1117/1.JRS.12.042803
10.3390/rs10010099
10.1016/S0168-1699(02)00096-0
10.1016/j.rse.2019.111402
10.1016/j.rse.2019.111410
10.1093/treephys/7.1-2-3-4.33
10.1016/S0034-4257(02)00018-4
10.1016/j.ecocom.2013.06.003
10.1094/PD-89-0153
10.1080/01431161.2019.1587205
10.1155/2017/1353691
10.3390/drones3020045
10.2135/cropsci2002.1547
10.1016/S0034-4257(00)00163-2
10.3390/rs10020269
10.1080/01431169008955128
10.1111/j.1744-7348.1986.tb07646.x
10.1016/j.agwat.2018.05.017
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
SOI
7S9
L.6
DOA
DOI 10.3390/agronomy10050641
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Agriculture Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database
AGRICOLA

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_9710a1886cf54ac8b20a7776a7a527b4
10_3390_agronomy10050641
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
KQ8
M0K
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c412t-c01f48a2b0e3bc4ea9651f0f0b63220431bd9c969194fc219e7810720a5e220f3
IEDL.DBID DOA
ISSN 2073-4395
IngestDate Wed Aug 27 01:21:41 EDT 2025
Thu Jul 10 23:48:24 EDT 2025
Mon Jun 30 11:12:07 EDT 2025
Tue Jul 01 02:34:21 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-c01f48a2b0e3bc4ea9651f0f0b63220431bd9c969194fc219e7810720a5e220f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4668-5458
0000-0002-8866-2388
OpenAccessLink https://doaj.org/article/9710a1886cf54ac8b20a7776a7a527b4
PQID 2398959917
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_9710a1886cf54ac8b20a7776a7a527b4
proquest_miscellaneous_2986849567
proquest_journals_2398959917
crossref_citationtrail_10_3390_agronomy10050641
crossref_primary_10_3390_agronomy10050641
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hunt (ref_33) 2005; 6
Dash (ref_36) 2007; 39
ref_90
Gholizadeh (ref_66) 2018; 218
Defourny (ref_44) 2019; 221
Battude (ref_59) 2016; 184
Pierce (ref_4) 1999; 67
Sharp (ref_18) 1985; 75
Curran (ref_20) 1991; 35
ref_99
ref_10
Hunt (ref_56) 2019; 233
ref_95
Noi (ref_54) 2018; 18
Chemura (ref_83) 2017; 18
Davis (ref_93) 2019; 40
Steddom (ref_14) 2005; 89
Matton (ref_3) 2015; 7
Clevers (ref_27) 2013; 15
Cai (ref_51) 2019; 64
Frampton (ref_39) 2013; 82
Sodango (ref_100) 2018; 8
Xue (ref_31) 2017; 2017
ref_23
Tucker (ref_11) 1979; 8
Aparicio (ref_15) 2002; 42
Lambert (ref_45) 2018; 216
(ref_69) 2019; 52
ref_29
ref_26
Vlassova (ref_68) 2018; 12
Gitelson (ref_25) 1996; 148
Drusch (ref_28) 2012; 120
ref_72
ref_71
Piikki (ref_81) 2017; 67
Filella (ref_16) 1995; 16
ref_79
ref_78
Vanino (ref_70) 2018; 215
ref_75
Mananze (ref_94) 2019; 13
Delloye (ref_77) 2018; 216
Meivel (ref_88) 2016; 1
Berthet (ref_1) 2019; 56
Hunt (ref_34) 2012; 21
Nutini (ref_76) 2018; 154
Sun (ref_92) 2018; 12
Chen (ref_24) 2010; 114
Mulla (ref_6) 2013; 114
Blazquez (ref_17) 1986; 108
Vaudour (ref_67) 2019; 223
Belgiu (ref_53) 2018; 204
Miller (ref_19) 1990; 11
Rozenstein (ref_74) 2019; 223
ref_87
ref_86
ref_85
Yang (ref_7) 2013; 3
Zhang (ref_8) 2002; 36
Curran (ref_21) 1990; 7
ref_58
ref_57
Liu (ref_91) 2018; 637–638
Disney (ref_13) 2006; 100
ref_55
Chemura (ref_80) 2018; 138
Son (ref_49) 2020; 65
ref_52
Castaldi (ref_63) 2019; 147
Delegido (ref_82) 2011; 11
Haboudane (ref_35) 2002; 81
Vincini (ref_38) 2008; 9
Weiss (ref_103) 2020; 236
ref_61
ref_60
Bannari (ref_32) 1995; 13
Kokaly (ref_22) 2001; 75
Rautiainen (ref_12) 2005; 96
Vuolo (ref_48) 2018; 72
ref_65
Mokhtari (ref_97) 2019; 154
ref_64
ref_62
Wang (ref_50) 2019; 88
ref_37
Verrelst (ref_43) 2015; 108
Bhattarai (ref_84) 2019; 9
Guzinski (ref_98) 2019; 221
ref_47
ref_46
Xie (ref_96) 2019; 80
ref_42
ref_41
ref_102
ref_40
Costa (ref_89) 2014; 60
ref_2
Araus (ref_5) 2018; 45
Rozenstein (ref_73) 2018; 207
Atzberger (ref_101) 2013; 5
ref_9
(ref_30) 2004; 89
References_xml – ident: ref_90
  doi: 10.3390/s18072172
– volume: 223
  start-page: 21
  year: 2019
  ident: ref_67
  article-title: Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.006
– ident: ref_47
  doi: 10.3390/agronomy9090556
– volume: 221
  start-page: 157
  year: 2019
  ident: ref_98
  article-title: Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution evapotranspiration estimations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.019
– volume: 8
  start-page: 53
  year: 2018
  ident: ref_100
  article-title: Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: Impacts and mitigation approaches
  publication-title: J. Heal. Pollut.
  doi: 10.5696/2156-9614-8.17.53
– volume: 75
  start-page: 936
  year: 1985
  ident: ref_18
  article-title: Monitoring Cereal Rust Development with a Spectral Radiometer
  publication-title: Phytopathology
  doi: 10.1094/Phyto-75-936
– ident: ref_99
  doi: 10.3390/rs10121953
– volume: 67
  start-page: 1
  year: 1999
  ident: ref_4
  article-title: Aspects of Precision Agriculture
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(08)60513-1
– ident: ref_95
  doi: 10.3390/w10070838
– volume: 7
  start-page: 13208
  year: 2015
  ident: ref_3
  article-title: An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series
  publication-title: Remote Sens.
  doi: 10.3390/rs71013208
– ident: ref_42
– ident: ref_64
  doi: 10.3390/rs11182121
– volume: 82
  start-page: 83
  year: 2013
  ident: ref_39
  article-title: Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.04.007
– volume: 204
  start-page: 509
  year: 2018
  ident: ref_53
  article-title: Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.10.005
– volume: 216
  start-page: 245
  year: 2018
  ident: ref_77
  article-title: Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.037
– volume: 80
  start-page: 187
  year: 2019
  ident: ref_96
  article-title: Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 215
  start-page: 452
  year: 2018
  ident: ref_70
  article-title: Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.035
– volume: 16
  start-page: 2727
  year: 1995
  ident: ref_16
  article-title: Reflectance assessment of mite effects on apple trees
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169508954588
– volume: 5
  start-page: 949
  year: 2013
  ident: ref_101
  article-title: Correction: Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs
  publication-title: Remote Sens.
  doi: 10.3390/rs5020949
– ident: ref_10
– volume: 154
  start-page: 231
  year: 2019
  ident: ref_97
  article-title: Calculating potential evapotranspiration and single crop coefficient based on energy balance equation using Landsat 8 and Sentinel-2
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.06.011
– ident: ref_65
  doi: 10.3390/rs11182143
– ident: ref_61
  doi: 10.3390/agronomy9040203
– volume: 65
  start-page: 1910
  year: 2020
  ident: ref_49
  article-title: Classification of multitemporal Sentinel-2 data for field-level monitoring of rice cropping practices in Taiwan
  publication-title: Adv. Sp. Res.
  doi: 10.1016/j.asr.2020.01.028
– ident: ref_52
  doi: 10.3390/rs11101257
– ident: ref_85
  doi: 10.3390/s18030868
– ident: ref_86
  doi: 10.3390/rs9090906
– volume: 108
  start-page: 260
  year: 2015
  ident: ref_43
  article-title: Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods—A comparison
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.04.013
– ident: ref_55
  doi: 10.3390/rs11151745
– volume: 154
  start-page: 80
  year: 2018
  ident: ref_76
  article-title: An operational workflow to assess rice nutritional status based on satellite imagery and smartphone apps
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.08.008
– ident: ref_9
  doi: 10.1017/CBO9780511617195
– volume: 148
  start-page: 494
  year: 1996
  ident: ref_25
  article-title: Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(96)80284-7
– volume: 13
  start-page: 1
  year: 2019
  ident: ref_94
  article-title: Agricultural drought monitoring based on soil moisture derived from the optical trapezoid model in Mozambique
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.13.024519
– volume: 88
  start-page: 104190
  year: 2019
  ident: ref_50
  article-title: Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2019.104190
– volume: 18
  start-page: 859
  year: 2017
  ident: ref_83
  article-title: Separability of coffee leaf rust infection levels with machine learning methods at Sentinel-2 MSI spectral resolutions
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-016-9495-0
– volume: 45
  start-page: 237
  year: 2018
  ident: ref_5
  article-title: Breeding to adapt agriculture to climate change: Affordable phenotyping solutions
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2018.05.003
– volume: 637–638
  start-page: 18
  year: 2018
  ident: ref_91
  article-title: Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.415
– ident: ref_37
  doi: 10.1029/2005GL022688
– volume: 9
  start-page: 303
  year: 2008
  ident: ref_38
  article-title: A broad-band leaf chlorophyll vegetation index at the canopy scale
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-008-9075-z
– ident: ref_71
  doi: 10.3390/agronomy9070404
– volume: 114
  start-page: 1987
  year: 2010
  ident: ref_24
  article-title: New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.04.006
– volume: 72
  start-page: 122
  year: 2018
  ident: ref_48
  article-title: How much does multi-temporal Sentinel-2 data improve crop type classification?
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 11
  start-page: 7063
  year: 2011
  ident: ref_82
  article-title: Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content
  publication-title: Sensors
  doi: 10.3390/s110707063
– volume: 216
  start-page: 647
  year: 2018
  ident: ref_45
  article-title: Estimating smallholder crops production at village level from Sentinel-2 time series in Mali’s cotton belt
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.036
– volume: 18
  start-page: 18
  year: 2018
  ident: ref_54
  article-title: Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery
  publication-title: Sensors
– volume: 100
  start-page: 114
  year: 2006
  ident: ref_13
  article-title: 3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.10.003
– ident: ref_72
  doi: 10.3390/agronomy9100663
– volume: 39
  start-page: 100
  year: 2007
  ident: ref_36
  article-title: Evaluation of the MERIS terrestrial chlorophyll index (MTCI)
  publication-title: Adv. Sp. Res.
  doi: 10.1016/j.asr.2006.02.034
– volume: 8
  start-page: 127
  year: 1979
  ident: ref_11
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(79)90013-0
– volume: 138
  start-page: 1
  year: 2018
  ident: ref_80
  article-title: Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.02.004
– volume: 21
  start-page: 103
  year: 2012
  ident: ref_34
  article-title: A visible band index for remote sensing leaf chlorophyll content at the Canopy scale
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_26
– volume: 6
  start-page: 359
  year: 2005
  ident: ref_33
  article-title: Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-005-2324-5
– volume: 221
  start-page: 551
  year: 2019
  ident: ref_44
  article-title: Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.007
– ident: ref_58
  doi: 10.3390/agronomy9080437
– volume: 35
  start-page: 69
  year: 1991
  ident: ref_20
  article-title: The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(91)90066-F
– volume: 56
  start-page: 44
  year: 2019
  ident: ref_1
  article-title: Applying ecological knowledge to the innovative design of sustainable agroecosystems
  publication-title: J. Appl. Ecol.
  doi: 10.1111/1365-2664.13173
– volume: 120
  start-page: 25
  year: 2012
  ident: ref_28
  article-title: Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.026
– volume: 60
  start-page: 393
  year: 2014
  ident: ref_89
  article-title: The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2014.01.004
– ident: ref_62
  doi: 10.3390/rs11172000
– ident: ref_23
– volume: 67
  start-page: 637
  year: 2017
  ident: ref_81
  article-title: Producing nitrogen (N) uptake maps in winter wheat by combining proximal crop measurements with Sentinel-2 and DMC satellite images in a decision support system for farmers
  publication-title: Acta Agric. Scand. Sect. B Soil Plant Sci.
– ident: ref_57
  doi: 10.3390/agronomy10030327
– ident: ref_78
  doi: 10.3390/agronomy9060278
– volume: 218
  start-page: 89
  year: 2018
  ident: ref_66
  article-title: Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.015
– ident: ref_75
  doi: 10.3390/rs9050405
– volume: 89
  start-page: 1
  year: 2004
  ident: ref_30
  article-title: Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.09.004
– volume: 223
  start-page: 105715
  year: 2019
  ident: ref_74
  article-title: Validation of the cotton crop coefficient estimation model based on Sentinel-2 imagery and eddy covariance measurements
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.105715
– ident: ref_41
– volume: 147
  start-page: 267
  year: 2019
  ident: ref_63
  article-title: Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.026
– volume: 114
  start-page: 358
  year: 2013
  ident: ref_6
  article-title: Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2012.08.009
– volume: 52
  start-page: 108
  year: 2019
  ident: ref_69
  article-title: Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2018.1482524
– volume: 64
  start-page: 2233
  year: 2019
  ident: ref_51
  article-title: Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data
  publication-title: Adv. Sp. Res.
  doi: 10.1016/j.asr.2019.08.042
– volume: 184
  start-page: 668
  year: 2016
  ident: ref_59
  article-title: Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.07.030
– volume: 3
  start-page: 875
  year: 2013
  ident: ref_7
  article-title: The role of satellite remote sensing in climate change studies
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1908
– volume: 9
  start-page: 6109
  year: 2019
  ident: ref_84
  article-title: Remote Sensing Data to Detect Hessian Fly Infestation in Commercial Wheat Fields
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-42620-0
– volume: 96
  start-page: 98
  year: 2005
  ident: ref_12
  article-title: Application of photon recollision probability in coniferous canopy reflectance simulations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.02.009
– ident: ref_60
  doi: 10.3390/agronomy9050255
– volume: 13
  start-page: 95
  year: 1995
  ident: ref_32
  article-title: A review of vegetation indices
  publication-title: Remote Sens. Rev.
  doi: 10.1080/02757259509532298
– volume: 12
  start-page: 1
  year: 2018
  ident: ref_68
  article-title: Modeling soil organic matter and texture from satellite data in areas affected by wildfires and cropland abandonment in Aragón, Northern Spain
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.12.042803
– ident: ref_40
– ident: ref_102
  doi: 10.3390/rs10010099
– volume: 36
  start-page: 113
  year: 2002
  ident: ref_8
  article-title: Precision agriculture—A worldwide overview
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/S0168-1699(02)00096-0
– volume: 236
  start-page: 111402
  year: 2020
  ident: ref_103
  article-title: Remote sensing for agricultural applications: A meta-review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111402
– volume: 233
  start-page: 111410
  year: 2019
  ident: ref_56
  article-title: High resolution wheat yield mapping using Sentinel-2
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111410
– volume: 7
  start-page: 33
  year: 1990
  ident: ref_21
  article-title: Exploring the relationship between reflectance red edge and chlorophyll content in slash pine
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/7.1-2-3-4.33
– volume: 81
  start-page: 416
  year: 2002
  ident: ref_35
  article-title: Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00018-4
– volume: 15
  start-page: 1
  year: 2013
  ident: ref_27
  article-title: Review of optical-based remote sensing for plant trait mapping
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2013.06.003
– volume: 89
  start-page: 153
  year: 2005
  ident: ref_14
  article-title: Comparison of visual and multispectral radiometric disease evaluations of Cercospora leaf spot of sugar beet
  publication-title: Plant Dis.
  doi: 10.1094/PD-89-0153
– ident: ref_29
– volume: 40
  start-page: 6134
  year: 2019
  ident: ref_93
  article-title: Comparing Sentinel-2 MSI and Landsat 8 OLI in soil salinity detection: A case study of agricultural lands in coastal North Carolina
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1587205
– ident: ref_2
– volume: 2017
  start-page: 1353691
  year: 2017
  ident: ref_31
  article-title: Significant remote sensing vegetation indices: A review of developments and applications
  publication-title: J. Sens.
  doi: 10.1155/2017/1353691
– ident: ref_46
– volume: 1
  start-page: 2414
  year: 2016
  ident: ref_88
  article-title: Quadcopter UAV Based Fertilizer and Pesticide Spraying System
  publication-title: Int. Acad. Res. J. Eng. Sci.
– ident: ref_87
  doi: 10.3390/drones3020045
– volume: 42
  start-page: 1547
  year: 2002
  ident: ref_15
  article-title: Relationship between growth traits and spectral vegetation indices in durum wheat
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2002.1547
– volume: 75
  start-page: 153
  year: 2001
  ident: ref_22
  article-title: Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00163-2
– ident: ref_79
  doi: 10.3390/rs10020269
– volume: 11
  start-page: 1755
  year: 1990
  ident: ref_19
  article-title: Quantitative characterization of the vegetation red edge reflectance 1. An inverted-gaussian reflectance model
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169008955128
– volume: 108
  start-page: 243
  year: 1986
  ident: ref_17
  article-title: Spectral reflectance of healthy and diseased watermelon leaves
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.1986.tb07646.x
– volume: 207
  start-page: 44
  year: 2018
  ident: ref_73
  article-title: Estimating cotton water consumption using a time series of Sentinel-2 imagery
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2018.05.017
– volume: 12
  start-page: 1
  year: 2018
  ident: ref_92
  article-title: Developing an integrated index based on phenological metrics for evaluating cadmium stress in rice using Sentinel-2 data
  publication-title: J. Appl. Remote Sens.
SSID ssj0000913807
Score 2.6013594
SecondaryResourceType review_article
Snippet The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 641
SubjectTerms abiotic stress
Agricultural management
Agriculture
biotic stress
Climate change
computer software
Crop management
crop monitoring
Crops
Detection
Farmers
Monitoring
Photosynthesis
Physiology
Precision agriculture
Remote sensing
Researchers
Satellite constellations
Satellite imagery
Satellites
Sensors
Sentinel-2
spectral analysis
Spectral resolution
Spectrum analysis
Vegetation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61y6U9VFBaseUhI_XCwdo8HD-4oAWBEBII0aJyi2zH3gvKQnb5_8xkvQsUiWs8iaKxZ_zNjP0NwG_cRHwwjeHRVxkn_nLuRCy5KhGte1PKUtBF4csreX4rLu6qu5Rwm6VjlUuf2DvqZuopRz4injpTIZpRRw-PnLpGUXU1tdD4DGvogrUewNrx6dX1zSrLQqyXOlOL-mSJ8f3ITrr-tkBOzCdS5G_2o562_51X7reas3X4ljAiGy8mdQM-hfY7fB1PusSTETbh301AHQf2h86ftxOG0JNdd6lfDnslekgic4SS97xgiwxCaBgBPxycMds2bPyqhv0Dbs9O_56c89QjgXuRF3PuszwKbQuXhdJ5EayRVR6zmDmJpkrMOa5BnUuTGxE9uqegNEZ8RWargOOx_AmDdtqGLWClidIFIUVUVOQNJrcqE41wznsUtUMYLTVV-0QgTn0s7msMJEi39f-6HcLB6o2HBXnGB7LHpPyVHNFe9w-m3aROVlQbxEM211r6WAnrtcPfUkpJq2xVKCeGsLOcujrZ4qx-WTlD2F8NoxVRacS2YfqEMkZLTbGi-vXxJ7bhS0ERd3_kcQcG8-4p7CIsmbu9tPaeAWQh4yo
  priority: 102
  providerName: ProQuest
Title Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications
URI https://www.proquest.com/docview/2398959917
https://www.proquest.com/docview/2986849567
https://doaj.org/article/9710a1886cf54ac8b20a7776a7a527b4
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2iFz2In7h-LBG8eCjbtGnSeNsVFxGUZVX0VpI02Yt0pVv_vzNtd6kKevHaTCG8TjJvOskbQi4giFinchV4m4QB6pcHhvs4kDGwdatiEXO8KHz_IG6f-d1r8tpp9YVnwhp54Aa4gYIQqFmaCusTrm1qolBLKYWWOomkqZVAIeZ1kql6D1YMldSbumQMef1Az8r6lgBDxRPB2Zc4VMv1_9iN6xAz3iHbLTekw2ZOu2TNFXtkazgrW30Mt09epg6wdfQRz50XMwqUk07Ktk8O7ZheoUkFFPItiGjz58DlFAkfDC6oLnI67NSuD8jz-Obp-jZoeyMElrOoCmzIPE91ZEIXG8udViJhPvShEbBEUTHH5IC1UExxb2FbcjKFTA_ASxyM-_iQrBfzwh0RGisvjOOCe4nFXaeYliHPuTHWgqnukcESqcy2wuHYv-ItgwQCsc2-Y9sjl6s33hvRjF9sRwj-yg7lrusH4ARZ6wTZX07QI6fLT5e1a3CRobKhSoD_yh45Xw3D6sGSiC7c_ANsVCpSzBHl8X_M44RsRpiP1wciT8l6VX64MyAtlemTjdHNw2Tar_30E_4v6xI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4VDzF0gJGggOHaJ3EsWMkhLbQakvbVVVa0VtqO_ZeqmzJboX4U_xGZvJYCki99RpPLGs8Y3_jsb8BeIObiPO61FFwGY-IvzyyIqSRShGtO53KVNBD4cOpnJyKL2fZ2Rr86t_C0LXKfk1sFupy7uiMfEQ8dTpDNKM-Xn6PqGoUZVf7EhqtWez7nz8wZFt82PuM8_s2SXZ3Tj5Noq6qQOREnCwjx-MgcpNY7lPrhDdaZnHggVuJxk1cM7bEUUqN4X1w6NBe5RgjJdxkHttDiv3egXWRSp4MYH17Z3p0vDrVIZbNnKs2H5qmmo_MrG5eJ8TEtCJF_Nf-15QJ-G8XaLa23Qew0WFSNm6N6CGs-eoR3B_P6o6Xwz-Gb8ce59Szr3TfvZoxhLrsqO7q87Brou9JZInQ9SJKWHti4UtGQBMbF8xUJRtfy5k_gdNb0d5TGFTzyj8DluogrRdSBEVJZa9jo7gohbXOoagZwqjXVOE6wnKqm3FRYOBCui3-1e0Q3q3-uGzJOm6Q3Sblr-SIZrv5MK9nRee1hUb8ZeI8ly5kwrjc4rCUUtIokyXKiiFs9VNXdL6_KP5Y6hBer5rRaykVYyo_v0IZncucYlP1_OYuXsHdycnhQXGwN93fhHsJRfvNdcstGCzrK_8CIdHSvuzskMH5bZv-b8-6Hnw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgUPEUSwsYCQ4conUSx46RENrSrloKq1WhorfUduy9VNmS3Qrx1_h1zOSxFJB66zWeWNZ4bH_jGX8D8AoPEed1qaPgMh4Rf3lkRUgjlSJadzqVqaCHwp-n8uBEfDzNTjfgV_8WhtIq-z2x2ajLhaM78hHx1OkM0YwahS4tYrY3eX_xPaIKUhRp7ctptCZy5H_-QPdt-e5wD-f6dZJM9r9-OIi6CgORE3GyihyPg8hNYrlPrRPeaJnFgQduJRo68c7YEkcsNbr6weHi9ipHfynhJvPYHlLs9xZsKvKKBrC5uz-dHa9veIhxM-eqjY2mqeYjM6-blwoxsa5IEf91FjYlA_47EZpjbnIPtjp8ysatQd2HDV89gLvjed1xdPiH8O3Y4_x69oVy36s5Q9jLZnVXq4ddEX1LIiuEsedRwtrbC18yAp3YuGSmKtn4Svz8EZzciPYew6BaVP4JsFQHab2QIigKMHsdG8VFKax1DkXNEEa9pgrXkZdTDY3zAp0Y0m3xr26H8Gb9x0VL3HGN7C4pfy1HlNvNh0U9L7oVXGjEYibOc-lCJozLLQ5LKSWNMlmirBjCTj91RbcPLIs_VjuEl-tmXMEUljGVX1yijM5lTn6qenp9Fy_gNpp88elwerQNdxJy_JvMyx0YrOpL_wzR0co-78yQwdlNW_5v9ssisQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+Sensing+for+Precision+Agriculture%3A+Sentinel-2+Improved+Features+and+Applications&rft.jtitle=Agronomy+%28Basel%29&rft.au=Joel+Segarra&rft.au=Maria+Luisa+Buchaillot&rft.au=Jose+Luis+Araus&rft.au=Shawn+C.+Kefauver&rft.date=2020-05-01&rft.pub=MDPI+AG&rft.eissn=2073-4395&rft.volume=10&rft.issue=5&rft.spage=641&rft_id=info:doi/10.3390%2Fagronomy10050641&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9710a1886cf54ac8b20a7776a7a527b4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon