Plant Disease Recognition Model Based on Improved YOLOv5
To accurately recognize plant diseases under complex natural conditions, an improved plant disease-recognition model based on the original YOLOv5 network model was established. First, a new InvolutionBottleneck module was used to reduce the numbers of parameters and calculations, and to capture long...
Saved in:
Published in | Agronomy (Basel) Vol. 12; no. 2; p. 365 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To accurately recognize plant diseases under complex natural conditions, an improved plant disease-recognition model based on the original YOLOv5 network model was established. First, a new InvolutionBottleneck module was used to reduce the numbers of parameters and calculations, and to capture long-distance information in the space. Second, an SE module was added to improve the sensitivity of the model to channel features. Finally, the loss function ‘Generalized Intersection over Union’ was changed to ‘Efficient Intersection over Union’ to address the former’s degeneration into ‘Intersection over Union’. These proposed methods were used to improve the target recognition effect of the network model. In the experimental phase, to verify the effectiveness of the model, sample images were randomly selected from the constructed rubber tree disease database to form training and test sets. The test results showed that the mean average precision of the improved YOLOv5 network reached 70%, which is 5.4% higher than that of the original YOLOv5 network. The precision values of this model for powdery mildew and anthracnose detection were 86.5% and 86.8%, respectively. The overall detection performance of the improved YOLOv5 network was significantly better compared with those of the original YOLOv5 and the YOLOX_nano network models. The improved model accurately identified plant diseases under natural conditions, and it provides a technical reference for the prevention and control of plant diseases. |
---|---|
AbstractList | To accurately recognize plant diseases under complex natural conditions, an improved plant disease-recognition model based on the original YOLOv5 network model was established. First, a new InvolutionBottleneck module was used to reduce the numbers of parameters and calculations, and to capture long-distance information in the space. Second, an SE module was added to improve the sensitivity of the model to channel features. Finally, the loss function ‘Generalized Intersection over Union’ was changed to ‘Efficient Intersection over Union’ to address the former’s degeneration into ‘Intersection over Union’. These proposed methods were used to improve the target recognition effect of the network model. In the experimental phase, to verify the effectiveness of the model, sample images were randomly selected from the constructed rubber tree disease database to form training and test sets. The test results showed that the mean average precision of the improved YOLOv5 network reached 70%, which is 5.4% higher than that of the original YOLOv5 network. The precision values of this model for powdery mildew and anthracnose detection were 86.5% and 86.8%, respectively. The overall detection performance of the improved YOLOv5 network was significantly better compared with those of the original YOLOv5 and the YOLOX_nano network models. The improved model accurately identified plant diseases under natural conditions, and it provides a technical reference for the prevention and control of plant diseases. |
Author | Chen, Zhaoyi Li, Chuyu Lin, Yiyan Wu, Ruhui Chen, Shiwei Zou, Xiangjun Chen, Siyu Yuan, Zhineng |
Author_xml | – sequence: 1 givenname: Zhaoyi surname: Chen fullname: Chen, Zhaoyi – sequence: 2 givenname: Ruhui surname: Wu fullname: Wu, Ruhui – sequence: 3 givenname: Yiyan surname: Lin fullname: Lin, Yiyan – sequence: 4 givenname: Chuyu surname: Li fullname: Li, Chuyu – sequence: 5 givenname: Siyu surname: Chen fullname: Chen, Siyu – sequence: 6 givenname: Zhineng surname: Yuan fullname: Yuan, Zhineng – sequence: 7 givenname: Shiwei surname: Chen fullname: Chen, Shiwei – sequence: 8 givenname: Xiangjun orcidid: 0000-0001-5146-599X surname: Zou fullname: Zou, Xiangjun |
BookMark | eNp1kU1rGzEQhkVJoUmae48LvfTiZvSx2tWxzUdjcHAI7aEnMSvNGpn1KpXWgfz7yHEJwRCB0Gh43leamRN2NMaRGPvC4buUBs5xleIYN09cgACp6w_sWEAjZ0qa-uhN_Imd5byGsgyXLTTHrL0bcJyqy5AJM1X35OJqDFOIY3UbPQ3Vz5L2VbnONw8pPpb473KxfKw_s489DpnO_p-n7M_11e-Lm9li-Wt-8WMxc4qLadZhbVSNgpdN3LWd8wYlaelq70D3rSIFjW7QK0Di2EluuOtAIvQKgOQpm-99fcS1fUhhg-nJRgz2JRHTymKaghvI1n3vleem67RRzvRdI8q7RI2SHkQNxevb3qtU8m9LebKbkB0NpQUUt9kKrTkIA1wX9OsBuo7bNJZKCyUFb1vZ7CjYUy7FnBP1rx_kYHeTsYeTKRJ9IHFhwl3Dp4RheF_4DNdwlKA |
CitedBy_id | crossref_primary_10_1016_j_compag_2022_107079 crossref_primary_10_3390_rs14132994 crossref_primary_10_3390_agronomy13010196 crossref_primary_10_3390_s24092896 crossref_primary_10_1007_s12541_023_00911_7 crossref_primary_10_1016_j_eswa_2024_123219 crossref_primary_10_3390_agronomy14092141 crossref_primary_10_3389_fpls_2023_1296473 crossref_primary_10_1155_2022_2267107 crossref_primary_10_3389_fpls_2023_1323301 crossref_primary_10_3390_s24082619 crossref_primary_10_1016_j_iot_2022_100650 crossref_primary_10_3390_su17010132 crossref_primary_10_1109_ACCESS_2023_3317951 crossref_primary_10_1038_s41598_022_20983_1 crossref_primary_10_3390_agriculture13010124 crossref_primary_10_3390_jmse11122234 crossref_primary_10_3390_machines10060489 crossref_primary_10_3390_agriculture14091617 crossref_primary_10_1016_j_compag_2022_107345 crossref_primary_10_1038_s41598_024_65293_w crossref_primary_10_1109_ACCESS_2024_3350036 crossref_primary_10_1016_j_engappai_2023_106818 crossref_primary_10_3389_fpls_2022_1072631 crossref_primary_10_3389_fpls_2022_864458 crossref_primary_10_3390_agronomy12071520 crossref_primary_10_3390_app122412959 crossref_primary_10_37391_ijeer_110306 crossref_primary_10_1186_s13007_024_01213_3 crossref_primary_10_3390_s22166079 crossref_primary_10_3390_biomimetics7020069 crossref_primary_10_1038_s41598_024_51755_8 crossref_primary_10_3390_agronomy13092391 crossref_primary_10_3390_jmse12030451 crossref_primary_10_3390_f14102052 crossref_primary_10_1016_j_ecolind_2024_112597 crossref_primary_10_1109_ACCESS_2023_3303890 crossref_primary_10_1007_s11042_024_20529_9 crossref_primary_10_1016_j_gerinurse_2024_10_046 crossref_primary_10_1590_1809_4430_eng_agric_v44e20230175_2024 crossref_primary_10_1590_s1678_3921_pab2023_v58_03363 crossref_primary_10_3390_electronics12132950 crossref_primary_10_1007_s12596_023_01242_6 crossref_primary_10_1007_s11760_024_03344_5 crossref_primary_10_1117_1_JEI_32_5_052402 crossref_primary_10_3389_fpls_2023_1255119 crossref_primary_10_3390_s22093433 crossref_primary_10_1016_j_engappai_2022_105006 crossref_primary_10_3389_fpls_2024_1355941 crossref_primary_10_1155_2022_1168700 crossref_primary_10_3390_agriculture12091290 crossref_primary_10_1142_S0218001422500471 crossref_primary_10_3390_foods12112117 crossref_primary_10_1088_2515_7620_acdece crossref_primary_10_1142_S0218126625501816 crossref_primary_10_1007_s00371_023_02982_z crossref_primary_10_1016_j_bspc_2024_106318 crossref_primary_10_1016_j_ecoinf_2024_102809 crossref_primary_10_1109_ACCESS_2023_3324722 crossref_primary_10_1007_s11760_025_03928_9 crossref_primary_10_17660_ActaHortic_2024_1412_60 crossref_primary_10_1016_j_mtcomm_2024_111402 crossref_primary_10_29133_yyutbd_1246901 crossref_primary_10_1016_j_knosys_2022_109220 crossref_primary_10_3390_electronics12030667 crossref_primary_10_1111_pce_14749 crossref_primary_10_1016_j_compag_2022_107391 crossref_primary_10_3390_machines10070533 crossref_primary_10_3390_app12094470 crossref_primary_10_3390_su15020901 crossref_primary_10_1038_s41598_024_78509_w crossref_primary_10_1088_1361_6501_ad6b41 crossref_primary_10_3390_electronics13224362 crossref_primary_10_1109_ACCESS_2022_3200688 crossref_primary_10_1016_j_lwt_2024_116989 crossref_primary_10_1080_03772063_2023_2220667 crossref_primary_10_1007_s11042_023_17245_1 crossref_primary_10_1049_ipr2_13231 crossref_primary_10_3390_rs14236137 crossref_primary_10_3390_plants12040790 crossref_primary_10_1109_JSTARS_2023_3339297 crossref_primary_10_1038_s41598_025_92143_0 crossref_primary_10_3390_s23198102 crossref_primary_10_1016_j_measen_2022_100447 crossref_primary_10_3390_agronomy12112812 crossref_primary_10_1016_j_compag_2023_108375 crossref_primary_10_1080_17445302_2024_2365019 crossref_primary_10_1186_s12870_024_05346_4 crossref_primary_10_3390_ani12151983 crossref_primary_10_1007_s00371_023_03225_x crossref_primary_10_35234_fumbd_1318060 crossref_primary_10_1007_s11042_024_19415_1 crossref_primary_10_1007_s12229_024_09299_z crossref_primary_10_1016_j_compenvurbsys_2023_102025 crossref_primary_10_1109_ACCESS_2023_3277954 crossref_primary_10_3390_agronomy13112801 crossref_primary_10_3390_en17184731 crossref_primary_10_3390_app122211441 crossref_primary_10_1088_1742_6596_2435_1_012015 crossref_primary_10_3390_app131810394 crossref_primary_10_3390_agronomy13020577 crossref_primary_10_1016_j_compag_2023_108460 crossref_primary_10_3390_app14104322 crossref_primary_10_1016_j_compag_2023_108461 crossref_primary_10_3390_plants11070937 crossref_primary_10_3390_insects14080698 crossref_primary_10_3390_agriculture12091309 crossref_primary_10_3389_fpls_2022_1066835 crossref_primary_10_3390_axioms12010018 crossref_primary_10_1007_s11042_024_18392_9 crossref_primary_10_1016_j_optmat_2022_113401 crossref_primary_10_1155_2023_5147399 crossref_primary_10_3390_agronomy12102354 crossref_primary_10_3390_agronomy13010260 crossref_primary_10_1109_ACCESS_2022_3232751 crossref_primary_10_1016_j_ecoinf_2022_101725 crossref_primary_10_1109_ACCESS_2023_3317689 crossref_primary_10_1016_j_compag_2025_110111 crossref_primary_10_3389_fpls_2023_1135105 crossref_primary_10_3390_s22052049 crossref_primary_10_3390_s23156844 crossref_primary_10_1109_ACCESS_2023_3341928 crossref_primary_10_3390_drones9040229 crossref_primary_10_1002_jsfa_13379 crossref_primary_10_1038_s41598_023_33804_w crossref_primary_10_3390_agriculture14091472 crossref_primary_10_3390_agronomy12092023 |
Cites_doi | 10.1007/s41348-020-00423-w 10.3390/agronomy11112286 10.1111/efp.12519 10.3390/s21113830 10.3389/fpls.2020.00510 10.3390/s21062129 10.1109/ACCESS.2020.3005386 10.1142/S021946782140009X 10.1109/CVPR.2018.00745 10.21203/rs.3.rs-438951/v1 10.1007/s11042-020-09567-1 10.1016/j.neucom.2022.07.042 10.3390/machines9100233 10.1016/j.compag.2021.106252 10.1016/j.compag.2020.105508 10.1007/s42161-020-00683-3 10.3390/s17112564 10.1016/j.compag.2012.11.001 10.1016/j.compag.2017.07.019 10.1109/ICCMC51019.2021.9418263 10.1109/CVPR46437.2021.01214 10.1109/CONIT51480.2021.9498518 10.1016/j.compag.2021.106453 10.1016/j.ijleo.2021.166566 10.1007/s12652-020-02051-6 10.1038/s41598-018-28166-7 10.1007/s11119-019-09654-w 10.1016/j.compag.2021.105998 10.3390/agriengineering3030035 10.1016/j.compag.2020.105900 10.1007/s40747-020-00161-4 10.3389/fpls.2021.705021 10.1016/j.ecoinf.2020.101197 10.1016/j.compag.2021.106279 10.1016/j.ecoinf.2020.101182 10.3390/s21165386 10.3390/rs13224560 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI 7S9 L.6 DOA |
DOI | 10.3390/agronomy12020365 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Proquest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2073-4395 |
ExternalDocumentID | oai_doaj_org_article_5ffd4d19bb694c9fb72215ee743d0250 10_3390_agronomy12020365 |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO ITC KQ8 M0K MODMG M~E OK1 OZF PATMY PHGZM PHGZT PIMPY PROAC PYCSY 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c412t-ba5945a215a2e1c8bcd9a3e63c5dc06f84e40767ad40ae1ab3191cb03a0f400e3 |
IEDL.DBID | BENPR |
ISSN | 2073-4395 |
IngestDate | Wed Aug 27 01:26:45 EDT 2025 Fri Jul 11 01:23:57 EDT 2025 Mon Jun 30 11:26:20 EDT 2025 Tue Jul 01 03:20:18 EDT 2025 Thu Apr 24 23:09:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-ba5945a215a2e1c8bcd9a3e63c5dc06f84e40767ad40ae1ab3191cb03a0f400e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5146-599X |
OpenAccessLink | https://www.proquest.com/docview/2632188376?pq-origsite=%requestingapplication% |
PQID | 2632188376 |
PQPubID | 2032440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5ffd4d19bb694c9fb72215ee743d0250 proquest_miscellaneous_2661029016 proquest_journals_2632188376 crossref_primary_10_3390_agronomy12020365 crossref_citationtrail_10_3390_agronomy12020365 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agronomy (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Gui (ref_10) 2021; 8 Lin (ref_1) 2020; 21 ref_11 Shi (ref_14) 2017; 141 Li (ref_6) 2020; 8 ref_19 ref_18 Wu (ref_7) 2021; 12 Fazari (ref_13) 2021; 187 ref_17 Mishra (ref_35) 2021; 12 ref_39 ref_16 ref_38 Anagnostis (ref_30) 2021; 182 Joshi (ref_2) 2021; 61 Tang (ref_5) 2020; 11 Kianat (ref_23) 2021; 240 Wu (ref_37) 2019; 49 Mukhopadhyay (ref_26) 2021; 80 Phadikar (ref_15) 2013; 90 Chen (ref_27) 2020; 174 Liu (ref_36) 2018; 8 ref_25 Atila (ref_34) 2021; 61 ref_24 ref_22 Shrivastava (ref_21) 2020; 103 ref_20 ref_41 ref_40 Abbas (ref_31) 2021; 187 Li (ref_28) 2021; 180 ref_3 ref_29 ref_9 ref_8 Appeltans (ref_12) 2021; 190 Xiang (ref_32) 2021; 128 Liu (ref_4) 2020; 7 Tan (ref_33) 2021; 3 |
References_xml | – volume: 128 start-page: 557 year: 2021 ident: ref_32 article-title: L-CSMS: Novel lightweight network for plant disease severity recognition publication-title: J. Plant Dis. Prot. doi: 10.1007/s41348-020-00423-w – ident: ref_29 doi: 10.3390/agronomy11112286 – volume: 49 start-page: e12519 year: 2019 ident: ref_37 article-title: Molecular identification of the powdery mildew fungus infecting rubber trees in China publication-title: Forest Pathol. doi: 10.1111/efp.12519 – ident: ref_19 doi: 10.3390/s21113830 – ident: ref_24 – volume: 11 start-page: 510 year: 2020 ident: ref_5 article-title: Recognition and localization methods for vision-based fruit picking robots: A review publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00510 – ident: ref_3 doi: 10.3390/s21062129 – volume: 8 start-page: 117746 year: 2020 ident: ref_6 article-title: Detection of fruit-bearing branches and localization of litchi clusters for vision-based harvesting robots publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3005386 – ident: ref_17 doi: 10.1142/S021946782140009X – ident: ref_40 doi: 10.1109/CVPR.2018.00745 – ident: ref_16 doi: 10.21203/rs.3.rs-438951/v1 – volume: 80 start-page: 753 year: 2021 ident: ref_26 article-title: Tea leaf disease detection using multi-objective image segmentation publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09567-1 – ident: ref_41 doi: 10.1016/j.neucom.2022.07.042 – ident: ref_9 doi: 10.3390/machines9100233 – volume: 187 start-page: 106252 year: 2021 ident: ref_13 article-title: Application of deep convolutional neural networks for the detection of anthracnose in olives using VIS/NIR hyperspectral images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106252 – volume: 174 start-page: 105508 year: 2020 ident: ref_27 article-title: Three-dimensional perception of orchard banana central stock enhanced by adaptive multi-vision technology publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105508 – volume: 103 start-page: 17 year: 2020 ident: ref_21 article-title: Rice plant disease classification using color features: A machine learning paradigm publication-title: J. Plant Pathol. doi: 10.1007/s42161-020-00683-3 – ident: ref_8 doi: 10.3390/s17112564 – volume: 90 start-page: 76 year: 2013 ident: ref_15 article-title: Rice diseases classification using feature selection and rule generation techniques publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2012.11.001 – volume: 141 start-page: 171 year: 2017 ident: ref_14 article-title: Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.07.019 – ident: ref_18 doi: 10.1109/ICCMC51019.2021.9418263 – volume: 8 start-page: 380 year: 2021 ident: ref_10 article-title: Grading method of soybean mosaic disease based on hyperspectral imaging technology publication-title: Inf. Process. Agric. – ident: ref_39 doi: 10.1109/CVPR46437.2021.01214 – ident: ref_22 doi: 10.1109/CONIT51480.2021.9498518 – ident: ref_25 – volume: 190 start-page: 106453 year: 2021 ident: ref_12 article-title: Detection of leek white tip disease under field conditions using hyperspectral proximal sensing and supervised machine learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106453 – volume: 240 start-page: 166566 year: 2021 ident: ref_23 article-title: A joint framework of feature reduction and robust feature selection for cucumber leaf diseases recognition publication-title: Optik doi: 10.1016/j.ijleo.2021.166566 – volume: 12 start-page: 691 year: 2021 ident: ref_35 article-title: Modified ride-NN optimizer for the IoT based plant disease detection publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-020-02051-6 – volume: 8 start-page: 10435 year: 2018 ident: ref_36 article-title: Colletotrichum species causing anthracnose of rubber trees in China publication-title: Sci. Rep. doi: 10.1038/s41598-018-28166-7 – volume: 21 start-page: 1 year: 2020 ident: ref_1 article-title: Color-, depth-, and shape-based 3D fruit detection publication-title: Precis. Agric. doi: 10.1007/s11119-019-09654-w – volume: 182 start-page: 105998 year: 2021 ident: ref_30 article-title: A deep learning approach for anthracnose infected trees classification in walnut orchards publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.105998 – volume: 3 start-page: 542 year: 2021 ident: ref_33 article-title: Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine Learning and Deep Learning Methods publication-title: AgriEngineering doi: 10.3390/agriengineering3030035 – volume: 180 start-page: 105900 year: 2021 ident: ref_28 article-title: A novel green apple segmentation algorithm based on ensemble U-Net under complex orchard environment publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105900 – volume: 7 start-page: 1895 year: 2020 ident: ref_4 article-title: Overview and methods of correlation filter algorithms in object tracking publication-title: Complex Intell. Syst. doi: 10.1007/s40747-020-00161-4 – volume: 12 start-page: 705021 year: 2021 ident: ref_7 article-title: Multi-Target Recognition of Bananas and Automatic Positioning for the Inflorescence Axis Cutting Point publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.705021 – ident: ref_38 – volume: 61 start-page: 101197 year: 2021 ident: ref_2 article-title: VirLeafNet: Automatic analysis and viral disease diagnosis using deep-learning in Vigna mungoplant publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2020.101197 – volume: 187 start-page: 106279 year: 2021 ident: ref_31 article-title: Tomato plant disease detection using transfer learning with C-GAN synthetic images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106279 – volume: 61 start-page: 101182 year: 2021 ident: ref_34 article-title: Plant leaf disease classification using EfficientNet deep learning model publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2020.101182 – ident: ref_20 doi: 10.3390/s21165386 – ident: ref_11 doi: 10.3390/rs13224560 |
SSID | ssj0000913807 |
Score | 2.5874887 |
Snippet | To accurately recognize plant diseases under complex natural conditions, an improved plant disease-recognition model based on the original YOLOv5 network model... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 365 |
SubjectTerms | Accuracy Agricultural production agronomy Airborne microorganisms Algorithms Anthracnose Artificial intelligence Classification Deep learning Degeneration Discriminant analysis EIOU Hevea brasiliensis Intersections InvolutionBottleneck Light Machine learning Methods Modules Neural networks Pathogens Plant diseases plant diseases recognition Powdery mildew Rubber Rubber trees SE module Target recognition Vision systems YOLOv5 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTnBAPMVgoCJx4VCtaZOuOW7ANCFgEmLSOFVJ6uwydWhs_H7stJsGSHDh1kdapXacz66Tz4xdAY4CLVwWWmlciHgtwwxAhaAyYRw3vOMZ-B6f0sFI3I_leKPUF60Jq-iBK8G1pXOFKLgyJlXCKmc6MaIUACJfQfhNsy9i3kYw5edgxYlJvcpLJhjXt_Vk7ncJ8Njn3uQXHPJ0_T9mYw8x_T22W_uGQbfq0z7bgvKA7XQn85ofAw5ZRkWGFsFtlVYJnlfLf2ZlQFXNpkEPLxcBnlZ_C_D4dfgw_JBHbNS_e7kZhHXxg9AKHi9Co6USUuO36hi4zYwtlE4gTawsbJS6TADGYmlHFyLSwLVBW-LWRImOHNolJMesUc5KOGGBjpTTGIrqRGhBrzEanaJEuSg2MboQTdZeiSK3NTM4FaiY5hghkPDy78Jrsuv1E28VK8YvbXsk3XU74rP2F1DLea3l_C8tN1lrpZu8NrL3nKjmeYYRdtpkl-vbaB6U89AlzJbUBv1DyhWnp__RjzO2HdP-B79su8Uai_kSztErWZgLPwA_ARvr35w priority: 102 providerName: Directory of Open Access Journals |
Title | Plant Disease Recognition Model Based on Improved YOLOv5 |
URI | https://www.proquest.com/docview/2632188376 https://www.proquest.com/docview/2661029016 https://doaj.org/article/5ffd4d19bb694c9fb72215ee743d0250 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5BuSwHxGMRXR4KEhcOUePETu0TojyEEC8hkOAU2Y7dC0rYUvj9zDhuVwsSt8RxLHnsedvfABw43AWae5laYXyK-lqk0jmVOiW58cywYUDgu74pLx755ZN4igG3t3isciYTg6CuW0sx8gHhijOJ7lR59Po3papRlF2NJTQWYQlFsJQ9WBqd3dzdz6MshHops2GXnyzQvx_o8STcFmB5yMGJ__RRgO3_JpWDqjlfhZVoIybH3aKuwYJr1mH5eDyJOBluAyQVG5omp116JbmfHQNqm4Sqm70kI2yuE3ztogb4_Hx7dfshfsPj-dnDyUUaiyCklrN8mhotFBcaNbPOHbPS2FrpwpWFFbXNSi-5Q5-sHOqaZ9oxbZCnmDVZoTOP_OmKTeg1beO2INGZ8hpdUl1wzWkYo9E4KpTPcpOjKdGHwYwUlY0I4VSo4qVCT4GIV30lXh8O53-8dugYP_QdEXXn_QjXOjS0k3EV2aQS3te8ZsqYUnGrvBnmOHPn0M6pyVrrw85sbarIbG_Vv63Rh_35Z2QTyn3oxrXv1AftRMoZl39-HmIbfuV0wyEczN6B3nTy7nbR7piavbi59oLf_glrGtlf |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5ioUCQ4MAhWj-z8QGhLm21pdstqlqpnILt2HupkrLdgvhT_EZm8lgESL31ljiOJY8_e77x2DMAbwKiwKqYp167mKK-1mkegkmDyZWL3PFxE4HvcJ5NT9WnM322Ab_6uzB0rLJfE5uFuqw97ZGPKK44z9Gcyj5cfEspaxR5V_sUGi0sDsLPH2iyXb7f38HxfSvE3u7Jx2naZRVIveJilTqrjdIWVZ0Vgfvc-dJYGTLpdelZFnMV0MjJxrZUzAZuHYKUe8ekZREBHyS2ews2lcyYGMDmZHf--Xi9q0NRNnM2bv2hUho2sotlczuBi8bnp__Sf02agP-0QKPa9u7DvY6TJtstiB7ARqgewt3txbKLyxEeQU7JjVbJTuvOSY77Y0d1lVA2tfNkgsVlgq_tLgU-fzmaHX3Xj-H0RsTzBAZVXYWnkFhmokUT2EplFTXjLJIxaSITTiB1GcKoF0Xhu4jklBjjvEDLhIRX_Cu8Ibxb_3HRRuO4pu6EpLuuR3G0m4J6uSi6aVnoGEtVcuNcZpQ30Y0F9jwE5FUlscMhbPVjU3ST-7L4A8UhvF5_xmlJvhZbhfqK6iAvJR919uz6Jl7B7enJ4ayY7c8PnsMdQbcrmkPhWzBYLa_CC-Q8K_eyA1oCX28a278ByeQV2A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRarKoWpLK7albSrBoYdoY8dO4gOq2C4rKLAgVCR6CrZj7wUldFla8df4dczksRVU4sYtD8dSxp89M57xfAAbDlGghc9CK40PUV_LMHNOhU5lwnhmWFpX4DucJLun4seZPFuC2-4sDKVVdmtivVAXlaU98gHVFWcZulPJwLdpEcej8bfL3yExSFGktaPTaCCy727-ovt2tbU3wrHe5Hy88_P7btgyDIRWMD4PjZZKSI1qT3PHbGZsoXTsktjKwkaJz4RDhydJdSEi7Zg2CFhmTRTryCP4XYz9PoPllLyiHiwPdybHJ4sdHqq4mUVpExuNYxUN9HRWn1RgvI7_yXu6sKYM-E8j1Gpu_ApetvZpsN0A6jUsufINrGxPZ22NDrcKGREdzYNRE9oJTroUpKoMiFntIhji4yLA22bHAq9_HR0c_ZFv4fRJxPMOemVVujUIdKS8RndYx0IL6sZoNMxi5SNuOJoxfRh0oshtW52cSDIucvRSSHj5Q-H14evii8umMscjbYck3UU7qqldP6hm07ydorn0vhAFU8YkSljlTcrxz51DG6sgS7EP693Y5O1Ev8r_wbIPXxavcYpS3EWXrrqmNmijUrw6ef94F5_hOWI6P9ib7H-AF5wOWtT54evQm8-u3Uc0f-bmU4uzAM6fGtp3c48aDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+Disease+Recognition+Model+Based+on+Improved+YOLOv5&rft.jtitle=Agronomy+%28Basel%29&rft.au=Chen%2C+Zhaoyi&rft.au=Wu%2C+Ruhui&rft.au=Lin%2C+Yiyan&rft.au=Li%2C+Chuyu&rft.date=2022-02-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=12&rft.issue=2&rft_id=info:doi/10.3390%2Fagronomy12020365&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |