Plant Disease Recognition Model Based on Improved YOLOv5

To accurately recognize plant diseases under complex natural conditions, an improved plant disease-recognition model based on the original YOLOv5 network model was established. First, a new InvolutionBottleneck module was used to reduce the numbers of parameters and calculations, and to capture long...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 12; no. 2; p. 365
Main Authors Chen, Zhaoyi, Wu, Ruhui, Lin, Yiyan, Li, Chuyu, Chen, Siyu, Yuan, Zhineng, Chen, Shiwei, Zou, Xiangjun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To accurately recognize plant diseases under complex natural conditions, an improved plant disease-recognition model based on the original YOLOv5 network model was established. First, a new InvolutionBottleneck module was used to reduce the numbers of parameters and calculations, and to capture long-distance information in the space. Second, an SE module was added to improve the sensitivity of the model to channel features. Finally, the loss function ‘Generalized Intersection over Union’ was changed to ‘Efficient Intersection over Union’ to address the former’s degeneration into ‘Intersection over Union’. These proposed methods were used to improve the target recognition effect of the network model. In the experimental phase, to verify the effectiveness of the model, sample images were randomly selected from the constructed rubber tree disease database to form training and test sets. The test results showed that the mean average precision of the improved YOLOv5 network reached 70%, which is 5.4% higher than that of the original YOLOv5 network. The precision values of this model for powdery mildew and anthracnose detection were 86.5% and 86.8%, respectively. The overall detection performance of the improved YOLOv5 network was significantly better compared with those of the original YOLOv5 and the YOLOX_nano network models. The improved model accurately identified plant diseases under natural conditions, and it provides a technical reference for the prevention and control of plant diseases.
AbstractList To accurately recognize plant diseases under complex natural conditions, an improved plant disease-recognition model based on the original YOLOv5 network model was established. First, a new InvolutionBottleneck module was used to reduce the numbers of parameters and calculations, and to capture long-distance information in the space. Second, an SE module was added to improve the sensitivity of the model to channel features. Finally, the loss function ‘Generalized Intersection over Union’ was changed to ‘Efficient Intersection over Union’ to address the former’s degeneration into ‘Intersection over Union’. These proposed methods were used to improve the target recognition effect of the network model. In the experimental phase, to verify the effectiveness of the model, sample images were randomly selected from the constructed rubber tree disease database to form training and test sets. The test results showed that the mean average precision of the improved YOLOv5 network reached 70%, which is 5.4% higher than that of the original YOLOv5 network. The precision values of this model for powdery mildew and anthracnose detection were 86.5% and 86.8%, respectively. The overall detection performance of the improved YOLOv5 network was significantly better compared with those of the original YOLOv5 and the YOLOX_nano network models. The improved model accurately identified plant diseases under natural conditions, and it provides a technical reference for the prevention and control of plant diseases.
Author Chen, Zhaoyi
Li, Chuyu
Lin, Yiyan
Wu, Ruhui
Chen, Shiwei
Zou, Xiangjun
Chen, Siyu
Yuan, Zhineng
Author_xml – sequence: 1
  givenname: Zhaoyi
  surname: Chen
  fullname: Chen, Zhaoyi
– sequence: 2
  givenname: Ruhui
  surname: Wu
  fullname: Wu, Ruhui
– sequence: 3
  givenname: Yiyan
  surname: Lin
  fullname: Lin, Yiyan
– sequence: 4
  givenname: Chuyu
  surname: Li
  fullname: Li, Chuyu
– sequence: 5
  givenname: Siyu
  surname: Chen
  fullname: Chen, Siyu
– sequence: 6
  givenname: Zhineng
  surname: Yuan
  fullname: Yuan, Zhineng
– sequence: 7
  givenname: Shiwei
  surname: Chen
  fullname: Chen, Shiwei
– sequence: 8
  givenname: Xiangjun
  orcidid: 0000-0001-5146-599X
  surname: Zou
  fullname: Zou, Xiangjun
BookMark eNp1kU1rGzEQhkVJoUmae48LvfTiZvSx2tWxzUdjcHAI7aEnMSvNGpn1KpXWgfz7yHEJwRCB0Gh43leamRN2NMaRGPvC4buUBs5xleIYN09cgACp6w_sWEAjZ0qa-uhN_Imd5byGsgyXLTTHrL0bcJyqy5AJM1X35OJqDFOIY3UbPQ3Vz5L2VbnONw8pPpb473KxfKw_s489DpnO_p-n7M_11e-Lm9li-Wt-8WMxc4qLadZhbVSNgpdN3LWd8wYlaelq70D3rSIFjW7QK0Di2EluuOtAIvQKgOQpm-99fcS1fUhhg-nJRgz2JRHTymKaghvI1n3vleem67RRzvRdI8q7RI2SHkQNxevb3qtU8m9LebKbkB0NpQUUt9kKrTkIA1wX9OsBuo7bNJZKCyUFb1vZ7CjYUy7FnBP1rx_kYHeTsYeTKRJ9IHFhwl3Dp4RheF_4DNdwlKA
CitedBy_id crossref_primary_10_1016_j_compag_2022_107079
crossref_primary_10_3390_rs14132994
crossref_primary_10_3390_agronomy13010196
crossref_primary_10_3390_s24092896
crossref_primary_10_1007_s12541_023_00911_7
crossref_primary_10_1016_j_eswa_2024_123219
crossref_primary_10_3390_agronomy14092141
crossref_primary_10_3389_fpls_2023_1296473
crossref_primary_10_1155_2022_2267107
crossref_primary_10_3389_fpls_2023_1323301
crossref_primary_10_3390_s24082619
crossref_primary_10_1016_j_iot_2022_100650
crossref_primary_10_3390_su17010132
crossref_primary_10_1109_ACCESS_2023_3317951
crossref_primary_10_1038_s41598_022_20983_1
crossref_primary_10_3390_agriculture13010124
crossref_primary_10_3390_jmse11122234
crossref_primary_10_3390_machines10060489
crossref_primary_10_3390_agriculture14091617
crossref_primary_10_1016_j_compag_2022_107345
crossref_primary_10_1038_s41598_024_65293_w
crossref_primary_10_1109_ACCESS_2024_3350036
crossref_primary_10_1016_j_engappai_2023_106818
crossref_primary_10_3389_fpls_2022_1072631
crossref_primary_10_3389_fpls_2022_864458
crossref_primary_10_3390_agronomy12071520
crossref_primary_10_3390_app122412959
crossref_primary_10_37391_ijeer_110306
crossref_primary_10_1186_s13007_024_01213_3
crossref_primary_10_3390_s22166079
crossref_primary_10_3390_biomimetics7020069
crossref_primary_10_1038_s41598_024_51755_8
crossref_primary_10_3390_agronomy13092391
crossref_primary_10_3390_jmse12030451
crossref_primary_10_3390_f14102052
crossref_primary_10_1016_j_ecolind_2024_112597
crossref_primary_10_1109_ACCESS_2023_3303890
crossref_primary_10_1007_s11042_024_20529_9
crossref_primary_10_1016_j_gerinurse_2024_10_046
crossref_primary_10_1590_1809_4430_eng_agric_v44e20230175_2024
crossref_primary_10_1590_s1678_3921_pab2023_v58_03363
crossref_primary_10_3390_electronics12132950
crossref_primary_10_1007_s12596_023_01242_6
crossref_primary_10_1007_s11760_024_03344_5
crossref_primary_10_1117_1_JEI_32_5_052402
crossref_primary_10_3389_fpls_2023_1255119
crossref_primary_10_3390_s22093433
crossref_primary_10_1016_j_engappai_2022_105006
crossref_primary_10_3389_fpls_2024_1355941
crossref_primary_10_1155_2022_1168700
crossref_primary_10_3390_agriculture12091290
crossref_primary_10_1142_S0218001422500471
crossref_primary_10_3390_foods12112117
crossref_primary_10_1088_2515_7620_acdece
crossref_primary_10_1142_S0218126625501816
crossref_primary_10_1007_s00371_023_02982_z
crossref_primary_10_1016_j_bspc_2024_106318
crossref_primary_10_1016_j_ecoinf_2024_102809
crossref_primary_10_1109_ACCESS_2023_3324722
crossref_primary_10_1007_s11760_025_03928_9
crossref_primary_10_17660_ActaHortic_2024_1412_60
crossref_primary_10_1016_j_mtcomm_2024_111402
crossref_primary_10_29133_yyutbd_1246901
crossref_primary_10_1016_j_knosys_2022_109220
crossref_primary_10_3390_electronics12030667
crossref_primary_10_1111_pce_14749
crossref_primary_10_1016_j_compag_2022_107391
crossref_primary_10_3390_machines10070533
crossref_primary_10_3390_app12094470
crossref_primary_10_3390_su15020901
crossref_primary_10_1038_s41598_024_78509_w
crossref_primary_10_1088_1361_6501_ad6b41
crossref_primary_10_3390_electronics13224362
crossref_primary_10_1109_ACCESS_2022_3200688
crossref_primary_10_1016_j_lwt_2024_116989
crossref_primary_10_1080_03772063_2023_2220667
crossref_primary_10_1007_s11042_023_17245_1
crossref_primary_10_1049_ipr2_13231
crossref_primary_10_3390_rs14236137
crossref_primary_10_3390_plants12040790
crossref_primary_10_1109_JSTARS_2023_3339297
crossref_primary_10_1038_s41598_025_92143_0
crossref_primary_10_3390_s23198102
crossref_primary_10_1016_j_measen_2022_100447
crossref_primary_10_3390_agronomy12112812
crossref_primary_10_1016_j_compag_2023_108375
crossref_primary_10_1080_17445302_2024_2365019
crossref_primary_10_1186_s12870_024_05346_4
crossref_primary_10_3390_ani12151983
crossref_primary_10_1007_s00371_023_03225_x
crossref_primary_10_35234_fumbd_1318060
crossref_primary_10_1007_s11042_024_19415_1
crossref_primary_10_1007_s12229_024_09299_z
crossref_primary_10_1016_j_compenvurbsys_2023_102025
crossref_primary_10_1109_ACCESS_2023_3277954
crossref_primary_10_3390_agronomy13112801
crossref_primary_10_3390_en17184731
crossref_primary_10_3390_app122211441
crossref_primary_10_1088_1742_6596_2435_1_012015
crossref_primary_10_3390_app131810394
crossref_primary_10_3390_agronomy13020577
crossref_primary_10_1016_j_compag_2023_108460
crossref_primary_10_3390_app14104322
crossref_primary_10_1016_j_compag_2023_108461
crossref_primary_10_3390_plants11070937
crossref_primary_10_3390_insects14080698
crossref_primary_10_3390_agriculture12091309
crossref_primary_10_3389_fpls_2022_1066835
crossref_primary_10_3390_axioms12010018
crossref_primary_10_1007_s11042_024_18392_9
crossref_primary_10_1016_j_optmat_2022_113401
crossref_primary_10_1155_2023_5147399
crossref_primary_10_3390_agronomy12102354
crossref_primary_10_3390_agronomy13010260
crossref_primary_10_1109_ACCESS_2022_3232751
crossref_primary_10_1016_j_ecoinf_2022_101725
crossref_primary_10_1109_ACCESS_2023_3317689
crossref_primary_10_1016_j_compag_2025_110111
crossref_primary_10_3389_fpls_2023_1135105
crossref_primary_10_3390_s22052049
crossref_primary_10_3390_s23156844
crossref_primary_10_1109_ACCESS_2023_3341928
crossref_primary_10_3390_drones9040229
crossref_primary_10_1002_jsfa_13379
crossref_primary_10_1038_s41598_023_33804_w
crossref_primary_10_3390_agriculture14091472
crossref_primary_10_3390_agronomy12092023
Cites_doi 10.1007/s41348-020-00423-w
10.3390/agronomy11112286
10.1111/efp.12519
10.3390/s21113830
10.3389/fpls.2020.00510
10.3390/s21062129
10.1109/ACCESS.2020.3005386
10.1142/S021946782140009X
10.1109/CVPR.2018.00745
10.21203/rs.3.rs-438951/v1
10.1007/s11042-020-09567-1
10.1016/j.neucom.2022.07.042
10.3390/machines9100233
10.1016/j.compag.2021.106252
10.1016/j.compag.2020.105508
10.1007/s42161-020-00683-3
10.3390/s17112564
10.1016/j.compag.2012.11.001
10.1016/j.compag.2017.07.019
10.1109/ICCMC51019.2021.9418263
10.1109/CVPR46437.2021.01214
10.1109/CONIT51480.2021.9498518
10.1016/j.compag.2021.106453
10.1016/j.ijleo.2021.166566
10.1007/s12652-020-02051-6
10.1038/s41598-018-28166-7
10.1007/s11119-019-09654-w
10.1016/j.compag.2021.105998
10.3390/agriengineering3030035
10.1016/j.compag.2020.105900
10.1007/s40747-020-00161-4
10.3389/fpls.2021.705021
10.1016/j.ecoinf.2020.101197
10.1016/j.compag.2021.106279
10.1016/j.ecoinf.2020.101182
10.3390/s21165386
10.3390/rs13224560
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7S9
L.6
DOA
DOI 10.3390/agronomy12020365
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Proquest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Agricultural Science Database
CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_5ffd4d19bb694c9fb72215ee743d0250
10_3390_agronomy12020365
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c412t-ba5945a215a2e1c8bcd9a3e63c5dc06f84e40767ad40ae1ab3191cb03a0f400e3
IEDL.DBID BENPR
ISSN 2073-4395
IngestDate Wed Aug 27 01:26:45 EDT 2025
Fri Jul 11 01:23:57 EDT 2025
Mon Jun 30 11:26:20 EDT 2025
Tue Jul 01 03:20:18 EDT 2025
Thu Apr 24 23:09:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-ba5945a215a2e1c8bcd9a3e63c5dc06f84e40767ad40ae1ab3191cb03a0f400e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5146-599X
OpenAccessLink https://www.proquest.com/docview/2632188376?pq-origsite=%requestingapplication%
PQID 2632188376
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_5ffd4d19bb694c9fb72215ee743d0250
proquest_miscellaneous_2661029016
proquest_journals_2632188376
crossref_primary_10_3390_agronomy12020365
crossref_citationtrail_10_3390_agronomy12020365
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Gui (ref_10) 2021; 8
Lin (ref_1) 2020; 21
ref_11
Shi (ref_14) 2017; 141
Li (ref_6) 2020; 8
ref_19
ref_18
Wu (ref_7) 2021; 12
Fazari (ref_13) 2021; 187
ref_17
Mishra (ref_35) 2021; 12
ref_39
ref_16
ref_38
Anagnostis (ref_30) 2021; 182
Joshi (ref_2) 2021; 61
Tang (ref_5) 2020; 11
Kianat (ref_23) 2021; 240
Wu (ref_37) 2019; 49
Mukhopadhyay (ref_26) 2021; 80
Phadikar (ref_15) 2013; 90
Chen (ref_27) 2020; 174
Liu (ref_36) 2018; 8
ref_25
Atila (ref_34) 2021; 61
ref_24
ref_22
Shrivastava (ref_21) 2020; 103
ref_20
ref_41
ref_40
Abbas (ref_31) 2021; 187
Li (ref_28) 2021; 180
ref_3
ref_29
ref_9
ref_8
Appeltans (ref_12) 2021; 190
Xiang (ref_32) 2021; 128
Liu (ref_4) 2020; 7
Tan (ref_33) 2021; 3
References_xml – volume: 128
  start-page: 557
  year: 2021
  ident: ref_32
  article-title: L-CSMS: Novel lightweight network for plant disease severity recognition
  publication-title: J. Plant Dis. Prot.
  doi: 10.1007/s41348-020-00423-w
– ident: ref_29
  doi: 10.3390/agronomy11112286
– volume: 49
  start-page: e12519
  year: 2019
  ident: ref_37
  article-title: Molecular identification of the powdery mildew fungus infecting rubber trees in China
  publication-title: Forest Pathol.
  doi: 10.1111/efp.12519
– ident: ref_19
  doi: 10.3390/s21113830
– ident: ref_24
– volume: 11
  start-page: 510
  year: 2020
  ident: ref_5
  article-title: Recognition and localization methods for vision-based fruit picking robots: A review
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00510
– ident: ref_3
  doi: 10.3390/s21062129
– volume: 8
  start-page: 117746
  year: 2020
  ident: ref_6
  article-title: Detection of fruit-bearing branches and localization of litchi clusters for vision-based harvesting robots
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3005386
– ident: ref_17
  doi: 10.1142/S021946782140009X
– ident: ref_40
  doi: 10.1109/CVPR.2018.00745
– ident: ref_16
  doi: 10.21203/rs.3.rs-438951/v1
– volume: 80
  start-page: 753
  year: 2021
  ident: ref_26
  article-title: Tea leaf disease detection using multi-objective image segmentation
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09567-1
– ident: ref_41
  doi: 10.1016/j.neucom.2022.07.042
– ident: ref_9
  doi: 10.3390/machines9100233
– volume: 187
  start-page: 106252
  year: 2021
  ident: ref_13
  article-title: Application of deep convolutional neural networks for the detection of anthracnose in olives using VIS/NIR hyperspectral images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106252
– volume: 174
  start-page: 105508
  year: 2020
  ident: ref_27
  article-title: Three-dimensional perception of orchard banana central stock enhanced by adaptive multi-vision technology
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105508
– volume: 103
  start-page: 17
  year: 2020
  ident: ref_21
  article-title: Rice plant disease classification using color features: A machine learning paradigm
  publication-title: J. Plant Pathol.
  doi: 10.1007/s42161-020-00683-3
– ident: ref_8
  doi: 10.3390/s17112564
– volume: 90
  start-page: 76
  year: 2013
  ident: ref_15
  article-title: Rice diseases classification using feature selection and rule generation techniques
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2012.11.001
– volume: 141
  start-page: 171
  year: 2017
  ident: ref_14
  article-title: Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.07.019
– ident: ref_18
  doi: 10.1109/ICCMC51019.2021.9418263
– volume: 8
  start-page: 380
  year: 2021
  ident: ref_10
  article-title: Grading method of soybean mosaic disease based on hyperspectral imaging technology
  publication-title: Inf. Process. Agric.
– ident: ref_39
  doi: 10.1109/CVPR46437.2021.01214
– ident: ref_22
  doi: 10.1109/CONIT51480.2021.9498518
– ident: ref_25
– volume: 190
  start-page: 106453
  year: 2021
  ident: ref_12
  article-title: Detection of leek white tip disease under field conditions using hyperspectral proximal sensing and supervised machine learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106453
– volume: 240
  start-page: 166566
  year: 2021
  ident: ref_23
  article-title: A joint framework of feature reduction and robust feature selection for cucumber leaf diseases recognition
  publication-title: Optik
  doi: 10.1016/j.ijleo.2021.166566
– volume: 12
  start-page: 691
  year: 2021
  ident: ref_35
  article-title: Modified ride-NN optimizer for the IoT based plant disease detection
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-02051-6
– volume: 8
  start-page: 10435
  year: 2018
  ident: ref_36
  article-title: Colletotrichum species causing anthracnose of rubber trees in China
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-28166-7
– volume: 21
  start-page: 1
  year: 2020
  ident: ref_1
  article-title: Color-, depth-, and shape-based 3D fruit detection
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-019-09654-w
– volume: 182
  start-page: 105998
  year: 2021
  ident: ref_30
  article-title: A deep learning approach for anthracnose infected trees classification in walnut orchards
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.105998
– volume: 3
  start-page: 542
  year: 2021
  ident: ref_33
  article-title: Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine Learning and Deep Learning Methods
  publication-title: AgriEngineering
  doi: 10.3390/agriengineering3030035
– volume: 180
  start-page: 105900
  year: 2021
  ident: ref_28
  article-title: A novel green apple segmentation algorithm based on ensemble U-Net under complex orchard environment
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105900
– volume: 7
  start-page: 1895
  year: 2020
  ident: ref_4
  article-title: Overview and methods of correlation filter algorithms in object tracking
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-020-00161-4
– volume: 12
  start-page: 705021
  year: 2021
  ident: ref_7
  article-title: Multi-Target Recognition of Bananas and Automatic Positioning for the Inflorescence Axis Cutting Point
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.705021
– ident: ref_38
– volume: 61
  start-page: 101197
  year: 2021
  ident: ref_2
  article-title: VirLeafNet: Automatic analysis and viral disease diagnosis using deep-learning in Vigna mungoplant
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2020.101197
– volume: 187
  start-page: 106279
  year: 2021
  ident: ref_31
  article-title: Tomato plant disease detection using transfer learning with C-GAN synthetic images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106279
– volume: 61
  start-page: 101182
  year: 2021
  ident: ref_34
  article-title: Plant leaf disease classification using EfficientNet deep learning model
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2020.101182
– ident: ref_20
  doi: 10.3390/s21165386
– ident: ref_11
  doi: 10.3390/rs13224560
SSID ssj0000913807
Score 2.5874887
Snippet To accurately recognize plant diseases under complex natural conditions, an improved plant disease-recognition model based on the original YOLOv5 network model...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 365
SubjectTerms Accuracy
Agricultural production
agronomy
Airborne microorganisms
Algorithms
Anthracnose
Artificial intelligence
Classification
Deep learning
Degeneration
Discriminant analysis
EIOU
Hevea brasiliensis
Intersections
InvolutionBottleneck
Light
Machine learning
Methods
Modules
Neural networks
Pathogens
Plant diseases
plant diseases recognition
Powdery mildew
Rubber
Rubber trees
SE module
Target recognition
Vision systems
YOLOv5
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7QTnBAPMVgoCJx4VCtaZOuOW7ANCFgEmLSOFVJ6uwydWhs_H7stJsGSHDh1kdapXacz66Tz4xdAY4CLVwWWmlciHgtwwxAhaAyYRw3vOMZ-B6f0sFI3I_leKPUF60Jq-iBK8G1pXOFKLgyJlXCKmc6MaIUACJfQfhNsy9i3kYw5edgxYlJvcpLJhjXt_Vk7ncJ8Njn3uQXHPJ0_T9mYw8x_T22W_uGQbfq0z7bgvKA7XQn85ofAw5ZRkWGFsFtlVYJnlfLf2ZlQFXNpkEPLxcBnlZ_C_D4dfgw_JBHbNS_e7kZhHXxg9AKHi9Co6USUuO36hi4zYwtlE4gTawsbJS6TADGYmlHFyLSwLVBW-LWRImOHNolJMesUc5KOGGBjpTTGIrqRGhBrzEanaJEuSg2MboQTdZeiSK3NTM4FaiY5hghkPDy78Jrsuv1E28VK8YvbXsk3XU74rP2F1DLea3l_C8tN1lrpZu8NrL3nKjmeYYRdtpkl-vbaB6U89AlzJbUBv1DyhWnp__RjzO2HdP-B79su8Uai_kSztErWZgLPwA_ARvr35w
  priority: 102
  providerName: Directory of Open Access Journals
Title Plant Disease Recognition Model Based on Improved YOLOv5
URI https://www.proquest.com/docview/2632188376
https://www.proquest.com/docview/2661029016
https://doaj.org/article/5ffd4d19bb694c9fb72215ee743d0250
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5BuSwHxGMRXR4KEhcOUePETu0TojyEEC8hkOAU2Y7dC0rYUvj9zDhuVwsSt8RxLHnsedvfABw43AWae5laYXyK-lqk0jmVOiW58cywYUDgu74pLx755ZN4igG3t3isciYTg6CuW0sx8gHhijOJ7lR59Po3papRlF2NJTQWYQlFsJQ9WBqd3dzdz6MshHops2GXnyzQvx_o8STcFmB5yMGJ__RRgO3_JpWDqjlfhZVoIybH3aKuwYJr1mH5eDyJOBluAyQVG5omp116JbmfHQNqm4Sqm70kI2yuE3ztogb4_Hx7dfshfsPj-dnDyUUaiyCklrN8mhotFBcaNbPOHbPS2FrpwpWFFbXNSi-5Q5-sHOqaZ9oxbZCnmDVZoTOP_OmKTeg1beO2INGZ8hpdUl1wzWkYo9E4KpTPcpOjKdGHwYwUlY0I4VSo4qVCT4GIV30lXh8O53-8dugYP_QdEXXn_QjXOjS0k3EV2aQS3te8ZsqYUnGrvBnmOHPn0M6pyVrrw85sbarIbG_Vv63Rh_35Z2QTyn3oxrXv1AftRMoZl39-HmIbfuV0wyEczN6B3nTy7nbR7piavbi59oLf_glrGtlf
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5ioUCQ4MAhWj-z8QGhLm21pdstqlqpnILt2HupkrLdgvhT_EZm8lgESL31ljiOJY8_e77x2DMAbwKiwKqYp167mKK-1mkegkmDyZWL3PFxE4HvcJ5NT9WnM322Ab_6uzB0rLJfE5uFuqw97ZGPKK44z9Gcyj5cfEspaxR5V_sUGi0sDsLPH2iyXb7f38HxfSvE3u7Jx2naZRVIveJilTqrjdIWVZ0Vgfvc-dJYGTLpdelZFnMV0MjJxrZUzAZuHYKUe8ekZREBHyS2ews2lcyYGMDmZHf--Xi9q0NRNnM2bv2hUho2sotlczuBi8bnp__Sf02agP-0QKPa9u7DvY6TJtstiB7ARqgewt3txbKLyxEeQU7JjVbJTuvOSY77Y0d1lVA2tfNkgsVlgq_tLgU-fzmaHX3Xj-H0RsTzBAZVXYWnkFhmokUT2EplFTXjLJIxaSITTiB1GcKoF0Xhu4jklBjjvEDLhIRX_Cu8Ibxb_3HRRuO4pu6EpLuuR3G0m4J6uSi6aVnoGEtVcuNcZpQ30Y0F9jwE5FUlscMhbPVjU3ST-7L4A8UhvF5_xmlJvhZbhfqK6iAvJR919uz6Jl7B7enJ4ayY7c8PnsMdQbcrmkPhWzBYLa_CC-Q8K_eyA1oCX28a278ByeQV2A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRarKoWpLK7albSrBoYdoY8dO4gOq2C4rKLAgVCR6CrZj7wUldFla8df4dczksRVU4sYtD8dSxp89M57xfAAbDlGghc9CK40PUV_LMHNOhU5lwnhmWFpX4DucJLun4seZPFuC2-4sDKVVdmtivVAXlaU98gHVFWcZulPJwLdpEcej8bfL3yExSFGktaPTaCCy727-ovt2tbU3wrHe5Hy88_P7btgyDIRWMD4PjZZKSI1qT3PHbGZsoXTsktjKwkaJz4RDhydJdSEi7Zg2CFhmTRTryCP4XYz9PoPllLyiHiwPdybHJ4sdHqq4mUVpExuNYxUN9HRWn1RgvI7_yXu6sKYM-E8j1Gpu_ApetvZpsN0A6jUsufINrGxPZ22NDrcKGREdzYNRE9oJTroUpKoMiFntIhji4yLA22bHAq9_HR0c_ZFv4fRJxPMOemVVujUIdKS8RndYx0IL6sZoNMxi5SNuOJoxfRh0oshtW52cSDIucvRSSHj5Q-H14evii8umMscjbYck3UU7qqldP6hm07ydorn0vhAFU8YkSljlTcrxz51DG6sgS7EP693Y5O1Ev8r_wbIPXxavcYpS3EWXrrqmNmijUrw6ef94F5_hOWI6P9ib7H-AF5wOWtT54evQm8-u3Uc0f-bmU4uzAM6fGtp3c48aDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+Disease+Recognition+Model+Based+on+Improved+YOLOv5&rft.jtitle=Agronomy+%28Basel%29&rft.au=Chen%2C+Zhaoyi&rft.au=Wu%2C+Ruhui&rft.au=Lin%2C+Yiyan&rft.au=Li%2C+Chuyu&rft.date=2022-02-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=12&rft.issue=2&rft_id=info:doi/10.3390%2Fagronomy12020365&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon