Thermal loading on crystals in an x-ray free-electron laser oscillator
X-ray free electron laser oscillators (XFELOs) are future light sources that produce fully coherent hard x-ray pulses. Based on the low-gain principle, the XFELO traps x-ray pulses in an optical cavity composed of multiple Bragg-reflecting mirrors that have high reflectivity in a bandwidth of about...
Saved in:
Published in | Physical review. Accelerators and beams Vol. 23; no. 9; p. 090704 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
College Park
American Physical Society
01.09.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2469-9888 2469-9888 |
DOI | 10.1103/PhysRevAccelBeams.23.090704 |
Cover
Abstract | X-ray free electron laser oscillators (XFELOs) are future light sources that produce fully coherent hard x-ray pulses. Based on the low-gain principle, the XFELO traps x-ray pulses in an optical cavity composed of multiple Bragg-reflecting mirrors that have high reflectivity in a bandwidth of about ten meV. The crystal mirrors exposed to intense x-ray beams in the optical cavity are subject to thermal deformations that would shift and distort the Bragg reflectivity curve. Therefore, the stability of the XFELO operation depends on the ability of the mirrors to maintain the Bragg reflection under such thermal load. A new approach was used to analyze the thermal load of the mirrors. The approach utilizes a dedicated Bragg reflection physical process in geant4 to obtain precise absorption information of the XFELO pulses in the crystal. Following transient thermal behavior, including single pulse and multiple pulse inputs, was analyzed by finite element analysis software based on the energy absorption information extracted from the geant4 simulation. It is shown that, for a typical XFELO pulse depositing about ten microjoules energy the over a spot of tens of micrometers in radius, the thermal relaxation time across the thickness is on tens of nanoseconds scale. In this situation, a simplified heat-load model is then developed to integrate the heat load in the XFELO. With the simplified model, the potential impact of the thermal load on the XFELO operation is estimated. When a large amount of heat remains in the crystal, the pulse energy drops significantly and has large oscillations due to negative feedback of the temperature change on the pulse energy. |
---|---|
AbstractList | X-ray free electron laser oscillators (XFELOs) are future light sources that produce fully coherent hard x-ray pulses. Based on the low-gain principle, the XFELO traps x-ray pulses in an optical cavity composed of multiple Bragg-reflecting mirrors that have high reflectivity in a bandwidth of about ten meV. The crystal mirrors exposed to intense x-ray beams in the optical cavity are subject to thermal deformations that would shift and distort the Bragg reflectivity curve. Therefore, the stability of the XFELO operation depends on the ability of the mirrors to maintain the Bragg reflection under such thermal load. A new approach was used to analyze the thermal load of the mirrors. The approach utilizes a dedicated Bragg reflection physical process in geant4 to obtain precise absorption information of the XFELO pulses in the crystal. Following transient thermal behavior, including single pulse and multiple pulse inputs, was analyzed by finite element analysis software based on the energy absorption information extracted from the geant4 simulation. It is shown that, for a typical XFELO pulse depositing about ten microjoules energy the over a spot of tens of micrometers in radius, the thermal relaxation time across the thickness is on tens of nanoseconds scale. In this situation, a simplified heat-load model is then developed to integrate the heat load in the XFELO. With the simplified model, the potential impact of the thermal load on the XFELO operation is estimated. When a large amount of heat remains in the crystal, the pulse energy drops significantly and has large oscillations due to negative feedback of the temperature change on the pulse energy. |
ArticleNumber | 090704 |
Author | Huang, Nanshun Deng, Haixiao |
Author_xml | – sequence: 1 givenname: Nanshun orcidid: 0000-0001-9745-2721 surname: Huang fullname: Huang, Nanshun – sequence: 2 givenname: Haixiao surname: Deng fullname: Deng, Haixiao |
BookMark | eNqNkUFr3DAQhUVJock2_8GQszcjWbIketqGJg0EUkp6FmN5nGjRWqmklO6_j9ttoLSXnGYY3vvmwTthR3OaibEzDmvOoTv_8rAvX-nHxnuKHwl3ZS26NVjQIN-wYyF721pjzNFf-zt2WsoWAHgPVoM5Zpd3D5R3GJuYcAzzfZPmxud9qRhLE-YG5-Znm3HfTJmopUi-5kUSsVBuUvEhRqwpv2dvp8VBp3_min27_HR38bm9ub26vtjctF5yUdtBeC7QwrC8H_lgNPeavBqkHYG01JOSACOh9KO1XNieqBsUGq2NGkBN3YpdH7hjwq17zGGHee8SBvf7kPK9w1yDj-Q89oM3cuJymKTRiEYKyQ3ZDnwPalxYZwfWY07fn6hUt01PeV7iO6EUV0Z1wiyqzUHlcyol0-R8qFhDmmvGEB0H96sN918bTnTu0MbC-PAP4yX5a9zPoJWYUg |
CitedBy_id | crossref_primary_10_1103_PhysRevAccelBeams_28_010701 crossref_primary_10_1016_j_xinn_2021_100097 crossref_primary_10_3390_photonics10091058 crossref_primary_10_1038_s42005_024_01581_1 crossref_primary_10_1107_S1600577522009778 |
Cites_doi | 10.1088/1367-2630/17/5/053027 10.1063/1.5084579 10.3390/app7070720 10.1038/nphoton.2011.197 10.1016/S0168-9002(99)00114-X 10.1007/s41365-019-0559-5 10.1063/1.3463179 10.1107/S1600576714013028 10.1016/j.nima.2010.02.112 10.1002/cphc.200500591 10.1103/PhysRevB.83.104102 10.18429/JACoW-FEL2017-MOP055 10.1038/nphoton.2007.76 10.1063/1.555593 10.1107/S1600577517015466 10.1038/nphoton.2012.141 10.1107/S1600576718001930 10.1103/RevModPhys.73.17 10.1088/1674-1137/40/4/048101 10.1103/PhysRevB.97.144305 10.1103/PhysRevLett.70.3764 10.1016/j.nima.2016.06.125 10.1063/1.5037180 10.1107/S1600577518007695 10.1088/0953-8984/16/49/R04 10.1103/PhysRevSTAB.15.100702 10.1103/PhysRevLett.100.244802 10.1103/PhysRevAccelBeams.22.060704 10.1063/1.2363253 10.1103/PhysRevLett.108.034802 10.1038/s41566-017-0029-8 10.1038/nphoton.2010.176 10.1007/978-3-662-46968-2 10.1143/JJAP.33.5612 10.1007/BF02666175 10.1103/PhysRevSTAB.14.010701 10.1007/11767862_13 10.1103/PhysRevAccelBeams.22.090701 10.1093/acprof:oso/9780198528920.001.0001 10.1006/adnd.1993.1013 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1103/PhysRevAccelBeams.23.090704 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2469-9888 |
ExternalDocumentID | oai_doaj_org_article_ca6bc84f14bf487aa842418e930c605d 10_1103_PhysRevAccelBeams_23_090704 |
GroupedDBID | 3MX 5VS AAYXX ABSSX ADBBV AFGMR AFKRA AGDNE ALMA_UNASSIGNED_HOLDINGS ARAPS AUAIK BCNDV BENPR BGLVJ CCPQU CITATION EBS EJD GROUPED_DOAJ HCIFZ KQ8 M~E PHGZM PHGZT PIMPY ROL S7W 8FE 8FG ABUWG AZQEC DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c412t-b2c12a90b609d1b871c7ec5b49d0e747f5400dea4cd991296ee3b5a87785b05f3 |
IEDL.DBID | DOA |
ISSN | 2469-9888 |
IngestDate | Wed Aug 27 01:27:43 EDT 2025 Sat Jul 26 00:03:01 EDT 2025 Tue Jul 01 01:34:50 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-b2c12a90b609d1b871c7ec5b49d0e747f5400dea4cd991296ee3b5a87785b05f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9745-2721 |
OpenAccessLink | https://doaj.org/article/ca6bc84f14bf487aa842418e930c605d |
PQID | 2551585328 |
PQPubID | 5161129 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ca6bc84f14bf487aa842418e930c605d proquest_journals_2551585328 crossref_citationtrail_10_1103_PhysRevAccelBeams_23_090704 crossref_primary_10_1103_PhysRevAccelBeams_23_090704 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | College Park |
PublicationPlace_xml | – name: College Park |
PublicationTitle | Physical review. Accelerators and beams |
PublicationYear | 2020 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevAccelBeams.23.090704Cc21R1 PhysRevAccelBeams.23.090704Cc43R1 PhysRevAccelBeams.23.090704Cc22R1 PhysRevAccelBeams.23.090704Cc41R1 PhysRevAccelBeams.23.090704Cc20R1 PhysRevAccelBeams.23.090704Cc42R1 B. Perrin (PhysRevAccelBeams.23.090704Cc14R1) 2006 A. Authier (PhysRevAccelBeams.23.090704Cc9R1) 2010 PhysRevAccelBeams.23.090704Cc13R1 PhysRevAccelBeams.23.090704Cc12R1 PhysRevAccelBeams.23.090704Cc37R1 PhysRevAccelBeams.23.090704Cc15R1 PhysRevAccelBeams.23.090704Cc34R1 PhysRevAccelBeams.23.090704Cc35R1 PhysRevAccelBeams.23.090704Cc17R1 PhysRevAccelBeams.23.090704Cc16R1 PhysRevAccelBeams.23.090704Cc19R1 PhysRevAccelBeams.23.090704Cc38R1 PhysRevAccelBeams.23.090704Cc18R1 PhysRevAccelBeams.23.090704Cc39R1 B. F. Shorr (PhysRevAccelBeams.23.090704Cc40R1) 2015 PhysRevAccelBeams.23.090704Cc32R1 PhysRevAccelBeams.23.090704Cc11R1 PhysRevAccelBeams.23.090704Cc30R1 PhysRevAccelBeams.23.090704Cc10R1 PhysRevAccelBeams.23.090704Cc31R1 Z. Zhao (PhysRevAccelBeams.23.090704Cc33R1) 2018 H.-H. Lee (PhysRevAccelBeams.23.090704Cc25R1) 2017 PhysRevAccelBeams.23.090704Cc7R1 PhysRevAccelBeams.23.090704Cc8R1 PhysRevAccelBeams.23.090704Cc5R1 PhysRevAccelBeams.23.090704Cc6R1 PhysRevAccelBeams.23.090704Cc3R1 PhysRevAccelBeams.23.090704Cc4R1 PhysRevAccelBeams.23.090704Cc1R1 PhysRevAccelBeams.23.090704Cc2R1 PhysRevAccelBeams.23.090704Cc26R1 PhysRevAccelBeams.23.090704Cc24R1 PhysRevAccelBeams.23.090704Cc29R1 PhysRevAccelBeams.23.090704Cc27R1 PhysRevAccelBeams.23.090704Cc28R1 |
References_xml | – ident: PhysRevAccelBeams.23.090704Cc17R1 doi: 10.1088/1367-2630/17/5/053027 – ident: PhysRevAccelBeams.23.090704Cc19R1 doi: 10.1063/1.5084579 – ident: PhysRevAccelBeams.23.090704Cc5R1 doi: 10.3390/app7070720 – ident: PhysRevAccelBeams.23.090704Cc10R1 doi: 10.1038/nphoton.2011.197 – ident: PhysRevAccelBeams.23.090704Cc41R1 doi: 10.1016/S0168-9002(99)00114-X – ident: PhysRevAccelBeams.23.090704Cc43R1 doi: 10.1007/s41365-019-0559-5 – ident: PhysRevAccelBeams.23.090704Cc15R1 doi: 10.1063/1.3463179 – ident: PhysRevAccelBeams.23.090704Cc16R1 doi: 10.1107/S1600576714013028 – ident: PhysRevAccelBeams.23.090704Cc31R1 doi: 10.1016/j.nima.2010.02.112 – ident: PhysRevAccelBeams.23.090704Cc12R1 doi: 10.1002/cphc.200500591 – ident: PhysRevAccelBeams.23.090704Cc27R1 doi: 10.1103/PhysRevB.83.104102 – volume-title: Proceedings, 38th International Free Electron Laser Conference, FEL2017 year: 2018 ident: PhysRevAccelBeams.23.090704Cc33R1 doi: 10.18429/JACoW-FEL2017-MOP055 – ident: PhysRevAccelBeams.23.090704Cc1R1 doi: 10.1038/nphoton.2007.76 – ident: PhysRevAccelBeams.23.090704Cc26R1 doi: 10.1063/1.555593 – ident: PhysRevAccelBeams.23.090704Cc21R1 doi: 10.1107/S1600577517015466 – ident: PhysRevAccelBeams.23.090704Cc3R1 doi: 10.1038/nphoton.2012.141 – ident: PhysRevAccelBeams.23.090704Cc28R1 doi: 10.1107/S1600576718001930 – ident: PhysRevAccelBeams.23.090704Cc11R1 doi: 10.1103/RevModPhys.73.17 – ident: PhysRevAccelBeams.23.090704Cc20R1 doi: 10.1088/1674-1137/40/4/048101 – volume-title: Finite Element Simulations with ANSYS Workbench 17 year: 2017 ident: PhysRevAccelBeams.23.090704Cc25R1 – ident: PhysRevAccelBeams.23.090704Cc29R1 doi: 10.1103/PhysRevB.97.144305 – ident: PhysRevAccelBeams.23.090704Cc38R1 doi: 10.1103/PhysRevLett.70.3764 – ident: PhysRevAccelBeams.23.090704Cc30R1 doi: 10.1016/j.nima.2016.06.125 – ident: PhysRevAccelBeams.23.090704Cc34R1 doi: 10.1063/1.5037180 – ident: PhysRevAccelBeams.23.090704Cc18R1 doi: 10.1107/S1600577518007695 – ident: PhysRevAccelBeams.23.090704Cc37R1 doi: 10.1088/0953-8984/16/49/R04 – ident: PhysRevAccelBeams.23.090704Cc32R1 doi: 10.1103/PhysRevSTAB.15.100702 – ident: PhysRevAccelBeams.23.090704Cc6R1 doi: 10.1103/PhysRevLett.100.244802 – ident: PhysRevAccelBeams.23.090704Cc22R1 doi: 10.1103/PhysRevAccelBeams.22.060704 – ident: PhysRevAccelBeams.23.090704Cc42R1 doi: 10.1063/1.2363253 – ident: PhysRevAccelBeams.23.090704Cc8R1 doi: 10.1103/PhysRevLett.108.034802 – ident: PhysRevAccelBeams.23.090704Cc4R1 doi: 10.1038/s41566-017-0029-8 – ident: PhysRevAccelBeams.23.090704Cc2R1 doi: 10.1038/nphoton.2010.176 – volume-title: Foundations of Engineering Mechanics Thermal Integrity in Mechanics and Engineering year: 2015 ident: PhysRevAccelBeams.23.090704Cc40R1 doi: 10.1007/978-3-662-46968-2 – ident: PhysRevAccelBeams.23.090704Cc13R1 doi: 10.1143/JJAP.33.5612 – ident: PhysRevAccelBeams.23.090704Cc39R1 doi: 10.1007/BF02666175 – ident: PhysRevAccelBeams.23.090704Cc7R1 doi: 10.1103/PhysRevSTAB.14.010701 – volume-title: Top. Appl. Phys. year: 2006 ident: PhysRevAccelBeams.23.090704Cc14R1 doi: 10.1007/11767862_13 – ident: PhysRevAccelBeams.23.090704Cc35R1 doi: 10.1103/PhysRevAccelBeams.22.090701 – volume-title: Dynamical Theory of X-Ray Diffraction year: 2010 ident: PhysRevAccelBeams.23.090704Cc9R1 doi: 10.1093/acprof:oso/9780198528920.001.0001 – ident: PhysRevAccelBeams.23.090704Cc24R1 doi: 10.1006/adnd.1993.1013 |
SSID | ssj0001609708 |
Score | 2.1542013 |
Snippet | X-ray free electron laser oscillators (XFELOs) are future light sources that produce fully coherent hard x-ray pulses. Based on the low-gain principle, the... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 090704 |
SubjectTerms | Crystals Energy absorption Finite element method Free electron lasers Light sources Micrometers Negative feedback Oscillators Reflectance Reflection Relaxation time Thermal analysis Thermal relaxation Thermodynamic properties |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUKVREX1E-xhVaW6NVgx84XFwRVt6gHDlWRuEX2ZFxVCglkt1X594y9znJAQlwTWUlmxjPvOU8zjH2BwufWWhSuJIpCWRKELZQXri0oYRosvI0C2Yvi_NL8uMqv0oHbIskqp5wYE3U7QDgjPyLoqwja6qw6ubkVYWpU-LuaRmhssJeKKk2I82r-_eGMpZB1KastdrDSu-ujIKv8if9OAbA7Q3u9OMz0oSSCmAa1TYUp9u9_lJ5jzZm_ZjsJLPLTlXffsBfYv2WvomgTFu_YnHxMebXj3RCV8HzoOYx3hPe6Bf_Tc9vz_2K0d9yPiGIaeMMJL-PIQxNLCgGi3O_Z5fzbr6_nIs1FEGBUthQuA5XZWjr6vFY5ojxQIuTO1K1EogeeUJhs0RpoCf1ldYGoXW4r8kbuZO71B7bZDz3uMo5Km9yBdlB5kxPWaL0xZelNiUp6Wc3Y8WSUBlLT8DC7omsieZC6eWTRJtPNyqIzZtaLb1a9M5637CxYf70kNMCOF4bxd5P2UwO2oHc2XhnniXNZWxnCIhXWWgIxtHbG9iffNWlX0iPWMfTx6dt7bDsLvDpqyfbZ5nL8i58IfCzd5xhh94Vl2vQ priority: 102 providerName: ProQuest |
Title | Thermal loading on crystals in an x-ray free-electron laser oscillator |
URI | https://www.proquest.com/docview/2551585328 https://doaj.org/article/ca6bc84f14bf487aa842418e930c605d |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB58oHgRn1itZUGv0U128_LWirV4KCIK3sLuZhaEmEpaRf-9k01ahB704DUwbDIzO_N94WMG4NxENlRKoadjoihUJY2nIt96Oo-oYEqMrHIC2XE0epJ3z-Hzj1VftSasGQ_cOO7SqEibRFpfakvgWqlEUtNJMBXcEBTP6-rLU_6DTLm_KxFPY55swlmjdBeXtaDyAT_6xmAxQPU6vQjEBRnG7Yq2eUtyk_uXCrPrNsMd2G5hIus3r7cLK1juwYaTa5rpPgwpulRRC1ZMnAaeTUpmqi9CesWUvZRMlezTq9QXsxWiN191wwgpY8Xq8ZUUfCLbB_A0vHm8HnntRgTPSD-YeTowfqBSrunzcl8T2TExmlDLNOdIxMAS_uI5Kmlywn1BGiEKHaqE4hBqHlpxCGvlpMQjYOgLGWojyLlWhoQycitlHFsZo88tTzpwNXdKZtpx4fXWiiJztIGLbMmjWSCyxqMdkAvjt2Zqxt_MBrX3Fyb16Gv3gBIiaxMi-y0hOtCdxy5r7yMdQcCQiJEIkuP_OOMEtoKadzutWRfWZtU7nhI4mekerCbD2x6sD27G9w89l5Xf3mbmCg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrXhcEE-xUMAScEzr2M4LCaEudLWlZYWqVuottZ0xqpQmJbs89k_xGxnnsRwqIS69JrKTjL-Mv88ezwC8trGLtNYYmIQkCnlJG-g4dIEpYnKYCmOn2wDZeTw7UZ9Oo9MN-D2chfFhlYNPbB11UVu_Rr5D1DckaitF-v7yW-CrRvnd1aGERgeLA1z9JMm2eLf_kcb3jRDTveMPs6CvKhBYFYplYIQNhc64iXlWhIYEg03QRkZlBUci1444DC9QK1sQdxJZjChNpFP6lsjwyEnq9wZsKn-idQSbk735l6O_qzrUacLTW_Cqi7CXOz6Q8wh_7FqL5QT1xWJbyG1OkrQvDTdMhW3FgCsTQjvLTe_B3Z6est0OT_dhA6sHcLMNE7WLhzAlVJEnL1lZt7H3rK6YbVbEMMsFO6-YrtivoNEr5hrEYCixw4ihY8N82kwCHYn8R3ByLTZ7DKOqrvAJMAylioyVxqZORcRuCqdUkjiVYMgdT8fwdjBKbvs05b5aRpm3coXL_IpFcyHzzqJjUOvGl122jv9rNvHWXzfxKbfbC3XzNe__4NzqmN5ZuVAZRypP61QR-0kxk9ySJizGsDWMXd77AXrEGrVP_337JdyeHX8-zA_35wfP4I7wqr6NZNuC0bL5js-J-izNix5vDM6uG-J_AGqHGRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+loading+on+crystals+in+an+x-ray+free-electron+laser+oscillator&rft.jtitle=Physical+review.+Accelerators+and+beams&rft.au=Nanshun+Huang&rft.au=Haixiao+Deng&rft.date=2020-09-01&rft.pub=American+Physical+Society&rft.eissn=2469-9888&rft.volume=23&rft.issue=9&rft.spage=090704&rft_id=info:doi/10.1103%2FPhysRevAccelBeams.23.090704&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ca6bc84f14bf487aa842418e930c605d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-9888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-9888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-9888&client=summon |