TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection
Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the corona...
Saved in:
Published in | Journal of virology Vol. 93; no. 6 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
15.03.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-538X 1098-5514 1098-5514 |
DOI | 10.1128/JVI.01815-18 |
Cover
Loading…
Abstract | Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the coronavirus spike protein, making it a potential therapeutic target for coronavirus infections. Here, we examined the role of TMPRSS2 using animal models of SARS-CoV and MERS-CoV infection. The results suggest that lack of TMPRSS2 in the airways reduces the severity of lung pathology after infection by SARS-CoV and MERS-CoV. Taken together, the results will facilitate development of novel targets for coronavirus therapy.
Transmembrane serine protease TMPRSS2 activates the spike protein of highly pathogenic human coronaviruses such as severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV).
In vitro
, activation induces virus-cell membrane fusion at the cell surface. However, the roles of TMPRSS2 during coronavirus infection
in vivo
are unclear. Here, we used animal models of SARS-CoV and MERS-CoV infection to investigate the role of TMPRSS2. Th1-prone C57BL/6 mice and TMPRSS2-knockout (KO) mice were used for SARS-CoV infection, and transgenic mice expressing the human MERS-CoV receptor DPP4 (hDPP4-Tg mice) and TMPRSS2-KO hDPP4-Tg mice were used for MERS-CoV infection. After experimental infection, TMPRSS2-deficient mouse strains showed reduced body weight loss and viral kinetics in the lungs. Lack of TMPRSS2 affected the primary sites of infection and virus spread within the airway, accompanied by less severe immunopathology. However, TMPRSS2-KO mice showed weakened inflammatory chemokine and/or cytokine responses to intranasal stimulation with poly(I·C), a Toll-like receptor 3 agonist. In conclusion, TMPRSS2 plays a crucial role in viral spread within the airway of murine models infected by SARS-CoV and MERS-CoV and in the resulting immunopathology.
IMPORTANCE
Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the coronavirus spike protein, making it a potential therapeutic target for coronavirus infections. Here, we examined the role of TMPRSS2 using animal models of SARS-CoV and MERS-CoV infection. The results suggest that lack of TMPRSS2 in the airways reduces the severity of lung pathology after infection by SARS-CoV and MERS-CoV. Taken together, the results will facilitate development of novel targets for coronavirus therapy. |
---|---|
AbstractList | Transmembrane serine protease TMPRSS2 activates the spike protein of highly pathogenic human coronaviruses such as severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV).
, activation induces virus-cell membrane fusion at the cell surface. However, the roles of TMPRSS2 during coronavirus infection
are unclear. Here, we used animal models of SARS-CoV and MERS-CoV infection to investigate the role of TMPRSS2. Th1-prone C57BL/6 mice and TMPRSS2-knockout (KO) mice were used for SARS-CoV infection, and transgenic mice expressing the human MERS-CoV receptor DPP4 (hDPP4-Tg mice) and TMPRSS2-KO hDPP4-Tg mice were used for MERS-CoV infection. After experimental infection, TMPRSS2-deficient mouse strains showed reduced body weight loss and viral kinetics in the lungs. Lack of TMPRSS2 affected the primary sites of infection and virus spread within the airway, accompanied by less severe immunopathology. However, TMPRSS2-KO mice showed weakened inflammatory chemokine and/or cytokine responses to intranasal stimulation with poly(I·C), a Toll-like receptor 3 agonist. In conclusion, TMPRSS2 plays a crucial role in viral spread within the airway of murine models infected by SARS-CoV and MERS-CoV and in the resulting immunopathology.
Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the coronavirus spike protein, making it a potential therapeutic target for coronavirus infections. Here, we examined the role of TMPRSS2 using animal models of SARS-CoV and MERS-CoV infection. The results suggest that lack of TMPRSS2 in the airways reduces the severity of lung pathology after infection by SARS-CoV and MERS-CoV. Taken together, the results will facilitate development of novel targets for coronavirus therapy. Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the coronavirus spike protein, making it a potential therapeutic target for coronavirus infections. Here, we examined the role of TMPRSS2 using animal models of SARS-CoV and MERS-CoV infection. The results suggest that lack of TMPRSS2 in the airways reduces the severity of lung pathology after infection by SARS-CoV and MERS-CoV. Taken together, the results will facilitate development of novel targets for coronavirus therapy. Transmembrane serine protease TMPRSS2 activates the spike protein of highly pathogenic human coronaviruses such as severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV). In vitro , activation induces virus-cell membrane fusion at the cell surface. However, the roles of TMPRSS2 during coronavirus infection in vivo are unclear. Here, we used animal models of SARS-CoV and MERS-CoV infection to investigate the role of TMPRSS2. Th1-prone C57BL/6 mice and TMPRSS2-knockout (KO) mice were used for SARS-CoV infection, and transgenic mice expressing the human MERS-CoV receptor DPP4 (hDPP4-Tg mice) and TMPRSS2-KO hDPP4-Tg mice were used for MERS-CoV infection. After experimental infection, TMPRSS2-deficient mouse strains showed reduced body weight loss and viral kinetics in the lungs. Lack of TMPRSS2 affected the primary sites of infection and virus spread within the airway, accompanied by less severe immunopathology. However, TMPRSS2-KO mice showed weakened inflammatory chemokine and/or cytokine responses to intranasal stimulation with poly(I·C), a Toll-like receptor 3 agonist. In conclusion, TMPRSS2 plays a crucial role in viral spread within the airway of murine models infected by SARS-CoV and MERS-CoV and in the resulting immunopathology. IMPORTANCE Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the coronavirus spike protein, making it a potential therapeutic target for coronavirus infections. Here, we examined the role of TMPRSS2 using animal models of SARS-CoV and MERS-CoV infection. The results suggest that lack of TMPRSS2 in the airways reduces the severity of lung pathology after infection by SARS-CoV and MERS-CoV. Taken together, the results will facilitate development of novel targets for coronavirus therapy. Transmembrane serine protease TMPRSS2 activates the spike protein of highly pathogenic human coronaviruses such as severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV). In vitro, activation induces virus-cell membrane fusion at the cell surface. However, the roles of TMPRSS2 during coronavirus infection in vivo are unclear. Here, we used animal models of SARS-CoV and MERS-CoV infection to investigate the role of TMPRSS2. Th1-prone C57BL/6 mice and TMPRSS2-knockout (KO) mice were used for SARS-CoV infection, and transgenic mice expressing the human MERS-CoV receptor DPP4 (hDPP4-Tg mice) and TMPRSS2-KO hDPP4-Tg mice were used for MERS-CoV infection. After experimental infection, TMPRSS2-deficient mouse strains showed reduced body weight loss and viral kinetics in the lungs. Lack of TMPRSS2 affected the primary sites of infection and virus spread within the airway, accompanied by less severe immunopathology. However, TMPRSS2-KO mice showed weakened inflammatory chemokine and/or cytokine responses to intranasal stimulation with poly(I·C), a Toll-like receptor 3 agonist. In conclusion, TMPRSS2 plays a crucial role in viral spread within the airway of murine models infected by SARS-CoV and MERS-CoV and in the resulting immunopathology.IMPORTANCE Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the coronavirus spike protein, making it a potential therapeutic target for coronavirus infections. Here, we examined the role of TMPRSS2 using animal models of SARS-CoV and MERS-CoV infection. The results suggest that lack of TMPRSS2 in the airways reduces the severity of lung pathology after infection by SARS-CoV and MERS-CoV. Taken together, the results will facilitate development of novel targets for coronavirus therapy.Transmembrane serine protease TMPRSS2 activates the spike protein of highly pathogenic human coronaviruses such as severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV). In vitro, activation induces virus-cell membrane fusion at the cell surface. However, the roles of TMPRSS2 during coronavirus infection in vivo are unclear. Here, we used animal models of SARS-CoV and MERS-CoV infection to investigate the role of TMPRSS2. Th1-prone C57BL/6 mice and TMPRSS2-knockout (KO) mice were used for SARS-CoV infection, and transgenic mice expressing the human MERS-CoV receptor DPP4 (hDPP4-Tg mice) and TMPRSS2-KO hDPP4-Tg mice were used for MERS-CoV infection. After experimental infection, TMPRSS2-deficient mouse strains showed reduced body weight loss and viral kinetics in the lungs. Lack of TMPRSS2 affected the primary sites of infection and virus spread within the airway, accompanied by less severe immunopathology. However, TMPRSS2-KO mice showed weakened inflammatory chemokine and/or cytokine responses to intranasal stimulation with poly(I·C), a Toll-like receptor 3 agonist. In conclusion, TMPRSS2 plays a crucial role in viral spread within the airway of murine models infected by SARS-CoV and MERS-CoV and in the resulting immunopathology.IMPORTANCE Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the coronavirus spike protein, making it a potential therapeutic target for coronavirus infections. Here, we examined the role of TMPRSS2 using animal models of SARS-CoV and MERS-CoV infection. The results suggest that lack of TMPRSS2 in the airways reduces the severity of lung pathology after infection by SARS-CoV and MERS-CoV. Taken together, the results will facilitate development of novel targets for coronavirus therapy. |
Author | Iwata-Yoshikawa, Naoko Shimizu, Yukiko Nagata, Noriyo Okamura, Tadashi Takeda, Makoto Hasegawa, Hideki |
Author_xml | – sequence: 1 givenname: Naoko surname: Iwata-Yoshikawa fullname: Iwata-Yoshikawa, Naoko organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 2 givenname: Tadashi surname: Okamura fullname: Okamura, Tadashi organization: Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan, Section of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan – sequence: 3 givenname: Yukiko surname: Shimizu fullname: Shimizu, Yukiko organization: Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan – sequence: 4 givenname: Hideki surname: Hasegawa fullname: Hasegawa, Hideki organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 5 givenname: Makoto orcidid: 0000-0002-8194-7727 surname: Takeda fullname: Takeda, Makoto organization: Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 6 givenname: Noriyo surname: Nagata fullname: Nagata, Noriyo organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30626688$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1v1DAQxS1URLeFG2fkIwdSPI6dTS5I1YqPRV2B2FJxsybeSdcosRfbKdr_nmw_ECBOc5g3v6d574Qd-eCJsecgzgBk_frj1fJMQA26gPoRm4Fo6kJrUEdsJoSUhS7rb8fsJKXvQoBSlXrCjktRyaqq6xlLl6vPX9ZryRfB5-jaMVPiOfArF8fE17tIuOHoN3w5DKMPO8zb0IfrPXee5y3xcxd_4j7x0PHVGJ0nvgob6hPHLlOcqDF4vLmFLX1HNrvgn7LHHfaJnt3PU_b13dvLxYfi4tP75eL8orAKZC6w1XNAQFG3MFegREMkylJ2oG2HVkshVVtSoyqoqBbT44gNtnNqtbaoRHnK3txxd2M70MbS9CH2ZhfdgHFvAjrz98a7rbkON6ZSU1IaJsDLe0AMP0ZK2QwuWep79BTGZCTMm_JgLyfpiz-9fps8JD0J5J3AxpBSpM5Yl_EQx2TtegPCHOo0U53mtk4Dh6NX_xw9cP8r_wW4b6IM |
CitedBy_id | crossref_primary_10_1038_s41392_022_01039_2 crossref_primary_10_17352_2455_5479_000090 crossref_primary_10_3390_jcm9082589 crossref_primary_10_1016_j_progpolymsci_2021_101410 crossref_primary_10_1016_j_crphar_2021_100072 crossref_primary_10_1007_s10787_023_01385_9 crossref_primary_10_1016_j_mehy_2020_110066 crossref_primary_10_3390_v12060629 crossref_primary_10_1073_pnas_2002589117 crossref_primary_10_5501_wjv_v11_i1_40 crossref_primary_10_3390_app13074471 crossref_primary_10_1016_j_vaccine_2022_02_044 crossref_primary_10_1016_j_micinf_2021_104850 crossref_primary_10_1080_17476348_2021_1823833 crossref_primary_10_3389_fmed_2021_745797 crossref_primary_10_1016_j_ijantimicag_2020_105950 crossref_primary_10_2174_1566524021666211117145216 crossref_primary_10_1080_08830185_2020_1800688 crossref_primary_10_1016_j_jim_2023_113586 crossref_primary_10_1021_acs_jmedchem_0c00606 crossref_primary_10_21307_PM_2020_59_3_15 crossref_primary_10_1152_ajpcell_00260_2020 crossref_primary_10_1016_j_bioorg_2020_104326 crossref_primary_10_3390_v16111798 crossref_primary_10_1016_j_amjms_2020_08_019 crossref_primary_10_2174_1389450121999201125201112 crossref_primary_10_1089_aid_2020_0136 crossref_primary_10_1128_jvi_00851_23 crossref_primary_10_1128_jvi_01305_24 crossref_primary_10_1038_s41392_021_00733_x crossref_primary_10_3390_v13071192 crossref_primary_10_3390_life10090165 crossref_primary_10_1093_femsre_fuab035 crossref_primary_10_3389_fchem_2021_722633 crossref_primary_10_1038_s41598_023_29245_0 crossref_primary_10_1016_j_biopha_2022_113107 crossref_primary_10_3390_ijms22105251 crossref_primary_10_3389_fmed_2021_620990 crossref_primary_10_1007_s12035_021_02399_6 crossref_primary_10_1007_s42995_023_00215_9 crossref_primary_10_1016_j_metop_2021_100103 crossref_primary_10_1016_j_phrs_2022_106189 crossref_primary_10_3390_microorganisms11092198 crossref_primary_10_1007_s12010_022_03885_w crossref_primary_10_1186_s12985_024_02298_x crossref_primary_10_3389_fphys_2020_00820 crossref_primary_10_1007_s40615_020_00871_y crossref_primary_10_1210_endrev_bnaa011 crossref_primary_10_3390_biomedicines8110462 crossref_primary_10_7759_cureus_30622 crossref_primary_10_1080_07391102_2022_2112977 crossref_primary_10_1007_s11084_024_09648_3 crossref_primary_10_1161_CIRCULATIONAHA_120_047349 crossref_primary_10_3390_biomedicines9070779 crossref_primary_10_1007_s11224_022_01921_3 crossref_primary_10_2174_1574888X15666200705213751 crossref_primary_10_1016_j_biochi_2020_05_012 crossref_primary_10_7554_eLife_62522 crossref_primary_10_1002_jmv_26911 crossref_primary_10_1016_j_cell_2020_04_035 crossref_primary_10_1007_s12038_020_00067_w crossref_primary_10_3389_fgwh_2021_602572 crossref_primary_10_3389_fnut_2021_672390 crossref_primary_10_1016_j_lfs_2020_118219 crossref_primary_10_1016_j_prp_2021_153647 crossref_primary_10_1016_j_meegid_2020_104384 crossref_primary_10_17116_Cardiobulletin20221703129 crossref_primary_10_1016_j_mayocp_2021_07_005 crossref_primary_10_3389_fmolb_2021_708336 crossref_primary_10_1016_j_ejps_2020_105495 crossref_primary_10_1111_bcpt_13600 crossref_primary_10_3389_fgene_2021_599261 crossref_primary_10_1080_17460441_2022_2029843 crossref_primary_10_1016_j_crchbi_2022_100023 crossref_primary_10_1016_j_crmicr_2020_06_003 crossref_primary_10_1016_j_hjc_2020_05_007 crossref_primary_10_1021_acsinfecdis_0c00343 crossref_primary_10_1128_JVI_00140_21 crossref_primary_10_1002_ptr_7084 crossref_primary_10_2222_jsv_69_61 crossref_primary_10_1080_15548627_2022_2116677 crossref_primary_10_14233_ajchem_2020_22891 crossref_primary_10_1128_cmr_00188_21 crossref_primary_10_1128_JVI_00635_20 crossref_primary_10_1128_AAC_01581_21 crossref_primary_10_1016_j_ejmg_2021_104227 crossref_primary_10_3892_ijo_2022_5329 crossref_primary_10_1093_femsre_fuac042 crossref_primary_10_1007_s42242_020_00114_3 crossref_primary_10_1007_s00228_023_03517_0 crossref_primary_10_3390_biom11081126 crossref_primary_10_3390_ijms22105336 crossref_primary_10_2174_1381612828666220506142117 crossref_primary_10_18632_aging_203823 crossref_primary_10_3389_fimmu_2021_597399 crossref_primary_10_1183_23120541_00405_2020 crossref_primary_10_1016_j_apsb_2020_10_006 crossref_primary_10_1016_j_bcp_2020_114225 crossref_primary_10_1111_cts_13052 crossref_primary_10_2174_1566524021666210803154250 crossref_primary_10_53446_actamednicomedia_1253701 crossref_primary_10_4103_1995_7645_304293 crossref_primary_10_1016_j_jiph_2022_12_019 crossref_primary_10_1080_07391102_2020_1775704 crossref_primary_10_1016_j_bmc_2020_115757 crossref_primary_10_1172_JCI147973 crossref_primary_10_33611_trs_2021_011 crossref_primary_10_1016_j_intimp_2023_109919 crossref_primary_10_1021_acsptsci_0c00106 crossref_primary_10_1007_s11224_022_01991_3 crossref_primary_10_3389_fimmu_2021_791017 crossref_primary_10_1007_s41969_022_00173_0 crossref_primary_10_1073_pnas_2021450118 crossref_primary_10_3390_pharmaceutics13111759 crossref_primary_10_1371_journal_ppat_1009500 crossref_primary_10_1111_nep_13814 crossref_primary_10_1128_AAC_00754_20 crossref_primary_10_1128_jvi_01853_24 crossref_primary_10_1007_s12010_023_04439_4 crossref_primary_10_1177_19458924211059639 crossref_primary_10_1124_molpharm_120_000119 crossref_primary_10_1007_s11055_021_01082_6 crossref_primary_10_1007_s13596_023_00723_0 crossref_primary_10_3390_molecules26010142 crossref_primary_10_3390_s20154289 crossref_primary_10_7554_eLife_77444 crossref_primary_10_3390_antiox9060518 crossref_primary_10_3390_v15102124 crossref_primary_10_1016_j_mayocp_2020_06_018 crossref_primary_10_1002_ptr_7151 crossref_primary_10_3389_bjbs_2021_10238 crossref_primary_10_1002_biof_2084 crossref_primary_10_2174_1389557521666210412161157 crossref_primary_10_1186_s12902_020_00626_0 crossref_primary_10_1002_rmv_2207 crossref_primary_10_1177_11786302241271545 crossref_primary_10_1016_j_coviro_2023_101303 crossref_primary_10_1038_s41467_020_20457_w crossref_primary_10_4252_wjsc_v12_i9_1013 crossref_primary_10_1002_jcph_1641 crossref_primary_10_1016_j_jmgm_2020_107710 crossref_primary_10_1080_07391102_2023_2169762 crossref_primary_10_5500_wjt_v11_i8_344 crossref_primary_10_1128_jvi_01992_22 crossref_primary_10_1016_j_bbrc_2020_05_179 crossref_primary_10_1016_j_mehy_2021_110736 crossref_primary_10_1002_rmv_2223 crossref_primary_10_1007_s10096_020_03961_1 crossref_primary_10_31832_smj_1092699 crossref_primary_10_1016_j_biopha_2020_111193 crossref_primary_10_3390_ijms23094576 crossref_primary_10_1097_CCE_0000000000000284 crossref_primary_10_1016_j_phrs_2020_104853 crossref_primary_10_1016_j_ijid_2021_05_042 crossref_primary_10_1016_j_csbj_2020_07_017 crossref_primary_10_3389_fphar_2020_615398 crossref_primary_10_1016_j_jff_2024_106561 crossref_primary_10_15360_1813_9779_2022_5_18_23 crossref_primary_10_3390_cells12030445 crossref_primary_10_1093_jncics_pkac035 crossref_primary_10_2174_1389557522666220104151225 crossref_primary_10_2174_1568026622666220726122339 crossref_primary_10_1002_med_21919 crossref_primary_10_3389_fphar_2020_01258 crossref_primary_10_1016_j_isci_2021_102254 crossref_primary_10_3389_fnins_2021_694446 crossref_primary_10_1098_rsfs_2020_0081 crossref_primary_10_1002_jcp_30041 crossref_primary_10_2174_0929867328666210526111318 crossref_primary_10_3389_fmicb_2020_01576 crossref_primary_10_3389_fmed_2020_582793 crossref_primary_10_1021_acs_analchem_2c04988 crossref_primary_10_1128_aac_00452_22 crossref_primary_10_1146_annurev_pharmtox_061220_093932 crossref_primary_10_1111_bph_15092 crossref_primary_10_1007_s43440_022_00388_7 crossref_primary_10_1016_j_eururo_2020_06_014 crossref_primary_10_1016_j_phrs_2020_104837 crossref_primary_10_1186_s12905_023_02378_0 crossref_primary_10_1021_acschemneuro_0c00174 crossref_primary_10_3390_v15020271 crossref_primary_10_1016_j_ebiom_2021_103255 crossref_primary_10_3389_fimmu_2020_01229 crossref_primary_10_1128_JVI_01818_18 crossref_primary_10_1186_s12859_022_04724_9 crossref_primary_10_1007_s42535_022_00404_4 crossref_primary_10_1016_j_heliyon_2021_e06657 crossref_primary_10_1080_07391102_2020_1819881 crossref_primary_10_1016_j_heliyon_2021_e07863 crossref_primary_10_7883_yoken_JJID_2023_353 crossref_primary_10_1080_07391102_2020_1758791 crossref_primary_10_1186_s12974_020_01957_4 crossref_primary_10_3892_mmr_2022_12654 crossref_primary_10_1080_07391102_2021_1980109 crossref_primary_10_1016_j_pharmthera_2021_108027 crossref_primary_10_36233_0507_4088_47 crossref_primary_10_1016_j_jaim_2020_11_010 crossref_primary_10_1111_cpr_12939 crossref_primary_10_1111_joim_13101 crossref_primary_10_1080_0889311X_2024_2363756 crossref_primary_10_1016_j_molcel_2020_04_022 crossref_primary_10_3390_v12050491 crossref_primary_10_1371_journal_pcbi_1008461 crossref_primary_10_1016_j_jelectrocard_2020_07_009 crossref_primary_10_2147_IJN_S328090 crossref_primary_10_3389_fcimb_2020_560240 crossref_primary_10_1038_s41598_024_65296_7 crossref_primary_10_1016_j_bbadis_2020_166014 crossref_primary_10_1016_j_ijbiomac_2021_02_071 crossref_primary_10_1515_hsz_2022_0323 crossref_primary_10_1097_WNO_0000000000001455 crossref_primary_10_1152_ajpheart_00204_2022 crossref_primary_10_1017_dmp_2020_156 crossref_primary_10_4062_biomolther_2020_201 crossref_primary_10_1073_pnas_2206610119 crossref_primary_10_1038_s41467_022_33911_8 crossref_primary_10_1007_s11154_021_09678_6 crossref_primary_10_1016_j_jviromet_2021_114434 crossref_primary_10_1016_j_tice_2021_101497 crossref_primary_10_1042_BSR20212156 crossref_primary_10_3390_ijms21155224 crossref_primary_10_1039_D0SC05064D crossref_primary_10_1080_02713683_2023_2291749 crossref_primary_10_1080_07391102_2020_1792346 crossref_primary_10_3390_antiox14030253 crossref_primary_10_1080_07391102_2020_1767690 crossref_primary_10_1016_j_ejmech_2023_115923 crossref_primary_10_1126_sciadv_abh3827 crossref_primary_10_3390_molecules25215007 crossref_primary_10_1055_a_1954_5605 crossref_primary_10_1016_j_cophys_2020_09_015 crossref_primary_10_3390_microorganisms10071284 crossref_primary_10_1016_j_biopha_2021_111685 crossref_primary_10_1186_s43088_021_00134_7 crossref_primary_10_2174_1568026620666200922112300 crossref_primary_10_3389_fgene_2020_00872 crossref_primary_10_1159_000533606 crossref_primary_10_1371_journal_pone_0243959 crossref_primary_10_1038_s41467_021_21171_x crossref_primary_10_1080_14656566_2021_1898589 crossref_primary_10_3390_ani11072044 crossref_primary_10_7554_eLife_58716 crossref_primary_10_2147_IJN_S296383 crossref_primary_10_1016_j_vph_2021_106829 crossref_primary_10_1038_s41392_021_00653_w crossref_primary_10_3389_fcimb_2020_575404 crossref_primary_10_1016_j_ebiom_2020_102907 crossref_primary_10_1016_j_jsbmb_2024_106625 crossref_primary_10_3892_mmr_2020_11510 crossref_primary_10_1016_j_sajb_2021_03_012 crossref_primary_10_1124_jpet_120_000123 crossref_primary_10_3390_v12050571 crossref_primary_10_1007_s11033_021_06390_1 crossref_primary_10_1002_med_21763 crossref_primary_10_3389_fmicb_2020_01840 crossref_primary_10_1007_s12195_020_00638_9 crossref_primary_10_1016_j_addr_2020_11_007 crossref_primary_10_1002_rmv_2174 crossref_primary_10_3390_v16060984 crossref_primary_10_12688_f1000research_36371_1 crossref_primary_10_1038_s41591_020_0868_6 crossref_primary_10_1093_gerona_glaa149 crossref_primary_10_1128_JVI_00398_21 crossref_primary_10_1134_S1990750822040035 crossref_primary_10_1155_mi_5720709 crossref_primary_10_3390_medicina56120716 crossref_primary_10_1016_j_biopha_2023_115493 crossref_primary_10_1002_nano_202100123 crossref_primary_10_1016_j_ajmo_2024_100068 crossref_primary_10_1016_j_jaci_2020_05_004 crossref_primary_10_3390_pathogens13020113 crossref_primary_10_1186_s12935_021_02129_x crossref_primary_10_1016_j_clim_2021_108879 crossref_primary_10_3390_biomedicines11020419 crossref_primary_10_3390_v13030369 crossref_primary_10_1134_S0006297922060086 crossref_primary_10_3389_fphar_2020_01189 crossref_primary_10_3390_v14122728 crossref_primary_10_1111_cts_12881 crossref_primary_10_1080_14756366_2021_1886093 crossref_primary_10_1002_rmv_2194 crossref_primary_10_1016_j_clim_2020_108591 crossref_primary_10_2174_1871526521666210322160038 crossref_primary_10_1002_jmv_28212 crossref_primary_10_1126_scisignal_adn3785 crossref_primary_10_4236_ojrm_2020_92004 crossref_primary_10_3389_fimmu_2020_02163 crossref_primary_10_1038_s42003_020_1088_9 crossref_primary_10_3390_v11030280 crossref_primary_10_1111_1348_0421_12945 crossref_primary_10_12998_wjcc_v9_i22_6178 crossref_primary_10_1371_journal_ppat_1012365 crossref_primary_10_1016_j_ejphar_2020_173659 crossref_primary_10_1080_22221751_2021_1937329 crossref_primary_10_1016_j_drudis_2020_06_017 crossref_primary_10_15252_emmm_202013105 crossref_primary_10_2174_1381612826666201023143956 crossref_primary_10_1590_1678_4685_gmb_2020_0224 crossref_primary_10_1080_07391102_2020_1868335 crossref_primary_10_3389_fmolb_2020_00196 crossref_primary_10_1016_j_bbadis_2022_166527 crossref_primary_10_1096_fj_202002512 crossref_primary_10_3389_fcimb_2021_720357 crossref_primary_10_3390_v13061081 crossref_primary_10_3389_fgeed_2023_1320180 crossref_primary_10_1016_j_virusres_2024_199430 crossref_primary_10_1152_ajpheart_00217_2020 crossref_primary_10_1080_07391102_2021_1965658 crossref_primary_10_1016_j_ijbiomac_2021_06_015 crossref_primary_10_1177_1934578X211042540 crossref_primary_10_1016_j_annonc_2020_04_479 crossref_primary_10_1093_biolre_ioaa060 crossref_primary_10_1080_21655979_2022_2060453 crossref_primary_10_2174_1872210516666220819104853 crossref_primary_10_3390_vaccines9060596 crossref_primary_10_1038_s41538_024_00261_2 crossref_primary_10_1080_13543784_2024_2315128 crossref_primary_10_52586_4984 crossref_primary_10_1080_15376494_2021_1883779 crossref_primary_10_1080_17460441_2022_2050693 crossref_primary_10_3390_v15051129 crossref_primary_10_14218_ERHM_2020_00055 crossref_primary_10_1016_j_arcmed_2020_04_022 crossref_primary_10_1016_j_biopha_2020_110678 crossref_primary_10_33590_emj_20_00158 crossref_primary_10_1080_19396368_2021_1922537 crossref_primary_10_14336_AD_2020_0228 crossref_primary_10_1016_j_virol_2021_11_012 crossref_primary_10_3389_fphys_2020_599729 crossref_primary_10_15406_jlprr_2022_09_00280 crossref_primary_10_1016_j_cca_2021_04_022 crossref_primary_10_3389_fphar_2020_600369 crossref_primary_10_1371_journal_ppat_1011123 crossref_primary_10_26508_lsa_202201813 crossref_primary_10_4103_aja202246 crossref_primary_10_1007_s10787_020_00745_z crossref_primary_10_3390_molecules25245952 crossref_primary_10_1016_j_jaci_2020_05_033 crossref_primary_10_1016_j_jtcme_2020_05_003 crossref_primary_10_1128_mSphere_00159_21 crossref_primary_10_1038_s41467_021_24156_y crossref_primary_10_1177_11795735221102231 crossref_primary_10_1111_imr_13084 crossref_primary_10_2174_0929867328666210420103021 crossref_primary_10_1128_jvi_00102_24 crossref_primary_10_1016_j_meegid_2020_104669 crossref_primary_10_1021_acsnano_0c04006 crossref_primary_10_1042_EBC20210005 crossref_primary_10_1016_j_freeradbiomed_2021_05_033 crossref_primary_10_1134_S1022795421050057 crossref_primary_10_1016_j_virol_2024_110218 crossref_primary_10_1093_cvr_cvab322 crossref_primary_10_1080_14779072_2020_1797491 crossref_primary_10_1002_cbf_3591 crossref_primary_10_1016_j_jsps_2022_01_005 crossref_primary_10_3389_fgene_2022_805880 crossref_primary_10_1016_j_bbrc_2021_01_104 crossref_primary_10_1016_j_jdsr_2021_07_001 crossref_primary_10_1080_13813455_2020_1788606 crossref_primary_10_3390_pathogens9070546 crossref_primary_10_1016_j_micpath_2020_104621 crossref_primary_10_1002_jmv_27615 crossref_primary_10_3390_cancers12082186 crossref_primary_10_2174_1389201023666220507003726 crossref_primary_10_3390_v11090837 crossref_primary_10_25040_ntsh2021_01_05 crossref_primary_10_3389_fcvm_2020_613255 crossref_primary_10_1016_j_critrevonc_2021_103491 crossref_primary_10_1128_JVI_00649_19 crossref_primary_10_1093_cvr_cvaa106 crossref_primary_10_1038_s41467_021_24342_y crossref_primary_10_1002_ptr_6711 crossref_primary_10_1007_s00345_020_03284_y crossref_primary_10_1002_fft2_107 crossref_primary_10_1016_j_job_2022_04_004 crossref_primary_10_1007_s12010_020_03475_8 crossref_primary_10_1126_scisignal_abd0334 crossref_primary_10_1371_journal_ppat_1009013 crossref_primary_10_18097_pbmc20226803157 crossref_primary_10_1016_j_annonc_2020_06_023 crossref_primary_10_1016_j_ejmech_2023_115719 crossref_primary_10_1111_jcmm_18490 crossref_primary_10_3928_19382359_20210224_01 crossref_primary_10_1016_j_biochi_2020_07_001 crossref_primary_10_3389_fimmu_2020_552925 crossref_primary_10_1038_s41467_021_21213_4 crossref_primary_10_3390_microorganisms8111704 crossref_primary_10_1016_j_cell_2020_02_052 crossref_primary_10_1038_s41598_021_02297_w crossref_primary_10_1016_j_jelectrocard_2021_03_001 crossref_primary_10_3897_rrpharmacology_6_53633 crossref_primary_10_1371_journal_ppat_1012653 crossref_primary_10_1038_s42003_022_03613_4 crossref_primary_10_1080_07391102_2021_1891139 crossref_primary_10_3389_fmolb_2021_725528 |
Cites_doi | 10.1016/j.coviro.2017.03.018 10.1128/JVI.02232-10 10.1128/JVI.03677-13 10.1073/pnas.0603082103 10.1016/j.phrp.2015.08.006 10.1128/JVI.01118-06 10.26719/2013.19.supp1.S12 10.1128/JVI.79.5.2910-2919.2005 10.1016/S0140-6736(03)15259-2 10.1371/journal.ppat.1003774 10.1016/S0140-6736(03)14630-2 10.1002/path.4458 10.1056/NEJMoa030747 10.1128/JVI.01818-18 10.1056/NEJMoa030685 10.1056/NEJMoa1211721 10.1016/j.antiviral.2015.01.011 10.1128/JVI.03372-12 10.1128/JVI.02202-13 10.1016/j.semcdb.2015.09.021 10.1016/S0140-6736(03)13077-2 10.1128/JVI.03799-13 10.1371/journal.pone.0035876 10.1128/JVI.00983-14 10.1056/NEJMoa030781 10.1128/JVI.01542-10 10.1074/jbc.R109.021006 10.1093/infdis/jiv246 10.2353/ajpath.2008.071060 10.1073/pnas.0711976105 10.1128/MCB.26.3.965-975.2006 10.1128/JVI.02693-15 10.1038/nrmicro.2016.81 10.1016/j.virol.2017.11.012 10.1128/JVI.00128-13 10.1002/1096-9896(2000)9999:9999<::AID-PATH743>3.0.CO;2-T 10.1016/j.ajpath.2015.10.024 10.1074/jbc.M105044200 10.1038/nature03326 10.1016/j.pupt.2015.07.001 10.1016/j.antiviral.2013.09.028 10.1128/JVI.02062-10 10.1002/path.1038 10.1128/JVI.01890-13 10.1128/JVI.05300-11 10.1038/nrmicro2147 10.1128/JVI.00124-15 10.1016/S0198-8859(02)00433-0 10.1016/j.immuni.2010.03.012 |
ContentType | Journal Article |
Copyright | Copyright © 2019 American Society for Microbiology. Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2019 American Society for Microbiology. – notice: Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1128/JVI.01815-18 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Role of TMPRSS2 in Coronavirus Infection In Vivo |
EISSN | 1098-5514 |
ExternalDocumentID | PMC6401451 30626688 10_1128_JVI_01815_18 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: JP17fk0108313; JP18fk0108058 – fundername: ; grantid: 16K09951; 18H02665 – fundername: ; grantid: H25-Shinko-Wakate-004 – fundername: ; grantid: 27A1102 |
GroupedDBID | --- -~X 0R~ 18M 29L 2WC 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAGFI AAYXX ABPPZ ACGFO ACNCT ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 N9A O9- OK1 P2P RHI RNS RPM RSF TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c412t-ab571a1a08b1741409ee0332f15cfac52024b3e94616e80109aa9ab7eb55ca403 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 14:13:01 EDT 2025 Fri Jul 11 03:33:24 EDT 2025 Thu Apr 03 07:10:08 EDT 2025 Tue Jul 01 01:02:59 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | TMPRSS2 MERS-CoV immunopathology animal model SARS-CoV |
Language | English |
License | Copyright © 2019 American Society for Microbiology. This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c412t-ab571a1a08b1741409ee0332f15cfac52024b3e94616e80109aa9ab7eb55ca403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. 2019. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol 93:e01815-18. https://doi.org/10.1128/JVI.01815-18. N.I.-Y. and T.O. contributed equally to this work. |
ORCID | 0000-0002-8194-7727 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6401451 |
PMID | 30626688 |
PQID | 2179346162 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6401451 proquest_miscellaneous_2179346162 pubmed_primary_30626688 crossref_citationtrail_10_1128_JVI_01815_18 crossref_primary_10_1128_JVI_01815_18 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-15 |
PublicationDateYYYYMMDD | 2019-03-15 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2019 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 Kido H (e_1_3_3_35_2) 2008; 3 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_18_2 doi: 10.1016/j.coviro.2017.03.018 – ident: e_1_3_3_38_2 doi: 10.1128/JVI.02232-10 – ident: e_1_3_3_21_2 doi: 10.1128/JVI.03677-13 – ident: e_1_3_3_30_2 doi: 10.1073/pnas.0603082103 – ident: e_1_3_3_10_2 doi: 10.1016/j.phrp.2015.08.006 – ident: e_1_3_3_13_2 doi: 10.1128/JVI.01118-06 – ident: e_1_3_3_9_2 doi: 10.26719/2013.19.supp1.S12 – ident: e_1_3_3_27_2 doi: 10.1128/JVI.79.5.2910-2919.2005 – ident: e_1_3_3_7_2 doi: 10.1016/S0140-6736(03)15259-2 – ident: e_1_3_3_19_2 doi: 10.1371/journal.ppat.1003774 – ident: e_1_3_3_6_2 doi: 10.1016/S0140-6736(03)14630-2 – ident: e_1_3_3_47_2 doi: 10.1002/path.4458 – ident: e_1_3_3_3_2 doi: 10.1056/NEJMoa030747 – ident: e_1_3_3_26_2 doi: 10.1128/JVI.01818-18 – ident: e_1_3_3_4_2 doi: 10.1056/NEJMoa030685 – ident: e_1_3_3_8_2 doi: 10.1056/NEJMoa1211721 – ident: e_1_3_3_44_2 doi: 10.1016/j.antiviral.2015.01.011 – ident: e_1_3_3_16_2 doi: 10.1128/JVI.03372-12 – ident: e_1_3_3_39_2 doi: 10.1128/JVI.02202-13 – ident: e_1_3_3_49_2 doi: 10.1016/j.semcdb.2015.09.021 – ident: e_1_3_3_5_2 doi: 10.1016/S0140-6736(03)13077-2 – ident: e_1_3_3_20_2 doi: 10.1128/JVI.03799-13 – ident: e_1_3_3_37_2 doi: 10.1371/journal.pone.0035876 – ident: e_1_3_3_25_2 doi: 10.1128/JVI.00983-14 – ident: e_1_3_3_2_2 doi: 10.1056/NEJMoa030781 – ident: e_1_3_3_14_2 doi: 10.1128/JVI.01542-10 – ident: e_1_3_3_31_2 doi: 10.1074/jbc.R109.021006 – ident: e_1_3_3_23_2 doi: 10.1093/infdis/jiv246 – ident: e_1_3_3_24_2 doi: 10.2353/ajpath.2008.071060 – ident: e_1_3_3_28_2 doi: 10.1073/pnas.0711976105 – ident: e_1_3_3_33_2 doi: 10.1128/MCB.26.3.965-975.2006 – ident: e_1_3_3_50_2 doi: 10.1128/JVI.02693-15 – ident: e_1_3_3_12_2 doi: 10.1038/nrmicro.2016.81 – ident: e_1_3_3_40_2 doi: 10.1016/j.virol.2017.11.012 – ident: e_1_3_3_17_2 doi: 10.1128/JVI.00128-13 – ident: e_1_3_3_32_2 doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH743>3.0.CO;2-T – ident: e_1_3_3_48_2 doi: 10.1016/j.ajpath.2015.10.024 – ident: e_1_3_3_34_2 doi: 10.1074/jbc.M105044200 – ident: e_1_3_3_29_2 doi: 10.1038/nature03326 – ident: e_1_3_3_36_2 doi: 10.1016/j.pupt.2015.07.001 – ident: e_1_3_3_43_2 doi: 10.1016/j.antiviral.2013.09.028 – ident: e_1_3_3_41_2 doi: 10.1128/JVI.02062-10 – ident: e_1_3_3_46_2 doi: 10.1002/path.1038 – ident: e_1_3_3_15_2 doi: 10.1128/JVI.01890-13 – ident: e_1_3_3_42_2 doi: 10.1128/JVI.05300-11 – ident: e_1_3_3_11_2 doi: 10.1038/nrmicro2147 – ident: e_1_3_3_22_2 doi: 10.1128/JVI.00124-15 – ident: e_1_3_3_51_2 doi: 10.1016/S0198-8859(02)00433-0 – volume: 3 start-page: 167 year: 2008 ident: e_1_3_3_35_2 article-title: Host envelope glycoprotein processing proteases are indispensable for entry into human cells by seasonal and highly pathogenic avian influenza viruses publication-title: J Mol Genet Med – ident: e_1_3_3_45_2 doi: 10.1016/j.immuni.2010.03.012 |
SSID | ssj0014464 |
Score | 2.6906056 |
Snippet | Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats.... Transmembrane serine protease TMPRSS2 activates the spike protein of highly pathogenic human coronaviruses such as severe acute respiratory syndrome-related... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Animals Cell Line Chlorocebus aethiops Coronavirus Infections - immunology Coronavirus Infections - metabolism Coronavirus Infections - virology Disease Models, Animal Female Humans Lung - immunology Lung - metabolism Lung - virology Male Mice Mice, Inbred C57BL Mice, Knockout Mice, Transgenic Middle East Respiratory Syndrome Coronavirus - immunology Pathogenesis and Immunity Poly I-C - metabolism SARS Virus Serine Endopeptidases - metabolism Severe Acute Respiratory Syndrome - immunology Severe Acute Respiratory Syndrome - metabolism Severe Acute Respiratory Syndrome - virology Spike Glycoprotein, Coronavirus - metabolism Toll-Like Receptor 3 - metabolism Vero Cells |
Title | TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30626688 https://www.proquest.com/docview/2179346162 https://pubmed.ncbi.nlm.nih.gov/PMC6401451 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtpAEF3RVK3yUvVeetNWap-QU3t95TFCbSESVVRIRJ-sXdsEi2AjsIuSn-ovdmbXNgtNpDYvFjLrtcUcZmfWM-cQ8tFBWjdYN42AJb7hxI5ldAMRGY4dQ77hChbLRHH43eufOScTd9Jq_daqlspCHEXXN_aV3MWqcA7sil2y_2HZZlI4AZ_BvnAEC8Px32w8PP0xGjFs21PCVYqv4TxdlevOaAnxYKzqfbEJJEfxYcW4VNU2HqerDb9SVTC46Z5IZbTLdSUc3kNyA_5LTjaoarayW4JZ7JbT9-cHG15w42e-nqVzvuHKj-fzvNnTnfNFKSWOOmMeo6BTs9UzSxfpdSmXhnKebi_pw3p7Uc3VT-Nknuo7FtgkZRuqZ1NrEkDvpdWlDtMt75TurzFVtqX4MKxWykUjAyrGeboPVyqLFVa9m5cGhu0OJ-eDI-Qocw3l9jWULBcSJpBDQdCitAb3qLhPhz3PkdrG98h9BnkJrgTfJk1NEebWTk1Pj49dd1qw4LN-40PysL7Lbjj0V46zX6qrxT7jx-RRZWd6rBD4hLSS7Cl5oGRMr56RdYVDquGQFjmVOKQKhxRwSPdwSNOMAg5phUOaT6nCIVU4pBKHVMMhbXD4nJx9_TLu9Y1KzMOIHIsVBheub3GLm4GAJBhp1pLEtG02tdxoyiOXQbAo7KTreJaXBPjClvMuF34iXDfijmm_IAdZniWvCI2juOubQexyG2Ir1hV-YE99k_le1xTCDtqkU_-mYVQx3aPgymUoM14WhGCMUBojtGD0p2b0UjG83DLuQ22eEFwwvlfjWZKX65DhIofPzdrkpTJXM1Nt5zbxdwzZDEB6991vsnQmad4rqL2-85VvyOH27_eWHBSrMnkHIXQh3kvY_gFVGsui |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TMPRSS2+Contributes+to+Virus+Spread+and+Immunopathology+in+the+Airways+of+Murine+Models+after+Coronavirus+Infection&rft.jtitle=Journal+of+virology&rft.au=Iwata-Yoshikawa%2C+Naoko&rft.au=Okamura%2C+Tadashi&rft.au=Shimizu%2C+Yukiko&rft.au=Hasegawa%2C+Hideki&rft.date=2019-03-15&rft.pub=American+Society+for+Microbiology&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=93&rft.issue=6&rft_id=info:doi/10.1128%2FJVI.01815-18&rft_id=info%3Apmid%2F30626688&rft.externalDocID=PMC6401451 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |