TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection

Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the corona...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 93; no. 6
Main Authors Iwata-Yoshikawa, Naoko, Okamura, Tadashi, Shimizu, Yukiko, Hasegawa, Hideki, Takeda, Makoto, Nagata, Noriyo
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 15.03.2019
Subjects
Online AccessGet full text
ISSN0022-538X
1098-5514
1098-5514
DOI10.1128/JVI.01815-18

Cover

Loading…
Abstract Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the coronavirus spike protein, making it a potential therapeutic target for coronavirus infections. Here, we examined the role of TMPRSS2 using animal models of SARS-CoV and MERS-CoV infection. The results suggest that lack of TMPRSS2 in the airways reduces the severity of lung pathology after infection by SARS-CoV and MERS-CoV. Taken together, the results will facilitate development of novel targets for coronavirus therapy. Transmembrane serine protease TMPRSS2 activates the spike protein of highly pathogenic human coronaviruses such as severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV). In vitro , activation induces virus-cell membrane fusion at the cell surface. However, the roles of TMPRSS2 during coronavirus infection in vivo are unclear. Here, we used animal models of SARS-CoV and MERS-CoV infection to investigate the role of TMPRSS2. Th1-prone C57BL/6 mice and TMPRSS2-knockout (KO) mice were used for SARS-CoV infection, and transgenic mice expressing the human MERS-CoV receptor DPP4 (hDPP4-Tg mice) and TMPRSS2-KO hDPP4-Tg mice were used for MERS-CoV infection. After experimental infection, TMPRSS2-deficient mouse strains showed reduced body weight loss and viral kinetics in the lungs. Lack of TMPRSS2 affected the primary sites of infection and virus spread within the airway, accompanied by less severe immunopathology. However, TMPRSS2-KO mice showed weakened inflammatory chemokine and/or cytokine responses to intranasal stimulation with poly(I·C), a Toll-like receptor 3 agonist. In conclusion, TMPRSS2 plays a crucial role in viral spread within the airway of murine models infected by SARS-CoV and MERS-CoV and in the resulting immunopathology. IMPORTANCE Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the coronavirus spike protein, making it a potential therapeutic target for coronavirus infections. Here, we examined the role of TMPRSS2 using animal models of SARS-CoV and MERS-CoV infection. The results suggest that lack of TMPRSS2 in the airways reduces the severity of lung pathology after infection by SARS-CoV and MERS-CoV. Taken together, the results will facilitate development of novel targets for coronavirus therapy.
AbstractList Transmembrane serine protease TMPRSS2 activates the spike protein of highly pathogenic human coronaviruses such as severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV). , activation induces virus-cell membrane fusion at the cell surface. However, the roles of TMPRSS2 during coronavirus infection are unclear. Here, we used animal models of SARS-CoV and MERS-CoV infection to investigate the role of TMPRSS2. Th1-prone C57BL/6 mice and TMPRSS2-knockout (KO) mice were used for SARS-CoV infection, and transgenic mice expressing the human MERS-CoV receptor DPP4 (hDPP4-Tg mice) and TMPRSS2-KO hDPP4-Tg mice were used for MERS-CoV infection. After experimental infection, TMPRSS2-deficient mouse strains showed reduced body weight loss and viral kinetics in the lungs. Lack of TMPRSS2 affected the primary sites of infection and virus spread within the airway, accompanied by less severe immunopathology. However, TMPRSS2-KO mice showed weakened inflammatory chemokine and/or cytokine responses to intranasal stimulation with poly(I·C), a Toll-like receptor 3 agonist. In conclusion, TMPRSS2 plays a crucial role in viral spread within the airway of murine models infected by SARS-CoV and MERS-CoV and in the resulting immunopathology. Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the coronavirus spike protein, making it a potential therapeutic target for coronavirus infections. Here, we examined the role of TMPRSS2 using animal models of SARS-CoV and MERS-CoV infection. The results suggest that lack of TMPRSS2 in the airways reduces the severity of lung pathology after infection by SARS-CoV and MERS-CoV. Taken together, the results will facilitate development of novel targets for coronavirus therapy.
Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the coronavirus spike protein, making it a potential therapeutic target for coronavirus infections. Here, we examined the role of TMPRSS2 using animal models of SARS-CoV and MERS-CoV infection. The results suggest that lack of TMPRSS2 in the airways reduces the severity of lung pathology after infection by SARS-CoV and MERS-CoV. Taken together, the results will facilitate development of novel targets for coronavirus therapy. Transmembrane serine protease TMPRSS2 activates the spike protein of highly pathogenic human coronaviruses such as severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV). In vitro , activation induces virus-cell membrane fusion at the cell surface. However, the roles of TMPRSS2 during coronavirus infection in vivo are unclear. Here, we used animal models of SARS-CoV and MERS-CoV infection to investigate the role of TMPRSS2. Th1-prone C57BL/6 mice and TMPRSS2-knockout (KO) mice were used for SARS-CoV infection, and transgenic mice expressing the human MERS-CoV receptor DPP4 (hDPP4-Tg mice) and TMPRSS2-KO hDPP4-Tg mice were used for MERS-CoV infection. After experimental infection, TMPRSS2-deficient mouse strains showed reduced body weight loss and viral kinetics in the lungs. Lack of TMPRSS2 affected the primary sites of infection and virus spread within the airway, accompanied by less severe immunopathology. However, TMPRSS2-KO mice showed weakened inflammatory chemokine and/or cytokine responses to intranasal stimulation with poly(I·C), a Toll-like receptor 3 agonist. In conclusion, TMPRSS2 plays a crucial role in viral spread within the airway of murine models infected by SARS-CoV and MERS-CoV and in the resulting immunopathology. IMPORTANCE Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the coronavirus spike protein, making it a potential therapeutic target for coronavirus infections. Here, we examined the role of TMPRSS2 using animal models of SARS-CoV and MERS-CoV infection. The results suggest that lack of TMPRSS2 in the airways reduces the severity of lung pathology after infection by SARS-CoV and MERS-CoV. Taken together, the results will facilitate development of novel targets for coronavirus therapy.
Transmembrane serine protease TMPRSS2 activates the spike protein of highly pathogenic human coronaviruses such as severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV). In vitro, activation induces virus-cell membrane fusion at the cell surface. However, the roles of TMPRSS2 during coronavirus infection in vivo are unclear. Here, we used animal models of SARS-CoV and MERS-CoV infection to investigate the role of TMPRSS2. Th1-prone C57BL/6 mice and TMPRSS2-knockout (KO) mice were used for SARS-CoV infection, and transgenic mice expressing the human MERS-CoV receptor DPP4 (hDPP4-Tg mice) and TMPRSS2-KO hDPP4-Tg mice were used for MERS-CoV infection. After experimental infection, TMPRSS2-deficient mouse strains showed reduced body weight loss and viral kinetics in the lungs. Lack of TMPRSS2 affected the primary sites of infection and virus spread within the airway, accompanied by less severe immunopathology. However, TMPRSS2-KO mice showed weakened inflammatory chemokine and/or cytokine responses to intranasal stimulation with poly(I·C), a Toll-like receptor 3 agonist. In conclusion, TMPRSS2 plays a crucial role in viral spread within the airway of murine models infected by SARS-CoV and MERS-CoV and in the resulting immunopathology.IMPORTANCE Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the coronavirus spike protein, making it a potential therapeutic target for coronavirus infections. Here, we examined the role of TMPRSS2 using animal models of SARS-CoV and MERS-CoV infection. The results suggest that lack of TMPRSS2 in the airways reduces the severity of lung pathology after infection by SARS-CoV and MERS-CoV. Taken together, the results will facilitate development of novel targets for coronavirus therapy.Transmembrane serine protease TMPRSS2 activates the spike protein of highly pathogenic human coronaviruses such as severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV). In vitro, activation induces virus-cell membrane fusion at the cell surface. However, the roles of TMPRSS2 during coronavirus infection in vivo are unclear. Here, we used animal models of SARS-CoV and MERS-CoV infection to investigate the role of TMPRSS2. Th1-prone C57BL/6 mice and TMPRSS2-knockout (KO) mice were used for SARS-CoV infection, and transgenic mice expressing the human MERS-CoV receptor DPP4 (hDPP4-Tg mice) and TMPRSS2-KO hDPP4-Tg mice were used for MERS-CoV infection. After experimental infection, TMPRSS2-deficient mouse strains showed reduced body weight loss and viral kinetics in the lungs. Lack of TMPRSS2 affected the primary sites of infection and virus spread within the airway, accompanied by less severe immunopathology. However, TMPRSS2-KO mice showed weakened inflammatory chemokine and/or cytokine responses to intranasal stimulation with poly(I·C), a Toll-like receptor 3 agonist. In conclusion, TMPRSS2 plays a crucial role in viral spread within the airway of murine models infected by SARS-CoV and MERS-CoV and in the resulting immunopathology.IMPORTANCE Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats. Transmembrane protease serine type 2 (TMPRSS2), a protease belonging to the type II transmembrane serine protease family, cleaves the coronavirus spike protein, making it a potential therapeutic target for coronavirus infections. Here, we examined the role of TMPRSS2 using animal models of SARS-CoV and MERS-CoV infection. The results suggest that lack of TMPRSS2 in the airways reduces the severity of lung pathology after infection by SARS-CoV and MERS-CoV. Taken together, the results will facilitate development of novel targets for coronavirus therapy.
Author Iwata-Yoshikawa, Naoko
Shimizu, Yukiko
Nagata, Noriyo
Okamura, Tadashi
Takeda, Makoto
Hasegawa, Hideki
Author_xml – sequence: 1
  givenname: Naoko
  surname: Iwata-Yoshikawa
  fullname: Iwata-Yoshikawa, Naoko
  organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 2
  givenname: Tadashi
  surname: Okamura
  fullname: Okamura, Tadashi
  organization: Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan, Section of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
– sequence: 3
  givenname: Yukiko
  surname: Shimizu
  fullname: Shimizu, Yukiko
  organization: Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
– sequence: 4
  givenname: Hideki
  surname: Hasegawa
  fullname: Hasegawa, Hideki
  organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 5
  givenname: Makoto
  orcidid: 0000-0002-8194-7727
  surname: Takeda
  fullname: Takeda, Makoto
  organization: Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 6
  givenname: Noriyo
  surname: Nagata
  fullname: Nagata, Noriyo
  organization: Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30626688$$D View this record in MEDLINE/PubMed
BookMark eNptkc1v1DAQxS1URLeFG2fkIwdSPI6dTS5I1YqPRV2B2FJxsybeSdcosRfbKdr_nmw_ECBOc5g3v6d574Qd-eCJsecgzgBk_frj1fJMQA26gPoRm4Fo6kJrUEdsJoSUhS7rb8fsJKXvQoBSlXrCjktRyaqq6xlLl6vPX9ZryRfB5-jaMVPiOfArF8fE17tIuOHoN3w5DKMPO8zb0IfrPXee5y3xcxd_4j7x0PHVGJ0nvgob6hPHLlOcqDF4vLmFLX1HNrvgn7LHHfaJnt3PU_b13dvLxYfi4tP75eL8orAKZC6w1XNAQFG3MFegREMkylJ2oG2HVkshVVtSoyqoqBbT44gNtnNqtbaoRHnK3txxd2M70MbS9CH2ZhfdgHFvAjrz98a7rbkON6ZSU1IaJsDLe0AMP0ZK2QwuWep79BTGZCTMm_JgLyfpiz-9fps8JD0J5J3AxpBSpM5Yl_EQx2TtegPCHOo0U53mtk4Dh6NX_xw9cP8r_wW4b6IM
CitedBy_id crossref_primary_10_1038_s41392_022_01039_2
crossref_primary_10_17352_2455_5479_000090
crossref_primary_10_3390_jcm9082589
crossref_primary_10_1016_j_progpolymsci_2021_101410
crossref_primary_10_1016_j_crphar_2021_100072
crossref_primary_10_1007_s10787_023_01385_9
crossref_primary_10_1016_j_mehy_2020_110066
crossref_primary_10_3390_v12060629
crossref_primary_10_1073_pnas_2002589117
crossref_primary_10_5501_wjv_v11_i1_40
crossref_primary_10_3390_app13074471
crossref_primary_10_1016_j_vaccine_2022_02_044
crossref_primary_10_1016_j_micinf_2021_104850
crossref_primary_10_1080_17476348_2021_1823833
crossref_primary_10_3389_fmed_2021_745797
crossref_primary_10_1016_j_ijantimicag_2020_105950
crossref_primary_10_2174_1566524021666211117145216
crossref_primary_10_1080_08830185_2020_1800688
crossref_primary_10_1016_j_jim_2023_113586
crossref_primary_10_1021_acs_jmedchem_0c00606
crossref_primary_10_21307_PM_2020_59_3_15
crossref_primary_10_1152_ajpcell_00260_2020
crossref_primary_10_1016_j_bioorg_2020_104326
crossref_primary_10_3390_v16111798
crossref_primary_10_1016_j_amjms_2020_08_019
crossref_primary_10_2174_1389450121999201125201112
crossref_primary_10_1089_aid_2020_0136
crossref_primary_10_1128_jvi_00851_23
crossref_primary_10_1128_jvi_01305_24
crossref_primary_10_1038_s41392_021_00733_x
crossref_primary_10_3390_v13071192
crossref_primary_10_3390_life10090165
crossref_primary_10_1093_femsre_fuab035
crossref_primary_10_3389_fchem_2021_722633
crossref_primary_10_1038_s41598_023_29245_0
crossref_primary_10_1016_j_biopha_2022_113107
crossref_primary_10_3390_ijms22105251
crossref_primary_10_3389_fmed_2021_620990
crossref_primary_10_1007_s12035_021_02399_6
crossref_primary_10_1007_s42995_023_00215_9
crossref_primary_10_1016_j_metop_2021_100103
crossref_primary_10_1016_j_phrs_2022_106189
crossref_primary_10_3390_microorganisms11092198
crossref_primary_10_1007_s12010_022_03885_w
crossref_primary_10_1186_s12985_024_02298_x
crossref_primary_10_3389_fphys_2020_00820
crossref_primary_10_1007_s40615_020_00871_y
crossref_primary_10_1210_endrev_bnaa011
crossref_primary_10_3390_biomedicines8110462
crossref_primary_10_7759_cureus_30622
crossref_primary_10_1080_07391102_2022_2112977
crossref_primary_10_1007_s11084_024_09648_3
crossref_primary_10_1161_CIRCULATIONAHA_120_047349
crossref_primary_10_3390_biomedicines9070779
crossref_primary_10_1007_s11224_022_01921_3
crossref_primary_10_2174_1574888X15666200705213751
crossref_primary_10_1016_j_biochi_2020_05_012
crossref_primary_10_7554_eLife_62522
crossref_primary_10_1002_jmv_26911
crossref_primary_10_1016_j_cell_2020_04_035
crossref_primary_10_1007_s12038_020_00067_w
crossref_primary_10_3389_fgwh_2021_602572
crossref_primary_10_3389_fnut_2021_672390
crossref_primary_10_1016_j_lfs_2020_118219
crossref_primary_10_1016_j_prp_2021_153647
crossref_primary_10_1016_j_meegid_2020_104384
crossref_primary_10_17116_Cardiobulletin20221703129
crossref_primary_10_1016_j_mayocp_2021_07_005
crossref_primary_10_3389_fmolb_2021_708336
crossref_primary_10_1016_j_ejps_2020_105495
crossref_primary_10_1111_bcpt_13600
crossref_primary_10_3389_fgene_2021_599261
crossref_primary_10_1080_17460441_2022_2029843
crossref_primary_10_1016_j_crchbi_2022_100023
crossref_primary_10_1016_j_crmicr_2020_06_003
crossref_primary_10_1016_j_hjc_2020_05_007
crossref_primary_10_1021_acsinfecdis_0c00343
crossref_primary_10_1128_JVI_00140_21
crossref_primary_10_1002_ptr_7084
crossref_primary_10_2222_jsv_69_61
crossref_primary_10_1080_15548627_2022_2116677
crossref_primary_10_14233_ajchem_2020_22891
crossref_primary_10_1128_cmr_00188_21
crossref_primary_10_1128_JVI_00635_20
crossref_primary_10_1128_AAC_01581_21
crossref_primary_10_1016_j_ejmg_2021_104227
crossref_primary_10_3892_ijo_2022_5329
crossref_primary_10_1093_femsre_fuac042
crossref_primary_10_1007_s42242_020_00114_3
crossref_primary_10_1007_s00228_023_03517_0
crossref_primary_10_3390_biom11081126
crossref_primary_10_3390_ijms22105336
crossref_primary_10_2174_1381612828666220506142117
crossref_primary_10_18632_aging_203823
crossref_primary_10_3389_fimmu_2021_597399
crossref_primary_10_1183_23120541_00405_2020
crossref_primary_10_1016_j_apsb_2020_10_006
crossref_primary_10_1016_j_bcp_2020_114225
crossref_primary_10_1111_cts_13052
crossref_primary_10_2174_1566524021666210803154250
crossref_primary_10_53446_actamednicomedia_1253701
crossref_primary_10_4103_1995_7645_304293
crossref_primary_10_1016_j_jiph_2022_12_019
crossref_primary_10_1080_07391102_2020_1775704
crossref_primary_10_1016_j_bmc_2020_115757
crossref_primary_10_1172_JCI147973
crossref_primary_10_33611_trs_2021_011
crossref_primary_10_1016_j_intimp_2023_109919
crossref_primary_10_1021_acsptsci_0c00106
crossref_primary_10_1007_s11224_022_01991_3
crossref_primary_10_3389_fimmu_2021_791017
crossref_primary_10_1007_s41969_022_00173_0
crossref_primary_10_1073_pnas_2021450118
crossref_primary_10_3390_pharmaceutics13111759
crossref_primary_10_1371_journal_ppat_1009500
crossref_primary_10_1111_nep_13814
crossref_primary_10_1128_AAC_00754_20
crossref_primary_10_1128_jvi_01853_24
crossref_primary_10_1007_s12010_023_04439_4
crossref_primary_10_1177_19458924211059639
crossref_primary_10_1124_molpharm_120_000119
crossref_primary_10_1007_s11055_021_01082_6
crossref_primary_10_1007_s13596_023_00723_0
crossref_primary_10_3390_molecules26010142
crossref_primary_10_3390_s20154289
crossref_primary_10_7554_eLife_77444
crossref_primary_10_3390_antiox9060518
crossref_primary_10_3390_v15102124
crossref_primary_10_1016_j_mayocp_2020_06_018
crossref_primary_10_1002_ptr_7151
crossref_primary_10_3389_bjbs_2021_10238
crossref_primary_10_1002_biof_2084
crossref_primary_10_2174_1389557521666210412161157
crossref_primary_10_1186_s12902_020_00626_0
crossref_primary_10_1002_rmv_2207
crossref_primary_10_1177_11786302241271545
crossref_primary_10_1016_j_coviro_2023_101303
crossref_primary_10_1038_s41467_020_20457_w
crossref_primary_10_4252_wjsc_v12_i9_1013
crossref_primary_10_1002_jcph_1641
crossref_primary_10_1016_j_jmgm_2020_107710
crossref_primary_10_1080_07391102_2023_2169762
crossref_primary_10_5500_wjt_v11_i8_344
crossref_primary_10_1128_jvi_01992_22
crossref_primary_10_1016_j_bbrc_2020_05_179
crossref_primary_10_1016_j_mehy_2021_110736
crossref_primary_10_1002_rmv_2223
crossref_primary_10_1007_s10096_020_03961_1
crossref_primary_10_31832_smj_1092699
crossref_primary_10_1016_j_biopha_2020_111193
crossref_primary_10_3390_ijms23094576
crossref_primary_10_1097_CCE_0000000000000284
crossref_primary_10_1016_j_phrs_2020_104853
crossref_primary_10_1016_j_ijid_2021_05_042
crossref_primary_10_1016_j_csbj_2020_07_017
crossref_primary_10_3389_fphar_2020_615398
crossref_primary_10_1016_j_jff_2024_106561
crossref_primary_10_15360_1813_9779_2022_5_18_23
crossref_primary_10_3390_cells12030445
crossref_primary_10_1093_jncics_pkac035
crossref_primary_10_2174_1389557522666220104151225
crossref_primary_10_2174_1568026622666220726122339
crossref_primary_10_1002_med_21919
crossref_primary_10_3389_fphar_2020_01258
crossref_primary_10_1016_j_isci_2021_102254
crossref_primary_10_3389_fnins_2021_694446
crossref_primary_10_1098_rsfs_2020_0081
crossref_primary_10_1002_jcp_30041
crossref_primary_10_2174_0929867328666210526111318
crossref_primary_10_3389_fmicb_2020_01576
crossref_primary_10_3389_fmed_2020_582793
crossref_primary_10_1021_acs_analchem_2c04988
crossref_primary_10_1128_aac_00452_22
crossref_primary_10_1146_annurev_pharmtox_061220_093932
crossref_primary_10_1111_bph_15092
crossref_primary_10_1007_s43440_022_00388_7
crossref_primary_10_1016_j_eururo_2020_06_014
crossref_primary_10_1016_j_phrs_2020_104837
crossref_primary_10_1186_s12905_023_02378_0
crossref_primary_10_1021_acschemneuro_0c00174
crossref_primary_10_3390_v15020271
crossref_primary_10_1016_j_ebiom_2021_103255
crossref_primary_10_3389_fimmu_2020_01229
crossref_primary_10_1128_JVI_01818_18
crossref_primary_10_1186_s12859_022_04724_9
crossref_primary_10_1007_s42535_022_00404_4
crossref_primary_10_1016_j_heliyon_2021_e06657
crossref_primary_10_1080_07391102_2020_1819881
crossref_primary_10_1016_j_heliyon_2021_e07863
crossref_primary_10_7883_yoken_JJID_2023_353
crossref_primary_10_1080_07391102_2020_1758791
crossref_primary_10_1186_s12974_020_01957_4
crossref_primary_10_3892_mmr_2022_12654
crossref_primary_10_1080_07391102_2021_1980109
crossref_primary_10_1016_j_pharmthera_2021_108027
crossref_primary_10_36233_0507_4088_47
crossref_primary_10_1016_j_jaim_2020_11_010
crossref_primary_10_1111_cpr_12939
crossref_primary_10_1111_joim_13101
crossref_primary_10_1080_0889311X_2024_2363756
crossref_primary_10_1016_j_molcel_2020_04_022
crossref_primary_10_3390_v12050491
crossref_primary_10_1371_journal_pcbi_1008461
crossref_primary_10_1016_j_jelectrocard_2020_07_009
crossref_primary_10_2147_IJN_S328090
crossref_primary_10_3389_fcimb_2020_560240
crossref_primary_10_1038_s41598_024_65296_7
crossref_primary_10_1016_j_bbadis_2020_166014
crossref_primary_10_1016_j_ijbiomac_2021_02_071
crossref_primary_10_1515_hsz_2022_0323
crossref_primary_10_1097_WNO_0000000000001455
crossref_primary_10_1152_ajpheart_00204_2022
crossref_primary_10_1017_dmp_2020_156
crossref_primary_10_4062_biomolther_2020_201
crossref_primary_10_1073_pnas_2206610119
crossref_primary_10_1038_s41467_022_33911_8
crossref_primary_10_1007_s11154_021_09678_6
crossref_primary_10_1016_j_jviromet_2021_114434
crossref_primary_10_1016_j_tice_2021_101497
crossref_primary_10_1042_BSR20212156
crossref_primary_10_3390_ijms21155224
crossref_primary_10_1039_D0SC05064D
crossref_primary_10_1080_02713683_2023_2291749
crossref_primary_10_1080_07391102_2020_1792346
crossref_primary_10_3390_antiox14030253
crossref_primary_10_1080_07391102_2020_1767690
crossref_primary_10_1016_j_ejmech_2023_115923
crossref_primary_10_1126_sciadv_abh3827
crossref_primary_10_3390_molecules25215007
crossref_primary_10_1055_a_1954_5605
crossref_primary_10_1016_j_cophys_2020_09_015
crossref_primary_10_3390_microorganisms10071284
crossref_primary_10_1016_j_biopha_2021_111685
crossref_primary_10_1186_s43088_021_00134_7
crossref_primary_10_2174_1568026620666200922112300
crossref_primary_10_3389_fgene_2020_00872
crossref_primary_10_1159_000533606
crossref_primary_10_1371_journal_pone_0243959
crossref_primary_10_1038_s41467_021_21171_x
crossref_primary_10_1080_14656566_2021_1898589
crossref_primary_10_3390_ani11072044
crossref_primary_10_7554_eLife_58716
crossref_primary_10_2147_IJN_S296383
crossref_primary_10_1016_j_vph_2021_106829
crossref_primary_10_1038_s41392_021_00653_w
crossref_primary_10_3389_fcimb_2020_575404
crossref_primary_10_1016_j_ebiom_2020_102907
crossref_primary_10_1016_j_jsbmb_2024_106625
crossref_primary_10_3892_mmr_2020_11510
crossref_primary_10_1016_j_sajb_2021_03_012
crossref_primary_10_1124_jpet_120_000123
crossref_primary_10_3390_v12050571
crossref_primary_10_1007_s11033_021_06390_1
crossref_primary_10_1002_med_21763
crossref_primary_10_3389_fmicb_2020_01840
crossref_primary_10_1007_s12195_020_00638_9
crossref_primary_10_1016_j_addr_2020_11_007
crossref_primary_10_1002_rmv_2174
crossref_primary_10_3390_v16060984
crossref_primary_10_12688_f1000research_36371_1
crossref_primary_10_1038_s41591_020_0868_6
crossref_primary_10_1093_gerona_glaa149
crossref_primary_10_1128_JVI_00398_21
crossref_primary_10_1134_S1990750822040035
crossref_primary_10_1155_mi_5720709
crossref_primary_10_3390_medicina56120716
crossref_primary_10_1016_j_biopha_2023_115493
crossref_primary_10_1002_nano_202100123
crossref_primary_10_1016_j_ajmo_2024_100068
crossref_primary_10_1016_j_jaci_2020_05_004
crossref_primary_10_3390_pathogens13020113
crossref_primary_10_1186_s12935_021_02129_x
crossref_primary_10_1016_j_clim_2021_108879
crossref_primary_10_3390_biomedicines11020419
crossref_primary_10_3390_v13030369
crossref_primary_10_1134_S0006297922060086
crossref_primary_10_3389_fphar_2020_01189
crossref_primary_10_3390_v14122728
crossref_primary_10_1111_cts_12881
crossref_primary_10_1080_14756366_2021_1886093
crossref_primary_10_1002_rmv_2194
crossref_primary_10_1016_j_clim_2020_108591
crossref_primary_10_2174_1871526521666210322160038
crossref_primary_10_1002_jmv_28212
crossref_primary_10_1126_scisignal_adn3785
crossref_primary_10_4236_ojrm_2020_92004
crossref_primary_10_3389_fimmu_2020_02163
crossref_primary_10_1038_s42003_020_1088_9
crossref_primary_10_3390_v11030280
crossref_primary_10_1111_1348_0421_12945
crossref_primary_10_12998_wjcc_v9_i22_6178
crossref_primary_10_1371_journal_ppat_1012365
crossref_primary_10_1016_j_ejphar_2020_173659
crossref_primary_10_1080_22221751_2021_1937329
crossref_primary_10_1016_j_drudis_2020_06_017
crossref_primary_10_15252_emmm_202013105
crossref_primary_10_2174_1381612826666201023143956
crossref_primary_10_1590_1678_4685_gmb_2020_0224
crossref_primary_10_1080_07391102_2020_1868335
crossref_primary_10_3389_fmolb_2020_00196
crossref_primary_10_1016_j_bbadis_2022_166527
crossref_primary_10_1096_fj_202002512
crossref_primary_10_3389_fcimb_2021_720357
crossref_primary_10_3390_v13061081
crossref_primary_10_3389_fgeed_2023_1320180
crossref_primary_10_1016_j_virusres_2024_199430
crossref_primary_10_1152_ajpheart_00217_2020
crossref_primary_10_1080_07391102_2021_1965658
crossref_primary_10_1016_j_ijbiomac_2021_06_015
crossref_primary_10_1177_1934578X211042540
crossref_primary_10_1016_j_annonc_2020_04_479
crossref_primary_10_1093_biolre_ioaa060
crossref_primary_10_1080_21655979_2022_2060453
crossref_primary_10_2174_1872210516666220819104853
crossref_primary_10_3390_vaccines9060596
crossref_primary_10_1038_s41538_024_00261_2
crossref_primary_10_1080_13543784_2024_2315128
crossref_primary_10_52586_4984
crossref_primary_10_1080_15376494_2021_1883779
crossref_primary_10_1080_17460441_2022_2050693
crossref_primary_10_3390_v15051129
crossref_primary_10_14218_ERHM_2020_00055
crossref_primary_10_1016_j_arcmed_2020_04_022
crossref_primary_10_1016_j_biopha_2020_110678
crossref_primary_10_33590_emj_20_00158
crossref_primary_10_1080_19396368_2021_1922537
crossref_primary_10_14336_AD_2020_0228
crossref_primary_10_1016_j_virol_2021_11_012
crossref_primary_10_3389_fphys_2020_599729
crossref_primary_10_15406_jlprr_2022_09_00280
crossref_primary_10_1016_j_cca_2021_04_022
crossref_primary_10_3389_fphar_2020_600369
crossref_primary_10_1371_journal_ppat_1011123
crossref_primary_10_26508_lsa_202201813
crossref_primary_10_4103_aja202246
crossref_primary_10_1007_s10787_020_00745_z
crossref_primary_10_3390_molecules25245952
crossref_primary_10_1016_j_jaci_2020_05_033
crossref_primary_10_1016_j_jtcme_2020_05_003
crossref_primary_10_1128_mSphere_00159_21
crossref_primary_10_1038_s41467_021_24156_y
crossref_primary_10_1177_11795735221102231
crossref_primary_10_1111_imr_13084
crossref_primary_10_2174_0929867328666210420103021
crossref_primary_10_1128_jvi_00102_24
crossref_primary_10_1016_j_meegid_2020_104669
crossref_primary_10_1021_acsnano_0c04006
crossref_primary_10_1042_EBC20210005
crossref_primary_10_1016_j_freeradbiomed_2021_05_033
crossref_primary_10_1134_S1022795421050057
crossref_primary_10_1016_j_virol_2024_110218
crossref_primary_10_1093_cvr_cvab322
crossref_primary_10_1080_14779072_2020_1797491
crossref_primary_10_1002_cbf_3591
crossref_primary_10_1016_j_jsps_2022_01_005
crossref_primary_10_3389_fgene_2022_805880
crossref_primary_10_1016_j_bbrc_2021_01_104
crossref_primary_10_1016_j_jdsr_2021_07_001
crossref_primary_10_1080_13813455_2020_1788606
crossref_primary_10_3390_pathogens9070546
crossref_primary_10_1016_j_micpath_2020_104621
crossref_primary_10_1002_jmv_27615
crossref_primary_10_3390_cancers12082186
crossref_primary_10_2174_1389201023666220507003726
crossref_primary_10_3390_v11090837
crossref_primary_10_25040_ntsh2021_01_05
crossref_primary_10_3389_fcvm_2020_613255
crossref_primary_10_1016_j_critrevonc_2021_103491
crossref_primary_10_1128_JVI_00649_19
crossref_primary_10_1093_cvr_cvaa106
crossref_primary_10_1038_s41467_021_24342_y
crossref_primary_10_1002_ptr_6711
crossref_primary_10_1007_s00345_020_03284_y
crossref_primary_10_1002_fft2_107
crossref_primary_10_1016_j_job_2022_04_004
crossref_primary_10_1007_s12010_020_03475_8
crossref_primary_10_1126_scisignal_abd0334
crossref_primary_10_1371_journal_ppat_1009013
crossref_primary_10_18097_pbmc20226803157
crossref_primary_10_1016_j_annonc_2020_06_023
crossref_primary_10_1016_j_ejmech_2023_115719
crossref_primary_10_1111_jcmm_18490
crossref_primary_10_3928_19382359_20210224_01
crossref_primary_10_1016_j_biochi_2020_07_001
crossref_primary_10_3389_fimmu_2020_552925
crossref_primary_10_1038_s41467_021_21213_4
crossref_primary_10_3390_microorganisms8111704
crossref_primary_10_1016_j_cell_2020_02_052
crossref_primary_10_1038_s41598_021_02297_w
crossref_primary_10_1016_j_jelectrocard_2021_03_001
crossref_primary_10_3897_rrpharmacology_6_53633
crossref_primary_10_1371_journal_ppat_1012653
crossref_primary_10_1038_s42003_022_03613_4
crossref_primary_10_1080_07391102_2021_1891139
crossref_primary_10_3389_fmolb_2021_725528
Cites_doi 10.1016/j.coviro.2017.03.018
10.1128/JVI.02232-10
10.1128/JVI.03677-13
10.1073/pnas.0603082103
10.1016/j.phrp.2015.08.006
10.1128/JVI.01118-06
10.26719/2013.19.supp1.S12
10.1128/JVI.79.5.2910-2919.2005
10.1016/S0140-6736(03)15259-2
10.1371/journal.ppat.1003774
10.1016/S0140-6736(03)14630-2
10.1002/path.4458
10.1056/NEJMoa030747
10.1128/JVI.01818-18
10.1056/NEJMoa030685
10.1056/NEJMoa1211721
10.1016/j.antiviral.2015.01.011
10.1128/JVI.03372-12
10.1128/JVI.02202-13
10.1016/j.semcdb.2015.09.021
10.1016/S0140-6736(03)13077-2
10.1128/JVI.03799-13
10.1371/journal.pone.0035876
10.1128/JVI.00983-14
10.1056/NEJMoa030781
10.1128/JVI.01542-10
10.1074/jbc.R109.021006
10.1093/infdis/jiv246
10.2353/ajpath.2008.071060
10.1073/pnas.0711976105
10.1128/MCB.26.3.965-975.2006
10.1128/JVI.02693-15
10.1038/nrmicro.2016.81
10.1016/j.virol.2017.11.012
10.1128/JVI.00128-13
10.1002/1096-9896(2000)9999:9999<::AID-PATH743>3.0.CO;2-T
10.1016/j.ajpath.2015.10.024
10.1074/jbc.M105044200
10.1038/nature03326
10.1016/j.pupt.2015.07.001
10.1016/j.antiviral.2013.09.028
10.1128/JVI.02062-10
10.1002/path.1038
10.1128/JVI.01890-13
10.1128/JVI.05300-11
10.1038/nrmicro2147
10.1128/JVI.00124-15
10.1016/S0198-8859(02)00433-0
10.1016/j.immuni.2010.03.012
ContentType Journal Article
Copyright Copyright © 2019 American Society for Microbiology.
Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology
Copyright_xml – notice: Copyright © 2019 American Society for Microbiology.
– notice: Copyright © 2019 American Society for Microbiology. 2019 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1128/JVI.01815-18
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Role of TMPRSS2 in Coronavirus Infection In Vivo
EISSN 1098-5514
ExternalDocumentID PMC6401451
30626688
10_1128_JVI_01815_18
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: JP17fk0108313; JP18fk0108058
– fundername: ;
  grantid: 16K09951; 18H02665
– fundername: ;
  grantid: H25-Shinko-Wakate-004
– fundername: ;
  grantid: 27A1102
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
N9A
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c412t-ab571a1a08b1741409ee0332f15cfac52024b3e94616e80109aa9ab7eb55ca403
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 14:13:01 EDT 2025
Fri Jul 11 03:33:24 EDT 2025
Thu Apr 03 07:10:08 EDT 2025
Tue Jul 01 01:02:59 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords TMPRSS2
MERS-CoV
immunopathology
animal model
SARS-CoV
Language English
License Copyright © 2019 American Society for Microbiology.
This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-ab571a1a08b1741409ee0332f15cfac52024b3e94616e80109aa9ab7eb55ca403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. 2019. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol 93:e01815-18. https://doi.org/10.1128/JVI.01815-18.
N.I.-Y. and T.O. contributed equally to this work.
ORCID 0000-0002-8194-7727
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6401451
PMID 30626688
PQID 2179346162
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6401451
proquest_miscellaneous_2179346162
pubmed_primary_30626688
crossref_citationtrail_10_1128_JVI_01815_18
crossref_primary_10_1128_JVI_01815_18
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-15
PublicationDateYYYYMMDD 2019-03-15
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAlternate J Virol
PublicationYear 2019
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
Kido H (e_1_3_3_35_2) 2008; 3
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_18_2
  doi: 10.1016/j.coviro.2017.03.018
– ident: e_1_3_3_38_2
  doi: 10.1128/JVI.02232-10
– ident: e_1_3_3_21_2
  doi: 10.1128/JVI.03677-13
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.0603082103
– ident: e_1_3_3_10_2
  doi: 10.1016/j.phrp.2015.08.006
– ident: e_1_3_3_13_2
  doi: 10.1128/JVI.01118-06
– ident: e_1_3_3_9_2
  doi: 10.26719/2013.19.supp1.S12
– ident: e_1_3_3_27_2
  doi: 10.1128/JVI.79.5.2910-2919.2005
– ident: e_1_3_3_7_2
  doi: 10.1016/S0140-6736(03)15259-2
– ident: e_1_3_3_19_2
  doi: 10.1371/journal.ppat.1003774
– ident: e_1_3_3_6_2
  doi: 10.1016/S0140-6736(03)14630-2
– ident: e_1_3_3_47_2
  doi: 10.1002/path.4458
– ident: e_1_3_3_3_2
  doi: 10.1056/NEJMoa030747
– ident: e_1_3_3_26_2
  doi: 10.1128/JVI.01818-18
– ident: e_1_3_3_4_2
  doi: 10.1056/NEJMoa030685
– ident: e_1_3_3_8_2
  doi: 10.1056/NEJMoa1211721
– ident: e_1_3_3_44_2
  doi: 10.1016/j.antiviral.2015.01.011
– ident: e_1_3_3_16_2
  doi: 10.1128/JVI.03372-12
– ident: e_1_3_3_39_2
  doi: 10.1128/JVI.02202-13
– ident: e_1_3_3_49_2
  doi: 10.1016/j.semcdb.2015.09.021
– ident: e_1_3_3_5_2
  doi: 10.1016/S0140-6736(03)13077-2
– ident: e_1_3_3_20_2
  doi: 10.1128/JVI.03799-13
– ident: e_1_3_3_37_2
  doi: 10.1371/journal.pone.0035876
– ident: e_1_3_3_25_2
  doi: 10.1128/JVI.00983-14
– ident: e_1_3_3_2_2
  doi: 10.1056/NEJMoa030781
– ident: e_1_3_3_14_2
  doi: 10.1128/JVI.01542-10
– ident: e_1_3_3_31_2
  doi: 10.1074/jbc.R109.021006
– ident: e_1_3_3_23_2
  doi: 10.1093/infdis/jiv246
– ident: e_1_3_3_24_2
  doi: 10.2353/ajpath.2008.071060
– ident: e_1_3_3_28_2
  doi: 10.1073/pnas.0711976105
– ident: e_1_3_3_33_2
  doi: 10.1128/MCB.26.3.965-975.2006
– ident: e_1_3_3_50_2
  doi: 10.1128/JVI.02693-15
– ident: e_1_3_3_12_2
  doi: 10.1038/nrmicro.2016.81
– ident: e_1_3_3_40_2
  doi: 10.1016/j.virol.2017.11.012
– ident: e_1_3_3_17_2
  doi: 10.1128/JVI.00128-13
– ident: e_1_3_3_32_2
  doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH743>3.0.CO;2-T
– ident: e_1_3_3_48_2
  doi: 10.1016/j.ajpath.2015.10.024
– ident: e_1_3_3_34_2
  doi: 10.1074/jbc.M105044200
– ident: e_1_3_3_29_2
  doi: 10.1038/nature03326
– ident: e_1_3_3_36_2
  doi: 10.1016/j.pupt.2015.07.001
– ident: e_1_3_3_43_2
  doi: 10.1016/j.antiviral.2013.09.028
– ident: e_1_3_3_41_2
  doi: 10.1128/JVI.02062-10
– ident: e_1_3_3_46_2
  doi: 10.1002/path.1038
– ident: e_1_3_3_15_2
  doi: 10.1128/JVI.01890-13
– ident: e_1_3_3_42_2
  doi: 10.1128/JVI.05300-11
– ident: e_1_3_3_11_2
  doi: 10.1038/nrmicro2147
– ident: e_1_3_3_22_2
  doi: 10.1128/JVI.00124-15
– ident: e_1_3_3_51_2
  doi: 10.1016/S0198-8859(02)00433-0
– volume: 3
  start-page: 167
  year: 2008
  ident: e_1_3_3_35_2
  article-title: Host envelope glycoprotein processing proteases are indispensable for entry into human cells by seasonal and highly pathogenic avian influenza viruses
  publication-title: J Mol Genet Med
– ident: e_1_3_3_45_2
  doi: 10.1016/j.immuni.2010.03.012
SSID ssj0014464
Score 2.6906056
Snippet Broad-spectrum antiviral drugs against highly pathogenic coronaviruses and other emerging viruses are desirable to enable a rapid response to pandemic threats....
Transmembrane serine protease TMPRSS2 activates the spike protein of highly pathogenic human coronaviruses such as severe acute respiratory syndrome-related...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Animals
Cell Line
Chlorocebus aethiops
Coronavirus Infections - immunology
Coronavirus Infections - metabolism
Coronavirus Infections - virology
Disease Models, Animal
Female
Humans
Lung - immunology
Lung - metabolism
Lung - virology
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
Middle East Respiratory Syndrome Coronavirus - immunology
Pathogenesis and Immunity
Poly I-C - metabolism
SARS Virus
Serine Endopeptidases - metabolism
Severe Acute Respiratory Syndrome - immunology
Severe Acute Respiratory Syndrome - metabolism
Severe Acute Respiratory Syndrome - virology
Spike Glycoprotein, Coronavirus - metabolism
Toll-Like Receptor 3 - metabolism
Vero Cells
Title TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection
URI https://www.ncbi.nlm.nih.gov/pubmed/30626688
https://www.proquest.com/docview/2179346162
https://pubmed.ncbi.nlm.nih.gov/PMC6401451
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtpAEF3RVK3yUvVeetNWap-QU3t95TFCbSESVVRIRJ-sXdsEi2AjsIuSn-ovdmbXNgtNpDYvFjLrtcUcZmfWM-cQ8tFBWjdYN42AJb7hxI5ldAMRGY4dQ77hChbLRHH43eufOScTd9Jq_daqlspCHEXXN_aV3MWqcA7sil2y_2HZZlI4AZ_BvnAEC8Px32w8PP0xGjFs21PCVYqv4TxdlevOaAnxYKzqfbEJJEfxYcW4VNU2HqerDb9SVTC46Z5IZbTLdSUc3kNyA_5LTjaoarayW4JZ7JbT9-cHG15w42e-nqVzvuHKj-fzvNnTnfNFKSWOOmMeo6BTs9UzSxfpdSmXhnKebi_pw3p7Uc3VT-Nknuo7FtgkZRuqZ1NrEkDvpdWlDtMt75TurzFVtqX4MKxWykUjAyrGeboPVyqLFVa9m5cGhu0OJ-eDI-Qocw3l9jWULBcSJpBDQdCitAb3qLhPhz3PkdrG98h9BnkJrgTfJk1NEebWTk1Pj49dd1qw4LN-40PysL7Lbjj0V46zX6qrxT7jx-RRZWd6rBD4hLSS7Cl5oGRMr56RdYVDquGQFjmVOKQKhxRwSPdwSNOMAg5phUOaT6nCIVU4pBKHVMMhbXD4nJx9_TLu9Y1KzMOIHIsVBheub3GLm4GAJBhp1pLEtG02tdxoyiOXQbAo7KTreJaXBPjClvMuF34iXDfijmm_IAdZniWvCI2juOubQexyG2Ir1hV-YE99k_le1xTCDtqkU_-mYVQx3aPgymUoM14WhGCMUBojtGD0p2b0UjG83DLuQ22eEFwwvlfjWZKX65DhIofPzdrkpTJXM1Nt5zbxdwzZDEB6991vsnQmad4rqL2-85VvyOH27_eWHBSrMnkHIXQh3kvY_gFVGsui
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TMPRSS2+Contributes+to+Virus+Spread+and+Immunopathology+in+the+Airways+of+Murine+Models+after+Coronavirus+Infection&rft.jtitle=Journal+of+virology&rft.au=Iwata-Yoshikawa%2C+Naoko&rft.au=Okamura%2C+Tadashi&rft.au=Shimizu%2C+Yukiko&rft.au=Hasegawa%2C+Hideki&rft.date=2019-03-15&rft.pub=American+Society+for+Microbiology&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=93&rft.issue=6&rft_id=info:doi/10.1128%2FJVI.01815-18&rft_id=info%3Apmid%2F30626688&rft.externalDocID=PMC6401451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon