Cross-subject emotion recognition using hierarchical feature optimization and support vector machine with multi-kernel collaboration

Objective . Due to individual differences, it is greatly challenging to realize the multiple types of emotion identification across subjects. Approach . In this research, a hierarchical feature optimization method is proposed in order to represent emotional states effectively based on peripheral phy...

Full description

Saved in:
Bibliographic Details
Published inPhysiological measurement Vol. 44; no. 12; pp. 125006 - 125020
Main Authors Pan, Lizheng, Tang, Ziqin, Wang, Shunchao, Song, Aiguo
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective . Due to individual differences, it is greatly challenging to realize the multiple types of emotion identification across subjects. Approach . In this research, a hierarchical feature optimization method is proposed in order to represent emotional states effectively based on peripheral physiological signals. Firstly, sparse learning combined with binary search is employed to achieve feature selection of single signals. Then an improved fast correlation-based filter is proposed to implement fusion optimization of multi-channel signal features. Aiming at overcoming the limitations of the support vector machine (SVM), which uses a single kernel function to make decisions, the multi-kernel function collaboration strategy is proposed to improve the classification performance of SVM. Main results.  The effectiveness of the proposed method is verified on the DEAP dataset. Experimental results show that the proposed method presents a competitive performance for four cross-subject  types of emotion identification with an accuracy of 84% (group 1) and 85.07% (group 2).  Significance . The proposed model with hierarchical feature optimization and SVM with multi-kernel function collaboration demonstrates superior emotion recognition accuracy compared to state-of-the-art techniques. In addition, the analysis based on DEAP dataset composition characteristics presents a novel perspective to explore the emotion recognition issue more objectively and comprehensively.
AbstractList Objective. Due to individual differences, it is greatly challenging to realize the multiple types of emotion identification across subjects.Approach. In this research, a hierarchical feature optimization method is proposed in order to represent emotional states effectively based on peripheral physiological signals. Firstly, sparse learning combined with binary search is employed to achieve feature selection of single signals. Then an improved fast correlation-based filter is proposed to implement fusion optimization of multi-channel signal features. Aiming at overcoming the limitations of the support vector machine (SVM), which uses a single kernel function to make decisions, the multi-kernel function collaboration strategy is proposed to improve the classification performance of SVM.Main results. The effectiveness of the proposed method is verified on the DEAP dataset. Experimental results show that the proposed method presents a competitive performance for four cross-subject types of emotion identification with an accuracy of 84% (group 1) and 85.07% (group 2). Significance. The proposed model with hierarchical feature optimization and SVM with multi-kernel function collaboration demonstrates superior emotion recognition accuracy compared to state-of-the-art techniques. In addition, the analysis based on DEAP dataset composition characteristics presents a novel perspective to explore the emotion recognition issue more objectively and comprehensively.Objective. Due to individual differences, it is greatly challenging to realize the multiple types of emotion identification across subjects.Approach. In this research, a hierarchical feature optimization method is proposed in order to represent emotional states effectively based on peripheral physiological signals. Firstly, sparse learning combined with binary search is employed to achieve feature selection of single signals. Then an improved fast correlation-based filter is proposed to implement fusion optimization of multi-channel signal features. Aiming at overcoming the limitations of the support vector machine (SVM), which uses a single kernel function to make decisions, the multi-kernel function collaboration strategy is proposed to improve the classification performance of SVM.Main results. The effectiveness of the proposed method is verified on the DEAP dataset. Experimental results show that the proposed method presents a competitive performance for four cross-subject types of emotion identification with an accuracy of 84% (group 1) and 85.07% (group 2). Significance. The proposed model with hierarchical feature optimization and SVM with multi-kernel function collaboration demonstrates superior emotion recognition accuracy compared to state-of-the-art techniques. In addition, the analysis based on DEAP dataset composition characteristics presents a novel perspective to explore the emotion recognition issue more objectively and comprehensively.
. Due to individual differences, it is greatly challenging to realize the multiple types of emotion identification across subjects. . In this research, a hierarchical feature optimization method is proposed in order to represent emotional states effectively based on peripheral physiological signals. Firstly, sparse learning combined with binary search is employed to achieve feature selection of single signals. Then an improved fast correlation-based filter is proposed to implement fusion optimization of multi-channel signal features. Aiming at overcoming the limitations of the support vector machine (SVM), which uses a single kernel function to make decisions, the multi-kernel function collaboration strategy is proposed to improve the classification performance of SVM.  The effectiveness of the proposed method is verified on the DEAP dataset. Experimental results show that the proposed method presents a competitive performance for four cross-subject  types of emotion identification with an accuracy of 84% (group 1) and 85.07% (group 2).  . The proposed model with hierarchical feature optimization and SVM with multi-kernel function collaboration demonstrates superior emotion recognition accuracy compared to state-of-the-art techniques. In addition, the analysis based on DEAP dataset composition characteristics presents a novel perspective to explore the emotion recognition issue more objectively and comprehensively.
Objective . Due to individual differences, it is greatly challenging to realize the multiple types of emotion identification across subjects. Approach . In this research, a hierarchical feature optimization method is proposed in order to represent emotional states effectively based on peripheral physiological signals. Firstly, sparse learning combined with binary search is employed to achieve feature selection of single signals. Then an improved fast correlation-based filter is proposed to implement fusion optimization of multi-channel signal features. Aiming at overcoming the limitations of the support vector machine (SVM), which uses a single kernel function to make decisions, the multi-kernel function collaboration strategy is proposed to improve the classification performance of SVM. Main results.  The effectiveness of the proposed method is verified on the DEAP dataset. Experimental results show that the proposed method presents a competitive performance for four cross-subject  types of emotion identification with an accuracy of 84% (group 1) and 85.07% (group 2).  Significance . The proposed model with hierarchical feature optimization and SVM with multi-kernel function collaboration demonstrates superior emotion recognition accuracy compared to state-of-the-art techniques. In addition, the analysis based on DEAP dataset composition characteristics presents a novel perspective to explore the emotion recognition issue more objectively and comprehensively.
Author Wang, Shunchao
Song, Aiguo
Pan, Lizheng
Tang, Ziqin
Author_xml – sequence: 1
  givenname: Lizheng
  orcidid: 0000-0002-3698-0122
  surname: Pan
  fullname: Pan, Lizheng
  organization: Changzhou University School of Mechanical Engineering and Rail Transit, Changzhou 213164, People’s Republic of China
– sequence: 2
  givenname: Ziqin
  orcidid: 0000-0002-0511-7668
  surname: Tang
  fullname: Tang, Ziqin
  organization: Changzhou University School of Mechanical Engineering and Rail Transit, Changzhou 213164, People’s Republic of China
– sequence: 3
  givenname: Shunchao
  orcidid: 0000-0002-8471-5155
  surname: Wang
  fullname: Wang, Shunchao
  organization: Changzhou University School of Mechanical Engineering and Rail Transit, Changzhou 213164, People’s Republic of China
– sequence: 4
  givenname: Aiguo
  orcidid: 0000-0002-1982-6780
  surname: Song
  fullname: Song, Aiguo
  organization: Southeast University School of Instrument Science and Engineering, Nanjing 210096, People’s Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38029444$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rFDEchoNU7LZ69yQ5WnBs_u_kKIv_oOBFzyGT-U0360wyJpmK3vs9_Cx-MrO7tQeRhkBCeJ4f4X3P0EmIARB6TslrStr2knJFGyXX-tL2lDj1CK3un07Qimi1bjjn4hSd5bwjhNKWySfolLeEaSHECt1uUsy5yUu3A1cwTLH4GHACF6-DP9yX7MM13npINrmtd3bEA9iyJMBxLn7yP-2Bs6HHeZnnmAq-qcNiwpOtQoDfv777ssXTMhbffIUUYMQujqPtYjq4T9HjwY4Znt2d5-jLu7efNx-aq0_vP27eXDVOUFYaq6nQuiOic47roS4t9SDZoGTL-87qvne9WjvqVKuYHZiQUA9LmQbREsnP0cvj3DnFbwvkYiafHdSfBIhLNqzVck2YoLSiL-7QpZugN3Pyk00_zN_oKkCOgNsnmGC4Rygx-3bMvgqzr8Ic26mK-kdxvhwCKMn68SHx1VH0cTa7uKRQU3oIv_gPPk9gjRCGsrolIcrM_cD_AGeQtIA
CODEN PMEAE3
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3496652
Cites_doi 10.1109/TNNLS.2019.2899884
10.1002/nla.1971
10.1037/0022-3514.53.4.712
10.1109/TAFFC.2017.2712143
10.1186/s40537-020-00289-7
10.1109/ICBME.2018.8703559
10.1016/j.patcog.2017.12.013
10.1007/s10489-021-02927-w
10.1016/j.knosys.2022.108472
10.1007/s12559-022-10016-4
10.1016/j.eswa.2020.113768
10.1109/ACCESS.2020.3023871
10.1016/j.cmpb.2019.03.015
10.1109/ACCESS.2020.2985228
10.3390/s20072034
10.1007/s10916-020-01676-6
10.1016/j.sigpro.2022.108538
10.1109/T-AFFC.2011.15
10.1007/s10278-019-00224-0
10.1109/cvpr.2017.316
10.3390/jcm11154442
10.3390/e22050511
10.1023/A:1008280620621
10.1037/h0077714
10.3390/s20123491
10.1109/TCSS.2022.3153660
10.1016/j.compbiomed.2021.104696
10.3390/s20133765
10.1016/j.measurement.2020.108747
10.1109/ACCESS.2019.2962085
10.3390/app9163355
10.1007/s00521-019-04437-w
10.1016/j.ins.2019.07.040
10.1109/TCYB.2016.2586968
10.1007/s11760-022-02447-1
10.1007/s00521-022-07643-1
10.1109/NER52421.2023.10123837
10.1016/j.patcog.2020.107626
10.3390/ijerph17061941
10.1109/LSP.2022.3179946
ContentType Journal Article
Copyright 2023 Institute of Physics and Engineering in Medicine
2023 Institute of Physics and Engineering in Medicine.
Copyright_xml – notice: 2023 Institute of Physics and Engineering in Medicine
– notice: 2023 Institute of Physics and Engineering in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1361-6579/ad10c6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Physics
EISSN 1361-6579
ExternalDocumentID 38029444
10_1088_1361_6579_ad10c6
pmeaad10c6
Genre Journal Article
GrantInformation_xml – fundername: Jiangsu Graduate Scientific Research Innovation Program
  grantid: KYCX22_3021
– fundername: National Natural Science Foundation of China
  grantid: 61773078
  funderid: https://doi.org/10.13039/501100001809
– fundername: Industrial Technology Project Foundation of Changzhou Government
  grantid: CE20175040
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
UCJ
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c412t-a91499b04bcc39ffff959f52f6583dba9ddcd67c1c6862af245e2afa129e48053
IEDL.DBID IOP
ISSN 0967-3334
1361-6579
IngestDate Thu Jul 10 18:47:23 EDT 2025
Mon Jul 21 06:06:36 EDT 2025
Tue Jul 01 04:29:58 EDT 2025
Thu Apr 24 22:52:53 EDT 2025
Sun Aug 18 15:10:26 EDT 2024
Tue Aug 20 22:16:37 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords multi-kernel function collaboration
support vector machine
feature optimization
emotion recognition
feature selection
Language English
License This article is available under the terms of the IOP-Standard License.
2023 Institute of Physics and Engineering in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-a91499b04bcc39ffff959f52f6583dba9ddcd67c1c6862af245e2afa129e48053
Notes PMEA-105373.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0511-7668
0000-0002-8471-5155
0000-0002-3698-0122
0000-0002-1982-6780
OpenAccessLink https://iopscience.iop.org/article/10.1088/1361-6579/ad10c6/pdf
PMID 38029444
PQID 2895702411
PQPubID 23479
PageCount 15
ParticipantIDs iop_journals_10_1088_1361_6579_ad10c6
proquest_miscellaneous_2895702411
pubmed_primary_38029444
crossref_primary_10_1088_1361_6579_ad10c6
crossref_citationtrail_10_1088_1361_6579_ad10c6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physiological measurement
PublicationTitleAbbrev PMEA
PublicationTitleAlternate Physiol. Meas
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Pan (pmeaad10c6bib28) 2020; 22
Wang (pmeaad10c6bib39) 2021; 110
Zheng (pmeaad10c6bib47) 2019; 10
Hossain (pmeaad10c6bib14) 2019; 504
Taran (pmeaad10c6bib35) 2019; 173
Li (pmeaad10c6bib24) 2021; 172
Kononenko (pmeaad10c6bib21) 1997; 7
Lee (pmeaad10c6bib23) 2019; 9
Cho (pmeaad10c6bib3) 2020; 20
Huang (pmeaad10c6bib16) 2020; 8
Mehta (pmeaad10c6bib22) 2020; 33
Yu (pmeaad10c6bib44) 2004; 5
Kira (pmeaad10c6bib18) 1992
Vikrant (pmeaad10c6bib37) 2020; 7
Ganin (pmeaad10c6bib10) 2015; vol 37
Cimtay (pmeaad10c6bib5) 2020; 8
Press (pmeaad10c6bib29) 1988
Wang (pmeaad10c6bib40) 2022; 197
Sartipi (pmeaad10c6bib32) 2023
Su (pmeaad10c6bib34) 2020; 31
Koller (pmeaad10c6bib20) 1996
Ekman (pmeaad10c6bib7) 1987; 53
Gu (pmeaad10c6bib12) 2022; 9
Rahman (pmeaad10c6bib30) 2021; 136
Wagner (pmeaad10c6bib38) 2005
Wu (pmeaad10c6bib41) 2020; 8
Liu (pmeaad10c6bib25) 2022; 243
Gao (pmeaad10c6bib11) 2022; 29
Koelstra (pmeaad10c6bib19) 2012; 3
Bi (pmeaad10c6bib2) 2022; 34
Huang (pmeaad10c6bib17) 2017; 47
Russell (pmeaad10c6bib31) 1980; 39
Cimtay (pmeaad10c6bib4) 2020; 20
Zhang (pmeaad10c6bib46) 2022; 17
Shi (pmeaad10c6bib33) 2020; 32
Zhang (pmeaad10c6bib45) 2019
Wu (pmeaad10c6bib42) 2022; 52
Asghar (pmeaad10c6bib1) 2020; 20
Cisnal (pmeaad10c6bib6) 2022; 11
Omid (pmeaad10c6bib27) 2018
Miyajima (pmeaad10c6bib26) 2015; 22
Yin (pmeaad10c6bib43) 2020; 162
Feng (pmeaad10c6bib8) 2020; 17
Hong (pmeaad10c6bib13) 2018; 77
Tzeng (pmeaad10c6bib36) 2017
Ganapathy (pmeaad10c6bib9) 2021
Huang (pmeaad10c6bib15) 2022; 14
References_xml – volume: 31
  start-page: 124
  year: 2020
  ident: pmeaad10c6bib34
  article-title: Cell-coupled long short-term memory with $L$ -skip fusion mechanism for mood disorder detection through elicited audiovisual features
  publication-title: IEEE T Neur. Net. Lear.
  doi: 10.1109/TNNLS.2019.2899884
– volume: 22
  start-page: 548
  year: 2015
  ident: pmeaad10c6bib26
  article-title: Fast enclosure for the minimum norm least squares solution of the matrix equation AXB = C
  publication-title: Numer. Linear Algebr.
  doi: 10.1002/nla.1971
– volume: 53
  start-page: 712
  year: 1987
  ident: pmeaad10c6bib7
  article-title: Universals and cultural differences in the judgments of facial expressions of emotion
  publication-title: J. Pers. Soc. Psychol.
  doi: 10.1037/0022-3514.53.4.712
– volume: 10
  start-page: 417
  year: 2019
  ident: pmeaad10c6bib47
  article-title: Identifying stable patterns over time for emotion recognition from EEG
  publication-title: IEEE T. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2712143
– volume: 7
  start-page: 18
  year: 2020
  ident: pmeaad10c6bib37
  article-title: A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals
  publication-title: J. Big Data
  doi: 10.1186/s40537-020-00289-7
– start-page: 1
  year: 2018
  ident: pmeaad10c6bib27
  article-title: Emotion recognition with machine learning using EEG signals
  doi: 10.1109/ICBME.2018.8703559
– volume: 5
  start-page: 1205
  year: 2004
  ident: pmeaad10c6bib44
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J. Mach. Learn. Res.
– volume: 77
  start-page: 140
  year: 2018
  ident: pmeaad10c6bib13
  article-title: Classification of the emotional stress and physical stress using signal magnification and canonical correlation analysis
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2017.12.013
– volume: 52
  start-page: 8616
  year: 2022
  ident: pmeaad10c6bib42
  article-title: Generalized zero-shot emotion recognition from body gestures
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02927-w
– start-page: 284
  year: 1996
  ident: pmeaad10c6bib20
  article-title: Toward optimal feature selection
– volume: 243
  year: 2022
  ident: pmeaad10c6bib25
  article-title: ATDA: attentional temporal dynamic activation for speech emotion recognition
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108472
– volume: 14
  start-page: 1316
  year: 2022
  ident: pmeaad10c6bib15
  article-title: Generator-based domain adaptation method with knowledge free for cross-subject eeg emotion recognition
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-022-10016-4
– volume: 162
  year: 2020
  ident: pmeaad10c6bib43
  article-title: Locally robust EEG feature selection for individual-independent emotion recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113768
– start-page: 940
  year: 2005
  ident: pmeaad10c6bib38
  article-title: From Physiological Signals to Emotions: Implementing and Comparing Selected Methods for Feature Extraction and Classification
– year: 1988
  ident: pmeaad10c6bib29
– volume: 8
  start-page: 168865
  year: 2020
  ident: pmeaad10c6bib5
  article-title: Cross-subject multimodal emotion recognition based on hybrid fusion
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3023871
– volume: 173
  start-page: 157
  year: 2019
  ident: pmeaad10c6bib35
  article-title: Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method
  publication-title: Comput. Meth. Pro. Bio.
  doi: 10.1016/j.cmpb.2019.03.015
– volume: 8
  start-page: 66638
  year: 2020
  ident: pmeaad10c6bib41
  article-title: Identifying emotion labels from psychiatric social texts using a Bi-Directional LSTM-CNN model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2985228
– volume: 20
  start-page: 2034
  year: 2020
  ident: pmeaad10c6bib4
  article-title: Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition
  publication-title: Sensors
  doi: 10.3390/s20072034
– start-page: 4549
  year: 2021
  ident: pmeaad10c6bib9
  article-title: Emotion recognition using electrodermal activity signals and multiscale deep convolutional neural network
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-020-01676-6
– start-page: 129
  year: 1992
  ident: pmeaad10c6bib18
  article-title: The feature selection problem: traditional methods and a new algorithm
– volume: 197
  year: 2022
  ident: pmeaad10c6bib40
  article-title: Retargeted multi-view classification via structured sparse learning
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2022.108538
– volume: 3
  start-page: 18
  year: 2012
  ident: pmeaad10c6bib19
  article-title: DEAP: a database for emotion analysis using physiological signals
  publication-title: IEEE Trans. Affect Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 33
  start-page: 204
  year: 2020
  ident: pmeaad10c6bib22
  article-title: Computer-aided detection of incidental lumbar spine fractures from routine dual-energy X-ray absorptiometry (DEXA) studies using a support vector machine (SVM) classifier
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-019-00224-0
– start-page: 2962
  year: 2017
  ident: pmeaad10c6bib36
  article-title: Adversarial discriminative domain adaptation
  doi: 10.1109/cvpr.2017.316
– volume: 11
  start-page: 4442
  year: 2022
  ident: pmeaad10c6bib6
  article-title: Assessment of the patient’s emotional response with the robhand rehabilitation platform: a case series study
  publication-title: Clin. Med.
  doi: 10.3390/jcm11154442
– volume: 22
  year: 2020
  ident: pmeaad10c6bib28
  article-title: Emotional state recognition from peripheral physiological signals using fused nonlinear features and team-collaboration identification strategy
  publication-title: Entropy
  doi: 10.3390/e22050511
– volume: 7
  start-page: 39
  year: 1997
  ident: pmeaad10c6bib21
  article-title: Overcoming the myopia of inductive learning algorithms with ReliefF
  publication-title: Appl. Intell.
  doi: 10.1023/A:1008280620621
– volume: 39
  start-page: 1161
  year: 1980
  ident: pmeaad10c6bib31
  article-title: A circumplex model of affect
  publication-title: J. Personality Soc. Psychol.
  doi: 10.1037/h0077714
– volume: 20
  start-page: 3491
  year: 2020
  ident: pmeaad10c6bib3
  article-title: Spatio-temporal representation of an electoencephalogram for emotion recognition using a three-dimensional convolutional neural network
  publication-title: Sensors
  doi: 10.3390/s20123491
– volume: 9
  start-page: 1604
  year: 2022
  ident: pmeaad10c6bib12
  article-title: Multi-source domain transfer discriminative dictionary learning modeling for electroencephalogram-based emotion recognition
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2022.3153660
– volume: 136
  year: 2021
  ident: pmeaad10c6bib30
  article-title: Recognition of human emotions using EEG signals: a review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104696
– volume: 20
  start-page: 3765
  year: 2020
  ident: pmeaad10c6bib1
  article-title: An innovative multi-model neural network approach for feature selection in emotion recognition using deep feature clustering
  publication-title: Sensors-basel
  doi: 10.3390/s20133765
– volume: 172
  year: 2021
  ident: pmeaad10c6bib24
  article-title: Physiological-signal-based emotion recognition: an odyssey from methodology to philosophy
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108747
– volume: 8
  start-page: 3265
  year: 2020
  ident: pmeaad10c6bib16
  article-title: Multimodal emotion recognition based on ensemble convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962085
– start-page: 1156
  year: 2019
  ident: pmeaad10c6bib45
  article-title: Individual similarity guided transfer modeling for EEG-based emotion recognition
– volume: 9
  start-page: 3355
  year: 2019
  ident: pmeaad10c6bib23
  article-title: Fast emotion recognition based on single pulse PPG signal with convolutional neural
  publication-title: Netw. Appl. Sci-Basel
  doi: 10.3390/app9163355
– volume: 32
  start-page: 9267
  year: 2020
  ident: pmeaad10c6bib33
  article-title: An improved SIFT algorithm for robust emotion recognition under various face poses and illuminations
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-019-04437-w
– volume: 504
  start-page: 589
  year: 2019
  ident: pmeaad10c6bib14
  article-title: Emotion recognition using secure edge and cloud computing
  publication-title: Inform. Sciences
  doi: 10.1016/j.ins.2019.07.040
– volume: vol 37
  start-page: 1180
  year: 2015
  ident: pmeaad10c6bib10
  article-title: Unsupervised domain adaptation by backpropagation
– volume: 47
  start-page: 2389
  year: 2017
  ident: pmeaad10c6bib17
  article-title: Fault estimation for fuzzy delay systems: a minimum norm least squares solution approach
  publication-title: IEEE T. Cybern.
  doi: 10.1109/TCYB.2016.2586968
– volume: 17
  start-page: 2305
  year: 2022
  ident: pmeaad10c6bib46
  article-title: An attention-based hybrid deep learning model for EEG emotion recognition
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-022-02447-1
– volume: 34
  year: 2022
  ident: pmeaad10c6bib2
  article-title: Multi-domain fusion deep graph convolution neural network for EEG emotion recognition
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07643-1
– year: 2023
  ident: pmeaad10c6bib32
  article-title: Adversarial discriminative domain adaptation and transformers for EEG-based cross-subject emotion recognition
  doi: 10.1109/NER52421.2023.10123837
– volume: 110
  year: 2021
  ident: pmeaad10c6bib39
  article-title: A prototype-based SPD matrix network for domain adaptation EEG emotion recognition
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2020.107626
– volume: 17
  start-page: 1941
  year: 2020
  ident: pmeaad10c6bib8
  article-title: Academic emotion classification and recognition method for large-scale online learning environment—based on A-CNN and LSTM-ATT deep learning pipeline method
  publication-title: Int. J. Env. Res. Pub. He.
  doi: 10.3390/ijerph17061941
– volume: 29
  start-page: 1574
  year: 2022
  ident: pmeaad10c6bib11
  article-title: EEG-GCN: spatio-temporal and self-adaptive graph convolutional networks for single and multi-view EEG-based emotion recognition
  publication-title: IEEE Signal Process Lett.
  doi: 10.1109/LSP.2022.3179946
SSID ssj0011825
Score 2.384386
Snippet Objective . Due to individual differences, it is greatly challenging to realize the multiple types of emotion identification across subjects. Approach . In...
. Due to individual differences, it is greatly challenging to realize the multiple types of emotion identification across subjects. . In this research, a...
Objective. Due to individual differences, it is greatly challenging to realize the multiple types of emotion identification across subjects.Approach. In this...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 125006
SubjectTerms Algorithms
emotion recognition
Emotions - physiology
feature optimization
feature selection
Humans
multi-kernel function collaboration
Support Vector Machine
Title Cross-subject emotion recognition using hierarchical feature optimization and support vector machine with multi-kernel collaboration
URI https://iopscience.iop.org/article/10.1088/1361-6579/ad10c6
https://www.ncbi.nlm.nih.gov/pubmed/38029444
https://www.proquest.com/docview/2895702411
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RaD2wGNpy_KSQXDg4N04sbOxOKGKqiAVOFCpByTLduwe2s1GzYZD7_wPfgu_jLGTjVgEFSKKFB_Gih9j-7Pn8wzAC9xhMOuThPqytJTLXNJCZ4yWM-2NNLkQ8ZLY8Yf86IS_PxWnG_B6uAuzqPupf4LJzlFw14Q9Ia6YsixngbEhp7pkic034UZW5HkIX_Du46fBhIDAWfR2yT_lWluHNvFff4eYcak5vANfVoXsGCbnk3ZpJvbqN_-N_1mLu3C7h6DkTSd6DzZcNYKdXxwTjuDWcW9yH8HNyBG1zX34dhBqQpvWhLMb4roAQGSgIGE6sOjPSAivHQ0U2P_Eu-g6lCxwbpr3lz6JrkrStHXA_uRrtBuQeWR1uh_fw8kwiTxHeu4uK3dB1nR1F04O334-OKJ9FAdqOUuXVEvchEmTcGNtJj0-UkgvUo_YJyuNlqgkZT6zzIbLKtqnXDj8aAQijhc4R-zBVrWo3AMgDsFdzq3MtPFcz4zE_KmXaWG80IKzMUxXfaps7-I8RNq4UNHUXhQqtLoKra66Vh_DqyFH3bn3uEb2JXam6sd4c43c8zW5eu604lyxFF8ReIR16cfwbKVtCgd0sNLoyi3aRuEOWMwQOTGszn6nhkPRsiJJJef84T8W5RFspwjKOvrNY9haXrbuCYKopXkaB8tPRl8ZVg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIqpy4LFAWZ4GwYFDduPEzsZHVFi1QEsPVOrNtR2bQ7vZqNlw4M7_4Lfwyxg73hWLoEIiihQfbMWPsf2N5_MMwAvUMKhxaZq4qjIJE4VISpXTpJoop4UuOA-XxA4Oi71j9u6En8Q4p-EuzLyJS_8Ik72j4L4LIyGuHNO8oJ6xIcaqoqkpxk3lNuAqz4vcO8_f_3i0MiMgeObRNvmnkmt70Qb-7-8wM2w305twuqxozzI5G3ULPTJff_Ph-B8tuQU3IhQlr_vst-GKrQdw_RcHhQPYOoim9wFcC1xR096Bb7u-NUnbaX-GQ2wfCIisqEiY9mz6z8SH2Q6GCpQD4mxwIUrmuEbN4uVPouqKtF3jdQDyJdgPyCywO-2P7_6EmAS-Y3JmL2p7TtZk9i4cT99-2t1LYjSHxDCaLRIlUBkTOmXamFw4fAQXjmcOMVBeaSVQWKpiYqjxl1aUyxi3-FEISCwrca24B5v1vLb3gVgEeQUzIlfaMTXRAstnTmSldlxxRocwXo6rNNHVuY-4cS6Dyb0spe956Xte9j0_hFerEk3v5uOSvC9xQGWc6-0l-Z6v5WtmVknGJM3w5Z5PiMM9hGdLiZM4sb21RtV23rUSNWE-QQRFsTk7vSiuqpaXaSYYYw_-sSpPYevozVR-2D98_xC2M8RpPSPnEWwuLjr7GHHVQj8Jc-cngC4eug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-subject+emotion+recognition+using+hierarchical+feature+optimization+and+support+vector+machine%C2%A0with+multi-kernel+collaboration&rft.jtitle=Physiological+measurement&rft.au=Pan%2C+Lizheng&rft.au=Tang%2C+Ziqin&rft.au=Wang%2C+Shunchao&rft.au=Song%2C+Aiguo&rft.date=2023-12-01&rft.pub=IOP+Publishing&rft.eissn=1361-6579&rft.volume=44&rft.issue=12&rft_id=info:doi/10.1088%2F1361-6579%2Fad10c6&rft.externalDocID=pmeaad10c6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-3334&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-3334&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-3334&client=summon