Correlated prompt fission data in transport simulations
. Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ -ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g. , multiplicity-dependent neu...
Saved in:
Published in | The European physical journal. A, Hadrons and nuclei Vol. 54; no. 1; pp. 1 - 38 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2018
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | .
Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and
γ
-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data,
e.g.
, multiplicity-dependent neutron and
γ
-ray spectra, angular distributions of the emitted particles,
n
-
n
,
n
-
γ
, and
γ
-
γ
correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and
γ
rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and
γ
emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the
γ
-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation, safeguards, nuclear energy, and defense programs. This review provides an overview of the topic, starting from theoretical considerations of the fission process, with a focus on correlated signatures. It then explores the status of experimental correlated fission data and current efforts to address some of the known shortcomings. Numerical simulations employing the FREYA and CGMF codes are compared to experimental data for a wide range of correlated fission quantities. The inclusion of those codes into the MCNP6.2 and MCNPX - PoliMi transport codes is described and discussed in the context of relevant applications. The accuracy of the model predictions and their sensitivity to model assumptions and input parameters are discussed. Finally, a series of important experimental and theoretical questions that remain unanswered are presented, suggesting a renewed effort to address these shortcomings. |
---|---|
AbstractList | Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n -n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation, safeguards, nuclear energy, and defense programs. This review provides an overview of the topic, starting from theoretical considerations of the fission process, with a focus on correlated signatures. It then explores the status of experimental correlated fission data and current efforts to address some of the known shortcomings. Numerical simulations employing the FREYA and CGMF codes are compared to experimental data for a wide range of correlated fission quantities. The inclusion of those codes into the MCNP6.2 and MCNPX - PoliMi transport codes is described and discussed in the context of relevant applications. The accuracy of the model predictions and their sensitivity to model assumptions and input parameters are discussed. Finally, a series of important experimental and theoretical questions that remain unanswered are presented, suggesting a renewed effort to address these shortcomings. . Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ -ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g. , multiplicity-dependent neutron and γ -ray spectra, angular distributions of the emitted particles, n - n , n - γ , and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ -ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation, safeguards, nuclear energy, and defense programs. This review provides an overview of the topic, starting from theoretical considerations of the fission process, with a focus on correlated signatures. It then explores the status of experimental correlated fission data and current efforts to address some of the known shortcomings. Numerical simulations employing the FREYA and CGMF codes are compared to experimental data for a wide range of correlated fission quantities. The inclusion of those codes into the MCNP6.2 and MCNPX - PoliMi transport codes is described and discussed in the context of relevant applications. The accuracy of the model predictions and their sensitivity to model assumptions and input parameters are discussed. Finally, a series of important experimental and theoretical questions that remain unanswered are presented, suggesting a renewed effort to address these shortcomings. |
ArticleNumber | 9 |
Author | Talou, P. Nakae, L. Walker, C. Vogt, R. Sood, A. Marcath, M. J. Stetcu, I. Meierbachtol, K. Pozzi, S. A. Kawano, T. Jandel, M. Verbeke, J. Rusev, G. Jaffke, P. Andrews, M. T. Clarke, S. D. Randrup, J. Rising, M. E. |
Author_xml | – sequence: 1 givenname: P. surname: Talou fullname: Talou, P. organization: Nuclear Physics Group, Theoretical Division, Los Alamos National Laboratory – sequence: 2 givenname: R. surname: Vogt fullname: Vogt, R. email: rlvogt@lbl.gov organization: Nuclear & Chemical Sciences Division, Lawrence Livermore National Laboratory, Physics Department, University of California at Davis – sequence: 3 givenname: J. surname: Randrup fullname: Randrup, J. organization: Nuclear Science Division, Lawrence Berkeley National Laboratory – sequence: 4 givenname: M. E. surname: Rising fullname: Rising, M. E. organization: Monte Carlo Methods, Codes, and Applications Group, Los Alamos National Laboratory – sequence: 5 givenname: S. A. surname: Pozzi fullname: Pozzi, S. A. organization: Department of Nuclear Engineering and Radiological Sciences, University of Michigan – sequence: 6 givenname: J. surname: Verbeke fullname: Verbeke, J. organization: Nuclear & Chemical Sciences Division, Lawrence Livermore National Laboratory – sequence: 7 givenname: M. T. surname: Andrews fullname: Andrews, M. T. organization: Monte Carlo Methods, Codes, and Applications Group, Los Alamos National Laboratory – sequence: 8 givenname: S. D. surname: Clarke fullname: Clarke, S. D. organization: Department of Nuclear Engineering and Radiological Sciences, University of Michigan – sequence: 9 givenname: P. surname: Jaffke fullname: Jaffke, P. organization: Nuclear Physics Group, Theoretical Division, Los Alamos National Laboratory – sequence: 10 givenname: M. surname: Jandel fullname: Jandel, M. organization: Nuclear and Radiochemistry Group, Los Alamos National Laboratory, Department of Physics and Applied Physics, University of Massachusetts Lowell – sequence: 11 givenname: T. surname: Kawano fullname: Kawano, T. organization: Nuclear Physics Group, Theoretical Division, Los Alamos National Laboratory – sequence: 12 givenname: M. J. surname: Marcath fullname: Marcath, M. J. organization: Department of Nuclear Engineering and Radiological Sciences, University of Michigan – sequence: 13 givenname: K. surname: Meierbachtol fullname: Meierbachtol, K. organization: Nuclear Engineering and Nonproliferation, Los Alamos National Laboratory – sequence: 14 givenname: L. surname: Nakae fullname: Nakae, L. organization: Nuclear & Chemical Sciences Division, Lawrence Livermore National Laboratory – sequence: 15 givenname: G. surname: Rusev fullname: Rusev, G. organization: Nuclear and Radiochemistry Group, Los Alamos National Laboratory – sequence: 16 givenname: A. surname: Sood fullname: Sood, A. organization: Monte Carlo Methods, Codes, and Applications Group, Los Alamos National Laboratory – sequence: 17 givenname: I. surname: Stetcu fullname: Stetcu, I. organization: Nuclear Physics Group, Theoretical Division, Los Alamos National Laboratory – sequence: 18 givenname: C. surname: Walker fullname: Walker, C. organization: Nuclear and Radiochemistry Group, Los Alamos National Laboratory |
BackLink | https://www.osti.gov/servlets/purl/1424104$$D View this record in Osti.gov |
BookMark | eNp9kM1KxDAURoMoOI6-gKui6-q9SdqkSxn8A8GNgruQtqlmmElqkln49mamIiLoKoGcL_e754jsO-8MIacIF4gcLs241JeWAsoSKa-qEvbIDDnjZQ34sv99BzwkRzEuAYDTpp4RsfAhmJVOpi_G4NdjKgYbo_Wu6HXShXVFCtrF0YdURLveZDQ_xmNyMOhVNCdf55w831w_Le7Kh8fb-8XVQ9lxpKnU0mA71AwM64QUoqqB8UrWdW0AaN8z5C0KYXpN0dBKDKyVWlLa6lZII4DNydn0r4_JqtjZZLq3zjtnuqSQU47AM3Q-QXmD942JSS39JrjcS2Ejm6ZqGLBM0Ynqgo8xmEGNwa51-FAIamtRbS2qnUW1s6i28-WvUK6wU5C12NX_UTZFY57jXk340erv1Ccbd4ot |
CitedBy_id | crossref_primary_10_1016_j_nima_2018_09_060 crossref_primary_10_1103_PhysRevC_109_054613 crossref_primary_10_1088_1674_1137_ac2298 crossref_primary_10_1140_epja_s10050_020_00123_x crossref_primary_10_1103_PhysRevC_101_054607 crossref_primary_10_1140_epja_s10050_020_00108_w crossref_primary_10_1051_epjconf_202125600009 crossref_primary_10_1103_PhysRevC_100_054610 crossref_primary_10_1016_j_nima_2018_06_055 crossref_primary_10_1103_PhysRevC_105_044615 crossref_primary_10_1103_PhysRevC_104_024602 crossref_primary_10_1016_j_nds_2019_12_007 crossref_primary_10_1016_j_nima_2019_01_081 crossref_primary_10_1140_epja_s10050_024_01441_0 crossref_primary_10_1103_PhysRevC_100_014605 crossref_primary_10_1140_epja_i2019_12782_6 crossref_primary_10_1088_1361_6471_ab9f58 crossref_primary_10_1016_j_nima_2020_163907 crossref_primary_10_1088_1361_6471_abab4f crossref_primary_10_1103_PhysRevC_107_044608 crossref_primary_10_1016_j_cpc_2021_108087 crossref_primary_10_1088_1748_0221_17_09_P09004 crossref_primary_10_1103_PhysRevC_104_014611 crossref_primary_10_1080_00223131_2021_1954103 crossref_primary_10_1140_epja_s10050_020_00127_7 crossref_primary_10_1103_PhysRevC_102_014612 crossref_primary_10_1051_epjconf_202532207004 crossref_primary_10_1103_PhysRevC_97_044622 crossref_primary_10_1051_epjconf_202023903001 crossref_primary_10_1103_PhysRevC_98_044615 crossref_primary_10_1103_PhysRevC_102_024621 crossref_primary_10_1016_j_physletb_2020_135276 crossref_primary_10_1103_PhysRevC_99_054619 crossref_primary_10_1088_1361_6501_ad0612 crossref_primary_10_1140_epja_s10050_022_00877_6 crossref_primary_10_1007_s10967_021_07893_8 crossref_primary_10_1103_PhysRevC_108_064606 crossref_primary_10_1103_PhysRevLett_126_142502 crossref_primary_10_1016_j_radphyschem_2018_06_013 crossref_primary_10_3389_fphy_2020_00063 crossref_primary_10_1016_j_radphyschem_2020_109131 crossref_primary_10_1103_PhysRevC_102_034615 crossref_primary_10_1140_epja_s10050_024_01375_7 crossref_primary_10_1016_j_radphyschem_2024_111959 crossref_primary_10_1140_epja_s10050_022_00766_y crossref_primary_10_1051_epjconf_202125600016 crossref_primary_10_1080_00223131_2018_1467288 crossref_primary_10_1103_PhysRevLett_122_072503 crossref_primary_10_1016_j_ppnp_2022_103963 crossref_primary_10_1051_epjconf_202024205002 crossref_primary_10_1016_j_physletb_2022_137648 crossref_primary_10_1051_epjn_2022037 |
Cites_doi | 10.1016/0370-1573(90)90114-H 10.1103/PhysRevC.96.034603 10.1016/S0306-4549(00)00039-6 10.1103/PhysRevC.90.064611 10.1016/0375-9474(88)90508-8 10.13182/NSE14-120 10.1103/PhysRevC.84.044621 10.1016/j.nima.2006.06.046 10.1016/j.nima.2015.01.088 10.1051/epjconf/20159302020 10.1016/j.nds.2014.08.089 10.1103/PhysRevC.72.024601 10.1103/PhysRevC.87.024601 10.1007/978-3-319-07133-6 10.1103/PhysRev.87.366 10.1103/PhysRevC.95.064609 10.1016/j.nima.2016.06.002 10.1016/j.nds.2009.11.001 10.1103/PhysRevC.94.054604 10.1080/18811248.2010.9711637 10.1103/PhysRevC.94.064613 10.1103/PhysRev.113.527 10.13182/NSE88-A28498 10.1088/1674-1137/36/12/002 10.1051/epjconf/20100803004 10.1103/PhysRevC.96.064620 10.1016/j.anucene.2014.07.023 10.1103/PhysRevC.83.064612 10.1016/j.nima.2003.06.012 10.1103/PhysRevC.89.044601 10.1103/PhysRevC.90.054609 10.1103/PhysRevC.94.034611 10.1016/j.nima.2016.05.064 10.1103/PhysRevC.41.1941 10.1080/18811248.2000.9714976 10.1103/PhysRev.108.783 10.1016/j.phpro.2014.10.016 10.1103/PhysRevLett.116.122504 10.1016/j.cpc.2017.09.006 10.1016/j.nds.2015.12.009 10.1103/PhysRevC.93.014606 10.1016/S0375-9474(00)00155-X 10.1103/PhysRevC.80.024601 10.1016/j.cpc.2015.02.002 10.13182/NSE07-85 10.1103/PhysRev.126.2120 10.1142/S0218301307005843 10.1016/0375-9474(72)90296-5 10.1103/PhysRev.87.1139 10.13182/NSE13-96 10.1103/PhysRevC.80.014309 10.1103/PhysRevC.90.014602 10.1103/PhysRevC.85.021601 10.1016/j.nuclphysa.2005.04.002 10.1016/j.nds.2011.11.002 10.1103/PhysRev.129.2133 10.1103/RevModPhys.47.713 10.1016/0029-5582(65)90589-4 10.1103/PhysRevC.75.064313 10.1016/0375-9474(89)90206-6 10.13182/NSE15-35 10.1103/PhysRevC.87.044607 10.1140/epja/i2017-12188-6 10.1140/epja/i2015-15177-9 10.1103/PhysRevLett.104.212501 10.13182/NSE82-A18973 10.1103/PhysRevC.92.014618 10.1103/PhysRevC.87.044602 10.1016/0029-5582(63)90785-5 10.1103/PhysRevC.86.024610 10.1016/0031-9163(65)90020-X 10.1016/S0168-9002(96)80040-4 10.1016/j.nima.2016.02.011 10.1016/0168-9002(86)90651-0 10.1134/S1063778809100159 10.1103/PhysRevC.85.024608 10.1016/j.nima.2012.07.040 10.1016/j.nima.2009.05.131 10.1038/35057204 10.1016/S0375-9474(98)00008-6 10.1016/j.phpro.2015.04.025 10.1103/PhysRevC.29.885 10.1016/j.nima.2003.09.029 10.1016/j.nds.2015.12.002 10.1103/PhysRevLett.107.132501 10.1016/j.nima.2016.06.125 10.13182/NSE11-86 10.1103/PhysRevLett.106.132503 10.1016/0092-640X(88)90016-2 10.13182/NSE82-5 10.3103/S1062873808060130 10.1016/0022-3107(69)90060-4 10.1103/PhysRevC.89.034603 10.1016/j.nima.2017.10.097 10.1016/j.nima.2015.04.044 10.1142/9789813229426_0092 10.1103/PhysRevC.3.2034 10.1103/PhysRev.56.426 10.1051/epjconf/201714604003 10.1103/PhysRevC.87.051602 10.1016/0306-4549(96)00004-7 10.1103/PhysRevC.95.054603 10.1088/0954-3899/39/5/055103 10.1103/PhysRevC.34.218 10.1016/j.nds.2009.10.004 10.1016/S0375-9474(02)01321-0 10.1103/PhysRevC.22.638 10.1103/PhysRevC.85.014605 10.1103/PhysRevLett.35.1563 10.3938/jkps.59.1654 10.1103/PhysRevC.89.014611 10.1080/18811248.1995.9731725 10.1103/PhysRevC.7.1173 10.1063/1.3665320 10.1103/PhysRevC.6.1023 10.1016/j.phpro.2015.04.011 10.1103/PhysRevC.93.054611 |
ContentType | Journal Article |
Copyright | SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Copyright Springer Science & Business Media 2018 |
CorporateAuthor | Los Alamos National Lab. (LANL), Los Alamos, NM (United States) Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
DBID | AAYXX CITATION OIOZB OTOTI |
DOI | 10.1140/epja/i2018-12455-0 |
DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1434-601X |
EndPage | 38 |
ExternalDocumentID | 1424104 10_1140_epja_i2018_12455_0 |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C -~X .VR 06D 0R~ 199 1SB 203 29G 29Q 29~ 2J2 2JY 2KG 2KM 2LR 2P1 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN ABAKF ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFFNX AFQWF AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHSBF AHYZX AI. AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J P9T PF- PT5 QOS R89 R9I RED RID RIG RNS ROL RSV RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7Y ZMTXR ~8M 2JN AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ OIOZB OTOTI |
ID | FETCH-LOGICAL-c412t-a8e1bf630e3c78775603458666e002dd314b177eda21e257f3b8a822bab78e703 |
IEDL.DBID | U2A |
ISSN | 1434-6001 |
IngestDate | Tue Nov 05 04:35:10 EST 2024 Mon Jul 14 09:34:21 EDT 2025 Thu Apr 24 23:04:21 EDT 2025 Tue Jul 01 01:33:00 EDT 2025 Fri Feb 21 02:33:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-a8e1bf630e3c78775603458666e002dd314b177eda21e257f3b8a822bab78e703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 LLNL-JRNL-738697; LA-UR-17-28181 AC52-07NA27344; AC02-05CH11231; AC52-06NA25396 USDOE National Nuclear Security Administration (NNSA) |
OpenAccessLink | https://www.osti.gov/servlets/purl/1424104 |
PQID | 1989959303 |
PQPubID | 2043701 |
PageCount | 38 |
ParticipantIDs | osti_scitechconnect_1424104 proquest_journals_1989959303 crossref_primary_10_1140_epja_i2018_12455_0 crossref_citationtrail_10_1140_epja_i2018_12455_0 springer_journals_10_1140_epja_i2018_12455_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180100 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 1 year: 2018 text: 20180100 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg – name: United States |
PublicationSubtitle | Hadrons and Nuclei |
PublicationTitle | The European physical journal. A, Hadrons and nuclei |
PublicationTitleAbbrev | Eur. Phys. J. A |
PublicationYear | 2018 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer |
References | NeudeckerD.TalouP.KawanoT.SmithD.L.CapoteR.RisingM.E.KahlerA.C.Nucl. Instrum. Methods Phys. Res. A2015791802015NIMPA.791...80N10.1016/j.nima.2015.04.044 CarlsonA.D.PronyaevV.G.SmithD.L.LarsonN.M.ChenZ.HaleG.M.HambschF.J.GaiE.V.OhS.Y.BadikovS.A.Nucl. Data Sheets200911032152009NDS...110.3215C10.1016/j.nds.2009.11.001 PringleJ.S.BrooksF.D.Phys. Rev. Lett.19753515631975PhRvL..35.1563P10.1103/PhysRevLett.35.1563 D.B. Pelowitz, Technical Report LA-CP-11-00438, Los Alamos National Laboratory (2011) OberstedtS.BillnertR.GateraA.GeertsW.HalipréP.HambschF.J.LeboisM.OberstedtA.MariniP.VidaliM.Phys. Proc.201564832015PhPro..64...83O10.1016/j.phpro.2015.04.011 J.T. Goorley, Technical Report LA-UR-14-24680, Los Alamos National Laboratory (2014) G. Rusev, B. Baramsai, E.M. Bond, T.A. Bredeweg, M. Jandel, D.J. Vieira, A. Couture, S. Mosby, J.L. Ullmann, A.C. Hayes, Measurements of correlated fission data with DANCE and NEUANCE, in Proceedings of the Sixth International Conference on Fission and Properties of Neutron-Rich Nuclei, ICFN6 (World Scientific, 2017) GateraA.BelgyaT.GeertsW.GöökA.HambschF.J.LeboisM.MarótiB.MoensA.OberstedtA.OberstedtS.Phys. Rev. C2017950646092017PhRvC..95f4609G10.1103/PhysRevC.95.064609 SchmidtK.H.JuradoB.Phys. Rev. Lett.20101042125012010PhRvL.104u2501S10.1103/PhysRevLett.104.212501 TuliJ.K.Nucl. Instrum. Methods Phys. Res. A19963695061996NIMPA.369..506T10.1016/S0168-9002(96)80040-4 ChyzhA.WuC.Y.KwanE.HendersonR.A.GosticJ.M.BredewegT.A.HaightR.C.HayesA.C.JandelM.O’DonnellJ.M.Phys. Rev. C201285021601(R)2012PhRvC..85b1601C10.1103/PhysRevC.85.021601 KimK.S.NakaeL.F.PrasadM.K.SnydermanN.J.VerbekeJ.M.Nucl. Sci. Eng.201518122510.13182/NSE14-120 PrasadM.K.SnydermanN.J.Nucl. Sci. Eng.201217230010.13182/NSE11-86 C. Wagemans (Editor), The Nuclear Fission Process (CRC Press, Inc., 1991) BowmanH.R.MiltonJ.C.D.ThompsonS.G.SwiateckiW.J.Phys. Rev.196312921331963PhRv..129.2133B10.1103/PhysRev.129.2133 ValentineT.E.MihalczoJ.T.Ann. Nucl. Energy199623127110.1016/0306-4549(96)00004-7 SpencerR.R.GwinR.IngleR.Nucl. Sci. Eng.19828060310.13182/NSE82-A18973 OberstedtA.BelgyaT.BillnertR.BorceaR.BryśT.GeertsW.GöökA.HambschF.J.KisZ.MartinezT.Phys. Rev. C2013870516022013PhRvC..87e1602O10.1103/PhysRevC.87.051602 JandelM.BaramsaiB.BredewegT.CoutureA.FavalliA.HayesA.IanakievK.IlievM.KawanoT.MosbyS.Nucl. Instrum. Methods Phys. Res. A201888210510.1016/j.nima.2017.10.097 J.F. Martin, PhD Thesis, Université Paris Sud, Orsay, France (2014) WinholdE.J.DemosP.T.HalpernI.Phys. Rev.19528711391952PhRv...87.1139W10.1103/PhysRev.87.1139 BonneauL.QuentinP.MikhailovI.N.Phys. Rev. C2007750643132007PhRvC..75f4313B10.1103/PhysRevC.75.064313 P. Talou, T. Kawano, I. Stetcu, Technical Report LA-CC-13-063, Los Alamos National Laboratory (2013) PozziS.A.WiegerB.EnqvistA.ClarkeS.D.FlaskaM.LarsenE.HaightR.C.PadovaniE.Nucl. Sci. Eng.201417825010.13182/NSE13-96 I. Pázsit, L. Pál, Neutron Fluctuations: A Treatise on the Physics of Branching Processes (Elsevier, Oxford, 2008) ChatillonA.BélierG.GranierT.LaurentB.MorillonB.TaiebJ.HaightR.C.DevlinM.NelsonR.O.NodaS.Phys. Rev. C2014890146112014PhRvC..89a4611C10.1103/PhysRevC.89.014611 SkarsvågK.Phys. Rev. C1980226381980PhRvC..22..638S10.1103/PhysRevC.22.638 V. Kleinrath, PhD Thesis, Vienna University of Technology, Austria (2015) RegnierD.DubrayN.SchunckN.VerrièreM.Phys. Rev. C2016930546112016PhRvC..93e4611R10.1103/PhysRevC.93.054611 P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, Technical Report LA-UR-15-26310, arXiv:1508.06294, Los Alamos National Laboratory (2015) VogtR.RandrupJ.Phys. Rev. C2017960646202017PhRvC..96f4620V10.1103/PhysRevC.96.064620 LynnJ.E.Phys. Lett.196518311965PhL....18...31L10.1016/0031-9163(65)90020-X GöökA.GeertsW.HambschF.J.OberstedtS.VidaliM.ZeynalovS.Nucl. Instrum. Methods Phys. Res. A20168303662016NIMPA.830..366G10.1016/j.nima.2016.06.002 OberstedtA.BillnertR.HambschF.J.OberstedtS.Phys. Rev. C2015920146182015PhRvC..92a4618O10.1103/PhysRevC.92.014618 AudiG.WangM.WapstraA.H.KondevF.G.MacCormickM.XuX.PfeifferB.Chin. Phys. C201236128710.1088/1674-1137/36/12/002 L.S. Leong, PhD Thesis, Université Paris Sud, Orsay, France (2013) BohrN.WheelerJ.A.Phys. Rev.1939564261939PhRv...56..426B10.1103/PhysRev.56.426 YounesW.GognyD.Phys. Rev. Lett.20111071325012011PhRvL.107m2501Y10.1103/PhysRevLett.107.132501 VorobyevA.S.GagarskiA.M.ShcherbakovO.A.VaishneneL.A.BarabanovA.L.Pis’ma v Zh. Eksp. Teor. Fiz.2015102231 VerbekeJ.M.RandrupJ.VogtR.Comput. Phys. Commun.20151911782015CoPhC.191..178V10.1016/j.cpc.2015.02.002 BermanB.L.FultzS.C.Rev. Mod. Phys.1975477131975RvMP...47..713B10.1103/RevModPhys.47.713 SierkA.J.Phys. Rev. C2017960346032017PhRvC..96c4603S10.1103/PhysRevC.96.034603 TerrellJ.Phys. Rev.19591135271105201959PhRv..113..527T10.1103/PhysRev.113.527 J.P. Lestone, Technical Report LA-UR-05-0288, Los Alamos National Laboratory (2005) BillnertR.HambschF.J.OberstedtA.OberstedtS.Phys. Rev. C2013870246012013PhRvC..87b4601B10.1103/PhysRevC.87.024601 ValentineT.E.Ann. Nucl. Energy20012819110.1016/S0306-4549(00)00039-6 MarcathM.J.ShinT.H.ClarkeS.D.PeeraniP.PozziS.A.Nucl. Instrum. Methods Phys. Res. A20168301632016NIMPA.830..163M10.1016/j.nima.2016.05.064 FeynmanR.P.HoffmannF.D.SerberR.J. Nucl. Energy1956364 DukeD.L.TovessonF.LaptevA.B.MosbyS.HambschF.J.BryśT.VidaliM.Phys. Rev. C2016940546042016PhRvC..94e4604D10.1103/PhysRevC.94.054604 VerbekeJ.M.RandrupJ.VogtR.Comput. Phys. Commun.20182222632018CoPhC.222..263V10.1016/j.cpc.2017.09.006 GöökA.HambschF.J.VidaliM.Phys. Rev. C2014900646112014PhRvC..90f4611G10.1103/PhysRevC.90.064611 KoningA.J.DelarocheJ.P.Nucl. Phys. A20037132312003NuPhA.713..231K10.1016/S0375-9474(02)01321-0 RandrupJ.TalouP.VogtR.EPJ Web of Conferences20171460400310.1051/epjconf/201714604003 GönnenweinF.TsekhanovichI.RubchenyaV.Int. J. Mod. Phys. E2007164102007IJMPE..16..410G10.1142/S0218301307005843 JandelM.RusevG.BondE.M.BredewegT.A.ChadwickM.B.CoutureA.FowlerM.M.HaightR.C.KawanoT.KeksisA.L.Phys. Proc.2014591012014PhPro..59..101J10.1016/j.phpro.2014.10.016 UllmannJ.L.KawanoT.BredewegT.A.CoutureA.HaightR.C.JandelM.O’DonnellJ.M.RundbergR.S.VieiraD.J.WilhelmyJ.B.Phys. Rev. C2014890346032014PhRvC..89c4603U10.1103/PhysRevC.89.034603 E. Gadioli, Pre-Equilibrium Nuclear Reactions (Oxford University Press, 1992) MorariuC.TudoraA.HambschF.J.OberstedtS.ManailescuC.J. Phys. G: Nucl. Part. Phys.2012390551032012JPhG...39e5103M10.1088/0954-3899/39/5/055103 J.M. Verbeke, C. Hagmann, D. Wright, Technical Report UCRL-AR-228518, Lawrence Livermore National Laboratory (2010) PozziS.A.ClarkeS.D.WalshW.MillerE.DolanJ.FlaskaM.WiegerB.EnqvistA.PadovaniE.MattinglyJ.Nucl. Instrum. Methods Phys. Res. A20126941192012NIMPA.694..119P10.1016/j.nima.2012.07.040 DushinV.N.HambschF.J.JakovlevV.A.KalininV.A.KraevI.S.LaptevA.B.NikolaevD.V.PetrovB.F.PetrovG.A.PetrovaV.I.Nucl. Instrum. Methods Phys. Res. A20045165392004NIMPA.516..539D10.1016/j.nima.2003.09.029 NifeneckerH.SignarbieuxC.RibragM.PoitouJ.MatuszekJ.Nucl. Phys. A19721892851972NuPhA.189..285N10.1016/0375-9474(72)90296-5 X-5 Monte Carlo Team, Technical Report LA-UR-03-1987, Los Alamos National Laboratory (2005) VerbinskiV.V.WeberH.SundR.E.Phys. Rev. C1973711731973PhRvC...7.1173V10.1103/PhysRevC.7.1173 RandrupJ.VogtR.Phys. Rev. C2009800246012009PhRvC..80b4601R10.1103/PhysRevC.80.024601 MöllerP.SchmittC.Eur. Phys. J. A20175372017EPJA...53....7M10.1140/epja/i2017-12188-6 J.M. Verbeke, L.F. Nakae, R. Vogt, LLNL-JRNL-731534 (2017) EnqvistA.PázsitI.PozziS.Nucl. Instrum. Methods Phys. Res. A20065565982006NIMPA.566..598E10.1016/j.nima.2006.06.046 TalouP.KawanoT.StetcuI.LestoneJ.P.McKigneyE.ChadwickM.B.Phys. Rev. C2016940646132016PhRvC..94f4613T10.1103/PhysRevC.94.064613 ShcherbakovO.A.Sov. J. Part. Nucl.199021177 HambschF.J.OberstedtS.AdiliA.A.BorceaR.OberstedtA.TudoraA.ZeynalovS.J. Korean Phys. Soc.201159165410.3938/jkps.59.1654 LitaizeO.SerotO.BergeL.Eur. Phys. J. A2015511772015EPJA...51..177L10.1140/epja/i2015-15177-9 N.E. Holden, M.S. Zucker, Prompt neutron multiplicities for the transplutonium nuclides, in International Conference on Nuclear Data for Science and Technology, Santa Fe, New Mexico, edited by P. Young, Vol. 2 (Gordon and Breach Science Publishers, 1985) p. 1631 N. Kornilov, Fission Neutrons: Experiments, Evaluation, Modeling and Open Problems, (Springer International Publishing, 2015) D.K. Hauck, A. Favalli, P.A. Santi, S. Croft, Technical Report LA-UR-13-25358, Los Alamos National Laboratory (2013) D.L. Duke, PhD Thesis, Colorado School of Mines (2015) WangT.LiG.ZhuL.MengQ.WangL.HanH.ZangW.XiaH.HouL.VogtR.Phys. Rev. C2016930146062016PhRvC..93a4606W10.1103/PhysRevC.93.014606 VerbekeJ.M.ChaplineG.F.SheetsS.A.Nucl. Instrum. Methods Phys. Res. A20157821262015NIMPA.782..126V10.1016/j.nima.2015.01.088 WeisskopfV.F.Phys. Rev.1937113527 SchmidtK.H.JuradoB.AmourouxC.SchmittC.Nucl. Data Sheets20161311072016NDS...131..107S10.1016/j.nds.2015.12.009 ChadwickM.B.HermanM.ObložinskýP.Nucl. Data Sheets201111228872011NDS...112.2887C10.1016/j.nds.2011.11.002 LemaireS.TalouP.KawanoT.ChadwickM.B.MadlandD.G.Phys. Rev. C2005720246012005PhRvC..72b4601L10.1103/PhysRevC.72.024601 KopeckyJ.UhlM.Phys. Rev. C19904119411990PhRvC..41.1941K10.1103/PhysRevC.41.1941 F.J. Hambsch, Prompt fission neutron emission of ^{235}$U(n,f): thermal and resonance region, in 14th International Conference on Nuclear Reaction Mechanisms (CERN, 2015) AllisonJ.Nucl. Instrum. Methods Phys. Res. A20168351862016NIMPA.835..186A10.1016/j.nima.2016.06.125 MeierbachtolK.TovessonF.DukeD.L.Geppert-KleinrathV.ManningB.MeharchandR.MosbyS.ShieldsD.Phys. Rev. C2016940346112016PhRvC..94c4611M10.1103/PhysRevC.94.034611 CifarelliD.M.HageW.Nucl. Instrum. Methods Phys. Res. A19862515501986NIMPA.251..550C10.1016/0168-9002(86)90651-0 A. Bohr, On the Theory of Nuclear Fission, in International Conference on the Peaceful Uses of Atomic Energy, Vol. 2 (N.Y. United Nations, Geneva, 1956) p. 151 SantiP.MillerM.Nucl. Sci. Eng.200816019010.13182/NSE07-85 VogtR.RandrupJ.Phys. Rev. C2011840446212011PhRvC..84d4621V10.1103/PhysRevC.84.044621 BrosaU.GrossmannS.MüllerA.Phys. Rep.19901971671990PhR...197..167B10.1016/0370-1573(90)901 12455_CR129 P. Möller (12455_CR134) 2017; 53 12455_CR126 A. Enqvist (12455_CR127) 2006; 556 M.O. Frégeau (12455_CR145) 2016; 817 T. Materna (12455_CR146) 2015; 93 P. Möller (12455_CR25) 2001; 409 K. Skarsvåg (12455_CR65) 1980; 22 C. Bhatia (12455_CR144) 2014; 119 K. Meierbachtol (12455_CR148) 2016; 94 A.C. Wahl (12455_CR82) 1988; 39 S. Oberstedt (12455_CR45) 2015; 64 J.K. Tuli (12455_CR87) 1996; 369 T. Granier (12455_CR120) 2015; 64 F. Gönnenwein (12455_CR137) 2007; 16 Y. Aritomo (12455_CR140) 2014; 90 A. Oberstedt (12455_CR34) 2013; 87 A. Chyzh (12455_CR44) 2014; 90 A. Göök (12455_CR21) 2014; 90 R. Capote (12455_CR86) 2009; 110 P. Talou (12455_CR81) 2011; 83 12455_CR37 H. Nifenecker (12455_CR47) 1972; 189 12455_CR8 J. Kopecky (12455_CR85) 1990; 41 12455_CR7 S.A. Pozzi (12455_CR14) 2012; 694 N.E. Holden (12455_CR28) 1988; 98 12455_CR35 12455_CR117 M.B. Chadwick (12455_CR26) 2011; 112 12455_CR116 L. Bonneau (12455_CR136) 2007; 75 J.L. Ullmann (12455_CR142) 2014; 89 12455_CR114 12455_CR113 12455_CR2 M. Jandel (12455_CR68) 2014; 59 T.E. Valentine (12455_CR42) 2001; 28 J. Randrup (12455_CR59) 2014; 89 C. Morariu (12455_CR110) 2012; 39 M.K. Prasad (12455_CR124) 2012; 172 P. Santi (12455_CR105) 2005; 756 A.D. Carlson (12455_CR32) 2009; 110 A.J. Koning (12455_CR84) 2003; 713 D.M. Cifarelli (12455_CR123) 1986; 251 S.C. Burnett (12455_CR151) 1971; 3 K. Skarsvåg (12455_CR55) 1963; 45 R. Vogt (12455_CR99) 2017; 96 A.S. Vorobyev (12455_CR62) 2015; 102 12455_CR41 A. Oberstedt (12455_CR43) 2015; 92 A.A. Naqvi (12455_CR150) 1986; 34 K. Nishio (12455_CR22) 1998; 632 O.A. Shcherbakov (12455_CR51) 1990; 21 W. Hauser (12455_CR80) 1952; 87 12455_CR143 E.J. Winhold (12455_CR60) 1952; 87 R.R. Spencer (12455_CR36) 1982; 80 A. Staszczak (12455_CR141) 2009; 80 A.M. Daskalakis (12455_CR76) 2014; 73 R. Vogt (12455_CR95) 2011; 84 A.J. Sierk (12455_CR135) 2017; 96 J.E. Lynn (12455_CR49) 1965; 18 A. Gatera (12455_CR33) 2017; 95 M.J. Marcath (12455_CR66) 2016; 830 12455_CR53 12455_CR133 P. Santi (12455_CR27) 2008; 160 F. Pleasonton (12455_CR40) 1972; 6 T. Wang (12455_CR48) 2016; 93 A. Göök (12455_CR118) 2016; 830 R. Capote (12455_CR17) 2016; 131 T. Kawano (12455_CR16) 2010; 47 K.H. Schmidt (12455_CR12) 2016; 131 C. Tsuchiya (12455_CR23) 2000; 37 J. Allison (12455_CR115) 2016; 835 A. Enqvist (12455_CR128) 2009; 607 G. Audi (12455_CR83) 2012; 36 U. Brosa (12455_CR24) 1990; 197 C. Budtz-Jørgensen (12455_CR94) 1988; 490 V.V. Verbinski (12455_CR31) 1973; 7 A. Bulgac (12455_CR6) 2016; 116 D. Regnier (12455_CR5) 2016; 93 12455_CR63 12455_CR61 E. Pellereau (12455_CR74) 2017; 95 V.F. Weisskopf (12455_CR97) 1937; 113 J. Terrell (12455_CR96) 1959; 113 A.V. Ignatyuk (12455_CR88) 1975; 21 F.J. Hambsch (12455_CR112) 2011; 59 J. Randrup (12455_CR132) 2017; 146 F.J. Hambsch (12455_CR52) 1989; 491 K. Nishio (12455_CR20) 1995; 32 H.R. Bowman (12455_CR54) 1962; 126 R. Müller (12455_CR149) 1984; 29 O. Litaize (12455_CR11) 2015; 51 12455_CR78 12455_CR79 A. Chatillon (12455_CR121) 2014; 89 A.M. Gagarski (12455_CR57) 2008; 72 S.A. Pozzi (12455_CR58) 2014; 178 12455_CR75 R. Billnert (12455_CR30) 2013; 87 12455_CR72 J.M. Verbeke (12455_CR131) 2015; 782 12455_CR73 J. Terrell (12455_CR39) 1957; 108 12455_CR70 12455_CR71 B.L. Berman (12455_CR100) 1975; 47 J.M. Verbeke (12455_CR10) 2018; 222 J.M. Mueller (12455_CR64) 2012; 85 R. Vogt (12455_CR91) 2013; 87 T. Ichikawa (12455_CR3) 2012; 86 S. Lemaire (12455_CR92) 2005; 72 J.M. Verbeke (12455_CR125) 2016; 182 W. Younes (12455_CR4) 2011; 107 12455_CR89 12455_CR106 K.H. Schmidt (12455_CR109) 2010; 104 12455_CR104 T.E. Valentine (12455_CR108) 1996; 23 12455_CR103 H. Koura (12455_CR93) 2000; 674 J. Randrup (12455_CR98) 2009; 80 12455_CR102 12455_CR101 V. Stavinsky (12455_CR50) 1965; 62 A. Chyzh (12455_CR46) 2012; 85 J. Randrup (12455_CR139) 2011; 106 A.S. Vorobyev (12455_CR19) 2010; 8 D.L. Duke (12455_CR147) 2016; 94 M. Soleilhac (12455_CR38) 1969; 23 12455_CR15 H.R. Bowman (12455_CR111) 1963; 129 12455_CR13 M. Jandel (12455_CR69) 2018; 882 J.M. Verbeke (12455_CR9) 2015; 191 V.N. Dushin (12455_CR18) 2004; 516 R.P. Feynman (12455_CR122) 1956; 3 P. Talou (12455_CR119) 2016; 94 S.G. Kadmensky (12455_CR138) 2009; 72 D. Neudecker (12455_CR77) 2015; 791 R. Vogt (12455_CR90) 2012; 85 J.S. Pringle (12455_CR56) 1975; 35 S.A. Pozzi (12455_CR107) 2003; 513 K.S. Kim (12455_CR130) 2015; 181 N. Bohr (12455_CR1) 1939; 56 D.G. Madland (12455_CR29) 1982; 81 J.L. Ullmann (12455_CR67) 2013; 87 |
References_xml | – reference: IgnatyukA.V.SmirenkinG.N.TishinA.S.Sov. J. Nucl. Phys.197521255 – reference: KouraH.UnoM.TachibanaT.YamadaM.Nucl. Phys. A2000674472000NuPhA.674...47K10.1016/S0375-9474(00)00155-X – reference: MadlandD.G.NixJ.R.Nucl. Sci. Eng.19828121310.13182/NSE82-5 – reference: TerrellJ.Phys. Rev.19571087831957PhRv..108..783T10.1103/PhysRev.108.783 – reference: WeisskopfV.F.Phys. Rev.1937113527 – reference: KopeckyJ.UhlM.Phys. Rev. C19904119411990PhRvC..41.1941K10.1103/PhysRevC.41.1941 – reference: BermanB.L.FultzS.C.Rev. Mod. Phys.1975477131975RvMP...47..713B10.1103/RevModPhys.47.713 – reference: ValentineT.E.MihalczoJ.T.Ann. Nucl. Energy199623127110.1016/0306-4549(96)00004-7 – reference: M.T. Andrews, M.E. Rising, K.C. Meierbachtol, P. Talou, A. Sood, C.R. Bates, E.A. McKigney, C.J. Solomon, LA-UR-17-26443 (2017) – reference: MaternaT.LetourneauA.AmourouxC.MarchixA.LitaizeO.SerotO.RegnierD.BlancA.JentschelM.KösterU.EPJ Web of Conferences2015930202010.1051/epjconf/20159302020 – reference: OberstedtA.BillnertR.HambschF.J.OberstedtS.Phys. Rev. C2015920146182015PhRvC..92a4618O10.1103/PhysRevC.92.014618 – reference: SoleilhacM.FréhautJ.GauriauJ.J. Nucl. Energy19692325710.1016/0022-3107(69)90060-4 – reference: TsuchiyaC.NakagomeY.YamanaH.MoriyamaH.NishioK.KannoI.ShinK.KimuraI.J. Nucl. Sci. Technol.20003794110.1080/18811248.2000.9714976 – reference: MCNP6 Development Team, Technical Report LA-UR-13-22934, Los Alamos National Laboratory (2013) – reference: P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, Technical Report LA-UR-15-26310, arXiv:1508.06294, Los Alamos National Laboratory (2015) – reference: BulgacA.MagierskiP.RocheK.J.StetcuI.Phys. Rev. Lett.20161161225042016PhRvL.116l2504B10.1103/PhysRevLett.116.122504 – reference: GagarskiA.M.GusevaI.S.SokolovV.E.Val’skiG.V.PetrovG.A.KrinitsinD.O.NikolaevD.V.ZavarukhinaT.A.PetrovaV.I.Bull. Russ. Acad. Sci. Phys.20087277310.3103/S1062873808060130 – reference: N.E. Holden, M.S. Zucker, Prompt neutron multiplicities for the transplutonium nuclides, in International Conference on Nuclear Data for Science and Technology, Santa Fe, New Mexico, edited by P. Young, Vol. 2 (Gordon and Breach Science Publishers, 1985) p. 1631 – reference: A. Bohr, On the Theory of Nuclear Fission, in International Conference on the Peaceful Uses of Atomic Energy, Vol. 2 (N.Y. United Nations, Geneva, 1956) p. 151 – reference: SkarsvågK.Phys. Rev. C1980226381980PhRvC..22..638S10.1103/PhysRevC.22.638 – reference: TalouP.BeckerB.KawanoT.ChadwickM.B.DanonY.Phys. Rev. C2011830646122011PhRvC..83f4612T10.1103/PhysRevC.83.064612 – reference: MarcathM.J.ShinT.H.ClarkeS.D.PeeraniP.PozziS.A.Nucl. Instrum. Methods Phys. Res. A20168301632016NIMPA.830..163M10.1016/j.nima.2016.05.064 – reference: SchmidtK.H.JuradoB.Phys. Rev. Lett.20101042125012010PhRvL.104u2501S10.1103/PhysRevLett.104.212501 – reference: YounesW.GognyD.Phys. Rev. Lett.20111071325012011PhRvL.107m2501Y10.1103/PhysRevLett.107.132501 – reference: HoldenN.E.ZuckerM.S.Nucl. Sci. Eng.19889817410.13182/NSE88-A28498 – reference: FrégeauM.O.OberstedtS.GamboniT.GeertsW.HambschF.J.VidaliM.Nucl. Instrum. Methods Phys. Res. A2016817352016NIMPA.817...35F10.1016/j.nima.2016.02.011 – reference: VerbekeJ.M.RandrupJ.VogtR.Comput. Phys. Commun.20182222632018CoPhC.222..263V10.1016/j.cpc.2017.09.006 – reference: MuellerJ.M.AhmedM.W.DavisB.HallJ.M.HenshawS.S.JohnsonM.S.KarwowskiH.J.MarkoffD.MyersL.S.PerdueB.A.Phys. Rev. C2012850146052012PhRvC..85a4605M10.1103/PhysRevC.85.014605 – reference: A.S. Vorobyev, O.A. Shcherbakov, V.N. Dushin, V.A. Jakovlev, V.A. Kalinin, B.F. Petrov, F.J. Hambsch, A.B. Laptev, Prompt neutron emission from fragments in spontaneous fission of ^{244,248}$Cm and ^{252}$Cf, in International Workshop on Nuclear Fission and Fission Product Spectroscopy (A.I.P., 2005) – reference: G.F. Chapline, L.F. Nakae, N. Snyderman, J.M. Verbeke, R. Wurtz, Monitoring spent or reprocessed nuclear fuel using fast neutrons, in Proceedings of the 15th International Conference on Emerging Nuclear Energy Systems (ICENES 2011), San Francisco, CA (Lawrence Livermore National Laboratory, 2011), LLNL-CONF-485216 – reference: LemaireS.TalouP.KawanoT.ChadwickM.B.MadlandD.G.Phys. Rev. C2005720246012005PhRvC..72b4601L10.1103/PhysRevC.72.024601 – reference: VerbekeJ.M.RandrupJ.VogtR.Comput. Phys. Commun.20151911782015CoPhC.191..178V10.1016/j.cpc.2015.02.002 – reference: TerrellJ.Phys. Rev.19591135271105201959PhRv..113..527T10.1103/PhysRev.113.527 – reference: D.B. Pelowitz, Technical Report LA-CP-11-00438, Los Alamos National Laboratory (2011) – reference: NishioK.NakagomeY.YamamotoH.KimuraI.Nucl. Phys. A19986325401998NuPhA.632..540N10.1016/S0375-9474(98)00008-6 – reference: WinholdE.J.DemosP.T.HalpernI.Phys. Rev.19528711391952PhRv...87.1139W10.1103/PhysRev.87.1139 – reference: AllisonJ.Nucl. Instrum. Methods Phys. Res. A20168351862016NIMPA.835..186A10.1016/j.nima.2016.06.125 – reference: RandrupJ.MöllerP.Phys. Rev. Lett.20111061325032011PhRvL.106m2503R10.1103/PhysRevLett.106.132503 – reference: VerbinskiV.V.WeberH.SundR.E.Phys. Rev. C1973711731973PhRvC...7.1173V10.1103/PhysRevC.7.1173 – reference: WangT.LiG.ZhuL.MengQ.WangL.HanH.ZangW.XiaH.HouL.VogtR.Phys. Rev. C2016930146062016PhRvC..93a4606W10.1103/PhysRevC.93.014606 – reference: ShcherbakovO.A.Sov. J. Part. Nucl.199021177 – reference: BowmanH.R.MiltonJ.C.D.ThompsonS.G.SwiateckiW.J.Phys. Rev.196312921331963PhRv..129.2133B10.1103/PhysRev.129.2133 – reference: VogtR.RandrupJ.Phys. Rev. C2017960646202017PhRvC..96f4620V10.1103/PhysRevC.96.064620 – reference: KadmenskyS.G.TitovaL.V.Phys. At. Nucl.200972173810.1134/S1063778809100159 – reference: NifeneckerH.SignarbieuxC.RibragM.PoitouJ.MatuszekJ.Nucl. Phys. A19721892851972NuPhA.189..285N10.1016/0375-9474(72)90296-5 – reference: VerbekeJ.M.ChaplineG.F.SheetsS.A.Nucl. Instrum. Methods Phys. Res. A20157821262015NIMPA.782..126V10.1016/j.nima.2015.01.088 – reference: N. Kornilov, Fission Neutrons: Experiments, Evaluation, Modeling and Open Problems, (Springer International Publishing, 2015) – reference: B. Morillon, P. Romain, private communication – reference: GönnenweinF.TsekhanovichI.RubchenyaV.Int. J. Mod. Phys. E2007164102007IJMPE..16..410G10.1142/S0218301307005843 – reference: VogtR.RandrupJ.BrownD.A.DescalleM.A.OrmandW.Phys. Rev. C2012850246082012PhRvC..85b4608V10.1103/PhysRevC.85.024608 – reference: BillnertR.HambschF.J.OberstedtA.OberstedtS.Phys. Rev. C2013870246012013PhRvC..87b4601B10.1103/PhysRevC.87.024601 – reference: BrosaU.GrossmannS.MüllerA.Phys. Rep.19901971671990PhR...197..167B10.1016/0370-1573(90)90114-H – reference: PringleJ.S.BrooksF.D.Phys. Rev. Lett.19753515631975PhRvL..35.1563P10.1103/PhysRevLett.35.1563 – reference: CifarelliD.M.HageW.Nucl. Instrum. Methods Phys. Res. A19862515501986NIMPA.251..550C10.1016/0168-9002(86)90651-0 – reference: EnqvistA.PozziS.A.PázsitI.Nucl. Instrum. Methods Phys. Res. A20096074512009NIMPA.607..451E10.1016/j.nima.2009.05.131 – reference: I. Pázsit, L. Pál, Neutron Fluctuations: A Treatise on the Physics of Branching Processes (Elsevier, Oxford, 2008) – reference: BurnettS.C.FergusonR.L.PlasilF.SchmittH.W.Phys. Rev. C1971320341971PhRvC...3.2034B10.1103/PhysRevC.3.2034 – reference: DushinV.N.HambschF.J.JakovlevV.A.KalininV.A.KraevI.S.LaptevA.B.NikolaevD.V.PetrovB.F.PetrovG.A.PetrovaV.I.Nucl. Instrum. Methods Phys. Res. A20045165392004NIMPA.516..539D10.1016/j.nima.2003.09.029 – reference: HambschF.J.OberstedtS.AdiliA.A.BorceaR.OberstedtA.TudoraA.ZeynalovS.J. Korean Phys. Soc.201159165410.3938/jkps.59.1654 – reference: NaqviA.A.KäppelerF.DickmannF.MüllerR.Phys. Rev. C1986342181986PhRvC..34..218N10.1103/PhysRevC.34.218 – reference: J.M. Verbeke, L.F. Nakae, R. Vogt, LLNL-JRNL-731534 (2017) – reference: UllmannJ.L.KawanoT.BredewegT.A.CoutureA.HaightR.C.JandelM.O’DonnellJ.M.RundbergR.S.VieiraD.J.WilhelmyJ.B.Phys. Rev. C2014890346032014PhRvC..89c4603U10.1103/PhysRevC.89.034603 – reference: BowmanH.R.MiltonJ.C.D.ThompsonS.G.SwiateckiW.J.Phys. Rev.196212621201962PhRv..126.2120B10.1103/PhysRev.126.2120 – reference: PozziS.A.PadovaniE.MarseguerraM.Nucl. Instrum. Methods Phys. Res. A20035135502003NIMPA.513..550P10.1016/j.nima.2003.06.012 – reference: JandelM.RusevG.BondE.M.BredewegT.A.ChadwickM.B.CoutureA.FowlerM.M.HaightR.C.KawanoT.KeksisA.L.Phys. Proc.2014591012014PhPro..59..101J10.1016/j.phpro.2014.10.016 – reference: PozziS.A.WiegerB.EnqvistA.ClarkeS.D.FlaskaM.LarsenE.HaightR.C.PadovaniE.Nucl. Sci. Eng.201417825010.13182/NSE13-96 – reference: L.S. Leong, PhD Thesis, Université Paris Sud, Orsay, France (2013) – reference: UllmannJ.L.BondE.M.BredewegT.A.CoutureA.HaightR.C.JandelM.KawanoT.LeeH.Y.O’DonnellJ.M.HayesA.C.Phys. Rev. C2013870446072013PhRvC..87d4607U10.1103/PhysRevC.87.044607 – reference: TuliJ.K.Nucl. Instrum. Methods Phys. Res. A19963695061996NIMPA.369..506T10.1016/S0168-9002(96)80040-4 – reference: AudiG.WangM.WapstraA.H.KondevF.G.MacCormickM.XuX.PfeifferB.Chin. Phys. C201236128710.1088/1674-1137/36/12/002 – reference: ChadwickM.B.HermanM.ObložinskýP.Nucl. Data Sheets201111228872011NDS...112.2887C10.1016/j.nds.2011.11.002 – reference: FeynmanR.P.HoffmannF.D.SerberR.J. Nucl. Energy1956364 – reference: V. Kleinrath, PhD Thesis, Vienna University of Technology, Austria (2015) – reference: E. Gadioli, Pre-Equilibrium Nuclear Reactions (Oxford University Press, 1992) – reference: DaskalakisA.M.BahranR.M.BlainE.J.McDermottB.J.PielaS.DanonY.BarryD.P.LeinweberG.BlockR.C.RappM.J.Ann. Nucl. Energy20147345510.1016/j.anucene.2014.07.023 – reference: BohrN.WheelerJ.A.Phys. Rev.1939564261939PhRv...56..426B10.1103/PhysRev.56.426 – reference: PleasontonF.FergusonR.L.SchmittH.W.Phys. Rev. C1972610231972PhRvC...6.1023P10.1103/PhysRevC.6.1023 – reference: HauserW.FeshbachH.Phys. Rev.1952873661952PhRv...87..366H10.1103/PhysRev.87.366 – reference: PellereauE.Phys. Rev. C2017950546032017PhRvC..95e4603P10.1103/PhysRevC.95.054603 – reference: GranierT.Phys. Proc.2015641832015PhPro..64..183G10.1016/j.phpro.2015.04.025 – reference: A.S. Vorobyev, V.N. Dushin, F.J. Hambsch, V.A. Jakovlev, V.A. Kalinin, A.B. Laptev, B.F. Petrov, O.A. Shcherbakov, Distribution of prompt neutron emission probability for fission fragments in spontaneous fission of ^{252}$Cf and ^{244,248}$Cm, in International Conference on Nuclear Data for Science and Technology, edited by R. Haight, M. Chadwick, T. Kawano, P. Talou, Vol. CP769 (American Institute of Physics, 2005) p. 613 – reference: ValentineT.E.Ann. Nucl. Energy20012819110.1016/S0306-4549(00)00039-6 – reference: L.F. Nakae, G.F. Chapline, A.M. Glenn, P.L. Kerr, K.S. Kim, S.A. Ouedraogo, M.K. Prasad, S.A. Sheets, N.J. Snyderman, J.M. Verbeke, R.E. Wurtz, Recent Developments in Fast Neutron Detection and Multiplicity Counting with Verification with Liquid Scintillator, LLNL-CONF-489556 (2011) – reference: MöllerP.SchmittC.Eur. Phys. J. A20175372017EPJA...53....7M10.1140/epja/i2017-12188-6 – reference: KimK.S.NakaeL.F.PrasadM.K.SnydermanN.J.VerbekeJ.M.Nucl. Sci. Eng.201518122510.13182/NSE14-120 – reference: MüllerR.NaqviA.A.KäppelerF.DickmannF.Phys. Rev. C1984298851984PhRvC..29..885M10.1103/PhysRevC.29.885 – reference: ChyzhA.WuC.Y.KwanE.HendersonR.A.GosticJ.M.BredewegT.A.HaightR.C.HayesA.C.JandelM.O’DonnellJ.M.Phys. Rev. C201285021601(R)2012PhRvC..85b1601C10.1103/PhysRevC.85.021601 – reference: D.K. Hauck, A. Favalli, P.A. Santi, S. Croft, Technical Report LA-UR-13-25358, Los Alamos National Laboratory (2013) – reference: J.T. Goorley, Technical Report LA-UR-14-24680, Los Alamos National Laboratory (2014) – reference: NishioK.NakagomeY.KannoI.KimuraI.J. Nucl. Sci. Technol.19953240410.1080/18811248.1995.9731725 – reference: CapoteR.HermanM.OblozinskyP.YoungP.G.GorielyS.BelgyaT.IgnatyukA.V.KoningA.J.HilaireS.PlujkoV.A.Nucl. Data Sheets200911031072009NDS...110.3107C10.1016/j.nds.2009.10.004 – reference: F.J. Hambsch, Prompt fission neutron emission of ^{235}$U(n,f): thermal and resonance region, in 14th International Conference on Nuclear Reaction Mechanisms (CERN, 2015) – reference: SchmidtK.H.JuradoB.AmourouxC.SchmittC.Nucl. Data Sheets20161311072016NDS...131..107S10.1016/j.nds.2015.12.009 – reference: OberstedtS.BillnertR.GateraA.GeertsW.HalipréP.HambschF.J.LeboisM.OberstedtA.MariniP.VidaliM.Phys. Proc.201564832015PhPro..64...83O10.1016/j.phpro.2015.04.011 – reference: VorobyevA.S.GagarskiA.M.ShcherbakovO.A.VaishneneL.A.BarabanovA.L.Pis’ma v Zh. Eksp. Teor. Fiz.2015102231 – reference: Budtz-JørgensenC.KnitterH.H.Nucl. Phys. A19884903071988NuPhA.490..307B10.1016/0375-9474(88)90508-8 – reference: EnqvistA.PázsitI.PozziS.Nucl. Instrum. Methods Phys. Res. A20065565982006NIMPA.566..598E10.1016/j.nima.2006.06.046 – reference: KoningA.J.DelarocheJ.P.Nucl. Phys. A20037132312003NuPhA.713..231K10.1016/S0375-9474(02)01321-0 – reference: LynnJ.E.Phys. Lett.196518311965PhL....18...31L10.1016/0031-9163(65)90020-X – reference: CarlsonA.D.PronyaevV.G.SmithD.L.LarsonN.M.ChenZ.HaleG.M.HambschF.J.GaiE.V.OhS.Y.BadikovS.A.Nucl. Data Sheets200911032152009NDS...110.3215C10.1016/j.nds.2009.11.001 – reference: HambschF.J.KnitterH.H.Budtz-JørgensenC.TheobaldJ.P.Nucl. Phys. A1989491561989NuPhA.491...56H10.1016/0375-9474(89)90206-6 – reference: RandrupJ.VogtR.Phys. Rev. C2009800246012009PhRvC..80b4601R10.1103/PhysRevC.80.024601 – reference: SantiP.BeddingfieldD.H.MayoD.R.Nucl. Phys. A20057563252005NuPhA.756..325S10.1016/j.nuclphysa.2005.04.002 – reference: SantiP.MillerM.Nucl. Sci. Eng.200816019010.13182/NSE07-85 – reference: RandrupJ.VogtR.Phys. Rev. C2014890446012014PhRvC..89d4601R10.1103/PhysRevC.89.044601 – reference: C. Wagemans (Editor), The Nuclear Fission Process (CRC Press, Inc., 1991) – reference: G. Rusev, B. Baramsai, E.M. Bond, T.A. Bredeweg, M. Jandel, D.J. Vieira, A. Couture, S. Mosby, J.L. Ullmann, A.C. Hayes, Measurements of correlated fission data with DANCE and NEUANCE, in Proceedings of the Sixth International Conference on Fission and Properties of Neutron-Rich Nuclei, ICFN6 (World Scientific, 2017) – reference: OberstedtA.BelgyaT.BillnertR.BorceaR.BryśT.GeertsW.GöökA.HambschF.J.KisZ.MartinezT.Phys. Rev. C2013870516022013PhRvC..87e1602O10.1103/PhysRevC.87.051602 – reference: TalouP.KawanoT.StetcuI.LestoneJ.P.McKigneyE.ChadwickM.B.Phys. Rev. C2016940646132016PhRvC..94f4613T10.1103/PhysRevC.94.064613 – reference: CapoteR.Nucl. Data Sheets201613112016NDS...131....1C10.1016/j.nds.2015.12.002 – reference: SierkA.J.Phys. Rev. C2017960346032017PhRvC..96c4603S10.1103/PhysRevC.96.034603 – reference: StaszczakA.BaranA.DobaczewskiJ.NazarewiczW.Phys. Rev. C2009800143092009PhRvC..80a4309S10.1103/PhysRevC.80.014309 – reference: GöökA.GeertsW.HambschF.J.OberstedtS.VidaliM.ZeynalovS.Nucl. Instrum. Methods Phys. Res. A20168303662016NIMPA.830..366G10.1016/j.nima.2016.06.002 – reference: PrasadM.K.SnydermanN.J.Nucl. Sci. Eng.201217230010.13182/NSE11-86 – reference: LitaizeO.SerotO.BergeL.Eur. Phys. J. A2015511772015EPJA...51..177L10.1140/epja/i2015-15177-9 – reference: AritomoY.ChibaS.IvanyukF.Phys. Rev. C2014900546092014PhRvC..90e4609A10.1103/PhysRevC.90.054609 – reference: IchikawaT.IwamotoA.MöllerP.SierkA.J.Phys. Rev. C2012860246102012PhRvC..86b4610I10.1103/PhysRevC.86.024610 – reference: P. Talou, T. Kawano, I. Stetcu, Technical Report LA-CC-13-063, Los Alamos National Laboratory (2013) – reference: J.F. Martin, PhD Thesis, Université Paris Sud, Orsay, France (2014) – reference: WahlA.C.At. Data Nucl. Data Tables19883911988ADNDT..39....1W10.1016/0092-640X(88)90016-2 – reference: VogtR.RandrupJ.Phys. Rev. C2013870446022013PhRvC..87d4602V10.1103/PhysRevC.87.044602 – reference: GateraA.BelgyaT.GeertsW.GöökA.HambschF.J.LeboisM.MarótiB.MoensA.OberstedtA.OberstedtS.Phys. Rev. C2017950646092017PhRvC..95f4609G10.1103/PhysRevC.95.064609 – reference: N. Ensslin, W.C. Harker, M.S. Krick, D.G. Langner, M.M. Pockrell, J.E. Stewart, Technical Report LA-13422-M, Los Alamos National Laboratory (1998) – reference: X-5 Monte Carlo Team, Technical Report LA-UR-03-1987, Los Alamos National Laboratory (2005) – reference: VerbekeJ.M.Nucl. Sci. Eng.201618248110.13182/NSE15-35 – reference: NeudeckerD.TalouP.KawanoT.SmithD.L.CapoteR.RisingM.E.KahlerA.C.Nucl. Instrum. Methods Phys. Res. A2015791802015NIMPA.791...80N10.1016/j.nima.2015.04.044 – reference: VogtR.RandrupJ.Phys. Rev. C2011840446212011PhRvC..84d4621V10.1103/PhysRevC.84.044621 – reference: GöökA.HambschF.J.VidaliM.Phys. Rev. C2014900646112014PhRvC..90f4611G10.1103/PhysRevC.90.064611 – reference: DukeD.L.TovessonF.LaptevA.B.MosbyS.HambschF.J.BryśT.VidaliM.Phys. Rev. C2016940546042016PhRvC..94e4604D10.1103/PhysRevC.94.054604 – reference: KawanoT.TalouP.ChadwickM.B.WatanabeT.J. Nucl. Sci. Technol.20104746210.1080/18811248.2010.9711637 – reference: M. Jandel, Technical Report LA-UR-12-24795, Los Alamos National Laboratory (2012) – reference: PozziS.A.ClarkeS.D.WalshW.MillerE.DolanJ.FlaskaM.WiegerB.EnqvistA.PadovaniE.MattinglyJ.Nucl. Instrum. Methods Phys. Res. A20126941192012NIMPA.694..119P10.1016/j.nima.2012.07.040 – reference: M.S. Zucker, N.E. Holden, Technical Report BNL-38491, Brookhaven National Laboratory (1986) – reference: ChatillonA.BélierG.GranierT.LaurentB.MorillonB.TaiebJ.HaightR.C.DevlinM.NelsonR.O.NodaS.Phys. Rev. C2014890146112014PhRvC..89a4611C10.1103/PhysRevC.89.014611 – reference: MeierbachtolK.TovessonF.DukeD.L.Geppert-KleinrathV.ManningB.MeharchandR.MosbyS.ShieldsD.Phys. Rev. C2016940346112016PhRvC..94c4611M10.1103/PhysRevC.94.034611 – reference: J.M. Verbeke, C. Hagmann, D. Wright, Technical Report UCRL-AR-228518, Lawrence Livermore National Laboratory (2010) – reference: JandelM.BaramsaiB.BredewegT.CoutureA.FavalliA.HayesA.IanakievK.IlievM.KawanoT.MosbyS.Nucl. Instrum. Methods Phys. Res. A201888210510.1016/j.nima.2017.10.097 – reference: SpencerR.R.GwinR.IngleR.Nucl. Sci. Eng.19828060310.13182/NSE82-A18973 – reference: J.P. Lestone, Technical Report LA-UR-05-0288, Los Alamos National Laboratory (2005) – reference: D.L. Duke, PhD Thesis, Colorado School of Mines (2015) – reference: MöllerP.MadlandD.G.SierkA.J.IwamotoA.Nature20014097852001Natur.409..785M10.1038/35057204 – reference: MorariuC.TudoraA.HambschF.J.OberstedtS.ManailescuC.J. Phys. G: Nucl. Part. Phys.2012390551032012JPhG...39e5103M10.1088/0954-3899/39/5/055103 – reference: StavinskyV.ShakerM.O.Nucl. Phys.19656266710.1016/0029-5582(65)90589-4 – reference: F.B. Brown, M.E. Rising, J.L. Alwin, Technical Report LA-UR-17-23822, Los Alamos National Laboratory (2017) – reference: BhatiaC.FallinB.HowellC.TornowW.GoodenM.KelleyJ.ArnoldC.BondE.BredewegT.FowlerM.Nucl. Data Sheets20141193242014NDS...119..324B10.1016/j.nds.2014.08.089 – reference: VorobyevA.S.ShcherbakovO.A.GagarskiA.M.Val’skiG.V.PetrovG.A.EPJ Web of Conferences201080300410.1051/epjconf/20100803004 – reference: RandrupJ.TalouP.VogtR.EPJ Web of Conferences20171460400310.1051/epjconf/201714604003 – reference: ChyzhA.WuC.Y.KwanE.HendersonR.A.BredewegT.A.HaightR.C.Hayes-SterbenzA.C.LeeH.Y.O’DonnellJ.M.UllmannJ.L.Phys. Rev. C2014900146022014PhRvC..90a4602C10.1103/PhysRevC.90.014602 – reference: BonneauL.QuentinP.MikhailovI.N.Phys. Rev. C2007750643132007PhRvC..75f4313B10.1103/PhysRevC.75.064313 – reference: RegnierD.DubrayN.SchunckN.VerrièreM.Phys. Rev. C2016930546112016PhRvC..93e4611R10.1103/PhysRevC.93.054611 – reference: SkarsvågK.BergheimK.Nucl. Phys.1963457210.1016/0029-5582(63)90785-5 – volume: 197 start-page: 167 year: 1990 ident: 12455_CR24 publication-title: Phys. Rep. doi: 10.1016/0370-1573(90)90114-H – ident: 12455_CR73 – volume: 96 start-page: 034603 year: 2017 ident: 12455_CR135 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.96.034603 – volume: 28 start-page: 191 year: 2001 ident: 12455_CR42 publication-title: Ann. Nucl. Energy doi: 10.1016/S0306-4549(00)00039-6 – volume: 90 start-page: 064611 year: 2014 ident: 12455_CR21 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.90.064611 – volume: 490 start-page: 307 year: 1988 ident: 12455_CR94 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(88)90508-8 – volume: 181 start-page: 225 year: 2015 ident: 12455_CR130 publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE14-120 – ident: 12455_CR35 – ident: 12455_CR143 – ident: 12455_CR15 – volume: 84 start-page: 044621 year: 2011 ident: 12455_CR95 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.84.044621 – volume: 556 start-page: 598 year: 2006 ident: 12455_CR127 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2006.06.046 – volume: 782 start-page: 126 year: 2015 ident: 12455_CR131 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2015.01.088 – volume: 93 start-page: 02020 year: 2015 ident: 12455_CR146 publication-title: EPJ Web of Conferences doi: 10.1051/epjconf/20159302020 – volume: 119 start-page: 324 year: 2014 ident: 12455_CR144 publication-title: Nucl. Data Sheets doi: 10.1016/j.nds.2014.08.089 – volume: 72 start-page: 024601 year: 2005 ident: 12455_CR92 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.72.024601 – volume: 87 start-page: 024601 year: 2013 ident: 12455_CR30 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.87.024601 – ident: 12455_CR78 doi: 10.1007/978-3-319-07133-6 – ident: 12455_CR117 – volume: 87 start-page: 366 year: 1952 ident: 12455_CR80 publication-title: Phys. Rev. doi: 10.1103/PhysRev.87.366 – volume: 95 start-page: 064609 year: 2017 ident: 12455_CR33 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.95.064609 – volume: 830 start-page: 366 year: 2016 ident: 12455_CR118 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2016.06.002 – volume: 110 start-page: 3215 year: 2009 ident: 12455_CR32 publication-title: Nucl. Data Sheets doi: 10.1016/j.nds.2009.11.001 – volume: 94 start-page: 054604 year: 2016 ident: 12455_CR147 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.94.054604 – volume: 47 start-page: 462 year: 2010 ident: 12455_CR16 publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.2010.9711637 – volume: 94 start-page: 064613 year: 2016 ident: 12455_CR119 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.94.064613 – volume: 113 start-page: 527 year: 1959 ident: 12455_CR96 publication-title: Phys. Rev. doi: 10.1103/PhysRev.113.527 – volume: 98 start-page: 174 year: 1988 ident: 12455_CR28 publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE88-A28498 – ident: 12455_CR126 – volume: 36 start-page: 1287 year: 2012 ident: 12455_CR83 publication-title: Chin. Phys. C doi: 10.1088/1674-1137/36/12/002 – volume: 8 start-page: 03004 year: 2010 ident: 12455_CR19 publication-title: EPJ Web of Conferences doi: 10.1051/epjconf/20100803004 – volume: 96 start-page: 064620 year: 2017 ident: 12455_CR99 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.96.064620 – volume: 73 start-page: 455 year: 2014 ident: 12455_CR76 publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2014.07.023 – volume: 83 start-page: 064612 year: 2011 ident: 12455_CR81 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.83.064612 – volume: 21 start-page: 177 year: 1990 ident: 12455_CR51 publication-title: Sov. J. Part. Nucl. – volume: 513 start-page: 550 year: 2003 ident: 12455_CR107 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2003.06.012 – volume: 89 start-page: 044601 year: 2014 ident: 12455_CR59 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.89.044601 – volume: 90 start-page: 054609 year: 2014 ident: 12455_CR140 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.90.054609 – volume: 94 start-page: 034611 year: 2016 ident: 12455_CR148 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.94.034611 – ident: 12455_CR7 – ident: 12455_CR41 – volume: 830 start-page: 163 year: 2016 ident: 12455_CR66 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2016.05.064 – ident: 12455_CR79 – volume: 41 start-page: 1941 year: 1990 ident: 12455_CR85 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.41.1941 – ident: 12455_CR71 – ident: 12455_CR106 – ident: 12455_CR37 – volume: 37 start-page: 941 year: 2000 ident: 12455_CR23 publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.2000.9714976 – volume: 108 start-page: 783 year: 1957 ident: 12455_CR39 publication-title: Phys. Rev. doi: 10.1103/PhysRev.108.783 – volume: 3 start-page: 64 year: 1956 ident: 12455_CR122 publication-title: J. Nucl. Energy – volume: 59 start-page: 101 year: 2014 ident: 12455_CR68 publication-title: Phys. Proc. doi: 10.1016/j.phpro.2014.10.016 – volume: 116 start-page: 122504 year: 2016 ident: 12455_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.122504 – volume: 222 start-page: 263 year: 2018 ident: 12455_CR10 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2017.09.006 – volume: 131 start-page: 107 year: 2016 ident: 12455_CR12 publication-title: Nucl. Data Sheets doi: 10.1016/j.nds.2015.12.009 – volume: 93 start-page: 014606 year: 2016 ident: 12455_CR48 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.93.014606 – volume: 674 start-page: 47 year: 2000 ident: 12455_CR93 publication-title: Nucl. Phys. A doi: 10.1016/S0375-9474(00)00155-X – volume: 80 start-page: 024601 year: 2009 ident: 12455_CR98 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.80.024601 – volume: 191 start-page: 178 year: 2015 ident: 12455_CR9 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2015.02.002 – volume: 160 start-page: 190 year: 2008 ident: 12455_CR27 publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE07-85 – volume: 126 start-page: 2120 year: 1962 ident: 12455_CR54 publication-title: Phys. Rev. doi: 10.1103/PhysRev.126.2120 – volume: 16 start-page: 410 year: 2007 ident: 12455_CR137 publication-title: Int. J. Mod. Phys. E doi: 10.1142/S0218301307005843 – ident: 12455_CR103 – volume: 189 start-page: 285 year: 1972 ident: 12455_CR47 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(72)90296-5 – volume: 87 start-page: 1139 year: 1952 ident: 12455_CR60 publication-title: Phys. Rev. doi: 10.1103/PhysRev.87.1139 – volume: 178 start-page: 250 year: 2014 ident: 12455_CR58 publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE13-96 – volume: 80 start-page: 014309 year: 2009 ident: 12455_CR141 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.80.014309 – volume: 90 start-page: 014602 year: 2014 ident: 12455_CR44 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.90.014602 – volume: 85 start-page: 021601(R) year: 2012 ident: 12455_CR46 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.85.021601 – volume: 756 start-page: 325 year: 2005 ident: 12455_CR105 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2005.04.002 – volume: 112 start-page: 2887 year: 2011 ident: 12455_CR26 publication-title: Nucl. Data Sheets doi: 10.1016/j.nds.2011.11.002 – volume: 129 start-page: 2133 year: 1963 ident: 12455_CR111 publication-title: Phys. Rev. doi: 10.1103/PhysRev.129.2133 – volume: 47 start-page: 713 year: 1975 ident: 12455_CR100 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.47.713 – ident: 12455_CR114 – volume: 62 start-page: 667 year: 1965 ident: 12455_CR50 publication-title: Nucl. Phys. doi: 10.1016/0029-5582(65)90589-4 – ident: 12455_CR133 – volume: 75 start-page: 064313 year: 2007 ident: 12455_CR136 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.75.064313 – volume: 491 start-page: 56 year: 1989 ident: 12455_CR52 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(89)90206-6 – volume: 182 start-page: 481 year: 2016 ident: 12455_CR125 publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE15-35 – volume: 87 start-page: 044607 year: 2013 ident: 12455_CR67 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.87.044607 – volume: 53 start-page: 7 year: 2017 ident: 12455_CR134 publication-title: Eur. Phys. J. A doi: 10.1140/epja/i2017-12188-6 – volume: 51 start-page: 177 year: 2015 ident: 12455_CR11 publication-title: Eur. Phys. J. A doi: 10.1140/epja/i2015-15177-9 – volume: 104 start-page: 212501 year: 2010 ident: 12455_CR109 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.212501 – volume: 80 start-page: 603 year: 1982 ident: 12455_CR36 publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE82-A18973 – volume: 92 start-page: 014618 year: 2015 ident: 12455_CR43 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.92.014618 – volume: 87 start-page: 044602 year: 2013 ident: 12455_CR91 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.87.044602 – ident: 12455_CR104 – volume: 45 start-page: 72 year: 1963 ident: 12455_CR55 publication-title: Nucl. Phys. doi: 10.1016/0029-5582(63)90785-5 – ident: 12455_CR63 – volume: 86 start-page: 024610 year: 2012 ident: 12455_CR3 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.86.024610 – volume: 18 start-page: 31 year: 1965 ident: 12455_CR49 publication-title: Phys. Lett. doi: 10.1016/0031-9163(65)90020-X – volume: 369 start-page: 506 year: 1996 ident: 12455_CR87 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/S0168-9002(96)80040-4 – volume: 817 start-page: 35 year: 2016 ident: 12455_CR145 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2016.02.011 – ident: 12455_CR8 – volume: 251 start-page: 550 year: 1986 ident: 12455_CR123 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/0168-9002(86)90651-0 – volume: 72 start-page: 1738 year: 2009 ident: 12455_CR138 publication-title: Phys. At. Nucl. doi: 10.1134/S1063778809100159 – ident: 12455_CR72 – volume: 85 start-page: 024608 year: 2012 ident: 12455_CR90 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.85.024608 – volume: 694 start-page: 119 year: 2012 ident: 12455_CR14 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2012.07.040 – volume: 607 start-page: 451 year: 2009 ident: 12455_CR128 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2009.05.131 – ident: 12455_CR101 – volume: 409 start-page: 785 year: 2001 ident: 12455_CR25 publication-title: Nature doi: 10.1038/35057204 – volume: 632 start-page: 540 year: 1998 ident: 12455_CR22 publication-title: Nucl. Phys. A doi: 10.1016/S0375-9474(98)00008-6 – volume: 102 start-page: 231 year: 2015 ident: 12455_CR62 publication-title: Pis’ma v Zh. Eksp. Teor. Fiz. – volume: 64 start-page: 183 year: 2015 ident: 12455_CR120 publication-title: Phys. Proc. doi: 10.1016/j.phpro.2015.04.025 – volume: 29 start-page: 885 year: 1984 ident: 12455_CR149 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.29.885 – volume: 516 start-page: 539 year: 2004 ident: 12455_CR18 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2003.09.029 – volume: 131 start-page: 1 year: 2016 ident: 12455_CR17 publication-title: Nucl. Data Sheets doi: 10.1016/j.nds.2015.12.002 – volume: 107 start-page: 132501 year: 2011 ident: 12455_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.132501 – volume: 835 start-page: 186 year: 2016 ident: 12455_CR115 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2016.06.125 – volume: 172 start-page: 300 year: 2012 ident: 12455_CR124 publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE11-86 – volume: 106 start-page: 132503 year: 2011 ident: 12455_CR139 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.132503 – volume: 39 start-page: 1 year: 1988 ident: 12455_CR82 publication-title: At. Data Nucl. Data Tables doi: 10.1016/0092-640X(88)90016-2 – volume: 81 start-page: 213 year: 1982 ident: 12455_CR29 publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE82-5 – volume: 72 start-page: 773 year: 2008 ident: 12455_CR57 publication-title: Bull. Russ. Acad. Sci. Phys. doi: 10.3103/S1062873808060130 – volume: 23 start-page: 257 year: 1969 ident: 12455_CR38 publication-title: J. Nucl. Energy doi: 10.1016/0022-3107(69)90060-4 – volume: 89 start-page: 034603 year: 2014 ident: 12455_CR142 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.89.034603 – ident: 12455_CR116 – volume: 882 start-page: 105 year: 2018 ident: 12455_CR69 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2017.10.097 – ident: 12455_CR75 – volume: 791 start-page: 80 year: 2015 ident: 12455_CR77 publication-title: Nucl. Instrum. Methods Phys. Res. A doi: 10.1016/j.nima.2015.04.044 – ident: 12455_CR113 doi: 10.1142/9789813229426_0092 – volume: 3 start-page: 2034 year: 1971 ident: 12455_CR151 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.3.2034 – volume: 56 start-page: 426 year: 1939 ident: 12455_CR1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.56.426 – ident: 12455_CR102 – ident: 12455_CR129 – volume: 146 start-page: 04003 year: 2017 ident: 12455_CR132 publication-title: EPJ Web of Conferences doi: 10.1051/epjconf/201714604003 – volume: 87 start-page: 051602 year: 2013 ident: 12455_CR34 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.87.051602 – ident: 12455_CR13 – ident: 12455_CR61 – volume: 23 start-page: 1271 year: 1996 ident: 12455_CR108 publication-title: Ann. Nucl. Energy doi: 10.1016/0306-4549(96)00004-7 – volume: 95 start-page: 054603 year: 2017 ident: 12455_CR74 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.95.054603 – volume: 39 start-page: 055103 year: 2012 ident: 12455_CR110 publication-title: J. Phys. G: Nucl. Part. Phys. doi: 10.1088/0954-3899/39/5/055103 – volume: 34 start-page: 218 year: 1986 ident: 12455_CR150 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.34.218 – ident: 12455_CR2 – volume: 110 start-page: 3107 year: 2009 ident: 12455_CR86 publication-title: Nucl. Data Sheets doi: 10.1016/j.nds.2009.10.004 – volume: 713 start-page: 231 year: 2003 ident: 12455_CR84 publication-title: Nucl. Phys. A doi: 10.1016/S0375-9474(02)01321-0 – volume: 22 start-page: 638 year: 1980 ident: 12455_CR65 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.22.638 – volume: 85 start-page: 014605 year: 2012 ident: 12455_CR64 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.85.014605 – volume: 35 start-page: 1563 year: 1975 ident: 12455_CR56 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.35.1563 – volume: 21 start-page: 255 year: 1975 ident: 12455_CR88 publication-title: Sov. J. Nucl. Phys. – volume: 59 start-page: 1654 year: 2011 ident: 12455_CR112 publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.59.1654 – volume: 89 start-page: 014611 year: 2014 ident: 12455_CR121 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.89.014611 – volume: 32 start-page: 404 year: 1995 ident: 12455_CR20 publication-title: J. Nucl. Sci. Technol. doi: 10.1080/18811248.1995.9731725 – volume: 7 start-page: 1173 year: 1973 ident: 12455_CR31 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.7.1173 – ident: 12455_CR53 – ident: 12455_CR70 doi: 10.1063/1.3665320 – volume: 113 start-page: 527 year: 1937 ident: 12455_CR97 publication-title: Phys. Rev. – ident: 12455_CR89 – volume: 6 start-page: 1023 year: 1972 ident: 12455_CR40 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.6.1023 – volume: 64 start-page: 83 year: 2015 ident: 12455_CR45 publication-title: Phys. Proc. doi: 10.1016/j.phpro.2015.04.011 – volume: 93 start-page: 054611 year: 2016 ident: 12455_CR5 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.93.054611 |
SSID | ssj0004296 |
Score | 2.4791267 |
SecondaryResourceType | review_article |
Snippet | .
Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and
γ
-ray... Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray... |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Angular momentum Cleavage Computer simulation Constraint modelling Correlation analysis Defense programs Fragmentation Fragments Hadrons Heavy Ions Kinetic energy Model accuracy Molecular, Atomic and Nuclear Physics Monte Carlo transport simulations Nuclear electric power generation Nuclear energy Nuclear engineering Nuclear fission Nuclear Fusion Nuclear Physics NUCLEAR PHYSICS AND RADIATION PHYSICS Nuclear reactors Nuclear structure Nuclei (nuclear physics) Parameter sensitivity Particle and Nuclear Physics Physics Physics and Astronomy Quadrupoles Review Spectral emittance Transport |
Title | Correlated prompt fission data in transport simulations |
URI | https://link.springer.com/article/10.1140/epja/i2018-12455-0 https://www.proquest.com/docview/1989959303 https://www.osti.gov/servlets/purl/1424104 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-yIXgRP7Fujh68aVibph87bnNzKHpyME8haVOobN2w9f_3vbRVJyp46iFpCr-8l_d-zfsg5DJIgWcEWtI4kYxyN5RUMeVQnXCZxCmMmJ6RD4_BbM7vFv6iTgormmj35krSnNRVPVunrzcvsp-BvQLWw7jvUyDqbR-5O0jxnA0_syHZoMop8jhFc96kyvy4xpY5aq1BrbZczW-3o8boTA_Ifu0t2sNqew_Jjs6PyK6J2oyLYxKOsbfGEtzFxIbVVpvSTjMMa81tjPy0s9wum-LldpGt6lZdxQmZTydP4xmtOyHQmLuspDLSrkoDz9FeDBoWgpvicT8C6qHhREsSz-VYRkoD3q4GJUw9FUkw_UqqMNKg1Kekla9zfUZs6TPlhRJYsWY8SZkapLgw006IXDGwiNsAIuK6TDh2q1iKKoXZEQiiMCAKA6JwLHL18c6mKpLx5-wO4izAxGOd2hgDeuJSYModcEOLdBv4Ra1OhcDALqyg7HgWuW625Mvwr986_9_0DtkzwmF-sXRJq3x90xfgdJSqR9rD0c1ois_b5_tJz8jcO4z20jA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yEb2IP7Fuag7eNKxN0x87juGYuu20wW4hSVOobN2w9f_3JW3ViQqem6bwJS_vveZ730PoNkwhzwi1ICoRlDAvEkRS6RKdMJGoFJ7YnpGTaTias6dFsKiLwoqG7d5cSdqTutKzdbt68yK6GfgryHooCwICifouBAOxIXLNaf-zGpL2qpoinxHjzptSmR_n2HJHrTWY1Vao-e121Dqd4RE6rKNF3K-W9xjt6PwE7VnWpipOUTQwvTWWEC4mGGZbbUqcZobWmmPD_MRZjstGvBwX2apu1VWcofnwYTYYkboTAlHMoyURsfZkGvqu9hVYWARhis-CGFIPDSdakvgeMzJSGvD2NBhh6stYgOuXQkaxBqM-R618nesLhEVApR8JyIo1ZUlKZS81E1PtRiZXDB3kNYBwVcuEm24VS16VMLvcgMgtiNyCyF0H3X28s6lEMv4c3TY4c3DxRqdWGUKPKrkpuYPc0EGdBn5em1PBDbHLKCi7voPumyX58vjXb13-b_gN2h_NJmM-fpw-t9GB3Sj2d0sHtcrXN30FAUgpr-1-ewdu1NId |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QEIgL4inKBvTADaK1afrYcRpM4zVxYNJuUdKm0tDWVbT8f-y0hQ0BEuemqeTEsb_G32dCLoMUcEagJY0TySh3Q0kVUw7VCZdJnMIT0zPyaRyMJvx-6k9XWPym2r25kqw4DajSlJXdPElrbVunq_NX2Z1B7AIExLjvUwDtm3Acu7ivJ6z_xYxkvYpf5HGKob2hzfw4x1poai3BxdbSzm83pSYADffIbp052v1qqffJhs4OyJap4IyLQxIOsM_GHFLHxIbZFnlppzMscc1srAK1Z5ldNkLmdjFb1G27iiMyGd6-DEa07opAY-6ykspIuyoNPEd7MXhbCCmLx_0IYIiG0y1JPJejpJQG27saHDL1VCQhDVBShZEGBz8mrWyZ6RNiS58pL5SAkDXjScpUL8WJmXZCxI2BRdzGICKuJcOxc8VcVHRmR6ARhTGiMEYUjkWuPt_JK8GMP0e30c4Cwj1q1sZY3BOXAul3gBMt0mnML2rXKgQWeaGasuNZ5LpZkpXHv37r9H_DL8j2881QPN6NH9pkx-wT8-elQ1rl27s-g1ykVOdmu30AtivWWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlated+prompt+fission+data+in+transport+simulations&rft.jtitle=The+European+physical+journal.+A%2C+Hadrons+and+nuclei&rft.au=Talou%2C+P&rft.au=Vogt%2C+R&rft.au=Randrup%2C+J&rft.au=Rising%2C+M+E&rft.date=2018-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1434-6001&rft.eissn=1434-601X&rft.volume=54&rft.issue=1&rft.spage=1&rft.epage=38&rft_id=info:doi/10.1140%2Fepja%2Fi2018-12455-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6001&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6001&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6001&client=summon |