Correlated prompt fission data in transport simulations

. Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ -ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g. , multiplicity-dependent neu...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. A, Hadrons and nuclei Vol. 54; no. 1; pp. 1 - 38
Main Authors Talou, P., Vogt, R., Randrup, J., Rising, M. E., Pozzi, S. A., Verbeke, J., Andrews, M. T., Clarke, S. D., Jaffke, P., Jandel, M., Kawano, T., Marcath, M. J., Meierbachtol, K., Nakae, L., Rusev, G., Sood, A., Stetcu, I., Walker, C.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2018
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract . Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ -ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g. , multiplicity-dependent neutron and γ -ray spectra, angular distributions of the emitted particles, n - n , n - γ , and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ -ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation, safeguards, nuclear energy, and defense programs. This review provides an overview of the topic, starting from theoretical considerations of the fission process, with a focus on correlated signatures. It then explores the status of experimental correlated fission data and current efforts to address some of the known shortcomings. Numerical simulations employing the FREYA and CGMF codes are compared to experimental data for a wide range of correlated fission quantities. The inclusion of those codes into the MCNP6.2 and MCNPX - PoliMi transport codes is described and discussed in the context of relevant applications. The accuracy of the model predictions and their sensitivity to model assumptions and input parameters are discussed. Finally, a series of important experimental and theoretical questions that remain unanswered are presented, suggesting a renewed effort to address these shortcomings.
AbstractList Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n -n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation, safeguards, nuclear energy, and defense programs. This review provides an overview of the topic, starting from theoretical considerations of the fission process, with a focus on correlated signatures. It then explores the status of experimental correlated fission data and current efforts to address some of the known shortcomings. Numerical simulations employing the FREYA and CGMF codes are compared to experimental data for a wide range of correlated fission quantities. The inclusion of those codes into the MCNP6.2 and MCNPX - PoliMi transport codes is described and discussed in the context of relevant applications. The accuracy of the model predictions and their sensitivity to model assumptions and input parameters are discussed. Finally, a series of important experimental and theoretical questions that remain unanswered are presented, suggesting a renewed effort to address these shortcomings.
. Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ -ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g. , multiplicity-dependent neutron and γ -ray spectra, angular distributions of the emitted particles, n - n , n - γ , and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ -ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation, safeguards, nuclear energy, and defense programs. This review provides an overview of the topic, starting from theoretical considerations of the fission process, with a focus on correlated signatures. It then explores the status of experimental correlated fission data and current efforts to address some of the known shortcomings. Numerical simulations employing the FREYA and CGMF codes are compared to experimental data for a wide range of correlated fission quantities. The inclusion of those codes into the MCNP6.2 and MCNPX - PoliMi transport codes is described and discussed in the context of relevant applications. The accuracy of the model predictions and their sensitivity to model assumptions and input parameters are discussed. Finally, a series of important experimental and theoretical questions that remain unanswered are presented, suggesting a renewed effort to address these shortcomings.
ArticleNumber 9
Author Talou, P.
Nakae, L.
Walker, C.
Vogt, R.
Sood, A.
Marcath, M. J.
Stetcu, I.
Meierbachtol, K.
Pozzi, S. A.
Kawano, T.
Jandel, M.
Verbeke, J.
Rusev, G.
Jaffke, P.
Andrews, M. T.
Clarke, S. D.
Randrup, J.
Rising, M. E.
Author_xml – sequence: 1
  givenname: P.
  surname: Talou
  fullname: Talou, P.
  organization: Nuclear Physics Group, Theoretical Division, Los Alamos National Laboratory
– sequence: 2
  givenname: R.
  surname: Vogt
  fullname: Vogt, R.
  email: rlvogt@lbl.gov
  organization: Nuclear & Chemical Sciences Division, Lawrence Livermore National Laboratory, Physics Department, University of California at Davis
– sequence: 3
  givenname: J.
  surname: Randrup
  fullname: Randrup, J.
  organization: Nuclear Science Division, Lawrence Berkeley National Laboratory
– sequence: 4
  givenname: M. E.
  surname: Rising
  fullname: Rising, M. E.
  organization: Monte Carlo Methods, Codes, and Applications Group, Los Alamos National Laboratory
– sequence: 5
  givenname: S. A.
  surname: Pozzi
  fullname: Pozzi, S. A.
  organization: Department of Nuclear Engineering and Radiological Sciences, University of Michigan
– sequence: 6
  givenname: J.
  surname: Verbeke
  fullname: Verbeke, J.
  organization: Nuclear & Chemical Sciences Division, Lawrence Livermore National Laboratory
– sequence: 7
  givenname: M. T.
  surname: Andrews
  fullname: Andrews, M. T.
  organization: Monte Carlo Methods, Codes, and Applications Group, Los Alamos National Laboratory
– sequence: 8
  givenname: S. D.
  surname: Clarke
  fullname: Clarke, S. D.
  organization: Department of Nuclear Engineering and Radiological Sciences, University of Michigan
– sequence: 9
  givenname: P.
  surname: Jaffke
  fullname: Jaffke, P.
  organization: Nuclear Physics Group, Theoretical Division, Los Alamos National Laboratory
– sequence: 10
  givenname: M.
  surname: Jandel
  fullname: Jandel, M.
  organization: Nuclear and Radiochemistry Group, Los Alamos National Laboratory, Department of Physics and Applied Physics, University of Massachusetts Lowell
– sequence: 11
  givenname: T.
  surname: Kawano
  fullname: Kawano, T.
  organization: Nuclear Physics Group, Theoretical Division, Los Alamos National Laboratory
– sequence: 12
  givenname: M. J.
  surname: Marcath
  fullname: Marcath, M. J.
  organization: Department of Nuclear Engineering and Radiological Sciences, University of Michigan
– sequence: 13
  givenname: K.
  surname: Meierbachtol
  fullname: Meierbachtol, K.
  organization: Nuclear Engineering and Nonproliferation, Los Alamos National Laboratory
– sequence: 14
  givenname: L.
  surname: Nakae
  fullname: Nakae, L.
  organization: Nuclear & Chemical Sciences Division, Lawrence Livermore National Laboratory
– sequence: 15
  givenname: G.
  surname: Rusev
  fullname: Rusev, G.
  organization: Nuclear and Radiochemistry Group, Los Alamos National Laboratory
– sequence: 16
  givenname: A.
  surname: Sood
  fullname: Sood, A.
  organization: Monte Carlo Methods, Codes, and Applications Group, Los Alamos National Laboratory
– sequence: 17
  givenname: I.
  surname: Stetcu
  fullname: Stetcu, I.
  organization: Nuclear Physics Group, Theoretical Division, Los Alamos National Laboratory
– sequence: 18
  givenname: C.
  surname: Walker
  fullname: Walker, C.
  organization: Nuclear and Radiochemistry Group, Los Alamos National Laboratory
BackLink https://www.osti.gov/servlets/purl/1424104$$D View this record in Osti.gov
BookMark eNp9kM1KxDAURoMoOI6-gKui6-q9SdqkSxn8A8GNgruQtqlmmElqkln49mamIiLoKoGcL_e754jsO-8MIacIF4gcLs241JeWAsoSKa-qEvbIDDnjZQ34sv99BzwkRzEuAYDTpp4RsfAhmJVOpi_G4NdjKgYbo_Wu6HXShXVFCtrF0YdURLveZDQ_xmNyMOhVNCdf55w831w_Le7Kh8fb-8XVQ9lxpKnU0mA71AwM64QUoqqB8UrWdW0AaN8z5C0KYXpN0dBKDKyVWlLa6lZII4DNydn0r4_JqtjZZLq3zjtnuqSQU47AM3Q-QXmD942JSS39JrjcS2Ejm6ZqGLBM0Ynqgo8xmEGNwa51-FAIamtRbS2qnUW1s6i28-WvUK6wU5C12NX_UTZFY57jXk340erv1Ccbd4ot
CitedBy_id crossref_primary_10_1016_j_nima_2018_09_060
crossref_primary_10_1103_PhysRevC_109_054613
crossref_primary_10_1088_1674_1137_ac2298
crossref_primary_10_1140_epja_s10050_020_00123_x
crossref_primary_10_1103_PhysRevC_101_054607
crossref_primary_10_1140_epja_s10050_020_00108_w
crossref_primary_10_1051_epjconf_202125600009
crossref_primary_10_1103_PhysRevC_100_054610
crossref_primary_10_1016_j_nima_2018_06_055
crossref_primary_10_1103_PhysRevC_105_044615
crossref_primary_10_1103_PhysRevC_104_024602
crossref_primary_10_1016_j_nds_2019_12_007
crossref_primary_10_1016_j_nima_2019_01_081
crossref_primary_10_1140_epja_s10050_024_01441_0
crossref_primary_10_1103_PhysRevC_100_014605
crossref_primary_10_1140_epja_i2019_12782_6
crossref_primary_10_1088_1361_6471_ab9f58
crossref_primary_10_1016_j_nima_2020_163907
crossref_primary_10_1088_1361_6471_abab4f
crossref_primary_10_1103_PhysRevC_107_044608
crossref_primary_10_1016_j_cpc_2021_108087
crossref_primary_10_1088_1748_0221_17_09_P09004
crossref_primary_10_1103_PhysRevC_104_014611
crossref_primary_10_1080_00223131_2021_1954103
crossref_primary_10_1140_epja_s10050_020_00127_7
crossref_primary_10_1103_PhysRevC_102_014612
crossref_primary_10_1051_epjconf_202532207004
crossref_primary_10_1103_PhysRevC_97_044622
crossref_primary_10_1051_epjconf_202023903001
crossref_primary_10_1103_PhysRevC_98_044615
crossref_primary_10_1103_PhysRevC_102_024621
crossref_primary_10_1016_j_physletb_2020_135276
crossref_primary_10_1103_PhysRevC_99_054619
crossref_primary_10_1088_1361_6501_ad0612
crossref_primary_10_1140_epja_s10050_022_00877_6
crossref_primary_10_1007_s10967_021_07893_8
crossref_primary_10_1103_PhysRevC_108_064606
crossref_primary_10_1103_PhysRevLett_126_142502
crossref_primary_10_1016_j_radphyschem_2018_06_013
crossref_primary_10_3389_fphy_2020_00063
crossref_primary_10_1016_j_radphyschem_2020_109131
crossref_primary_10_1103_PhysRevC_102_034615
crossref_primary_10_1140_epja_s10050_024_01375_7
crossref_primary_10_1016_j_radphyschem_2024_111959
crossref_primary_10_1140_epja_s10050_022_00766_y
crossref_primary_10_1051_epjconf_202125600016
crossref_primary_10_1080_00223131_2018_1467288
crossref_primary_10_1103_PhysRevLett_122_072503
crossref_primary_10_1016_j_ppnp_2022_103963
crossref_primary_10_1051_epjconf_202024205002
crossref_primary_10_1016_j_physletb_2022_137648
crossref_primary_10_1051_epjn_2022037
Cites_doi 10.1016/0370-1573(90)90114-H
10.1103/PhysRevC.96.034603
10.1016/S0306-4549(00)00039-6
10.1103/PhysRevC.90.064611
10.1016/0375-9474(88)90508-8
10.13182/NSE14-120
10.1103/PhysRevC.84.044621
10.1016/j.nima.2006.06.046
10.1016/j.nima.2015.01.088
10.1051/epjconf/20159302020
10.1016/j.nds.2014.08.089
10.1103/PhysRevC.72.024601
10.1103/PhysRevC.87.024601
10.1007/978-3-319-07133-6
10.1103/PhysRev.87.366
10.1103/PhysRevC.95.064609
10.1016/j.nima.2016.06.002
10.1016/j.nds.2009.11.001
10.1103/PhysRevC.94.054604
10.1080/18811248.2010.9711637
10.1103/PhysRevC.94.064613
10.1103/PhysRev.113.527
10.13182/NSE88-A28498
10.1088/1674-1137/36/12/002
10.1051/epjconf/20100803004
10.1103/PhysRevC.96.064620
10.1016/j.anucene.2014.07.023
10.1103/PhysRevC.83.064612
10.1016/j.nima.2003.06.012
10.1103/PhysRevC.89.044601
10.1103/PhysRevC.90.054609
10.1103/PhysRevC.94.034611
10.1016/j.nima.2016.05.064
10.1103/PhysRevC.41.1941
10.1080/18811248.2000.9714976
10.1103/PhysRev.108.783
10.1016/j.phpro.2014.10.016
10.1103/PhysRevLett.116.122504
10.1016/j.cpc.2017.09.006
10.1016/j.nds.2015.12.009
10.1103/PhysRevC.93.014606
10.1016/S0375-9474(00)00155-X
10.1103/PhysRevC.80.024601
10.1016/j.cpc.2015.02.002
10.13182/NSE07-85
10.1103/PhysRev.126.2120
10.1142/S0218301307005843
10.1016/0375-9474(72)90296-5
10.1103/PhysRev.87.1139
10.13182/NSE13-96
10.1103/PhysRevC.80.014309
10.1103/PhysRevC.90.014602
10.1103/PhysRevC.85.021601
10.1016/j.nuclphysa.2005.04.002
10.1016/j.nds.2011.11.002
10.1103/PhysRev.129.2133
10.1103/RevModPhys.47.713
10.1016/0029-5582(65)90589-4
10.1103/PhysRevC.75.064313
10.1016/0375-9474(89)90206-6
10.13182/NSE15-35
10.1103/PhysRevC.87.044607
10.1140/epja/i2017-12188-6
10.1140/epja/i2015-15177-9
10.1103/PhysRevLett.104.212501
10.13182/NSE82-A18973
10.1103/PhysRevC.92.014618
10.1103/PhysRevC.87.044602
10.1016/0029-5582(63)90785-5
10.1103/PhysRevC.86.024610
10.1016/0031-9163(65)90020-X
10.1016/S0168-9002(96)80040-4
10.1016/j.nima.2016.02.011
10.1016/0168-9002(86)90651-0
10.1134/S1063778809100159
10.1103/PhysRevC.85.024608
10.1016/j.nima.2012.07.040
10.1016/j.nima.2009.05.131
10.1038/35057204
10.1016/S0375-9474(98)00008-6
10.1016/j.phpro.2015.04.025
10.1103/PhysRevC.29.885
10.1016/j.nima.2003.09.029
10.1016/j.nds.2015.12.002
10.1103/PhysRevLett.107.132501
10.1016/j.nima.2016.06.125
10.13182/NSE11-86
10.1103/PhysRevLett.106.132503
10.1016/0092-640X(88)90016-2
10.13182/NSE82-5
10.3103/S1062873808060130
10.1016/0022-3107(69)90060-4
10.1103/PhysRevC.89.034603
10.1016/j.nima.2017.10.097
10.1016/j.nima.2015.04.044
10.1142/9789813229426_0092
10.1103/PhysRevC.3.2034
10.1103/PhysRev.56.426
10.1051/epjconf/201714604003
10.1103/PhysRevC.87.051602
10.1016/0306-4549(96)00004-7
10.1103/PhysRevC.95.054603
10.1088/0954-3899/39/5/055103
10.1103/PhysRevC.34.218
10.1016/j.nds.2009.10.004
10.1016/S0375-9474(02)01321-0
10.1103/PhysRevC.22.638
10.1103/PhysRevC.85.014605
10.1103/PhysRevLett.35.1563
10.3938/jkps.59.1654
10.1103/PhysRevC.89.014611
10.1080/18811248.1995.9731725
10.1103/PhysRevC.7.1173
10.1063/1.3665320
10.1103/PhysRevC.6.1023
10.1016/j.phpro.2015.04.011
10.1103/PhysRevC.93.054611
ContentType Journal Article
Copyright SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
CorporateAuthor Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – name: Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
– name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1140/epja/i2018-12455-0
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-601X
EndPage 38
ExternalDocumentID 1424104
10_1140_epja_i2018_12455_0
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
199
1SB
203
29G
29Q
29~
2J2
2JY
2KG
2KM
2LR
2P1
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AI.
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF-
PT5
QOS
R89
R9I
RED
RID
RIG
RNS
ROL
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7Y
ZMTXR
~8M
2JN
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
OIOZB
OTOTI
ID FETCH-LOGICAL-c412t-a8e1bf630e3c78775603458666e002dd314b177eda21e257f3b8a822bab78e703
IEDL.DBID U2A
ISSN 1434-6001
IngestDate Tue Nov 05 04:35:10 EST 2024
Mon Jul 14 09:34:21 EDT 2025
Thu Apr 24 23:04:21 EDT 2025
Tue Jul 01 01:33:00 EDT 2025
Fri Feb 21 02:33:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-a8e1bf630e3c78775603458666e002dd314b177eda21e257f3b8a822bab78e703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
LLNL-JRNL-738697; LA-UR-17-28181
AC52-07NA27344; AC02-05CH11231; AC52-06NA25396
USDOE National Nuclear Security Administration (NNSA)
OpenAccessLink https://www.osti.gov/servlets/purl/1424104
PQID 1989959303
PQPubID 2043701
PageCount 38
ParticipantIDs osti_scitechconnect_1424104
proquest_journals_1989959303
crossref_primary_10_1140_epja_i2018_12455_0
crossref_citationtrail_10_1140_epja_i2018_12455_0
springer_journals_10_1140_epja_i2018_12455_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180100
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 1
  year: 2018
  text: 20180100
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
– name: United States
PublicationSubtitle Hadrons and Nuclei
PublicationTitle The European physical journal. A, Hadrons and nuclei
PublicationTitleAbbrev Eur. Phys. J. A
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer
References NeudeckerD.TalouP.KawanoT.SmithD.L.CapoteR.RisingM.E.KahlerA.C.Nucl. Instrum. Methods Phys. Res. A2015791802015NIMPA.791...80N10.1016/j.nima.2015.04.044
CarlsonA.D.PronyaevV.G.SmithD.L.LarsonN.M.ChenZ.HaleG.M.HambschF.J.GaiE.V.OhS.Y.BadikovS.A.Nucl. Data Sheets200911032152009NDS...110.3215C10.1016/j.nds.2009.11.001
PringleJ.S.BrooksF.D.Phys. Rev. Lett.19753515631975PhRvL..35.1563P10.1103/PhysRevLett.35.1563
D.B. Pelowitz, Technical Report LA-CP-11-00438, Los Alamos National Laboratory (2011)
OberstedtS.BillnertR.GateraA.GeertsW.HalipréP.HambschF.J.LeboisM.OberstedtA.MariniP.VidaliM.Phys. Proc.201564832015PhPro..64...83O10.1016/j.phpro.2015.04.011
J.T. Goorley, Technical Report LA-UR-14-24680, Los Alamos National Laboratory (2014)
G. Rusev, B. Baramsai, E.M. Bond, T.A. Bredeweg, M. Jandel, D.J. Vieira, A. Couture, S. Mosby, J.L. Ullmann, A.C. Hayes, Measurements of correlated fission data with DANCE and NEUANCE, in Proceedings of the Sixth International Conference on Fission and Properties of Neutron-Rich Nuclei, ICFN6 (World Scientific, 2017)
GateraA.BelgyaT.GeertsW.GöökA.HambschF.J.LeboisM.MarótiB.MoensA.OberstedtA.OberstedtS.Phys. Rev. C2017950646092017PhRvC..95f4609G10.1103/PhysRevC.95.064609
SchmidtK.H.JuradoB.Phys. Rev. Lett.20101042125012010PhRvL.104u2501S10.1103/PhysRevLett.104.212501
TuliJ.K.Nucl. Instrum. Methods Phys. Res. A19963695061996NIMPA.369..506T10.1016/S0168-9002(96)80040-4
ChyzhA.WuC.Y.KwanE.HendersonR.A.GosticJ.M.BredewegT.A.HaightR.C.HayesA.C.JandelM.O’DonnellJ.M.Phys. Rev. C201285021601(R)2012PhRvC..85b1601C10.1103/PhysRevC.85.021601
KimK.S.NakaeL.F.PrasadM.K.SnydermanN.J.VerbekeJ.M.Nucl. Sci. Eng.201518122510.13182/NSE14-120
PrasadM.K.SnydermanN.J.Nucl. Sci. Eng.201217230010.13182/NSE11-86
C. Wagemans (Editor), The Nuclear Fission Process (CRC Press, Inc., 1991)
BowmanH.R.MiltonJ.C.D.ThompsonS.G.SwiateckiW.J.Phys. Rev.196312921331963PhRv..129.2133B10.1103/PhysRev.129.2133
ValentineT.E.MihalczoJ.T.Ann. Nucl. Energy199623127110.1016/0306-4549(96)00004-7
SpencerR.R.GwinR.IngleR.Nucl. Sci. Eng.19828060310.13182/NSE82-A18973
OberstedtA.BelgyaT.BillnertR.BorceaR.BryśT.GeertsW.GöökA.HambschF.J.KisZ.MartinezT.Phys. Rev. C2013870516022013PhRvC..87e1602O10.1103/PhysRevC.87.051602
JandelM.BaramsaiB.BredewegT.CoutureA.FavalliA.HayesA.IanakievK.IlievM.KawanoT.MosbyS.Nucl. Instrum. Methods Phys. Res. A201888210510.1016/j.nima.2017.10.097
J.F. Martin, PhD Thesis, Université Paris Sud, Orsay, France (2014)
WinholdE.J.DemosP.T.HalpernI.Phys. Rev.19528711391952PhRv...87.1139W10.1103/PhysRev.87.1139
BonneauL.QuentinP.MikhailovI.N.Phys. Rev. C2007750643132007PhRvC..75f4313B10.1103/PhysRevC.75.064313
P. Talou, T. Kawano, I. Stetcu, Technical Report LA-CC-13-063, Los Alamos National Laboratory (2013)
PozziS.A.WiegerB.EnqvistA.ClarkeS.D.FlaskaM.LarsenE.HaightR.C.PadovaniE.Nucl. Sci. Eng.201417825010.13182/NSE13-96
I. Pázsit, L. Pál, Neutron Fluctuations: A Treatise on the Physics of Branching Processes (Elsevier, Oxford, 2008)
ChatillonA.BélierG.GranierT.LaurentB.MorillonB.TaiebJ.HaightR.C.DevlinM.NelsonR.O.NodaS.Phys. Rev. C2014890146112014PhRvC..89a4611C10.1103/PhysRevC.89.014611
SkarsvågK.Phys. Rev. C1980226381980PhRvC..22..638S10.1103/PhysRevC.22.638
V. Kleinrath, PhD Thesis, Vienna University of Technology, Austria (2015)
RegnierD.DubrayN.SchunckN.VerrièreM.Phys. Rev. C2016930546112016PhRvC..93e4611R10.1103/PhysRevC.93.054611
P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, Technical Report LA-UR-15-26310, arXiv:1508.06294, Los Alamos National Laboratory (2015)
VogtR.RandrupJ.Phys. Rev. C2017960646202017PhRvC..96f4620V10.1103/PhysRevC.96.064620
LynnJ.E.Phys. Lett.196518311965PhL....18...31L10.1016/0031-9163(65)90020-X
GöökA.GeertsW.HambschF.J.OberstedtS.VidaliM.ZeynalovS.Nucl. Instrum. Methods Phys. Res. A20168303662016NIMPA.830..366G10.1016/j.nima.2016.06.002
OberstedtA.BillnertR.HambschF.J.OberstedtS.Phys. Rev. C2015920146182015PhRvC..92a4618O10.1103/PhysRevC.92.014618
AudiG.WangM.WapstraA.H.KondevF.G.MacCormickM.XuX.PfeifferB.Chin. Phys. C201236128710.1088/1674-1137/36/12/002
L.S. Leong, PhD Thesis, Université Paris Sud, Orsay, France (2013)
BohrN.WheelerJ.A.Phys. Rev.1939564261939PhRv...56..426B10.1103/PhysRev.56.426
YounesW.GognyD.Phys. Rev. Lett.20111071325012011PhRvL.107m2501Y10.1103/PhysRevLett.107.132501
VorobyevA.S.GagarskiA.M.ShcherbakovO.A.VaishneneL.A.BarabanovA.L.Pis’ma v Zh. Eksp. Teor. Fiz.2015102231
VerbekeJ.M.RandrupJ.VogtR.Comput. Phys. Commun.20151911782015CoPhC.191..178V10.1016/j.cpc.2015.02.002
BermanB.L.FultzS.C.Rev. Mod. Phys.1975477131975RvMP...47..713B10.1103/RevModPhys.47.713
SierkA.J.Phys. Rev. C2017960346032017PhRvC..96c4603S10.1103/PhysRevC.96.034603
TerrellJ.Phys. Rev.19591135271105201959PhRv..113..527T10.1103/PhysRev.113.527
J.P. Lestone, Technical Report LA-UR-05-0288, Los Alamos National Laboratory (2005)
BillnertR.HambschF.J.OberstedtA.OberstedtS.Phys. Rev. C2013870246012013PhRvC..87b4601B10.1103/PhysRevC.87.024601
ValentineT.E.Ann. Nucl. Energy20012819110.1016/S0306-4549(00)00039-6
MarcathM.J.ShinT.H.ClarkeS.D.PeeraniP.PozziS.A.Nucl. Instrum. Methods Phys. Res. A20168301632016NIMPA.830..163M10.1016/j.nima.2016.05.064
FeynmanR.P.HoffmannF.D.SerberR.J. Nucl. Energy1956364
DukeD.L.TovessonF.LaptevA.B.MosbyS.HambschF.J.BryśT.VidaliM.Phys. Rev. C2016940546042016PhRvC..94e4604D10.1103/PhysRevC.94.054604
VerbekeJ.M.RandrupJ.VogtR.Comput. Phys. Commun.20182222632018CoPhC.222..263V10.1016/j.cpc.2017.09.006
GöökA.HambschF.J.VidaliM.Phys. Rev. C2014900646112014PhRvC..90f4611G10.1103/PhysRevC.90.064611
KoningA.J.DelarocheJ.P.Nucl. Phys. A20037132312003NuPhA.713..231K10.1016/S0375-9474(02)01321-0
RandrupJ.TalouP.VogtR.EPJ Web of Conferences20171460400310.1051/epjconf/201714604003
GönnenweinF.TsekhanovichI.RubchenyaV.Int. J. Mod. Phys. E2007164102007IJMPE..16..410G10.1142/S0218301307005843
JandelM.RusevG.BondE.M.BredewegT.A.ChadwickM.B.CoutureA.FowlerM.M.HaightR.C.KawanoT.KeksisA.L.Phys. Proc.2014591012014PhPro..59..101J10.1016/j.phpro.2014.10.016
UllmannJ.L.KawanoT.BredewegT.A.CoutureA.HaightR.C.JandelM.O’DonnellJ.M.RundbergR.S.VieiraD.J.WilhelmyJ.B.Phys. Rev. C2014890346032014PhRvC..89c4603U10.1103/PhysRevC.89.034603
E. Gadioli, Pre-Equilibrium Nuclear Reactions (Oxford University Press, 1992)
MorariuC.TudoraA.HambschF.J.OberstedtS.ManailescuC.J. Phys. G: Nucl. Part. Phys.2012390551032012JPhG...39e5103M10.1088/0954-3899/39/5/055103
J.M. Verbeke, C. Hagmann, D. Wright, Technical Report UCRL-AR-228518, Lawrence Livermore National Laboratory (2010)
PozziS.A.ClarkeS.D.WalshW.MillerE.DolanJ.FlaskaM.WiegerB.EnqvistA.PadovaniE.MattinglyJ.Nucl. Instrum. Methods Phys. Res. A20126941192012NIMPA.694..119P10.1016/j.nima.2012.07.040
DushinV.N.HambschF.J.JakovlevV.A.KalininV.A.KraevI.S.LaptevA.B.NikolaevD.V.PetrovB.F.PetrovG.A.PetrovaV.I.Nucl. Instrum. Methods Phys. Res. A20045165392004NIMPA.516..539D10.1016/j.nima.2003.09.029
NifeneckerH.SignarbieuxC.RibragM.PoitouJ.MatuszekJ.Nucl. Phys. A19721892851972NuPhA.189..285N10.1016/0375-9474(72)90296-5
X-5 Monte Carlo Team, Technical Report LA-UR-03-1987, Los Alamos National Laboratory (2005)
VerbinskiV.V.WeberH.SundR.E.Phys. Rev. C1973711731973PhRvC...7.1173V10.1103/PhysRevC.7.1173
RandrupJ.VogtR.Phys. Rev. C2009800246012009PhRvC..80b4601R10.1103/PhysRevC.80.024601
MöllerP.SchmittC.Eur. Phys. J. A20175372017EPJA...53....7M10.1140/epja/i2017-12188-6
J.M. Verbeke, L.F. Nakae, R. Vogt, LLNL-JRNL-731534 (2017)
EnqvistA.PázsitI.PozziS.Nucl. Instrum. Methods Phys. Res. A20065565982006NIMPA.566..598E10.1016/j.nima.2006.06.046
TalouP.KawanoT.StetcuI.LestoneJ.P.McKigneyE.ChadwickM.B.Phys. Rev. C2016940646132016PhRvC..94f4613T10.1103/PhysRevC.94.064613
ShcherbakovO.A.Sov. J. Part. Nucl.199021177
HambschF.J.OberstedtS.AdiliA.A.BorceaR.OberstedtA.TudoraA.ZeynalovS.J. Korean Phys. Soc.201159165410.3938/jkps.59.1654
LitaizeO.SerotO.BergeL.Eur. Phys. J. A2015511772015EPJA...51..177L10.1140/epja/i2015-15177-9
N.E. Holden, M.S. Zucker, Prompt neutron multiplicities for the transplutonium nuclides, in International Conference on Nuclear Data for Science and Technology, Santa Fe, New Mexico, edited by P. Young, Vol. 2 (Gordon and Breach Science Publishers, 1985) p. 1631
N. Kornilov, Fission Neutrons: Experiments, Evaluation, Modeling and Open Problems, (Springer International Publishing, 2015)
D.K. Hauck, A. Favalli, P.A. Santi, S. Croft, Technical Report LA-UR-13-25358, Los Alamos National Laboratory (2013)
D.L. Duke, PhD Thesis, Colorado School of Mines (2015)
WangT.LiG.ZhuL.MengQ.WangL.HanH.ZangW.XiaH.HouL.VogtR.Phys. Rev. C2016930146062016PhRvC..93a4606W10.1103/PhysRevC.93.014606
VerbekeJ.M.ChaplineG.F.SheetsS.A.Nucl. Instrum. Methods Phys. Res. A20157821262015NIMPA.782..126V10.1016/j.nima.2015.01.088
WeisskopfV.F.Phys. Rev.1937113527
SchmidtK.H.JuradoB.AmourouxC.SchmittC.Nucl. Data Sheets20161311072016NDS...131..107S10.1016/j.nds.2015.12.009
ChadwickM.B.HermanM.ObložinskýP.Nucl. Data Sheets201111228872011NDS...112.2887C10.1016/j.nds.2011.11.002
LemaireS.TalouP.KawanoT.ChadwickM.B.MadlandD.G.Phys. Rev. C2005720246012005PhRvC..72b4601L10.1103/PhysRevC.72.024601
KopeckyJ.UhlM.Phys. Rev. C19904119411990PhRvC..41.1941K10.1103/PhysRevC.41.1941
F.J. Hambsch, Prompt fission neutron emission of ^{235}$U(n,f): thermal and resonance region, in 14th International Conference on Nuclear Reaction Mechanisms (CERN, 2015)
AllisonJ.Nucl. Instrum. Methods Phys. Res. A20168351862016NIMPA.835..186A10.1016/j.nima.2016.06.125
MeierbachtolK.TovessonF.DukeD.L.Geppert-KleinrathV.ManningB.MeharchandR.MosbyS.ShieldsD.Phys. Rev. C2016940346112016PhRvC..94c4611M10.1103/PhysRevC.94.034611
CifarelliD.M.HageW.Nucl. Instrum. Methods Phys. Res. A19862515501986NIMPA.251..550C10.1016/0168-9002(86)90651-0
A. Bohr, On the Theory of Nuclear Fission, in International Conference on the Peaceful Uses of Atomic Energy, Vol. 2 (N.Y. United Nations, Geneva, 1956) p. 151
SantiP.MillerM.Nucl. Sci. Eng.200816019010.13182/NSE07-85
VogtR.RandrupJ.Phys. Rev. C2011840446212011PhRvC..84d4621V10.1103/PhysRevC.84.044621
BrosaU.GrossmannS.MüllerA.Phys. Rep.19901971671990PhR...197..167B10.1016/0370-1573(90)901
12455_CR129
P. Möller (12455_CR134) 2017; 53
12455_CR126
A. Enqvist (12455_CR127) 2006; 556
M.O. Frégeau (12455_CR145) 2016; 817
T. Materna (12455_CR146) 2015; 93
P. Möller (12455_CR25) 2001; 409
K. Skarsvåg (12455_CR65) 1980; 22
C. Bhatia (12455_CR144) 2014; 119
K. Meierbachtol (12455_CR148) 2016; 94
A.C. Wahl (12455_CR82) 1988; 39
S. Oberstedt (12455_CR45) 2015; 64
J.K. Tuli (12455_CR87) 1996; 369
T. Granier (12455_CR120) 2015; 64
F. Gönnenwein (12455_CR137) 2007; 16
Y. Aritomo (12455_CR140) 2014; 90
A. Oberstedt (12455_CR34) 2013; 87
A. Chyzh (12455_CR44) 2014; 90
A. Göök (12455_CR21) 2014; 90
R. Capote (12455_CR86) 2009; 110
P. Talou (12455_CR81) 2011; 83
12455_CR37
H. Nifenecker (12455_CR47) 1972; 189
12455_CR8
J. Kopecky (12455_CR85) 1990; 41
12455_CR7
S.A. Pozzi (12455_CR14) 2012; 694
N.E. Holden (12455_CR28) 1988; 98
12455_CR35
12455_CR117
M.B. Chadwick (12455_CR26) 2011; 112
12455_CR116
L. Bonneau (12455_CR136) 2007; 75
J.L. Ullmann (12455_CR142) 2014; 89
12455_CR114
12455_CR113
12455_CR2
M. Jandel (12455_CR68) 2014; 59
T.E. Valentine (12455_CR42) 2001; 28
J. Randrup (12455_CR59) 2014; 89
C. Morariu (12455_CR110) 2012; 39
M.K. Prasad (12455_CR124) 2012; 172
P. Santi (12455_CR105) 2005; 756
A.D. Carlson (12455_CR32) 2009; 110
A.J. Koning (12455_CR84) 2003; 713
D.M. Cifarelli (12455_CR123) 1986; 251
S.C. Burnett (12455_CR151) 1971; 3
K. Skarsvåg (12455_CR55) 1963; 45
R. Vogt (12455_CR99) 2017; 96
A.S. Vorobyev (12455_CR62) 2015; 102
12455_CR41
A. Oberstedt (12455_CR43) 2015; 92
A.A. Naqvi (12455_CR150) 1986; 34
K. Nishio (12455_CR22) 1998; 632
O.A. Shcherbakov (12455_CR51) 1990; 21
W. Hauser (12455_CR80) 1952; 87
12455_CR143
E.J. Winhold (12455_CR60) 1952; 87
R.R. Spencer (12455_CR36) 1982; 80
A. Staszczak (12455_CR141) 2009; 80
A.M. Daskalakis (12455_CR76) 2014; 73
R. Vogt (12455_CR95) 2011; 84
A.J. Sierk (12455_CR135) 2017; 96
J.E. Lynn (12455_CR49) 1965; 18
A. Gatera (12455_CR33) 2017; 95
M.J. Marcath (12455_CR66) 2016; 830
12455_CR53
12455_CR133
P. Santi (12455_CR27) 2008; 160
F. Pleasonton (12455_CR40) 1972; 6
T. Wang (12455_CR48) 2016; 93
A. Göök (12455_CR118) 2016; 830
R. Capote (12455_CR17) 2016; 131
T. Kawano (12455_CR16) 2010; 47
K.H. Schmidt (12455_CR12) 2016; 131
C. Tsuchiya (12455_CR23) 2000; 37
J. Allison (12455_CR115) 2016; 835
A. Enqvist (12455_CR128) 2009; 607
G. Audi (12455_CR83) 2012; 36
U. Brosa (12455_CR24) 1990; 197
C. Budtz-Jørgensen (12455_CR94) 1988; 490
V.V. Verbinski (12455_CR31) 1973; 7
A. Bulgac (12455_CR6) 2016; 116
D. Regnier (12455_CR5) 2016; 93
12455_CR63
12455_CR61
E. Pellereau (12455_CR74) 2017; 95
V.F. Weisskopf (12455_CR97) 1937; 113
J. Terrell (12455_CR96) 1959; 113
A.V. Ignatyuk (12455_CR88) 1975; 21
F.J. Hambsch (12455_CR112) 2011; 59
J. Randrup (12455_CR132) 2017; 146
F.J. Hambsch (12455_CR52) 1989; 491
K. Nishio (12455_CR20) 1995; 32
H.R. Bowman (12455_CR54) 1962; 126
R. Müller (12455_CR149) 1984; 29
O. Litaize (12455_CR11) 2015; 51
12455_CR78
12455_CR79
A. Chatillon (12455_CR121) 2014; 89
A.M. Gagarski (12455_CR57) 2008; 72
S.A. Pozzi (12455_CR58) 2014; 178
12455_CR75
R. Billnert (12455_CR30) 2013; 87
12455_CR72
J.M. Verbeke (12455_CR131) 2015; 782
12455_CR73
J. Terrell (12455_CR39) 1957; 108
12455_CR70
12455_CR71
B.L. Berman (12455_CR100) 1975; 47
J.M. Verbeke (12455_CR10) 2018; 222
J.M. Mueller (12455_CR64) 2012; 85
R. Vogt (12455_CR91) 2013; 87
T. Ichikawa (12455_CR3) 2012; 86
S. Lemaire (12455_CR92) 2005; 72
J.M. Verbeke (12455_CR125) 2016; 182
W. Younes (12455_CR4) 2011; 107
12455_CR89
12455_CR106
K.H. Schmidt (12455_CR109) 2010; 104
12455_CR104
T.E. Valentine (12455_CR108) 1996; 23
12455_CR103
H. Koura (12455_CR93) 2000; 674
J. Randrup (12455_CR98) 2009; 80
12455_CR102
12455_CR101
V. Stavinsky (12455_CR50) 1965; 62
A. Chyzh (12455_CR46) 2012; 85
J. Randrup (12455_CR139) 2011; 106
A.S. Vorobyev (12455_CR19) 2010; 8
D.L. Duke (12455_CR147) 2016; 94
M. Soleilhac (12455_CR38) 1969; 23
12455_CR15
H.R. Bowman (12455_CR111) 1963; 129
12455_CR13
M. Jandel (12455_CR69) 2018; 882
J.M. Verbeke (12455_CR9) 2015; 191
V.N. Dushin (12455_CR18) 2004; 516
R.P. Feynman (12455_CR122) 1956; 3
P. Talou (12455_CR119) 2016; 94
S.G. Kadmensky (12455_CR138) 2009; 72
D. Neudecker (12455_CR77) 2015; 791
R. Vogt (12455_CR90) 2012; 85
J.S. Pringle (12455_CR56) 1975; 35
S.A. Pozzi (12455_CR107) 2003; 513
K.S. Kim (12455_CR130) 2015; 181
N. Bohr (12455_CR1) 1939; 56
D.G. Madland (12455_CR29) 1982; 81
J.L. Ullmann (12455_CR67) 2013; 87
References_xml – reference: IgnatyukA.V.SmirenkinG.N.TishinA.S.Sov. J. Nucl. Phys.197521255
– reference: KouraH.UnoM.TachibanaT.YamadaM.Nucl. Phys. A2000674472000NuPhA.674...47K10.1016/S0375-9474(00)00155-X
– reference: MadlandD.G.NixJ.R.Nucl. Sci. Eng.19828121310.13182/NSE82-5
– reference: TerrellJ.Phys. Rev.19571087831957PhRv..108..783T10.1103/PhysRev.108.783
– reference: WeisskopfV.F.Phys. Rev.1937113527
– reference: KopeckyJ.UhlM.Phys. Rev. C19904119411990PhRvC..41.1941K10.1103/PhysRevC.41.1941
– reference: BermanB.L.FultzS.C.Rev. Mod. Phys.1975477131975RvMP...47..713B10.1103/RevModPhys.47.713
– reference: ValentineT.E.MihalczoJ.T.Ann. Nucl. Energy199623127110.1016/0306-4549(96)00004-7
– reference: M.T. Andrews, M.E. Rising, K.C. Meierbachtol, P. Talou, A. Sood, C.R. Bates, E.A. McKigney, C.J. Solomon, LA-UR-17-26443 (2017)
– reference: MaternaT.LetourneauA.AmourouxC.MarchixA.LitaizeO.SerotO.RegnierD.BlancA.JentschelM.KösterU.EPJ Web of Conferences2015930202010.1051/epjconf/20159302020
– reference: OberstedtA.BillnertR.HambschF.J.OberstedtS.Phys. Rev. C2015920146182015PhRvC..92a4618O10.1103/PhysRevC.92.014618
– reference: SoleilhacM.FréhautJ.GauriauJ.J. Nucl. Energy19692325710.1016/0022-3107(69)90060-4
– reference: TsuchiyaC.NakagomeY.YamanaH.MoriyamaH.NishioK.KannoI.ShinK.KimuraI.J. Nucl. Sci. Technol.20003794110.1080/18811248.2000.9714976
– reference: MCNP6 Development Team, Technical Report LA-UR-13-22934, Los Alamos National Laboratory (2013)
– reference: P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, Technical Report LA-UR-15-26310, arXiv:1508.06294, Los Alamos National Laboratory (2015)
– reference: BulgacA.MagierskiP.RocheK.J.StetcuI.Phys. Rev. Lett.20161161225042016PhRvL.116l2504B10.1103/PhysRevLett.116.122504
– reference: GagarskiA.M.GusevaI.S.SokolovV.E.Val’skiG.V.PetrovG.A.KrinitsinD.O.NikolaevD.V.ZavarukhinaT.A.PetrovaV.I.Bull. Russ. Acad. Sci. Phys.20087277310.3103/S1062873808060130
– reference: N.E. Holden, M.S. Zucker, Prompt neutron multiplicities for the transplutonium nuclides, in International Conference on Nuclear Data for Science and Technology, Santa Fe, New Mexico, edited by P. Young, Vol. 2 (Gordon and Breach Science Publishers, 1985) p. 1631
– reference: A. Bohr, On the Theory of Nuclear Fission, in International Conference on the Peaceful Uses of Atomic Energy, Vol. 2 (N.Y. United Nations, Geneva, 1956) p. 151
– reference: SkarsvågK.Phys. Rev. C1980226381980PhRvC..22..638S10.1103/PhysRevC.22.638
– reference: TalouP.BeckerB.KawanoT.ChadwickM.B.DanonY.Phys. Rev. C2011830646122011PhRvC..83f4612T10.1103/PhysRevC.83.064612
– reference: MarcathM.J.ShinT.H.ClarkeS.D.PeeraniP.PozziS.A.Nucl. Instrum. Methods Phys. Res. A20168301632016NIMPA.830..163M10.1016/j.nima.2016.05.064
– reference: SchmidtK.H.JuradoB.Phys. Rev. Lett.20101042125012010PhRvL.104u2501S10.1103/PhysRevLett.104.212501
– reference: YounesW.GognyD.Phys. Rev. Lett.20111071325012011PhRvL.107m2501Y10.1103/PhysRevLett.107.132501
– reference: HoldenN.E.ZuckerM.S.Nucl. Sci. Eng.19889817410.13182/NSE88-A28498
– reference: FrégeauM.O.OberstedtS.GamboniT.GeertsW.HambschF.J.VidaliM.Nucl. Instrum. Methods Phys. Res. A2016817352016NIMPA.817...35F10.1016/j.nima.2016.02.011
– reference: VerbekeJ.M.RandrupJ.VogtR.Comput. Phys. Commun.20182222632018CoPhC.222..263V10.1016/j.cpc.2017.09.006
– reference: MuellerJ.M.AhmedM.W.DavisB.HallJ.M.HenshawS.S.JohnsonM.S.KarwowskiH.J.MarkoffD.MyersL.S.PerdueB.A.Phys. Rev. C2012850146052012PhRvC..85a4605M10.1103/PhysRevC.85.014605
– reference: A.S. Vorobyev, O.A. Shcherbakov, V.N. Dushin, V.A. Jakovlev, V.A. Kalinin, B.F. Petrov, F.J. Hambsch, A.B. Laptev, Prompt neutron emission from fragments in spontaneous fission of ^{244,248}$Cm and ^{252}$Cf, in International Workshop on Nuclear Fission and Fission Product Spectroscopy (A.I.P., 2005)
– reference: G.F. Chapline, L.F. Nakae, N. Snyderman, J.M. Verbeke, R. Wurtz, Monitoring spent or reprocessed nuclear fuel using fast neutrons, in Proceedings of the 15th International Conference on Emerging Nuclear Energy Systems (ICENES 2011), San Francisco, CA (Lawrence Livermore National Laboratory, 2011), LLNL-CONF-485216
– reference: LemaireS.TalouP.KawanoT.ChadwickM.B.MadlandD.G.Phys. Rev. C2005720246012005PhRvC..72b4601L10.1103/PhysRevC.72.024601
– reference: VerbekeJ.M.RandrupJ.VogtR.Comput. Phys. Commun.20151911782015CoPhC.191..178V10.1016/j.cpc.2015.02.002
– reference: TerrellJ.Phys. Rev.19591135271105201959PhRv..113..527T10.1103/PhysRev.113.527
– reference: D.B. Pelowitz, Technical Report LA-CP-11-00438, Los Alamos National Laboratory (2011)
– reference: NishioK.NakagomeY.YamamotoH.KimuraI.Nucl. Phys. A19986325401998NuPhA.632..540N10.1016/S0375-9474(98)00008-6
– reference: WinholdE.J.DemosP.T.HalpernI.Phys. Rev.19528711391952PhRv...87.1139W10.1103/PhysRev.87.1139
– reference: AllisonJ.Nucl. Instrum. Methods Phys. Res. A20168351862016NIMPA.835..186A10.1016/j.nima.2016.06.125
– reference: RandrupJ.MöllerP.Phys. Rev. Lett.20111061325032011PhRvL.106m2503R10.1103/PhysRevLett.106.132503
– reference: VerbinskiV.V.WeberH.SundR.E.Phys. Rev. C1973711731973PhRvC...7.1173V10.1103/PhysRevC.7.1173
– reference: WangT.LiG.ZhuL.MengQ.WangL.HanH.ZangW.XiaH.HouL.VogtR.Phys. Rev. C2016930146062016PhRvC..93a4606W10.1103/PhysRevC.93.014606
– reference: ShcherbakovO.A.Sov. J. Part. Nucl.199021177
– reference: BowmanH.R.MiltonJ.C.D.ThompsonS.G.SwiateckiW.J.Phys. Rev.196312921331963PhRv..129.2133B10.1103/PhysRev.129.2133
– reference: VogtR.RandrupJ.Phys. Rev. C2017960646202017PhRvC..96f4620V10.1103/PhysRevC.96.064620
– reference: KadmenskyS.G.TitovaL.V.Phys. At. Nucl.200972173810.1134/S1063778809100159
– reference: NifeneckerH.SignarbieuxC.RibragM.PoitouJ.MatuszekJ.Nucl. Phys. A19721892851972NuPhA.189..285N10.1016/0375-9474(72)90296-5
– reference: VerbekeJ.M.ChaplineG.F.SheetsS.A.Nucl. Instrum. Methods Phys. Res. A20157821262015NIMPA.782..126V10.1016/j.nima.2015.01.088
– reference: N. Kornilov, Fission Neutrons: Experiments, Evaluation, Modeling and Open Problems, (Springer International Publishing, 2015)
– reference: B. Morillon, P. Romain, private communication
– reference: GönnenweinF.TsekhanovichI.RubchenyaV.Int. J. Mod. Phys. E2007164102007IJMPE..16..410G10.1142/S0218301307005843
– reference: VogtR.RandrupJ.BrownD.A.DescalleM.A.OrmandW.Phys. Rev. C2012850246082012PhRvC..85b4608V10.1103/PhysRevC.85.024608
– reference: BillnertR.HambschF.J.OberstedtA.OberstedtS.Phys. Rev. C2013870246012013PhRvC..87b4601B10.1103/PhysRevC.87.024601
– reference: BrosaU.GrossmannS.MüllerA.Phys. Rep.19901971671990PhR...197..167B10.1016/0370-1573(90)90114-H
– reference: PringleJ.S.BrooksF.D.Phys. Rev. Lett.19753515631975PhRvL..35.1563P10.1103/PhysRevLett.35.1563
– reference: CifarelliD.M.HageW.Nucl. Instrum. Methods Phys. Res. A19862515501986NIMPA.251..550C10.1016/0168-9002(86)90651-0
– reference: EnqvistA.PozziS.A.PázsitI.Nucl. Instrum. Methods Phys. Res. A20096074512009NIMPA.607..451E10.1016/j.nima.2009.05.131
– reference: I. Pázsit, L. Pál, Neutron Fluctuations: A Treatise on the Physics of Branching Processes (Elsevier, Oxford, 2008)
– reference: BurnettS.C.FergusonR.L.PlasilF.SchmittH.W.Phys. Rev. C1971320341971PhRvC...3.2034B10.1103/PhysRevC.3.2034
– reference: DushinV.N.HambschF.J.JakovlevV.A.KalininV.A.KraevI.S.LaptevA.B.NikolaevD.V.PetrovB.F.PetrovG.A.PetrovaV.I.Nucl. Instrum. Methods Phys. Res. A20045165392004NIMPA.516..539D10.1016/j.nima.2003.09.029
– reference: HambschF.J.OberstedtS.AdiliA.A.BorceaR.OberstedtA.TudoraA.ZeynalovS.J. Korean Phys. Soc.201159165410.3938/jkps.59.1654
– reference: NaqviA.A.KäppelerF.DickmannF.MüllerR.Phys. Rev. C1986342181986PhRvC..34..218N10.1103/PhysRevC.34.218
– reference: J.M. Verbeke, L.F. Nakae, R. Vogt, LLNL-JRNL-731534 (2017)
– reference: UllmannJ.L.KawanoT.BredewegT.A.CoutureA.HaightR.C.JandelM.O’DonnellJ.M.RundbergR.S.VieiraD.J.WilhelmyJ.B.Phys. Rev. C2014890346032014PhRvC..89c4603U10.1103/PhysRevC.89.034603
– reference: BowmanH.R.MiltonJ.C.D.ThompsonS.G.SwiateckiW.J.Phys. Rev.196212621201962PhRv..126.2120B10.1103/PhysRev.126.2120
– reference: PozziS.A.PadovaniE.MarseguerraM.Nucl. Instrum. Methods Phys. Res. A20035135502003NIMPA.513..550P10.1016/j.nima.2003.06.012
– reference: JandelM.RusevG.BondE.M.BredewegT.A.ChadwickM.B.CoutureA.FowlerM.M.HaightR.C.KawanoT.KeksisA.L.Phys. Proc.2014591012014PhPro..59..101J10.1016/j.phpro.2014.10.016
– reference: PozziS.A.WiegerB.EnqvistA.ClarkeS.D.FlaskaM.LarsenE.HaightR.C.PadovaniE.Nucl. Sci. Eng.201417825010.13182/NSE13-96
– reference: L.S. Leong, PhD Thesis, Université Paris Sud, Orsay, France (2013)
– reference: UllmannJ.L.BondE.M.BredewegT.A.CoutureA.HaightR.C.JandelM.KawanoT.LeeH.Y.O’DonnellJ.M.HayesA.C.Phys. Rev. C2013870446072013PhRvC..87d4607U10.1103/PhysRevC.87.044607
– reference: TuliJ.K.Nucl. Instrum. Methods Phys. Res. A19963695061996NIMPA.369..506T10.1016/S0168-9002(96)80040-4
– reference: AudiG.WangM.WapstraA.H.KondevF.G.MacCormickM.XuX.PfeifferB.Chin. Phys. C201236128710.1088/1674-1137/36/12/002
– reference: ChadwickM.B.HermanM.ObložinskýP.Nucl. Data Sheets201111228872011NDS...112.2887C10.1016/j.nds.2011.11.002
– reference: FeynmanR.P.HoffmannF.D.SerberR.J. Nucl. Energy1956364
– reference: V. Kleinrath, PhD Thesis, Vienna University of Technology, Austria (2015)
– reference: E. Gadioli, Pre-Equilibrium Nuclear Reactions (Oxford University Press, 1992)
– reference: DaskalakisA.M.BahranR.M.BlainE.J.McDermottB.J.PielaS.DanonY.BarryD.P.LeinweberG.BlockR.C.RappM.J.Ann. Nucl. Energy20147345510.1016/j.anucene.2014.07.023
– reference: BohrN.WheelerJ.A.Phys. Rev.1939564261939PhRv...56..426B10.1103/PhysRev.56.426
– reference: PleasontonF.FergusonR.L.SchmittH.W.Phys. Rev. C1972610231972PhRvC...6.1023P10.1103/PhysRevC.6.1023
– reference: HauserW.FeshbachH.Phys. Rev.1952873661952PhRv...87..366H10.1103/PhysRev.87.366
– reference: PellereauE.Phys. Rev. C2017950546032017PhRvC..95e4603P10.1103/PhysRevC.95.054603
– reference: GranierT.Phys. Proc.2015641832015PhPro..64..183G10.1016/j.phpro.2015.04.025
– reference: A.S. Vorobyev, V.N. Dushin, F.J. Hambsch, V.A. Jakovlev, V.A. Kalinin, A.B. Laptev, B.F. Petrov, O.A. Shcherbakov, Distribution of prompt neutron emission probability for fission fragments in spontaneous fission of ^{252}$Cf and ^{244,248}$Cm, in International Conference on Nuclear Data for Science and Technology, edited by R. Haight, M. Chadwick, T. Kawano, P. Talou, Vol. CP769 (American Institute of Physics, 2005) p. 613
– reference: ValentineT.E.Ann. Nucl. Energy20012819110.1016/S0306-4549(00)00039-6
– reference: L.F. Nakae, G.F. Chapline, A.M. Glenn, P.L. Kerr, K.S. Kim, S.A. Ouedraogo, M.K. Prasad, S.A. Sheets, N.J. Snyderman, J.M. Verbeke, R.E. Wurtz, Recent Developments in Fast Neutron Detection and Multiplicity Counting with Verification with Liquid Scintillator, LLNL-CONF-489556 (2011)
– reference: MöllerP.SchmittC.Eur. Phys. J. A20175372017EPJA...53....7M10.1140/epja/i2017-12188-6
– reference: KimK.S.NakaeL.F.PrasadM.K.SnydermanN.J.VerbekeJ.M.Nucl. Sci. Eng.201518122510.13182/NSE14-120
– reference: MüllerR.NaqviA.A.KäppelerF.DickmannF.Phys. Rev. C1984298851984PhRvC..29..885M10.1103/PhysRevC.29.885
– reference: ChyzhA.WuC.Y.KwanE.HendersonR.A.GosticJ.M.BredewegT.A.HaightR.C.HayesA.C.JandelM.O’DonnellJ.M.Phys. Rev. C201285021601(R)2012PhRvC..85b1601C10.1103/PhysRevC.85.021601
– reference: D.K. Hauck, A. Favalli, P.A. Santi, S. Croft, Technical Report LA-UR-13-25358, Los Alamos National Laboratory (2013)
– reference: J.T. Goorley, Technical Report LA-UR-14-24680, Los Alamos National Laboratory (2014)
– reference: NishioK.NakagomeY.KannoI.KimuraI.J. Nucl. Sci. Technol.19953240410.1080/18811248.1995.9731725
– reference: CapoteR.HermanM.OblozinskyP.YoungP.G.GorielyS.BelgyaT.IgnatyukA.V.KoningA.J.HilaireS.PlujkoV.A.Nucl. Data Sheets200911031072009NDS...110.3107C10.1016/j.nds.2009.10.004
– reference: F.J. Hambsch, Prompt fission neutron emission of ^{235}$U(n,f): thermal and resonance region, in 14th International Conference on Nuclear Reaction Mechanisms (CERN, 2015)
– reference: SchmidtK.H.JuradoB.AmourouxC.SchmittC.Nucl. Data Sheets20161311072016NDS...131..107S10.1016/j.nds.2015.12.009
– reference: OberstedtS.BillnertR.GateraA.GeertsW.HalipréP.HambschF.J.LeboisM.OberstedtA.MariniP.VidaliM.Phys. Proc.201564832015PhPro..64...83O10.1016/j.phpro.2015.04.011
– reference: VorobyevA.S.GagarskiA.M.ShcherbakovO.A.VaishneneL.A.BarabanovA.L.Pis’ma v Zh. Eksp. Teor. Fiz.2015102231
– reference: Budtz-JørgensenC.KnitterH.H.Nucl. Phys. A19884903071988NuPhA.490..307B10.1016/0375-9474(88)90508-8
– reference: EnqvistA.PázsitI.PozziS.Nucl. Instrum. Methods Phys. Res. A20065565982006NIMPA.566..598E10.1016/j.nima.2006.06.046
– reference: KoningA.J.DelarocheJ.P.Nucl. Phys. A20037132312003NuPhA.713..231K10.1016/S0375-9474(02)01321-0
– reference: LynnJ.E.Phys. Lett.196518311965PhL....18...31L10.1016/0031-9163(65)90020-X
– reference: CarlsonA.D.PronyaevV.G.SmithD.L.LarsonN.M.ChenZ.HaleG.M.HambschF.J.GaiE.V.OhS.Y.BadikovS.A.Nucl. Data Sheets200911032152009NDS...110.3215C10.1016/j.nds.2009.11.001
– reference: HambschF.J.KnitterH.H.Budtz-JørgensenC.TheobaldJ.P.Nucl. Phys. A1989491561989NuPhA.491...56H10.1016/0375-9474(89)90206-6
– reference: RandrupJ.VogtR.Phys. Rev. C2009800246012009PhRvC..80b4601R10.1103/PhysRevC.80.024601
– reference: SantiP.BeddingfieldD.H.MayoD.R.Nucl. Phys. A20057563252005NuPhA.756..325S10.1016/j.nuclphysa.2005.04.002
– reference: SantiP.MillerM.Nucl. Sci. Eng.200816019010.13182/NSE07-85
– reference: RandrupJ.VogtR.Phys. Rev. C2014890446012014PhRvC..89d4601R10.1103/PhysRevC.89.044601
– reference: C. Wagemans (Editor), The Nuclear Fission Process (CRC Press, Inc., 1991)
– reference: G. Rusev, B. Baramsai, E.M. Bond, T.A. Bredeweg, M. Jandel, D.J. Vieira, A. Couture, S. Mosby, J.L. Ullmann, A.C. Hayes, Measurements of correlated fission data with DANCE and NEUANCE, in Proceedings of the Sixth International Conference on Fission and Properties of Neutron-Rich Nuclei, ICFN6 (World Scientific, 2017)
– reference: OberstedtA.BelgyaT.BillnertR.BorceaR.BryśT.GeertsW.GöökA.HambschF.J.KisZ.MartinezT.Phys. Rev. C2013870516022013PhRvC..87e1602O10.1103/PhysRevC.87.051602
– reference: TalouP.KawanoT.StetcuI.LestoneJ.P.McKigneyE.ChadwickM.B.Phys. Rev. C2016940646132016PhRvC..94f4613T10.1103/PhysRevC.94.064613
– reference: CapoteR.Nucl. Data Sheets201613112016NDS...131....1C10.1016/j.nds.2015.12.002
– reference: SierkA.J.Phys. Rev. C2017960346032017PhRvC..96c4603S10.1103/PhysRevC.96.034603
– reference: StaszczakA.BaranA.DobaczewskiJ.NazarewiczW.Phys. Rev. C2009800143092009PhRvC..80a4309S10.1103/PhysRevC.80.014309
– reference: GöökA.GeertsW.HambschF.J.OberstedtS.VidaliM.ZeynalovS.Nucl. Instrum. Methods Phys. Res. A20168303662016NIMPA.830..366G10.1016/j.nima.2016.06.002
– reference: PrasadM.K.SnydermanN.J.Nucl. Sci. Eng.201217230010.13182/NSE11-86
– reference: LitaizeO.SerotO.BergeL.Eur. Phys. J. A2015511772015EPJA...51..177L10.1140/epja/i2015-15177-9
– reference: AritomoY.ChibaS.IvanyukF.Phys. Rev. C2014900546092014PhRvC..90e4609A10.1103/PhysRevC.90.054609
– reference: IchikawaT.IwamotoA.MöllerP.SierkA.J.Phys. Rev. C2012860246102012PhRvC..86b4610I10.1103/PhysRevC.86.024610
– reference: P. Talou, T. Kawano, I. Stetcu, Technical Report LA-CC-13-063, Los Alamos National Laboratory (2013)
– reference: J.F. Martin, PhD Thesis, Université Paris Sud, Orsay, France (2014)
– reference: WahlA.C.At. Data Nucl. Data Tables19883911988ADNDT..39....1W10.1016/0092-640X(88)90016-2
– reference: VogtR.RandrupJ.Phys. Rev. C2013870446022013PhRvC..87d4602V10.1103/PhysRevC.87.044602
– reference: GateraA.BelgyaT.GeertsW.GöökA.HambschF.J.LeboisM.MarótiB.MoensA.OberstedtA.OberstedtS.Phys. Rev. C2017950646092017PhRvC..95f4609G10.1103/PhysRevC.95.064609
– reference: N. Ensslin, W.C. Harker, M.S. Krick, D.G. Langner, M.M. Pockrell, J.E. Stewart, Technical Report LA-13422-M, Los Alamos National Laboratory (1998)
– reference: X-5 Monte Carlo Team, Technical Report LA-UR-03-1987, Los Alamos National Laboratory (2005)
– reference: VerbekeJ.M.Nucl. Sci. Eng.201618248110.13182/NSE15-35
– reference: NeudeckerD.TalouP.KawanoT.SmithD.L.CapoteR.RisingM.E.KahlerA.C.Nucl. Instrum. Methods Phys. Res. A2015791802015NIMPA.791...80N10.1016/j.nima.2015.04.044
– reference: VogtR.RandrupJ.Phys. Rev. C2011840446212011PhRvC..84d4621V10.1103/PhysRevC.84.044621
– reference: GöökA.HambschF.J.VidaliM.Phys. Rev. C2014900646112014PhRvC..90f4611G10.1103/PhysRevC.90.064611
– reference: DukeD.L.TovessonF.LaptevA.B.MosbyS.HambschF.J.BryśT.VidaliM.Phys. Rev. C2016940546042016PhRvC..94e4604D10.1103/PhysRevC.94.054604
– reference: KawanoT.TalouP.ChadwickM.B.WatanabeT.J. Nucl. Sci. Technol.20104746210.1080/18811248.2010.9711637
– reference: M. Jandel, Technical Report LA-UR-12-24795, Los Alamos National Laboratory (2012)
– reference: PozziS.A.ClarkeS.D.WalshW.MillerE.DolanJ.FlaskaM.WiegerB.EnqvistA.PadovaniE.MattinglyJ.Nucl. Instrum. Methods Phys. Res. A20126941192012NIMPA.694..119P10.1016/j.nima.2012.07.040
– reference: M.S. Zucker, N.E. Holden, Technical Report BNL-38491, Brookhaven National Laboratory (1986)
– reference: ChatillonA.BélierG.GranierT.LaurentB.MorillonB.TaiebJ.HaightR.C.DevlinM.NelsonR.O.NodaS.Phys. Rev. C2014890146112014PhRvC..89a4611C10.1103/PhysRevC.89.014611
– reference: MeierbachtolK.TovessonF.DukeD.L.Geppert-KleinrathV.ManningB.MeharchandR.MosbyS.ShieldsD.Phys. Rev. C2016940346112016PhRvC..94c4611M10.1103/PhysRevC.94.034611
– reference: J.M. Verbeke, C. Hagmann, D. Wright, Technical Report UCRL-AR-228518, Lawrence Livermore National Laboratory (2010)
– reference: JandelM.BaramsaiB.BredewegT.CoutureA.FavalliA.HayesA.IanakievK.IlievM.KawanoT.MosbyS.Nucl. Instrum. Methods Phys. Res. A201888210510.1016/j.nima.2017.10.097
– reference: SpencerR.R.GwinR.IngleR.Nucl. Sci. Eng.19828060310.13182/NSE82-A18973
– reference: J.P. Lestone, Technical Report LA-UR-05-0288, Los Alamos National Laboratory (2005)
– reference: D.L. Duke, PhD Thesis, Colorado School of Mines (2015)
– reference: MöllerP.MadlandD.G.SierkA.J.IwamotoA.Nature20014097852001Natur.409..785M10.1038/35057204
– reference: MorariuC.TudoraA.HambschF.J.OberstedtS.ManailescuC.J. Phys. G: Nucl. Part. Phys.2012390551032012JPhG...39e5103M10.1088/0954-3899/39/5/055103
– reference: StavinskyV.ShakerM.O.Nucl. Phys.19656266710.1016/0029-5582(65)90589-4
– reference: F.B. Brown, M.E. Rising, J.L. Alwin, Technical Report LA-UR-17-23822, Los Alamos National Laboratory (2017)
– reference: BhatiaC.FallinB.HowellC.TornowW.GoodenM.KelleyJ.ArnoldC.BondE.BredewegT.FowlerM.Nucl. Data Sheets20141193242014NDS...119..324B10.1016/j.nds.2014.08.089
– reference: VorobyevA.S.ShcherbakovO.A.GagarskiA.M.Val’skiG.V.PetrovG.A.EPJ Web of Conferences201080300410.1051/epjconf/20100803004
– reference: RandrupJ.TalouP.VogtR.EPJ Web of Conferences20171460400310.1051/epjconf/201714604003
– reference: ChyzhA.WuC.Y.KwanE.HendersonR.A.BredewegT.A.HaightR.C.Hayes-SterbenzA.C.LeeH.Y.O’DonnellJ.M.UllmannJ.L.Phys. Rev. C2014900146022014PhRvC..90a4602C10.1103/PhysRevC.90.014602
– reference: BonneauL.QuentinP.MikhailovI.N.Phys. Rev. C2007750643132007PhRvC..75f4313B10.1103/PhysRevC.75.064313
– reference: RegnierD.DubrayN.SchunckN.VerrièreM.Phys. Rev. C2016930546112016PhRvC..93e4611R10.1103/PhysRevC.93.054611
– reference: SkarsvågK.BergheimK.Nucl. Phys.1963457210.1016/0029-5582(63)90785-5
– volume: 197
  start-page: 167
  year: 1990
  ident: 12455_CR24
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(90)90114-H
– ident: 12455_CR73
– volume: 96
  start-page: 034603
  year: 2017
  ident: 12455_CR135
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.96.034603
– volume: 28
  start-page: 191
  year: 2001
  ident: 12455_CR42
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/S0306-4549(00)00039-6
– volume: 90
  start-page: 064611
  year: 2014
  ident: 12455_CR21
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.90.064611
– volume: 490
  start-page: 307
  year: 1988
  ident: 12455_CR94
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(88)90508-8
– volume: 181
  start-page: 225
  year: 2015
  ident: 12455_CR130
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE14-120
– ident: 12455_CR35
– ident: 12455_CR143
– ident: 12455_CR15
– volume: 84
  start-page: 044621
  year: 2011
  ident: 12455_CR95
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.84.044621
– volume: 556
  start-page: 598
  year: 2006
  ident: 12455_CR127
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2006.06.046
– volume: 782
  start-page: 126
  year: 2015
  ident: 12455_CR131
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2015.01.088
– volume: 93
  start-page: 02020
  year: 2015
  ident: 12455_CR146
  publication-title: EPJ Web of Conferences
  doi: 10.1051/epjconf/20159302020
– volume: 119
  start-page: 324
  year: 2014
  ident: 12455_CR144
  publication-title: Nucl. Data Sheets
  doi: 10.1016/j.nds.2014.08.089
– volume: 72
  start-page: 024601
  year: 2005
  ident: 12455_CR92
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.72.024601
– volume: 87
  start-page: 024601
  year: 2013
  ident: 12455_CR30
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.87.024601
– ident: 12455_CR78
  doi: 10.1007/978-3-319-07133-6
– ident: 12455_CR117
– volume: 87
  start-page: 366
  year: 1952
  ident: 12455_CR80
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.87.366
– volume: 95
  start-page: 064609
  year: 2017
  ident: 12455_CR33
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.95.064609
– volume: 830
  start-page: 366
  year: 2016
  ident: 12455_CR118
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2016.06.002
– volume: 110
  start-page: 3215
  year: 2009
  ident: 12455_CR32
  publication-title: Nucl. Data Sheets
  doi: 10.1016/j.nds.2009.11.001
– volume: 94
  start-page: 054604
  year: 2016
  ident: 12455_CR147
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.94.054604
– volume: 47
  start-page: 462
  year: 2010
  ident: 12455_CR16
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.2010.9711637
– volume: 94
  start-page: 064613
  year: 2016
  ident: 12455_CR119
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.94.064613
– volume: 113
  start-page: 527
  year: 1959
  ident: 12455_CR96
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.113.527
– volume: 98
  start-page: 174
  year: 1988
  ident: 12455_CR28
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE88-A28498
– ident: 12455_CR126
– volume: 36
  start-page: 1287
  year: 2012
  ident: 12455_CR83
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/36/12/002
– volume: 8
  start-page: 03004
  year: 2010
  ident: 12455_CR19
  publication-title: EPJ Web of Conferences
  doi: 10.1051/epjconf/20100803004
– volume: 96
  start-page: 064620
  year: 2017
  ident: 12455_CR99
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.96.064620
– volume: 73
  start-page: 455
  year: 2014
  ident: 12455_CR76
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2014.07.023
– volume: 83
  start-page: 064612
  year: 2011
  ident: 12455_CR81
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.83.064612
– volume: 21
  start-page: 177
  year: 1990
  ident: 12455_CR51
  publication-title: Sov. J. Part. Nucl.
– volume: 513
  start-page: 550
  year: 2003
  ident: 12455_CR107
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2003.06.012
– volume: 89
  start-page: 044601
  year: 2014
  ident: 12455_CR59
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.89.044601
– volume: 90
  start-page: 054609
  year: 2014
  ident: 12455_CR140
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.90.054609
– volume: 94
  start-page: 034611
  year: 2016
  ident: 12455_CR148
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.94.034611
– ident: 12455_CR7
– ident: 12455_CR41
– volume: 830
  start-page: 163
  year: 2016
  ident: 12455_CR66
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2016.05.064
– ident: 12455_CR79
– volume: 41
  start-page: 1941
  year: 1990
  ident: 12455_CR85
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.41.1941
– ident: 12455_CR71
– ident: 12455_CR106
– ident: 12455_CR37
– volume: 37
  start-page: 941
  year: 2000
  ident: 12455_CR23
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.2000.9714976
– volume: 108
  start-page: 783
  year: 1957
  ident: 12455_CR39
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.108.783
– volume: 3
  start-page: 64
  year: 1956
  ident: 12455_CR122
  publication-title: J. Nucl. Energy
– volume: 59
  start-page: 101
  year: 2014
  ident: 12455_CR68
  publication-title: Phys. Proc.
  doi: 10.1016/j.phpro.2014.10.016
– volume: 116
  start-page: 122504
  year: 2016
  ident: 12455_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.122504
– volume: 222
  start-page: 263
  year: 2018
  ident: 12455_CR10
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2017.09.006
– volume: 131
  start-page: 107
  year: 2016
  ident: 12455_CR12
  publication-title: Nucl. Data Sheets
  doi: 10.1016/j.nds.2015.12.009
– volume: 93
  start-page: 014606
  year: 2016
  ident: 12455_CR48
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.93.014606
– volume: 674
  start-page: 47
  year: 2000
  ident: 12455_CR93
  publication-title: Nucl. Phys. A
  doi: 10.1016/S0375-9474(00)00155-X
– volume: 80
  start-page: 024601
  year: 2009
  ident: 12455_CR98
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.80.024601
– volume: 191
  start-page: 178
  year: 2015
  ident: 12455_CR9
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2015.02.002
– volume: 160
  start-page: 190
  year: 2008
  ident: 12455_CR27
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE07-85
– volume: 126
  start-page: 2120
  year: 1962
  ident: 12455_CR54
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.126.2120
– volume: 16
  start-page: 410
  year: 2007
  ident: 12455_CR137
  publication-title: Int. J. Mod. Phys. E
  doi: 10.1142/S0218301307005843
– ident: 12455_CR103
– volume: 189
  start-page: 285
  year: 1972
  ident: 12455_CR47
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(72)90296-5
– volume: 87
  start-page: 1139
  year: 1952
  ident: 12455_CR60
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.87.1139
– volume: 178
  start-page: 250
  year: 2014
  ident: 12455_CR58
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE13-96
– volume: 80
  start-page: 014309
  year: 2009
  ident: 12455_CR141
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.80.014309
– volume: 90
  start-page: 014602
  year: 2014
  ident: 12455_CR44
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.90.014602
– volume: 85
  start-page: 021601(R)
  year: 2012
  ident: 12455_CR46
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.85.021601
– volume: 756
  start-page: 325
  year: 2005
  ident: 12455_CR105
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2005.04.002
– volume: 112
  start-page: 2887
  year: 2011
  ident: 12455_CR26
  publication-title: Nucl. Data Sheets
  doi: 10.1016/j.nds.2011.11.002
– volume: 129
  start-page: 2133
  year: 1963
  ident: 12455_CR111
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.129.2133
– volume: 47
  start-page: 713
  year: 1975
  ident: 12455_CR100
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.47.713
– ident: 12455_CR114
– volume: 62
  start-page: 667
  year: 1965
  ident: 12455_CR50
  publication-title: Nucl. Phys.
  doi: 10.1016/0029-5582(65)90589-4
– ident: 12455_CR133
– volume: 75
  start-page: 064313
  year: 2007
  ident: 12455_CR136
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.75.064313
– volume: 491
  start-page: 56
  year: 1989
  ident: 12455_CR52
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(89)90206-6
– volume: 182
  start-page: 481
  year: 2016
  ident: 12455_CR125
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE15-35
– volume: 87
  start-page: 044607
  year: 2013
  ident: 12455_CR67
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.87.044607
– volume: 53
  start-page: 7
  year: 2017
  ident: 12455_CR134
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epja/i2017-12188-6
– volume: 51
  start-page: 177
  year: 2015
  ident: 12455_CR11
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epja/i2015-15177-9
– volume: 104
  start-page: 212501
  year: 2010
  ident: 12455_CR109
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.212501
– volume: 80
  start-page: 603
  year: 1982
  ident: 12455_CR36
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE82-A18973
– volume: 92
  start-page: 014618
  year: 2015
  ident: 12455_CR43
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.92.014618
– volume: 87
  start-page: 044602
  year: 2013
  ident: 12455_CR91
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.87.044602
– ident: 12455_CR104
– volume: 45
  start-page: 72
  year: 1963
  ident: 12455_CR55
  publication-title: Nucl. Phys.
  doi: 10.1016/0029-5582(63)90785-5
– ident: 12455_CR63
– volume: 86
  start-page: 024610
  year: 2012
  ident: 12455_CR3
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.86.024610
– volume: 18
  start-page: 31
  year: 1965
  ident: 12455_CR49
  publication-title: Phys. Lett.
  doi: 10.1016/0031-9163(65)90020-X
– volume: 369
  start-page: 506
  year: 1996
  ident: 12455_CR87
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/S0168-9002(96)80040-4
– volume: 817
  start-page: 35
  year: 2016
  ident: 12455_CR145
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2016.02.011
– ident: 12455_CR8
– volume: 251
  start-page: 550
  year: 1986
  ident: 12455_CR123
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/0168-9002(86)90651-0
– volume: 72
  start-page: 1738
  year: 2009
  ident: 12455_CR138
  publication-title: Phys. At. Nucl.
  doi: 10.1134/S1063778809100159
– ident: 12455_CR72
– volume: 85
  start-page: 024608
  year: 2012
  ident: 12455_CR90
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.85.024608
– volume: 694
  start-page: 119
  year: 2012
  ident: 12455_CR14
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2012.07.040
– volume: 607
  start-page: 451
  year: 2009
  ident: 12455_CR128
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2009.05.131
– ident: 12455_CR101
– volume: 409
  start-page: 785
  year: 2001
  ident: 12455_CR25
  publication-title: Nature
  doi: 10.1038/35057204
– volume: 632
  start-page: 540
  year: 1998
  ident: 12455_CR22
  publication-title: Nucl. Phys. A
  doi: 10.1016/S0375-9474(98)00008-6
– volume: 102
  start-page: 231
  year: 2015
  ident: 12455_CR62
  publication-title: Pis’ma v Zh. Eksp. Teor. Fiz.
– volume: 64
  start-page: 183
  year: 2015
  ident: 12455_CR120
  publication-title: Phys. Proc.
  doi: 10.1016/j.phpro.2015.04.025
– volume: 29
  start-page: 885
  year: 1984
  ident: 12455_CR149
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.29.885
– volume: 516
  start-page: 539
  year: 2004
  ident: 12455_CR18
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2003.09.029
– volume: 131
  start-page: 1
  year: 2016
  ident: 12455_CR17
  publication-title: Nucl. Data Sheets
  doi: 10.1016/j.nds.2015.12.002
– volume: 107
  start-page: 132501
  year: 2011
  ident: 12455_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.132501
– volume: 835
  start-page: 186
  year: 2016
  ident: 12455_CR115
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2016.06.125
– volume: 172
  start-page: 300
  year: 2012
  ident: 12455_CR124
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE11-86
– volume: 106
  start-page: 132503
  year: 2011
  ident: 12455_CR139
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.132503
– volume: 39
  start-page: 1
  year: 1988
  ident: 12455_CR82
  publication-title: At. Data Nucl. Data Tables
  doi: 10.1016/0092-640X(88)90016-2
– volume: 81
  start-page: 213
  year: 1982
  ident: 12455_CR29
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE82-5
– volume: 72
  start-page: 773
  year: 2008
  ident: 12455_CR57
  publication-title: Bull. Russ. Acad. Sci. Phys.
  doi: 10.3103/S1062873808060130
– volume: 23
  start-page: 257
  year: 1969
  ident: 12455_CR38
  publication-title: J. Nucl. Energy
  doi: 10.1016/0022-3107(69)90060-4
– volume: 89
  start-page: 034603
  year: 2014
  ident: 12455_CR142
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.89.034603
– ident: 12455_CR116
– volume: 882
  start-page: 105
  year: 2018
  ident: 12455_CR69
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2017.10.097
– ident: 12455_CR75
– volume: 791
  start-page: 80
  year: 2015
  ident: 12455_CR77
  publication-title: Nucl. Instrum. Methods Phys. Res. A
  doi: 10.1016/j.nima.2015.04.044
– ident: 12455_CR113
  doi: 10.1142/9789813229426_0092
– volume: 3
  start-page: 2034
  year: 1971
  ident: 12455_CR151
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.3.2034
– volume: 56
  start-page: 426
  year: 1939
  ident: 12455_CR1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.56.426
– ident: 12455_CR102
– ident: 12455_CR129
– volume: 146
  start-page: 04003
  year: 2017
  ident: 12455_CR132
  publication-title: EPJ Web of Conferences
  doi: 10.1051/epjconf/201714604003
– volume: 87
  start-page: 051602
  year: 2013
  ident: 12455_CR34
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.87.051602
– ident: 12455_CR13
– ident: 12455_CR61
– volume: 23
  start-page: 1271
  year: 1996
  ident: 12455_CR108
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/0306-4549(96)00004-7
– volume: 95
  start-page: 054603
  year: 2017
  ident: 12455_CR74
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.95.054603
– volume: 39
  start-page: 055103
  year: 2012
  ident: 12455_CR110
  publication-title: J. Phys. G: Nucl. Part. Phys.
  doi: 10.1088/0954-3899/39/5/055103
– volume: 34
  start-page: 218
  year: 1986
  ident: 12455_CR150
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.34.218
– ident: 12455_CR2
– volume: 110
  start-page: 3107
  year: 2009
  ident: 12455_CR86
  publication-title: Nucl. Data Sheets
  doi: 10.1016/j.nds.2009.10.004
– volume: 713
  start-page: 231
  year: 2003
  ident: 12455_CR84
  publication-title: Nucl. Phys. A
  doi: 10.1016/S0375-9474(02)01321-0
– volume: 22
  start-page: 638
  year: 1980
  ident: 12455_CR65
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.22.638
– volume: 85
  start-page: 014605
  year: 2012
  ident: 12455_CR64
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.85.014605
– volume: 35
  start-page: 1563
  year: 1975
  ident: 12455_CR56
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.35.1563
– volume: 21
  start-page: 255
  year: 1975
  ident: 12455_CR88
  publication-title: Sov. J. Nucl. Phys.
– volume: 59
  start-page: 1654
  year: 2011
  ident: 12455_CR112
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.59.1654
– volume: 89
  start-page: 014611
  year: 2014
  ident: 12455_CR121
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.89.014611
– volume: 32
  start-page: 404
  year: 1995
  ident: 12455_CR20
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/18811248.1995.9731725
– volume: 7
  start-page: 1173
  year: 1973
  ident: 12455_CR31
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.7.1173
– ident: 12455_CR53
– ident: 12455_CR70
  doi: 10.1063/1.3665320
– volume: 113
  start-page: 527
  year: 1937
  ident: 12455_CR97
  publication-title: Phys. Rev.
– ident: 12455_CR89
– volume: 6
  start-page: 1023
  year: 1972
  ident: 12455_CR40
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.6.1023
– volume: 64
  start-page: 83
  year: 2015
  ident: 12455_CR45
  publication-title: Phys. Proc.
  doi: 10.1016/j.phpro.2015.04.011
– volume: 93
  start-page: 054611
  year: 2016
  ident: 12455_CR5
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.93.054611
SSID ssj0004296
Score 2.4791267
SecondaryResourceType review_article
Snippet . Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ -ray...
Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray...
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Angular momentum
Cleavage
Computer simulation
Constraint modelling
Correlation analysis
Defense programs
Fragmentation
Fragments
Hadrons
Heavy Ions
Kinetic energy
Model accuracy
Molecular, Atomic and Nuclear Physics
Monte Carlo transport simulations
Nuclear electric power generation
Nuclear energy
Nuclear engineering
Nuclear fission
Nuclear Fusion
Nuclear Physics
NUCLEAR PHYSICS AND RADIATION PHYSICS
Nuclear reactors
Nuclear structure
Nuclei (nuclear physics)
Parameter sensitivity
Particle and Nuclear Physics
Physics
Physics and Astronomy
Quadrupoles
Review
Spectral emittance
Transport
Title Correlated prompt fission data in transport simulations
URI https://link.springer.com/article/10.1140/epja/i2018-12455-0
https://www.proquest.com/docview/1989959303
https://www.osti.gov/servlets/purl/1424104
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-yIXgRP7Fujh68aVibph87bnNzKHpyME8haVOobN2w9f_3vbRVJyp46iFpCr-8l_d-zfsg5DJIgWcEWtI4kYxyN5RUMeVQnXCZxCmMmJ6RD4_BbM7vFv6iTgormmj35krSnNRVPVunrzcvsp-BvQLWw7jvUyDqbR-5O0jxnA0_syHZoMop8jhFc96kyvy4xpY5aq1BrbZczW-3o8boTA_Ifu0t2sNqew_Jjs6PyK6J2oyLYxKOsbfGEtzFxIbVVpvSTjMMa81tjPy0s9wum-LldpGt6lZdxQmZTydP4xmtOyHQmLuspDLSrkoDz9FeDBoWgpvicT8C6qHhREsSz-VYRkoD3q4GJUw9FUkw_UqqMNKg1Kekla9zfUZs6TPlhRJYsWY8SZkapLgw006IXDGwiNsAIuK6TDh2q1iKKoXZEQiiMCAKA6JwLHL18c6mKpLx5-wO4izAxGOd2hgDeuJSYModcEOLdBv4Ra1OhcDALqyg7HgWuW625Mvwr986_9_0DtkzwmF-sXRJq3x90xfgdJSqR9rD0c1ois_b5_tJz8jcO4z20jA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yEb2IP7Fuag7eNKxN0x87juGYuu20wW4hSVOobN2w9f_3JW3ViQqem6bwJS_vveZ730PoNkwhzwi1ICoRlDAvEkRS6RKdMJGoFJ7YnpGTaTias6dFsKiLwoqG7d5cSdqTutKzdbt68yK6GfgryHooCwICifouBAOxIXLNaf-zGpL2qpoinxHjzptSmR_n2HJHrTWY1Vao-e121Dqd4RE6rKNF3K-W9xjt6PwE7VnWpipOUTQwvTWWEC4mGGZbbUqcZobWmmPD_MRZjstGvBwX2apu1VWcofnwYTYYkboTAlHMoyURsfZkGvqu9hVYWARhis-CGFIPDSdakvgeMzJSGvD2NBhh6stYgOuXQkaxBqM-R618nesLhEVApR8JyIo1ZUlKZS81E1PtRiZXDB3kNYBwVcuEm24VS16VMLvcgMgtiNyCyF0H3X28s6lEMv4c3TY4c3DxRqdWGUKPKrkpuYPc0EGdBn5em1PBDbHLKCi7voPumyX58vjXb13-b_gN2h_NJmM-fpw-t9GB3Sj2d0sHtcrXN30FAUgpr-1-ewdu1NId
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QEIgL4inKBvTADaK1afrYcRpM4zVxYNJuUdKm0tDWVbT8f-y0hQ0BEuemqeTEsb_G32dCLoMUcEagJY0TySh3Q0kVUw7VCZdJnMIT0zPyaRyMJvx-6k9XWPym2r25kqw4DajSlJXdPElrbVunq_NX2Z1B7AIExLjvUwDtm3Acu7ivJ6z_xYxkvYpf5HGKob2hzfw4x1poai3BxdbSzm83pSYADffIbp052v1qqffJhs4OyJap4IyLQxIOsM_GHFLHxIbZFnlppzMscc1srAK1Z5ldNkLmdjFb1G27iiMyGd6-DEa07opAY-6ykspIuyoNPEd7MXhbCCmLx_0IYIiG0y1JPJejpJQG27saHDL1VCQhDVBShZEGBz8mrWyZ6RNiS58pL5SAkDXjScpUL8WJmXZCxI2BRdzGICKuJcOxc8VcVHRmR6ARhTGiMEYUjkWuPt_JK8GMP0e30c4Cwj1q1sZY3BOXAul3gBMt0mnML2rXKgQWeaGasuNZ5LpZkpXHv37r9H_DL8j2881QPN6NH9pkx-wT8-elQ1rl27s-g1ykVOdmu30AtivWWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlated+prompt+fission+data+in+transport+simulations&rft.jtitle=The+European+physical+journal.+A%2C+Hadrons+and+nuclei&rft.au=Talou%2C+P&rft.au=Vogt%2C+R&rft.au=Randrup%2C+J&rft.au=Rising%2C+M+E&rft.date=2018-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1434-6001&rft.eissn=1434-601X&rft.volume=54&rft.issue=1&rft.spage=1&rft.epage=38&rft_id=info:doi/10.1140%2Fepja%2Fi2018-12455-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6001&client=summon