Interpretation of α-synuclein UV absorption spectra in the peptide bond and the aromatic regions
The interpretation of the UV absorption spectra of proteins was a matter of intense debate in the second half of the last century. The study of the spectroscopic characteristics of peptide bonds in proteins was then of particular interest but the absorption of a large number of peptide bonds in a pr...
Saved in:
Published in | Journal of photochemistry and photobiology. B, Biology Vol. 212; p. 112022 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.11.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The interpretation of the UV absorption spectra of proteins was a matter of intense debate in the second half of the last century. The study of the spectroscopic characteristics of peptide bonds in proteins was then of particular interest but the absorption of a large number of peptide bonds in a protein is a complex subject which gathers many contributions such as those from other amino acid residues that absorb as well and therefore unequivocal proofs remains a challenge. This probably becomes the reason for being an almost untouched subject of study in the last 40 years or so.
In this report the spectroscopic characteristics of the amyloid disordered protein α-synuclein (Syn) were studied in detail, concerning the UV absorption spectra in the peptide bond (200–230 nm) and the aromatic regions. Several protein concentrations, several solution pH and the first 300 min of the aggregation reaction were here investigated.
In what the peptide bond region of Syn is concerned, UV difference spectra for a 33.5 μM protein solution concentration, in particular, revealed that at Syn solutions pH 7, 3 and 2 the counter-ion concentration increases in that order, as expected, accounting for the decrease of the peptide bond absorbance. Also, for this protein solution concentration, quantitative information can be obtained from peptide bond absorption and counter-ion concentration interplay in what the progression of the Syn aggregation reaction is concerned. This situation represents a label-free analysis of Syn aggregation in the lag-phase, in particular.
Concerning the aromatic region of Syn, the UV absorption spectra revealed a perturbation at ca. 290–310 nm which is not related with light scattering effects in the UV absorption spectra but is related with the formation of mostly intermolecular hydrogen-bonded complexes between Syn tyrosyl groups and aspartic and glutamic acids residues. Interestingly, is the possible enrollment of these intermolecular complexes in the stabilization of this highly dynamic disordered protein in solution.
•Early large α-synuclein aggregates populate the solutions.•Interpretation of α-synuclein UV absorption spectra.•Label-free analysis of α-synuclein aggregation.•Stabilization of α-synuclein by intermolecular contacts involving tyrosine residues. |
---|---|
AbstractList | The interpretation of the UV absorption spectra of proteins was a matter of intense debate in the second half of the last century. The study of the spectroscopic characteristics of peptide bonds in proteins was then of particular interest but the absorption of a large number of peptide bonds in a protein is a complex subject which gathers many contributions such as those from other amino acid residues that absorb as well and therefore unequivocal proofs remains a challenge. This probably becomes the reason for being an almost untouched subject of study in the last 40 years or so. In this report the spectroscopic characteristics of the amyloid disordered protein α-synuclein (Syn) were studied in detail, concerning the UV absorption spectra in the peptide bond (200-230 nm) and the aromatic regions. Several protein concentrations, several solution pH and the first 300 min of the aggregation reaction were here investigated. In what the peptide bond region of Syn is concerned, UV difference spectra for a 33.5 μM protein solution concentration, in particular, revealed that at Syn solutions pH 7, 3 and 2 the counter-ion concentration increases in that order, as expected, accounting for the decrease of the peptide bond absorbance. Also, for this protein solution concentration, quantitative information can be obtained from peptide bond absorption and counter-ion concentration interplay in what the progression of the Syn aggregation reaction is concerned. This situation represents a label-free analysis of Syn aggregation in the lag-phase, in particular. Concerning the aromatic region of Syn, the UV absorption spectra revealed a perturbation at ca. 290-310 nm which is not related with light scattering effects in the UV absorption spectra but is related with the formation of mostly intermolecular hydrogen-bonded complexes between Syn tyrosyl groups and aspartic and glutamic acids residues. Interestingly, is the possible enrollment of these intermolecular complexes in the stabilization of this highly dynamic disordered protein in solution.The interpretation of the UV absorption spectra of proteins was a matter of intense debate in the second half of the last century. The study of the spectroscopic characteristics of peptide bonds in proteins was then of particular interest but the absorption of a large number of peptide bonds in a protein is a complex subject which gathers many contributions such as those from other amino acid residues that absorb as well and therefore unequivocal proofs remains a challenge. This probably becomes the reason for being an almost untouched subject of study in the last 40 years or so. In this report the spectroscopic characteristics of the amyloid disordered protein α-synuclein (Syn) were studied in detail, concerning the UV absorption spectra in the peptide bond (200-230 nm) and the aromatic regions. Several protein concentrations, several solution pH and the first 300 min of the aggregation reaction were here investigated. In what the peptide bond region of Syn is concerned, UV difference spectra for a 33.5 μM protein solution concentration, in particular, revealed that at Syn solutions pH 7, 3 and 2 the counter-ion concentration increases in that order, as expected, accounting for the decrease of the peptide bond absorbance. Also, for this protein solution concentration, quantitative information can be obtained from peptide bond absorption and counter-ion concentration interplay in what the progression of the Syn aggregation reaction is concerned. This situation represents a label-free analysis of Syn aggregation in the lag-phase, in particular. Concerning the aromatic region of Syn, the UV absorption spectra revealed a perturbation at ca. 290-310 nm which is not related with light scattering effects in the UV absorption spectra but is related with the formation of mostly intermolecular hydrogen-bonded complexes between Syn tyrosyl groups and aspartic and glutamic acids residues. Interestingly, is the possible enrollment of these intermolecular complexes in the stabilization of this highly dynamic disordered protein in solution. The interpretation of the UV absorption spectra of proteins was a matter of intense debate in the second half of the last century. The study of the spectroscopic characteristics of peptide bonds in proteins was then of particular interest but the absorption of a large number of peptide bonds in a protein is a complex subject which gathers many contributions such as those from other amino acid residues that absorb as well and therefore unequivocal proofs remains a challenge. This probably becomes the reason for being an almost untouched subject of study in the last 40 years or so. In this report the spectroscopic characteristics of the amyloid disordered protein α-synuclein (Syn) were studied in detail, concerning the UV absorption spectra in the peptide bond (200–230 nm) and the aromatic regions. Several protein concentrations, several solution pH and the first 300 min of the aggregation reaction were here investigated. In what the peptide bond region of Syn is concerned, UV difference spectra for a 33.5 μM protein solution concentration, in particular, revealed that at Syn solutions pH 7, 3 and 2 the counter-ion concentration increases in that order, as expected, accounting for the decrease of the peptide bond absorbance. Also, for this protein solution concentration, quantitative information can be obtained from peptide bond absorption and counter-ion concentration interplay in what the progression of the Syn aggregation reaction is concerned. This situation represents a label-free analysis of Syn aggregation in the lag-phase, in particular. Concerning the aromatic region of Syn, the UV absorption spectra revealed a perturbation at ca. 290–310 nm which is not related with light scattering effects in the UV absorption spectra but is related with the formation of mostly intermolecular hydrogen-bonded complexes between Syn tyrosyl groups and aspartic and glutamic acids residues. Interestingly, is the possible enrollment of these intermolecular complexes in the stabilization of this highly dynamic disordered protein in solution. The interpretation of the UV absorption spectra of proteins was a matter of intense debate in the second half of the last century. The study of the spectroscopic characteristics of peptide bonds in proteins was then of particular interest but the absorption of a large number of peptide bonds in a protein is a complex subject which gathers many contributions such as those from other amino acid residues that absorb as well and therefore unequivocal proofs remains a challenge. This probably becomes the reason for being an almost untouched subject of study in the last 40 years or so. In this report the spectroscopic characteristics of the amyloid disordered protein α-synuclein (Syn) were studied in detail, concerning the UV absorption spectra in the peptide bond (200–230 nm) and the aromatic regions. Several protein concentrations, several solution pH and the first 300 min of the aggregation reaction were here investigated. In what the peptide bond region of Syn is concerned, UV difference spectra for a 33.5 μM protein solution concentration, in particular, revealed that at Syn solutions pH 7, 3 and 2 the counter-ion concentration increases in that order, as expected, accounting for the decrease of the peptide bond absorbance. Also, for this protein solution concentration, quantitative information can be obtained from peptide bond absorption and counter-ion concentration interplay in what the progression of the Syn aggregation reaction is concerned. This situation represents a label-free analysis of Syn aggregation in the lag-phase, in particular. Concerning the aromatic region of Syn, the UV absorption spectra revealed a perturbation at ca. 290–310 nm which is not related with light scattering effects in the UV absorption spectra but is related with the formation of mostly intermolecular hydrogen-bonded complexes between Syn tyrosyl groups and aspartic and glutamic acids residues. Interestingly, is the possible enrollment of these intermolecular complexes in the stabilization of this highly dynamic disordered protein in solution. •Early large α-synuclein aggregates populate the solutions.•Interpretation of α-synuclein UV absorption spectra.•Label-free analysis of α-synuclein aggregation.•Stabilization of α-synuclein by intermolecular contacts involving tyrosine residues. |
ArticleNumber | 112022 |
Author | Saraiva, Marco A. |
Author_xml | – sequence: 1 givenname: Marco A. surname: Saraiva fullname: Saraiva, Marco A. email: marco.saraiva@tecnico.ulisboa.pt organization: Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal |
BookMark | eNqNUctKxTAQDaLg8x8Cbtz0mqSPtBtBxRcIbtRtmCZzNaU3qUmv4Gf5I36TqRUENxoIM8ycc0jO2SWbzjskhHK24IxXx92iG5796Fvr-4VgIo15KmKD7PBa5pmoarGZesZ5xvOi2Ca7MXYsnbKSOwRu3IhhCDjCaL2jfkk_3rP45ta6R-vowyOFNvowfG3jgHoMQNNifEY6YBobpK13hkK60xCCXyUtTQM-JU7cJ1tL6CMefNc98nB5cX9-nd3eXd2cn95muuBizECCYSZnOsdcClHKmjMEyduKcc00y40BlFWpWwNGy2YJLatkDQ3PDdMl5HvkaNYdgn9ZYxzVykaNfQ8O_ToqUZaTPbKRf0OLoqhlWUuWoIe_oJ1fB5c-klBVwxvG5SRYzygdfIwBl2oIdgXhTXGmpphUp35iUtM71BxTop78omo7Z5GMtv1_BM5mAUzmvloMKmqLTqOxIaWljLd_i3wC51m4nQ |
CitedBy_id | crossref_primary_10_1002_psc_3451 crossref_primary_10_1007_s10895_024_03971_8 crossref_primary_10_3390_chemosensors11030162 crossref_primary_10_3390_ijms232315291 crossref_primary_10_1007_s10895_023_03285_1 crossref_primary_10_1016_j_seppur_2023_125114 crossref_primary_10_1007_s12551_024_01223_4 crossref_primary_10_3390_biom12121819 crossref_primary_10_1002_ardp_202500093 crossref_primary_10_1186_s40538_025_00742_w crossref_primary_10_1016_j_ijbiomac_2024_139276 crossref_primary_10_1016_j_bbrc_2022_10_028 crossref_primary_10_1016_j_ijbiomac_2021_02_150 crossref_primary_10_1002_jbio_202400257 crossref_primary_10_1016_j_ifset_2024_103826 crossref_primary_10_3390_ph17060770 crossref_primary_10_1016_j_ijbiomac_2023_124801 crossref_primary_10_1016_j_foodhyd_2023_109643 crossref_primary_10_1016_j_ijbiomac_2023_129133 crossref_primary_10_1007_s10895_023_03192_5 crossref_primary_10_1016_j_ijbiomac_2022_07_102 crossref_primary_10_1016_j_jbc_2022_102688 crossref_primary_10_1016_j_ab_2023_115269 crossref_primary_10_1016_j_saa_2024_124156 crossref_primary_10_1021_acs_jafc_4c12952 crossref_primary_10_1002_marc_202100917 crossref_primary_10_1016_j_bpc_2022_106760 crossref_primary_10_1016_j_saa_2022_121761 crossref_primary_10_1016_j_ultsonch_2022_106036 crossref_primary_10_1016_j_ijbiomac_2022_06_186 crossref_primary_10_1021_acs_jpclett_4c00731 crossref_primary_10_1155_2024_4667379 crossref_primary_10_1016_j_indcrop_2024_120288 crossref_primary_10_1021_acsomega_1c05537 crossref_primary_10_1016_j_jmrt_2024_09_100 crossref_primary_10_1016_j_foodhyd_2024_110960 crossref_primary_10_1007_s00249_025_01737_z crossref_primary_10_1038_s42003_021_02396_4 crossref_primary_10_3390_separations8120241 crossref_primary_10_3390_ijms24021507 crossref_primary_10_1016_j_molliq_2023_123844 crossref_primary_10_1016_j_saa_2024_125690 crossref_primary_10_1016_j_scp_2023_101299 crossref_primary_10_1021_acscentsci_3c01490 crossref_primary_10_1088_1361_6463_ad3bc3 crossref_primary_10_3390_ph18010053 crossref_primary_10_1016_j_microc_2024_111742 crossref_primary_10_1016_j_reactfunctpolym_2024_105861 crossref_primary_10_1016_j_foodhyd_2024_110992 crossref_primary_10_1016_j_matdes_2024_113285 crossref_primary_10_1039_D3RA08261J crossref_primary_10_1016_j_molstruc_2025_141965 crossref_primary_10_1038_s41598_021_89946_2 crossref_primary_10_1088_1361_648X_acd4a0 crossref_primary_10_1016_j_foostr_2025_100410 crossref_primary_10_1016_j_ultsonch_2022_106023 crossref_primary_10_3390_app12073546 crossref_primary_10_1002_cphc_202400554 |
Cites_doi | 10.1016/0003-9861(58)90332-1 10.1016/S0021-9258(17)41087-8 10.1016/0006-291X(67)90252-5 10.1016/0003-9861(58)90130-9 10.1016/S0021-9258(18)49351-9 10.1038/srep16696 10.1073/pnas.42.10.736 10.1042/bj0370302 10.1110/ps.24301 10.1016/S1074-5521(99)80020-9 10.1039/b108575c 10.1073/pnas.47.11.1785 10.1073/pnas.1421204112 10.1016/j.jmb.2011.06.026 10.1016/j.jphotobiol.2015.11.006 10.1016/0014-5793(78)80948-X 10.1038/s42003-019-0598-9 10.1073/pnas.53.1.169 10.1016/S0065-3233(08)60033-9 10.1016/S0021-9258(18)97538-1 10.1126/science.aan6160 10.1016/S0021-9258(19)52465-6 10.1021/ja01095a043 10.1021/jf070337l 10.1073/pnas.1315346111 10.1021/bi00899a011 10.1016/S0006-3495(60)86875-0 10.1021/ja01484a017 10.1016/S0065-3233(08)60056-X 10.1074/jbc.M116.764886 10.1016/S0006-3495(65)86735-2 10.1021/bi961799n 10.1016/bs.ircmb.2016.08.010 10.1016/S0021-9258(18)99679-1 10.1016/j.bbagen.2013.04.015 10.1074/jbc.M010907200 10.1016/S0021-9258(19)76406-0 10.1017/S0033583516000172 10.1016/0003-9861(57)90364-8 10.1021/j100880a030 10.1002/pro.2253 10.1073/pnas.47.11.1775 10.1016/0003-9861(62)90413-7 10.1021/ja411577t 10.1042/bj0520142 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Nov 2020 Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Nov 2020 – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7QP 7TK 7U7 C1K 7X8 7S9 L.6 |
DOI | 10.1016/j.jphotobiol.2020.112022 |
DatabaseName | CrossRef Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Toxicology Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Toxicology Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1873-2682 |
ExternalDocumentID | 10_1016_j_jphotobiol_2020_112022 S1011134420304723 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARLI AATLK AATTM AAXKI AAXUO ABBQC ABDPE ABFNM ABGRD ABGSF ABMAC ABMZM ABNUV ABUDA ABWVN ABXDB ACDAQ ACGFS ACIUM ACNNM ACPRK ACRLP ACRPL ADBBV ADECG ADEWK ADEZE ADMUD ADNMO ADQTV ADUVX AEBSH AEHWI AEIPS AEKER AEQOU AFJKZ AFRAH AFTJW AFXIZ AFZHZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJQLL AJRQY AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HLW HMU HVGLF HZ~ IHE J1W KOM LX3 M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBG SCB SCH SDF SDG SDP SES SEW SPC SPD SSA SSG SSH SSK SSU SSZ T5K WUQ YK3 ZMT ~02 ~G- AAYWO AAYXX ACIEU AGCQF AGQPQ AGRNS AIIUN CITATION 7QP 7TK 7U7 C1K EFKBS 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c412t-a7ad0d30c3e372257810ea71b601c0c03ddae765cbdadc79fab0678a913d0c5a3 |
IEDL.DBID | .~1 |
ISSN | 1011-1344 1873-2682 |
IngestDate | Fri Jul 11 07:05:51 EDT 2025 Tue Aug 05 10:58:29 EDT 2025 Mon Aug 18 17:40:50 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Tue Jul 01 02:50:40 EDT 2025 Sun Apr 06 06:53:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Aggregation mechanism α-Synuclein UV absorption Aromatic region Peptide bond region |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-a7ad0d30c3e372257810ea71b601c0c03ddae765cbdadc79fab0678a913d0c5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2469190177 |
PQPubID | 2045445 |
ParticipantIDs | proquest_miscellaneous_2552020797 proquest_miscellaneous_2444875870 proquest_journals_2469190177 crossref_primary_10_1016_j_jphotobiol_2020_112022 crossref_citationtrail_10_1016_j_jphotobiol_2020_112022 elsevier_sciencedirect_doi_10_1016_j_jphotobiol_2020_112022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 20201101 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Journal of photochemistry and photobiology. B, Biology |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Buell, Galvagnion, Gaspar, Sparr, Vendruscolo, Knowles, Linse, Dobson (bb0040) 2014; 111 Saraiva, Jorge, Santos, Maçanita (bb0050) 2016; 154 Szabo, Lynn, Krajcarski, Rayner (bb0230) 1978; 94 Jirgensons (bb0090) 1958; 76 Rosenheck, Doty (bb0115) 1961; 47 Weinreb, Zhen, Poon, Conway, Lansbury (bb0180) 1996; 35 Jirgensons (bb0125) 1962; 96 Moffitt (bb0075) 1956; 42 Kuipers, Gruppen, Agric (bb0210) 2007; 55 Comellas, Lemkau, Nieuwkoop, Kloepper, Ladror, Ebisu, Woods, Lipton, George, Rienstra (bb0030) 2011; 411 Crammer, Neuberger (bb0055) 1943; 37 Wetlaufer, Edsall, Hollingworth (bb0095) 1958; 233 Fasman, Bodenheimer, Lindblow (bb0140) 1964; 3 Jirgensons (bb0150) 1965; 240 Tjernberg, Pramanik, Björling, Thyberg, Thyberg, Nordstedt, Berndt, Terenius, Rigler (bb0195) 1998; 6 Rosenberg (bb0165) 1966; 241 Goldfarb, Hoffmann, Gutstein (bb0085) 1958; 76 Gratzer, Holzwarth, Doty (bb0120) 1961; 47 Cassim, Taylor (bb0145) 1965; 5 Glazer, Smith (bb0110) 1961; 236 Myers, Edsall (bb0155) 1965; 53 Simmons, Cohen, Szent-Gyorgyi, Wetlaufer, Blout (bb0105) 1961; 83 Wetlaufer (bb0135) 1963; 17 Chen, Drakulic, Deas, Ouberai, Aprile, Arranz, Ness, Roodveldt, Guilliams, De-Genst, Klenerman, Wood, Knowles, Alfonso, Rivas, Abramov, Valpuesta, Dobson, Cremades (bb0015) 2015; 112 Shugar (bb0060) 1952; 52 Urnes, Doty (bb0130) 1962; 16 McDiarmid, Doty (bb0170) 1966; 70 Alderson, Markley (bb0220) 2013; 1 Faria, Jorge, Borges, Tenreiro, Outeiro, Santos (bb0185) 2013; 1830 Cremades, Chen, Dobson (bb0005) 2017; 329 Sizer, Peacock (bb0065) 1947; 171 Jirgensons, Straumanis (bb0080) 1957; 68 Morar, Olteanu, Young, Pielak (bb0190) 2001; 10 de Oliveira, Silva (bb0045) 2019; 2 Nishino, Kosaka, Hembury, Matsushima, Inoue (bb0200) 2002; 2 Yoshimura, Holmberg, Kukic, Andersen, Mata-Cabana, Falsone, Vendruscolo, Nollen, Mulder (bb0225) 2017; 292 Golfarb, Saidel, Mosowich (bb0070) 1951; 193 Fusco, Chen, Williamson, Cascella, Perni, Jarvis, Cecchi, Vendruscolo, Chiti, Cremades, Ying, Dobson, De Simone (bb0025) 2017; 358 Simmons, Blout (bb0100) 1960; 1 Tosatto, Horrocks, Dear, Knowles, Serra, Cremades, Dobson, Klenerman (bb0020) 2015; 5 Glazer, Simmons (bb0160) 1965; 87 Anthis, Clore (bb0205) 2013; 22 Lorenzen, Nielsen, Buell, Kaspersen, Arosio, Vad, Paslawski, Christiansen, Valnickova-Hansen, Andreasen, Enghild, Perdersen, Dobson, Knowles, Otzen (bb0010) 2014; 136 Cassim, Yang (bb0175) 1967; 26 Gaspar, Meisl, Buell, Young, Kaminski, Knowles, Sparr, Linse (bb0035) 2017; 50 Uversky, Li, Fink (bb0215) 2001; 276 Wetlaufer (10.1016/j.jphotobiol.2020.112022_bb0095) 1958; 233 Chen (10.1016/j.jphotobiol.2020.112022_bb0015) 2015; 112 Fusco (10.1016/j.jphotobiol.2020.112022_bb0025) 2017; 358 Crammer (10.1016/j.jphotobiol.2020.112022_bb0055) 1943; 37 Nishino (10.1016/j.jphotobiol.2020.112022_bb0200) 2002; 2 Kuipers (10.1016/j.jphotobiol.2020.112022_bb0210) 2007; 55 Buell (10.1016/j.jphotobiol.2020.112022_bb0040) 2014; 111 Tosatto (10.1016/j.jphotobiol.2020.112022_bb0020) 2015; 5 Jirgensons (10.1016/j.jphotobiol.2020.112022_bb0150) 1965; 240 Glazer (10.1016/j.jphotobiol.2020.112022_bb0110) 1961; 236 Anthis (10.1016/j.jphotobiol.2020.112022_bb0205) 2013; 22 McDiarmid (10.1016/j.jphotobiol.2020.112022_bb0170) 1966; 70 Szabo (10.1016/j.jphotobiol.2020.112022_bb0230) 1978; 94 de Oliveira (10.1016/j.jphotobiol.2020.112022_bb0045) 2019; 2 Gaspar (10.1016/j.jphotobiol.2020.112022_bb0035) 2017; 50 Rosenberg (10.1016/j.jphotobiol.2020.112022_bb0165) 1966; 241 Gratzer (10.1016/j.jphotobiol.2020.112022_bb0120) 1961; 47 Myers (10.1016/j.jphotobiol.2020.112022_bb0155) 1965; 53 Comellas (10.1016/j.jphotobiol.2020.112022_bb0030) 2011; 411 Saraiva (10.1016/j.jphotobiol.2020.112022_bb0050) 2016; 154 Lorenzen (10.1016/j.jphotobiol.2020.112022_bb0010) 2014; 136 Jirgensons (10.1016/j.jphotobiol.2020.112022_bb0125) 1962; 96 Cassim (10.1016/j.jphotobiol.2020.112022_bb0175) 1967; 26 Weinreb (10.1016/j.jphotobiol.2020.112022_bb0180) 1996; 35 Sizer (10.1016/j.jphotobiol.2020.112022_bb0065) 1947; 171 Urnes (10.1016/j.jphotobiol.2020.112022_bb0130) 1962; 16 Jirgensons (10.1016/j.jphotobiol.2020.112022_bb0080) 1957; 68 Fasman (10.1016/j.jphotobiol.2020.112022_bb0140) 1964; 3 Yoshimura (10.1016/j.jphotobiol.2020.112022_bb0225) 2017; 292 Cremades (10.1016/j.jphotobiol.2020.112022_bb0005) 2017; 329 Jirgensons (10.1016/j.jphotobiol.2020.112022_bb0090) 1958; 76 Cassim (10.1016/j.jphotobiol.2020.112022_bb0145) 1965; 5 Faria (10.1016/j.jphotobiol.2020.112022_bb0185) 2013; 1830 Glazer (10.1016/j.jphotobiol.2020.112022_bb0160) 1965; 87 Moffitt (10.1016/j.jphotobiol.2020.112022_bb0075) 1956; 42 Shugar (10.1016/j.jphotobiol.2020.112022_bb0060) 1952; 52 Tjernberg (10.1016/j.jphotobiol.2020.112022_bb0195) 1998; 6 Goldfarb (10.1016/j.jphotobiol.2020.112022_bb0085) 1958; 76 Golfarb (10.1016/j.jphotobiol.2020.112022_bb0070) 1951; 193 Wetlaufer (10.1016/j.jphotobiol.2020.112022_bb0135) 1963; 17 Morar (10.1016/j.jphotobiol.2020.112022_bb0190) 2001; 10 Rosenheck (10.1016/j.jphotobiol.2020.112022_bb0115) 1961; 47 Simmons (10.1016/j.jphotobiol.2020.112022_bb0105) 1961; 83 Simmons (10.1016/j.jphotobiol.2020.112022_bb0100) 1960; 1 Uversky (10.1016/j.jphotobiol.2020.112022_bb0215) 2001; 276 Alderson (10.1016/j.jphotobiol.2020.112022_bb0220) 2013; 1 |
References_xml | – volume: 233 start-page: 1421 year: 1958 end-page: 1428 ident: bb0095 publication-title: J. Biol. Chem. – volume: 1 year: 2013 ident: bb0220 article-title: Intrinsically disordered proteins – volume: 193 start-page: 397 year: 1951 end-page: 404 ident: bb0070 publication-title: J. Biol. Chem. – volume: 2 start-page: 582 year: 2002 end-page: 590 ident: bb0200 publication-title: J. Chem. Soc. Perkin Trans. – volume: 5 start-page: 16696 year: 2015 ident: bb0020 publication-title: Sci. Rep. – volume: 292 start-page: 8269 year: 2017 end-page: 8278 ident: bb0225 publication-title: J. Biol. Chem. – volume: 2 start-page: 374 year: 2019 ident: bb0045 publication-title: Commun. Biol. – volume: 87 start-page: 3991 year: 1965 end-page: 3993 ident: bb0160 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 13709 year: 1996 end-page: 13715 ident: bb0180 publication-title: Biochemistry – volume: 17 start-page: 303 year: 1963 end-page: 390 ident: bb0135 publication-title: Adv. Protein Chem. – volume: 53 start-page: 169 year: 1965 end-page: 177 ident: bb0155 publication-title: Proc. Natl. Acad. Sci. USA – volume: 329 start-page: 79 year: 2017 end-page: 143 ident: bb0005 publication-title: Int. Rev. Cell Mol. Biol. – volume: 236 start-page: 2942 year: 1961 end-page: 2947 ident: bb0110 publication-title: J. Biol. Chem. – volume: 68 start-page: 319 year: 1957 end-page: 329 ident: bb0080 publication-title: Arch. Biochem. Biophys. – volume: 112 start-page: E1994 year: 2015 end-page: E2003 ident: bb0015 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 76 start-page: 161 year: 1958 end-page: 167 ident: bb0085 publication-title: Arch. Biochem. Biophys. – volume: 52 start-page: 142 year: 1952 end-page: 149 ident: bb0060 publication-title: Biochem. J. – volume: 96 start-page: 314 year: 1962 end-page: 320 ident: bb0125 publication-title: Arch. Biochem. Biophys. – volume: 76 start-page: 227 year: 1958 end-page: 234 ident: bb0090 publication-title: Arch. Biochem. Biophys. – volume: 240 start-page: 1064 year: 1965 end-page: 1071 ident: bb0150 publication-title: J. Biol. Chem. – volume: 3 start-page: 1665 year: 1964 end-page: 1674 ident: bb0140 publication-title: Biochemistry – volume: 26 start-page: 58 year: 1967 end-page: 64 ident: bb0175 publication-title: Biochem. Biophys. Res. Commun. – volume: 94 start-page: 249 year: 1978 end-page: 252 ident: bb0230 publication-title: FEBS Letts. – volume: 154 start-page: 16 year: 2016 end-page: 23 ident: bb0050 publication-title: J. Photochem. Photobiol. B – volume: 70 start-page: 2620 year: 1966 end-page: 2627 ident: bb0170 publication-title: J. Phys. Chem. – volume: 358 start-page: 1440 year: 2017 end-page: 1443 ident: bb0025 publication-title: Science – volume: 42 start-page: 736 year: 1956 end-page: 746 ident: bb0075 publication-title: Proc. Natl. Acad. Sci. USA – volume: 411 start-page: 881 year: 2011 end-page: 895 ident: bb0030 publication-title: J. Mol. Biol. – volume: 83 start-page: 4766 year: 1961 end-page: 4769 ident: bb0105 publication-title: J.Am. Chem. Soc. – volume: 5 start-page: 573 year: 1965 end-page: 589 ident: bb0145 publication-title: Biophys. J. – volume: 55 start-page: 5445 year: 2007 end-page: 5451 ident: bb0210 publication-title: Food Chem. – volume: 47 start-page: 1785 year: 1961 end-page: 1791 ident: bb0120 publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 2195 year: 2001 end-page: 2199 ident: bb0190 publication-title: Protein Sci. – volume: 16 start-page: 401 year: 1962 end-page: 544 ident: bb0130 publication-title: Adv. Protein Chem. – volume: 241 start-page: 5119 year: 1966 end-page: 5125 ident: bb0165 publication-title: J. Biol. Chem. – volume: 22 start-page: 851 year: 2013 end-page: 858 ident: bb0205 publication-title: Protein Sci. – volume: 1 start-page: 55 year: 1960 end-page: 62 ident: bb0100 publication-title: Biophys. J. – volume: 1830 start-page: 4065 year: 2013 end-page: 4072 ident: bb0185 publication-title: Biochim – volume: 136 start-page: 3859 year: 2014 end-page: 3868 ident: bb0010 publication-title: J. Am. Chem. Soc. – volume: 171 start-page: 767 year: 1947 end-page: 777 ident: bb0065 publication-title: J. Biol. Chem. – volume: 111 start-page: 7671 year: 2014 end-page: 7676 ident: bb0040 publication-title: Proc. Natl. Acad. Sci. USA – volume: 47 start-page: 1775 year: 1961 end-page: 1785 ident: bb0115 publication-title: Proc. Natl. Acad. Sci. USA – volume: 276 start-page: 10737 year: 2001 end-page: 10744 ident: bb0215 publication-title: J. Biol. Chem. – volume: 50 start-page: e6 year: 2017 ident: bb0035 publication-title: Q. Rev. Biophys. – volume: 37 start-page: 302 year: 1943 end-page: 310 ident: bb0055 publication-title: Biochem. J. – volume: 6 start-page: 53 year: 1998 end-page: 62 ident: bb0195 publication-title: Chem. Biol. – volume: 76 start-page: 227 year: 1958 ident: 10.1016/j.jphotobiol.2020.112022_bb0090 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(58)90332-1 – volume: 171 start-page: 767 year: 1947 ident: 10.1016/j.jphotobiol.2020.112022_bb0065 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)41087-8 – volume: 26 start-page: 58 year: 1967 ident: 10.1016/j.jphotobiol.2020.112022_bb0175 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(67)90252-5 – volume: 76 start-page: 161 year: 1958 ident: 10.1016/j.jphotobiol.2020.112022_bb0085 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(58)90130-9 – volume: 233 start-page: 1421 year: 1958 ident: 10.1016/j.jphotobiol.2020.112022_bb0095 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)49351-9 – volume: 5 start-page: 16696 year: 2015 ident: 10.1016/j.jphotobiol.2020.112022_bb0020 publication-title: Sci. Rep. doi: 10.1038/srep16696 – volume: 42 start-page: 736 year: 1956 ident: 10.1016/j.jphotobiol.2020.112022_bb0075 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.42.10.736 – volume: 37 start-page: 302 year: 1943 ident: 10.1016/j.jphotobiol.2020.112022_bb0055 publication-title: Biochem. J. doi: 10.1042/bj0370302 – volume: 10 start-page: 2195 year: 2001 ident: 10.1016/j.jphotobiol.2020.112022_bb0190 publication-title: Protein Sci. doi: 10.1110/ps.24301 – volume: 6 start-page: 53 year: 1998 ident: 10.1016/j.jphotobiol.2020.112022_bb0195 publication-title: Chem. Biol. doi: 10.1016/S1074-5521(99)80020-9 – volume: 2 start-page: 582 year: 2002 ident: 10.1016/j.jphotobiol.2020.112022_bb0200 publication-title: J. Chem. Soc. Perkin Trans. doi: 10.1039/b108575c – volume: 47 start-page: 1785 year: 1961 ident: 10.1016/j.jphotobiol.2020.112022_bb0120 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.47.11.1785 – volume: 1 year: 2013 ident: 10.1016/j.jphotobiol.2020.112022_bb0220 article-title: Intrinsically disordered proteins – volume: 112 start-page: E1994 year: 2015 ident: 10.1016/j.jphotobiol.2020.112022_bb0015 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1421204112 – volume: 411 start-page: 881 year: 2011 ident: 10.1016/j.jphotobiol.2020.112022_bb0030 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2011.06.026 – volume: 154 start-page: 16 year: 2016 ident: 10.1016/j.jphotobiol.2020.112022_bb0050 publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2015.11.006 – volume: 94 start-page: 249 year: 1978 ident: 10.1016/j.jphotobiol.2020.112022_bb0230 publication-title: FEBS Letts. doi: 10.1016/0014-5793(78)80948-X – volume: 2 start-page: 374 year: 2019 ident: 10.1016/j.jphotobiol.2020.112022_bb0045 publication-title: Commun. Biol. doi: 10.1038/s42003-019-0598-9 – volume: 53 start-page: 169 year: 1965 ident: 10.1016/j.jphotobiol.2020.112022_bb0155 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.53.1.169 – volume: 16 start-page: 401 year: 1962 ident: 10.1016/j.jphotobiol.2020.112022_bb0130 publication-title: Adv. Protein Chem. doi: 10.1016/S0065-3233(08)60033-9 – volume: 240 start-page: 1064 year: 1965 ident: 10.1016/j.jphotobiol.2020.112022_bb0150 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)97538-1 – volume: 358 start-page: 1440 year: 2017 ident: 10.1016/j.jphotobiol.2020.112022_bb0025 publication-title: Science doi: 10.1126/science.aan6160 – volume: 193 start-page: 397 year: 1951 ident: 10.1016/j.jphotobiol.2020.112022_bb0070 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)52465-6 – volume: 87 start-page: 3991 year: 1965 ident: 10.1016/j.jphotobiol.2020.112022_bb0160 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01095a043 – volume: 55 start-page: 5445 year: 2007 ident: 10.1016/j.jphotobiol.2020.112022_bb0210 publication-title: Food Chem. doi: 10.1021/jf070337l – volume: 111 start-page: 7671 year: 2014 ident: 10.1016/j.jphotobiol.2020.112022_bb0040 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1315346111 – volume: 3 start-page: 1665 year: 1964 ident: 10.1016/j.jphotobiol.2020.112022_bb0140 publication-title: Biochemistry doi: 10.1021/bi00899a011 – volume: 1 start-page: 55 year: 1960 ident: 10.1016/j.jphotobiol.2020.112022_bb0100 publication-title: Biophys. J. doi: 10.1016/S0006-3495(60)86875-0 – volume: 83 start-page: 4766 year: 1961 ident: 10.1016/j.jphotobiol.2020.112022_bb0105 publication-title: J.Am. Chem. Soc. doi: 10.1021/ja01484a017 – volume: 17 start-page: 303 year: 1963 ident: 10.1016/j.jphotobiol.2020.112022_bb0135 publication-title: Adv. Protein Chem. doi: 10.1016/S0065-3233(08)60056-X – volume: 292 start-page: 8269 year: 2017 ident: 10.1016/j.jphotobiol.2020.112022_bb0225 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.764886 – volume: 5 start-page: 573 year: 1965 ident: 10.1016/j.jphotobiol.2020.112022_bb0145 publication-title: Biophys. J. doi: 10.1016/S0006-3495(65)86735-2 – volume: 35 start-page: 13709 year: 1996 ident: 10.1016/j.jphotobiol.2020.112022_bb0180 publication-title: Biochemistry doi: 10.1021/bi961799n – volume: 329 start-page: 79 year: 2017 ident: 10.1016/j.jphotobiol.2020.112022_bb0005 publication-title: Int. Rev. Cell Mol. Biol. doi: 10.1016/bs.ircmb.2016.08.010 – volume: 241 start-page: 5119 year: 1966 ident: 10.1016/j.jphotobiol.2020.112022_bb0165 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)99679-1 – volume: 1830 start-page: 4065 year: 2013 ident: 10.1016/j.jphotobiol.2020.112022_bb0185 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2013.04.015 – volume: 276 start-page: 10737 year: 2001 ident: 10.1016/j.jphotobiol.2020.112022_bb0215 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M010907200 – volume: 236 start-page: 2942 year: 1961 ident: 10.1016/j.jphotobiol.2020.112022_bb0110 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)76406-0 – volume: 50 start-page: e6 year: 2017 ident: 10.1016/j.jphotobiol.2020.112022_bb0035 publication-title: Q. Rev. Biophys. doi: 10.1017/S0033583516000172 – volume: 68 start-page: 319 year: 1957 ident: 10.1016/j.jphotobiol.2020.112022_bb0080 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(57)90364-8 – volume: 70 start-page: 2620 year: 1966 ident: 10.1016/j.jphotobiol.2020.112022_bb0170 publication-title: J. Phys. Chem. doi: 10.1021/j100880a030 – volume: 22 start-page: 851 year: 2013 ident: 10.1016/j.jphotobiol.2020.112022_bb0205 publication-title: Protein Sci. doi: 10.1002/pro.2253 – volume: 47 start-page: 1775 year: 1961 ident: 10.1016/j.jphotobiol.2020.112022_bb0115 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.47.11.1775 – volume: 96 start-page: 314 year: 1962 ident: 10.1016/j.jphotobiol.2020.112022_bb0125 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(62)90413-7 – volume: 136 start-page: 3859 year: 2014 ident: 10.1016/j.jphotobiol.2020.112022_bb0010 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411577t – volume: 52 start-page: 142 year: 1952 ident: 10.1016/j.jphotobiol.2020.112022_bb0060 publication-title: Biochem. J. doi: 10.1042/bj0520142 |
SSID | ssj0000567 |
Score | 2.5383508 |
Snippet | The interpretation of the UV absorption spectra of proteins was a matter of intense debate in the second half of the last century. The study of the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112022 |
SubjectTerms | absorbance Absorption Absorption spectra Agglomeration Aggregation mechanism Amino acids Amyloid Aromatic region Hydrogen bonding Ion concentration Light scattering Peptide bond region Peptides Perturbation pH effects photobiology photochemistry Proteins Residues spectroscopy Synuclein Ultraviolet absorption Ultraviolet radiation UV absorption α-Synuclein |
Title | Interpretation of α-synuclein UV absorption spectra in the peptide bond and the aromatic regions |
URI | https://dx.doi.org/10.1016/j.jphotobiol.2020.112022 https://www.proquest.com/docview/2469190177 https://www.proquest.com/docview/2444875870 https://www.proquest.com/docview/2552020797 |
Volume | 212 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB5CQmgvpU1bukkaFOjVXdmSrTU9hSVh20IuyZbcxEiy6YZiL7ubQy59p75Inykzsp2QQkugBx9sSVjMjOYHzcwH8IFMeh2UrBPvSwpQtFSkB9ElPqQFWdswSTF2-zwvZnP95Sq_2oLpUAvDaZW97u90etTW_ZdxT83xcrEYX6QRJl3rjG_3TMYdP7U2LOUffz6keZCBjwArMXWLZvfZPF2O1_Xye7uJ7Y4oUsxiPY3Msr-ZqD-UdbRAZy_hRe86ipNud69gq2r2YLcDk7zdg2fTAbvtNeDjXELR1uL3r2R923D34kUj5t8EunW7ivpCxGrLFQoaIHdQLDnRJVTCtU0QSA9_xFUbm7sKRnIgSX0D87PTy-ks6cEUEq_TbJOgwSCJK15VymR8UFNZoUkdRWReeqlCwMoUuXcBgzdljY4NGZapCtLnqN7CdtM21TsQus7RkOvhyPnQuSomE1fnDF1dGlmqUo7ADPSzvu80zoAXP-yQUnZtHyhvmfK2o_wI0vuVy67bxhPWfBpYZB9JjiWj8ITVhwNXbX961zbTRcmOkjEjOL4fJhbyZQo2VXvDczTHeqTu_jEnz_lXpjT7_7XJA3jOb10J5CFsb1Y31XvyhTbuKAr7EeycfP46O78DmUIKGA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NahsxEB5Sh5JcSpu21GnaqtDrYmklrbz0FEyC06S-NC65Cf3sUoeya2znkMfKi-SZOtJqExJoCfSwF0nDihlpftDMfABf0KTXntM6c67EAEVQjnrQ2Mx5VqC19WNmYrfPWTGdi28X8mILJn0tTEirTLq_0-lRW6eRUeLmaLlYjH6wCJMuRB5e91TOn8F26E4lB7B9eHI6nd0rZBmBZFnM3kKClNDTpXldLn-1m9jxCIPFPJbU0Dz_m5V6pK-jETp-CS-S90gOuw2-gq2q2YPnHZ7k9R7sTHr4ttdgHqYTkrYmtzfZ-roJDYwXDZn_JMau21VUGSQWXK4MwQn0CMky5Lr4iti28cTgFwbNqo39XUkAc8DD-gbmx0fnk2mW8BQyJ1i-yYwynqJgHK-4ysNdZbQyilkMyhx1lHtvKlVIZ73xTpW1scGWmZJxT500_C0Mmrap3gERtTQKvQ-L_oeQvBiPbS0DenWpaMlLOgTV80-71Gw8YF781n1W2aW-57wOnNcd54fA7iiXXcONJ9B87UWkHxwejXbhCdQHvVR1usBrnYuiDL6SUkP4fDeNIgzvKaap2quwRoRwDzXeP9ZIGX6lSrX_X5v8BDvT8-9n-uxkdvoedsNMVxF5AIPN6qr6gK7Rxn5MR_8PqcgMyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretation+of+%CE%B1-synuclein+UV+absorption+spectra+in+the+peptide+bond+and+the+aromatic+regions&rft.jtitle=Journal+of+photochemistry+and+photobiology.+B%2C+Biology&rft.au=Saraiva%2C+Marco+A&rft.date=2020-11-01&rft.pub=Elsevier+BV&rft.issn=1011-1344&rft.eissn=1873-2682&rft.volume=212&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jphotobiol.2020.112022&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-1344&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-1344&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-1344&client=summon |