Interpretation of α-synuclein UV absorption spectra in the peptide bond and the aromatic regions

The interpretation of the UV absorption spectra of proteins was a matter of intense debate in the second half of the last century. The study of the spectroscopic characteristics of peptide bonds in proteins was then of particular interest but the absorption of a large number of peptide bonds in a pr...

Full description

Saved in:
Bibliographic Details
Published inJournal of photochemistry and photobiology. B, Biology Vol. 212; p. 112022
Main Author Saraiva, Marco A.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.11.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The interpretation of the UV absorption spectra of proteins was a matter of intense debate in the second half of the last century. The study of the spectroscopic characteristics of peptide bonds in proteins was then of particular interest but the absorption of a large number of peptide bonds in a protein is a complex subject which gathers many contributions such as those from other amino acid residues that absorb as well and therefore unequivocal proofs remains a challenge. This probably becomes the reason for being an almost untouched subject of study in the last 40 years or so. In this report the spectroscopic characteristics of the amyloid disordered protein α-synuclein (Syn) were studied in detail, concerning the UV absorption spectra in the peptide bond (200–230 nm) and the aromatic regions. Several protein concentrations, several solution pH and the first 300 min of the aggregation reaction were here investigated. In what the peptide bond region of Syn is concerned, UV difference spectra for a 33.5 μM protein solution concentration, in particular, revealed that at Syn solutions pH 7, 3 and 2 the counter-ion concentration increases in that order, as expected, accounting for the decrease of the peptide bond absorbance. Also, for this protein solution concentration, quantitative information can be obtained from peptide bond absorption and counter-ion concentration interplay in what the progression of the Syn aggregation reaction is concerned. This situation represents a label-free analysis of Syn aggregation in the lag-phase, in particular. Concerning the aromatic region of Syn, the UV absorption spectra revealed a perturbation at ca. 290–310 nm which is not related with light scattering effects in the UV absorption spectra but is related with the formation of mostly intermolecular hydrogen-bonded complexes between Syn tyrosyl groups and aspartic and glutamic acids residues. Interestingly, is the possible enrollment of these intermolecular complexes in the stabilization of this highly dynamic disordered protein in solution. •Early large α-synuclein aggregates populate the solutions.•Interpretation of α-synuclein UV absorption spectra.•Label-free analysis of α-synuclein aggregation.•Stabilization of α-synuclein by intermolecular contacts involving tyrosine residues.
AbstractList The interpretation of the UV absorption spectra of proteins was a matter of intense debate in the second half of the last century. The study of the spectroscopic characteristics of peptide bonds in proteins was then of particular interest but the absorption of a large number of peptide bonds in a protein is a complex subject which gathers many contributions such as those from other amino acid residues that absorb as well and therefore unequivocal proofs remains a challenge. This probably becomes the reason for being an almost untouched subject of study in the last 40 years or so. In this report the spectroscopic characteristics of the amyloid disordered protein α-synuclein (Syn) were studied in detail, concerning the UV absorption spectra in the peptide bond (200-230 nm) and the aromatic regions. Several protein concentrations, several solution pH and the first 300 min of the aggregation reaction were here investigated. In what the peptide bond region of Syn is concerned, UV difference spectra for a 33.5 μM protein solution concentration, in particular, revealed that at Syn solutions pH 7, 3 and 2 the counter-ion concentration increases in that order, as expected, accounting for the decrease of the peptide bond absorbance. Also, for this protein solution concentration, quantitative information can be obtained from peptide bond absorption and counter-ion concentration interplay in what the progression of the Syn aggregation reaction is concerned. This situation represents a label-free analysis of Syn aggregation in the lag-phase, in particular. Concerning the aromatic region of Syn, the UV absorption spectra revealed a perturbation at ca. 290-310 nm which is not related with light scattering effects in the UV absorption spectra but is related with the formation of mostly intermolecular hydrogen-bonded complexes between Syn tyrosyl groups and aspartic and glutamic acids residues. Interestingly, is the possible enrollment of these intermolecular complexes in the stabilization of this highly dynamic disordered protein in solution.The interpretation of the UV absorption spectra of proteins was a matter of intense debate in the second half of the last century. The study of the spectroscopic characteristics of peptide bonds in proteins was then of particular interest but the absorption of a large number of peptide bonds in a protein is a complex subject which gathers many contributions such as those from other amino acid residues that absorb as well and therefore unequivocal proofs remains a challenge. This probably becomes the reason for being an almost untouched subject of study in the last 40 years or so. In this report the spectroscopic characteristics of the amyloid disordered protein α-synuclein (Syn) were studied in detail, concerning the UV absorption spectra in the peptide bond (200-230 nm) and the aromatic regions. Several protein concentrations, several solution pH and the first 300 min of the aggregation reaction were here investigated. In what the peptide bond region of Syn is concerned, UV difference spectra for a 33.5 μM protein solution concentration, in particular, revealed that at Syn solutions pH 7, 3 and 2 the counter-ion concentration increases in that order, as expected, accounting for the decrease of the peptide bond absorbance. Also, for this protein solution concentration, quantitative information can be obtained from peptide bond absorption and counter-ion concentration interplay in what the progression of the Syn aggregation reaction is concerned. This situation represents a label-free analysis of Syn aggregation in the lag-phase, in particular. Concerning the aromatic region of Syn, the UV absorption spectra revealed a perturbation at ca. 290-310 nm which is not related with light scattering effects in the UV absorption spectra but is related with the formation of mostly intermolecular hydrogen-bonded complexes between Syn tyrosyl groups and aspartic and glutamic acids residues. Interestingly, is the possible enrollment of these intermolecular complexes in the stabilization of this highly dynamic disordered protein in solution.
The interpretation of the UV absorption spectra of proteins was a matter of intense debate in the second half of the last century. The study of the spectroscopic characteristics of peptide bonds in proteins was then of particular interest but the absorption of a large number of peptide bonds in a protein is a complex subject which gathers many contributions such as those from other amino acid residues that absorb as well and therefore unequivocal proofs remains a challenge. This probably becomes the reason for being an almost untouched subject of study in the last 40 years or so. In this report the spectroscopic characteristics of the amyloid disordered protein α-synuclein (Syn) were studied in detail, concerning the UV absorption spectra in the peptide bond (200–230 nm) and the aromatic regions. Several protein concentrations, several solution pH and the first 300 min of the aggregation reaction were here investigated. In what the peptide bond region of Syn is concerned, UV difference spectra for a 33.5 μM protein solution concentration, in particular, revealed that at Syn solutions pH 7, 3 and 2 the counter-ion concentration increases in that order, as expected, accounting for the decrease of the peptide bond absorbance. Also, for this protein solution concentration, quantitative information can be obtained from peptide bond absorption and counter-ion concentration interplay in what the progression of the Syn aggregation reaction is concerned. This situation represents a label-free analysis of Syn aggregation in the lag-phase, in particular. Concerning the aromatic region of Syn, the UV absorption spectra revealed a perturbation at ca. 290–310 nm which is not related with light scattering effects in the UV absorption spectra but is related with the formation of mostly intermolecular hydrogen-bonded complexes between Syn tyrosyl groups and aspartic and glutamic acids residues. Interestingly, is the possible enrollment of these intermolecular complexes in the stabilization of this highly dynamic disordered protein in solution.
The interpretation of the UV absorption spectra of proteins was a matter of intense debate in the second half of the last century. The study of the spectroscopic characteristics of peptide bonds in proteins was then of particular interest but the absorption of a large number of peptide bonds in a protein is a complex subject which gathers many contributions such as those from other amino acid residues that absorb as well and therefore unequivocal proofs remains a challenge. This probably becomes the reason for being an almost untouched subject of study in the last 40 years or so. In this report the spectroscopic characteristics of the amyloid disordered protein α-synuclein (Syn) were studied in detail, concerning the UV absorption spectra in the peptide bond (200–230 nm) and the aromatic regions. Several protein concentrations, several solution pH and the first 300 min of the aggregation reaction were here investigated. In what the peptide bond region of Syn is concerned, UV difference spectra for a 33.5 μM protein solution concentration, in particular, revealed that at Syn solutions pH 7, 3 and 2 the counter-ion concentration increases in that order, as expected, accounting for the decrease of the peptide bond absorbance. Also, for this protein solution concentration, quantitative information can be obtained from peptide bond absorption and counter-ion concentration interplay in what the progression of the Syn aggregation reaction is concerned. This situation represents a label-free analysis of Syn aggregation in the lag-phase, in particular. Concerning the aromatic region of Syn, the UV absorption spectra revealed a perturbation at ca. 290–310 nm which is not related with light scattering effects in the UV absorption spectra but is related with the formation of mostly intermolecular hydrogen-bonded complexes between Syn tyrosyl groups and aspartic and glutamic acids residues. Interestingly, is the possible enrollment of these intermolecular complexes in the stabilization of this highly dynamic disordered protein in solution. •Early large α-synuclein aggregates populate the solutions.•Interpretation of α-synuclein UV absorption spectra.•Label-free analysis of α-synuclein aggregation.•Stabilization of α-synuclein by intermolecular contacts involving tyrosine residues.
ArticleNumber 112022
Author Saraiva, Marco A.
Author_xml – sequence: 1
  givenname: Marco A.
  surname: Saraiva
  fullname: Saraiva, Marco A.
  email: marco.saraiva@tecnico.ulisboa.pt
  organization: Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
BookMark eNqNUctKxTAQDaLg8x8Cbtz0mqSPtBtBxRcIbtRtmCZzNaU3qUmv4Gf5I36TqRUENxoIM8ycc0jO2SWbzjskhHK24IxXx92iG5796Fvr-4VgIo15KmKD7PBa5pmoarGZesZ5xvOi2Ca7MXYsnbKSOwRu3IhhCDjCaL2jfkk_3rP45ta6R-vowyOFNvowfG3jgHoMQNNifEY6YBobpK13hkK60xCCXyUtTQM-JU7cJ1tL6CMefNc98nB5cX9-nd3eXd2cn95muuBizECCYSZnOsdcClHKmjMEyduKcc00y40BlFWpWwNGy2YJLatkDQ3PDdMl5HvkaNYdgn9ZYxzVykaNfQ8O_ToqUZaTPbKRf0OLoqhlWUuWoIe_oJ1fB5c-klBVwxvG5SRYzygdfIwBl2oIdgXhTXGmpphUp35iUtM71BxTop78omo7Z5GMtv1_BM5mAUzmvloMKmqLTqOxIaWljLd_i3wC51m4nQ
CitedBy_id crossref_primary_10_1002_psc_3451
crossref_primary_10_1007_s10895_024_03971_8
crossref_primary_10_3390_chemosensors11030162
crossref_primary_10_3390_ijms232315291
crossref_primary_10_1007_s10895_023_03285_1
crossref_primary_10_1016_j_seppur_2023_125114
crossref_primary_10_1007_s12551_024_01223_4
crossref_primary_10_3390_biom12121819
crossref_primary_10_1002_ardp_202500093
crossref_primary_10_1186_s40538_025_00742_w
crossref_primary_10_1016_j_ijbiomac_2024_139276
crossref_primary_10_1016_j_bbrc_2022_10_028
crossref_primary_10_1016_j_ijbiomac_2021_02_150
crossref_primary_10_1002_jbio_202400257
crossref_primary_10_1016_j_ifset_2024_103826
crossref_primary_10_3390_ph17060770
crossref_primary_10_1016_j_ijbiomac_2023_124801
crossref_primary_10_1016_j_foodhyd_2023_109643
crossref_primary_10_1016_j_ijbiomac_2023_129133
crossref_primary_10_1007_s10895_023_03192_5
crossref_primary_10_1016_j_ijbiomac_2022_07_102
crossref_primary_10_1016_j_jbc_2022_102688
crossref_primary_10_1016_j_ab_2023_115269
crossref_primary_10_1016_j_saa_2024_124156
crossref_primary_10_1021_acs_jafc_4c12952
crossref_primary_10_1002_marc_202100917
crossref_primary_10_1016_j_bpc_2022_106760
crossref_primary_10_1016_j_saa_2022_121761
crossref_primary_10_1016_j_ultsonch_2022_106036
crossref_primary_10_1016_j_ijbiomac_2022_06_186
crossref_primary_10_1021_acs_jpclett_4c00731
crossref_primary_10_1155_2024_4667379
crossref_primary_10_1016_j_indcrop_2024_120288
crossref_primary_10_1021_acsomega_1c05537
crossref_primary_10_1016_j_jmrt_2024_09_100
crossref_primary_10_1016_j_foodhyd_2024_110960
crossref_primary_10_1007_s00249_025_01737_z
crossref_primary_10_1038_s42003_021_02396_4
crossref_primary_10_3390_separations8120241
crossref_primary_10_3390_ijms24021507
crossref_primary_10_1016_j_molliq_2023_123844
crossref_primary_10_1016_j_saa_2024_125690
crossref_primary_10_1016_j_scp_2023_101299
crossref_primary_10_1021_acscentsci_3c01490
crossref_primary_10_1088_1361_6463_ad3bc3
crossref_primary_10_3390_ph18010053
crossref_primary_10_1016_j_microc_2024_111742
crossref_primary_10_1016_j_reactfunctpolym_2024_105861
crossref_primary_10_1016_j_foodhyd_2024_110992
crossref_primary_10_1016_j_matdes_2024_113285
crossref_primary_10_1039_D3RA08261J
crossref_primary_10_1016_j_molstruc_2025_141965
crossref_primary_10_1038_s41598_021_89946_2
crossref_primary_10_1088_1361_648X_acd4a0
crossref_primary_10_1016_j_foostr_2025_100410
crossref_primary_10_1016_j_ultsonch_2022_106023
crossref_primary_10_3390_app12073546
crossref_primary_10_1002_cphc_202400554
Cites_doi 10.1016/0003-9861(58)90332-1
10.1016/S0021-9258(17)41087-8
10.1016/0006-291X(67)90252-5
10.1016/0003-9861(58)90130-9
10.1016/S0021-9258(18)49351-9
10.1038/srep16696
10.1073/pnas.42.10.736
10.1042/bj0370302
10.1110/ps.24301
10.1016/S1074-5521(99)80020-9
10.1039/b108575c
10.1073/pnas.47.11.1785
10.1073/pnas.1421204112
10.1016/j.jmb.2011.06.026
10.1016/j.jphotobiol.2015.11.006
10.1016/0014-5793(78)80948-X
10.1038/s42003-019-0598-9
10.1073/pnas.53.1.169
10.1016/S0065-3233(08)60033-9
10.1016/S0021-9258(18)97538-1
10.1126/science.aan6160
10.1016/S0021-9258(19)52465-6
10.1021/ja01095a043
10.1021/jf070337l
10.1073/pnas.1315346111
10.1021/bi00899a011
10.1016/S0006-3495(60)86875-0
10.1021/ja01484a017
10.1016/S0065-3233(08)60056-X
10.1074/jbc.M116.764886
10.1016/S0006-3495(65)86735-2
10.1021/bi961799n
10.1016/bs.ircmb.2016.08.010
10.1016/S0021-9258(18)99679-1
10.1016/j.bbagen.2013.04.015
10.1074/jbc.M010907200
10.1016/S0021-9258(19)76406-0
10.1017/S0033583516000172
10.1016/0003-9861(57)90364-8
10.1021/j100880a030
10.1002/pro.2253
10.1073/pnas.47.11.1775
10.1016/0003-9861(62)90413-7
10.1021/ja411577t
10.1042/bj0520142
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Nov 2020
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 2020
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7QP
7TK
7U7
C1K
7X8
7S9
L.6
DOI 10.1016/j.jphotobiol.2020.112022
DatabaseName CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Toxicology Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Toxicology Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1873-2682
ExternalDocumentID 10_1016_j_jphotobiol_2020_112022
S1011134420304723
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATLK
AATTM
AAXKI
AAXUO
ABBQC
ABDPE
ABFNM
ABGRD
ABGSF
ABMAC
ABMZM
ABNUV
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACNNM
ACPRK
ACRLP
ACRPL
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AEQOU
AFJKZ
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJQLL
AJRQY
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HMU
HVGLF
HZ~
IHE
J1W
KOM
LX3
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCB
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPD
SSA
SSG
SSH
SSK
SSU
SSZ
T5K
WUQ
YK3
ZMT
~02
~G-
AAYWO
AAYXX
ACIEU
AGCQF
AGQPQ
AGRNS
AIIUN
CITATION
7QP
7TK
7U7
C1K
EFKBS
7X8
7S9
L.6
ID FETCH-LOGICAL-c412t-a7ad0d30c3e372257810ea71b601c0c03ddae765cbdadc79fab0678a913d0c5a3
IEDL.DBID .~1
ISSN 1011-1344
1873-2682
IngestDate Fri Jul 11 07:05:51 EDT 2025
Tue Aug 05 10:58:29 EDT 2025
Mon Aug 18 17:40:50 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Tue Jul 01 02:50:40 EDT 2025
Sun Apr 06 06:53:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Aggregation mechanism
α-Synuclein
UV absorption
Aromatic region
Peptide bond region
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-a7ad0d30c3e372257810ea71b601c0c03ddae765cbdadc79fab0678a913d0c5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2469190177
PQPubID 2045445
ParticipantIDs proquest_miscellaneous_2552020797
proquest_miscellaneous_2444875870
proquest_journals_2469190177
crossref_primary_10_1016_j_jphotobiol_2020_112022
crossref_citationtrail_10_1016_j_jphotobiol_2020_112022
elsevier_sciencedirect_doi_10_1016_j_jphotobiol_2020_112022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Journal of photochemistry and photobiology. B, Biology
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Buell, Galvagnion, Gaspar, Sparr, Vendruscolo, Knowles, Linse, Dobson (bb0040) 2014; 111
Saraiva, Jorge, Santos, Maçanita (bb0050) 2016; 154
Szabo, Lynn, Krajcarski, Rayner (bb0230) 1978; 94
Jirgensons (bb0090) 1958; 76
Rosenheck, Doty (bb0115) 1961; 47
Weinreb, Zhen, Poon, Conway, Lansbury (bb0180) 1996; 35
Jirgensons (bb0125) 1962; 96
Moffitt (bb0075) 1956; 42
Kuipers, Gruppen, Agric (bb0210) 2007; 55
Comellas, Lemkau, Nieuwkoop, Kloepper, Ladror, Ebisu, Woods, Lipton, George, Rienstra (bb0030) 2011; 411
Crammer, Neuberger (bb0055) 1943; 37
Wetlaufer, Edsall, Hollingworth (bb0095) 1958; 233
Fasman, Bodenheimer, Lindblow (bb0140) 1964; 3
Jirgensons (bb0150) 1965; 240
Tjernberg, Pramanik, Björling, Thyberg, Thyberg, Nordstedt, Berndt, Terenius, Rigler (bb0195) 1998; 6
Rosenberg (bb0165) 1966; 241
Goldfarb, Hoffmann, Gutstein (bb0085) 1958; 76
Gratzer, Holzwarth, Doty (bb0120) 1961; 47
Cassim, Taylor (bb0145) 1965; 5
Glazer, Smith (bb0110) 1961; 236
Myers, Edsall (bb0155) 1965; 53
Simmons, Cohen, Szent-Gyorgyi, Wetlaufer, Blout (bb0105) 1961; 83
Wetlaufer (bb0135) 1963; 17
Chen, Drakulic, Deas, Ouberai, Aprile, Arranz, Ness, Roodveldt, Guilliams, De-Genst, Klenerman, Wood, Knowles, Alfonso, Rivas, Abramov, Valpuesta, Dobson, Cremades (bb0015) 2015; 112
Shugar (bb0060) 1952; 52
Urnes, Doty (bb0130) 1962; 16
McDiarmid, Doty (bb0170) 1966; 70
Alderson, Markley (bb0220) 2013; 1
Faria, Jorge, Borges, Tenreiro, Outeiro, Santos (bb0185) 2013; 1830
Cremades, Chen, Dobson (bb0005) 2017; 329
Sizer, Peacock (bb0065) 1947; 171
Jirgensons, Straumanis (bb0080) 1957; 68
Morar, Olteanu, Young, Pielak (bb0190) 2001; 10
de Oliveira, Silva (bb0045) 2019; 2
Nishino, Kosaka, Hembury, Matsushima, Inoue (bb0200) 2002; 2
Yoshimura, Holmberg, Kukic, Andersen, Mata-Cabana, Falsone, Vendruscolo, Nollen, Mulder (bb0225) 2017; 292
Golfarb, Saidel, Mosowich (bb0070) 1951; 193
Fusco, Chen, Williamson, Cascella, Perni, Jarvis, Cecchi, Vendruscolo, Chiti, Cremades, Ying, Dobson, De Simone (bb0025) 2017; 358
Simmons, Blout (bb0100) 1960; 1
Tosatto, Horrocks, Dear, Knowles, Serra, Cremades, Dobson, Klenerman (bb0020) 2015; 5
Glazer, Simmons (bb0160) 1965; 87
Anthis, Clore (bb0205) 2013; 22
Lorenzen, Nielsen, Buell, Kaspersen, Arosio, Vad, Paslawski, Christiansen, Valnickova-Hansen, Andreasen, Enghild, Perdersen, Dobson, Knowles, Otzen (bb0010) 2014; 136
Cassim, Yang (bb0175) 1967; 26
Gaspar, Meisl, Buell, Young, Kaminski, Knowles, Sparr, Linse (bb0035) 2017; 50
Uversky, Li, Fink (bb0215) 2001; 276
Wetlaufer (10.1016/j.jphotobiol.2020.112022_bb0095) 1958; 233
Chen (10.1016/j.jphotobiol.2020.112022_bb0015) 2015; 112
Fusco (10.1016/j.jphotobiol.2020.112022_bb0025) 2017; 358
Crammer (10.1016/j.jphotobiol.2020.112022_bb0055) 1943; 37
Nishino (10.1016/j.jphotobiol.2020.112022_bb0200) 2002; 2
Kuipers (10.1016/j.jphotobiol.2020.112022_bb0210) 2007; 55
Buell (10.1016/j.jphotobiol.2020.112022_bb0040) 2014; 111
Tosatto (10.1016/j.jphotobiol.2020.112022_bb0020) 2015; 5
Jirgensons (10.1016/j.jphotobiol.2020.112022_bb0150) 1965; 240
Glazer (10.1016/j.jphotobiol.2020.112022_bb0110) 1961; 236
Anthis (10.1016/j.jphotobiol.2020.112022_bb0205) 2013; 22
McDiarmid (10.1016/j.jphotobiol.2020.112022_bb0170) 1966; 70
Szabo (10.1016/j.jphotobiol.2020.112022_bb0230) 1978; 94
de Oliveira (10.1016/j.jphotobiol.2020.112022_bb0045) 2019; 2
Gaspar (10.1016/j.jphotobiol.2020.112022_bb0035) 2017; 50
Rosenberg (10.1016/j.jphotobiol.2020.112022_bb0165) 1966; 241
Gratzer (10.1016/j.jphotobiol.2020.112022_bb0120) 1961; 47
Myers (10.1016/j.jphotobiol.2020.112022_bb0155) 1965; 53
Comellas (10.1016/j.jphotobiol.2020.112022_bb0030) 2011; 411
Saraiva (10.1016/j.jphotobiol.2020.112022_bb0050) 2016; 154
Lorenzen (10.1016/j.jphotobiol.2020.112022_bb0010) 2014; 136
Jirgensons (10.1016/j.jphotobiol.2020.112022_bb0125) 1962; 96
Cassim (10.1016/j.jphotobiol.2020.112022_bb0175) 1967; 26
Weinreb (10.1016/j.jphotobiol.2020.112022_bb0180) 1996; 35
Sizer (10.1016/j.jphotobiol.2020.112022_bb0065) 1947; 171
Urnes (10.1016/j.jphotobiol.2020.112022_bb0130) 1962; 16
Jirgensons (10.1016/j.jphotobiol.2020.112022_bb0080) 1957; 68
Fasman (10.1016/j.jphotobiol.2020.112022_bb0140) 1964; 3
Yoshimura (10.1016/j.jphotobiol.2020.112022_bb0225) 2017; 292
Cremades (10.1016/j.jphotobiol.2020.112022_bb0005) 2017; 329
Jirgensons (10.1016/j.jphotobiol.2020.112022_bb0090) 1958; 76
Cassim (10.1016/j.jphotobiol.2020.112022_bb0145) 1965; 5
Faria (10.1016/j.jphotobiol.2020.112022_bb0185) 2013; 1830
Glazer (10.1016/j.jphotobiol.2020.112022_bb0160) 1965; 87
Moffitt (10.1016/j.jphotobiol.2020.112022_bb0075) 1956; 42
Shugar (10.1016/j.jphotobiol.2020.112022_bb0060) 1952; 52
Tjernberg (10.1016/j.jphotobiol.2020.112022_bb0195) 1998; 6
Goldfarb (10.1016/j.jphotobiol.2020.112022_bb0085) 1958; 76
Golfarb (10.1016/j.jphotobiol.2020.112022_bb0070) 1951; 193
Wetlaufer (10.1016/j.jphotobiol.2020.112022_bb0135) 1963; 17
Morar (10.1016/j.jphotobiol.2020.112022_bb0190) 2001; 10
Rosenheck (10.1016/j.jphotobiol.2020.112022_bb0115) 1961; 47
Simmons (10.1016/j.jphotobiol.2020.112022_bb0105) 1961; 83
Simmons (10.1016/j.jphotobiol.2020.112022_bb0100) 1960; 1
Uversky (10.1016/j.jphotobiol.2020.112022_bb0215) 2001; 276
Alderson (10.1016/j.jphotobiol.2020.112022_bb0220) 2013; 1
References_xml – volume: 233
  start-page: 1421
  year: 1958
  end-page: 1428
  ident: bb0095
  publication-title: J. Biol. Chem.
– volume: 1
  year: 2013
  ident: bb0220
  article-title: Intrinsically disordered proteins
– volume: 193
  start-page: 397
  year: 1951
  end-page: 404
  ident: bb0070
  publication-title: J. Biol. Chem.
– volume: 2
  start-page: 582
  year: 2002
  end-page: 590
  ident: bb0200
  publication-title: J. Chem. Soc. Perkin Trans.
– volume: 5
  start-page: 16696
  year: 2015
  ident: bb0020
  publication-title: Sci. Rep.
– volume: 292
  start-page: 8269
  year: 2017
  end-page: 8278
  ident: bb0225
  publication-title: J. Biol. Chem.
– volume: 2
  start-page: 374
  year: 2019
  ident: bb0045
  publication-title: Commun. Biol.
– volume: 87
  start-page: 3991
  year: 1965
  end-page: 3993
  ident: bb0160
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 13709
  year: 1996
  end-page: 13715
  ident: bb0180
  publication-title: Biochemistry
– volume: 17
  start-page: 303
  year: 1963
  end-page: 390
  ident: bb0135
  publication-title: Adv. Protein Chem.
– volume: 53
  start-page: 169
  year: 1965
  end-page: 177
  ident: bb0155
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 329
  start-page: 79
  year: 2017
  end-page: 143
  ident: bb0005
  publication-title: Int. Rev. Cell Mol. Biol.
– volume: 236
  start-page: 2942
  year: 1961
  end-page: 2947
  ident: bb0110
  publication-title: J. Biol. Chem.
– volume: 68
  start-page: 319
  year: 1957
  end-page: 329
  ident: bb0080
  publication-title: Arch. Biochem. Biophys.
– volume: 112
  start-page: E1994
  year: 2015
  end-page: E2003
  ident: bb0015
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 76
  start-page: 161
  year: 1958
  end-page: 167
  ident: bb0085
  publication-title: Arch. Biochem. Biophys.
– volume: 52
  start-page: 142
  year: 1952
  end-page: 149
  ident: bb0060
  publication-title: Biochem. J.
– volume: 96
  start-page: 314
  year: 1962
  end-page: 320
  ident: bb0125
  publication-title: Arch. Biochem. Biophys.
– volume: 76
  start-page: 227
  year: 1958
  end-page: 234
  ident: bb0090
  publication-title: Arch. Biochem. Biophys.
– volume: 240
  start-page: 1064
  year: 1965
  end-page: 1071
  ident: bb0150
  publication-title: J. Biol. Chem.
– volume: 3
  start-page: 1665
  year: 1964
  end-page: 1674
  ident: bb0140
  publication-title: Biochemistry
– volume: 26
  start-page: 58
  year: 1967
  end-page: 64
  ident: bb0175
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 94
  start-page: 249
  year: 1978
  end-page: 252
  ident: bb0230
  publication-title: FEBS Letts.
– volume: 154
  start-page: 16
  year: 2016
  end-page: 23
  ident: bb0050
  publication-title: J. Photochem. Photobiol. B
– volume: 70
  start-page: 2620
  year: 1966
  end-page: 2627
  ident: bb0170
  publication-title: J. Phys. Chem.
– volume: 358
  start-page: 1440
  year: 2017
  end-page: 1443
  ident: bb0025
  publication-title: Science
– volume: 42
  start-page: 736
  year: 1956
  end-page: 746
  ident: bb0075
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 411
  start-page: 881
  year: 2011
  end-page: 895
  ident: bb0030
  publication-title: J. Mol. Biol.
– volume: 83
  start-page: 4766
  year: 1961
  end-page: 4769
  ident: bb0105
  publication-title: J.Am. Chem. Soc.
– volume: 5
  start-page: 573
  year: 1965
  end-page: 589
  ident: bb0145
  publication-title: Biophys. J.
– volume: 55
  start-page: 5445
  year: 2007
  end-page: 5451
  ident: bb0210
  publication-title: Food Chem.
– volume: 47
  start-page: 1785
  year: 1961
  end-page: 1791
  ident: bb0120
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 2195
  year: 2001
  end-page: 2199
  ident: bb0190
  publication-title: Protein Sci.
– volume: 16
  start-page: 401
  year: 1962
  end-page: 544
  ident: bb0130
  publication-title: Adv. Protein Chem.
– volume: 241
  start-page: 5119
  year: 1966
  end-page: 5125
  ident: bb0165
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 851
  year: 2013
  end-page: 858
  ident: bb0205
  publication-title: Protein Sci.
– volume: 1
  start-page: 55
  year: 1960
  end-page: 62
  ident: bb0100
  publication-title: Biophys. J.
– volume: 1830
  start-page: 4065
  year: 2013
  end-page: 4072
  ident: bb0185
  publication-title: Biochim
– volume: 136
  start-page: 3859
  year: 2014
  end-page: 3868
  ident: bb0010
  publication-title: J. Am. Chem. Soc.
– volume: 171
  start-page: 767
  year: 1947
  end-page: 777
  ident: bb0065
  publication-title: J. Biol. Chem.
– volume: 111
  start-page: 7671
  year: 2014
  end-page: 7676
  ident: bb0040
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 47
  start-page: 1775
  year: 1961
  end-page: 1785
  ident: bb0115
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 276
  start-page: 10737
  year: 2001
  end-page: 10744
  ident: bb0215
  publication-title: J. Biol. Chem.
– volume: 50
  start-page: e6
  year: 2017
  ident: bb0035
  publication-title: Q. Rev. Biophys.
– volume: 37
  start-page: 302
  year: 1943
  end-page: 310
  ident: bb0055
  publication-title: Biochem. J.
– volume: 6
  start-page: 53
  year: 1998
  end-page: 62
  ident: bb0195
  publication-title: Chem. Biol.
– volume: 76
  start-page: 227
  year: 1958
  ident: 10.1016/j.jphotobiol.2020.112022_bb0090
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(58)90332-1
– volume: 171
  start-page: 767
  year: 1947
  ident: 10.1016/j.jphotobiol.2020.112022_bb0065
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)41087-8
– volume: 26
  start-page: 58
  year: 1967
  ident: 10.1016/j.jphotobiol.2020.112022_bb0175
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(67)90252-5
– volume: 76
  start-page: 161
  year: 1958
  ident: 10.1016/j.jphotobiol.2020.112022_bb0085
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(58)90130-9
– volume: 233
  start-page: 1421
  year: 1958
  ident: 10.1016/j.jphotobiol.2020.112022_bb0095
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)49351-9
– volume: 5
  start-page: 16696
  year: 2015
  ident: 10.1016/j.jphotobiol.2020.112022_bb0020
  publication-title: Sci. Rep.
  doi: 10.1038/srep16696
– volume: 42
  start-page: 736
  year: 1956
  ident: 10.1016/j.jphotobiol.2020.112022_bb0075
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.42.10.736
– volume: 37
  start-page: 302
  year: 1943
  ident: 10.1016/j.jphotobiol.2020.112022_bb0055
  publication-title: Biochem. J.
  doi: 10.1042/bj0370302
– volume: 10
  start-page: 2195
  year: 2001
  ident: 10.1016/j.jphotobiol.2020.112022_bb0190
  publication-title: Protein Sci.
  doi: 10.1110/ps.24301
– volume: 6
  start-page: 53
  year: 1998
  ident: 10.1016/j.jphotobiol.2020.112022_bb0195
  publication-title: Chem. Biol.
  doi: 10.1016/S1074-5521(99)80020-9
– volume: 2
  start-page: 582
  year: 2002
  ident: 10.1016/j.jphotobiol.2020.112022_bb0200
  publication-title: J. Chem. Soc. Perkin Trans.
  doi: 10.1039/b108575c
– volume: 47
  start-page: 1785
  year: 1961
  ident: 10.1016/j.jphotobiol.2020.112022_bb0120
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.47.11.1785
– volume: 1
  year: 2013
  ident: 10.1016/j.jphotobiol.2020.112022_bb0220
  article-title: Intrinsically disordered proteins
– volume: 112
  start-page: E1994
  year: 2015
  ident: 10.1016/j.jphotobiol.2020.112022_bb0015
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1421204112
– volume: 411
  start-page: 881
  year: 2011
  ident: 10.1016/j.jphotobiol.2020.112022_bb0030
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.06.026
– volume: 154
  start-page: 16
  year: 2016
  ident: 10.1016/j.jphotobiol.2020.112022_bb0050
  publication-title: J. Photochem. Photobiol. B
  doi: 10.1016/j.jphotobiol.2015.11.006
– volume: 94
  start-page: 249
  year: 1978
  ident: 10.1016/j.jphotobiol.2020.112022_bb0230
  publication-title: FEBS Letts.
  doi: 10.1016/0014-5793(78)80948-X
– volume: 2
  start-page: 374
  year: 2019
  ident: 10.1016/j.jphotobiol.2020.112022_bb0045
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-019-0598-9
– volume: 53
  start-page: 169
  year: 1965
  ident: 10.1016/j.jphotobiol.2020.112022_bb0155
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.53.1.169
– volume: 16
  start-page: 401
  year: 1962
  ident: 10.1016/j.jphotobiol.2020.112022_bb0130
  publication-title: Adv. Protein Chem.
  doi: 10.1016/S0065-3233(08)60033-9
– volume: 240
  start-page: 1064
  year: 1965
  ident: 10.1016/j.jphotobiol.2020.112022_bb0150
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)97538-1
– volume: 358
  start-page: 1440
  year: 2017
  ident: 10.1016/j.jphotobiol.2020.112022_bb0025
  publication-title: Science
  doi: 10.1126/science.aan6160
– volume: 193
  start-page: 397
  year: 1951
  ident: 10.1016/j.jphotobiol.2020.112022_bb0070
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)52465-6
– volume: 87
  start-page: 3991
  year: 1965
  ident: 10.1016/j.jphotobiol.2020.112022_bb0160
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01095a043
– volume: 55
  start-page: 5445
  year: 2007
  ident: 10.1016/j.jphotobiol.2020.112022_bb0210
  publication-title: Food Chem.
  doi: 10.1021/jf070337l
– volume: 111
  start-page: 7671
  year: 2014
  ident: 10.1016/j.jphotobiol.2020.112022_bb0040
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1315346111
– volume: 3
  start-page: 1665
  year: 1964
  ident: 10.1016/j.jphotobiol.2020.112022_bb0140
  publication-title: Biochemistry
  doi: 10.1021/bi00899a011
– volume: 1
  start-page: 55
  year: 1960
  ident: 10.1016/j.jphotobiol.2020.112022_bb0100
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(60)86875-0
– volume: 83
  start-page: 4766
  year: 1961
  ident: 10.1016/j.jphotobiol.2020.112022_bb0105
  publication-title: J.Am. Chem. Soc.
  doi: 10.1021/ja01484a017
– volume: 17
  start-page: 303
  year: 1963
  ident: 10.1016/j.jphotobiol.2020.112022_bb0135
  publication-title: Adv. Protein Chem.
  doi: 10.1016/S0065-3233(08)60056-X
– volume: 292
  start-page: 8269
  year: 2017
  ident: 10.1016/j.jphotobiol.2020.112022_bb0225
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.764886
– volume: 5
  start-page: 573
  year: 1965
  ident: 10.1016/j.jphotobiol.2020.112022_bb0145
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(65)86735-2
– volume: 35
  start-page: 13709
  year: 1996
  ident: 10.1016/j.jphotobiol.2020.112022_bb0180
  publication-title: Biochemistry
  doi: 10.1021/bi961799n
– volume: 329
  start-page: 79
  year: 2017
  ident: 10.1016/j.jphotobiol.2020.112022_bb0005
  publication-title: Int. Rev. Cell Mol. Biol.
  doi: 10.1016/bs.ircmb.2016.08.010
– volume: 241
  start-page: 5119
  year: 1966
  ident: 10.1016/j.jphotobiol.2020.112022_bb0165
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)99679-1
– volume: 1830
  start-page: 4065
  year: 2013
  ident: 10.1016/j.jphotobiol.2020.112022_bb0185
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2013.04.015
– volume: 276
  start-page: 10737
  year: 2001
  ident: 10.1016/j.jphotobiol.2020.112022_bb0215
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M010907200
– volume: 236
  start-page: 2942
  year: 1961
  ident: 10.1016/j.jphotobiol.2020.112022_bb0110
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)76406-0
– volume: 50
  start-page: e6
  year: 2017
  ident: 10.1016/j.jphotobiol.2020.112022_bb0035
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583516000172
– volume: 68
  start-page: 319
  year: 1957
  ident: 10.1016/j.jphotobiol.2020.112022_bb0080
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(57)90364-8
– volume: 70
  start-page: 2620
  year: 1966
  ident: 10.1016/j.jphotobiol.2020.112022_bb0170
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100880a030
– volume: 22
  start-page: 851
  year: 2013
  ident: 10.1016/j.jphotobiol.2020.112022_bb0205
  publication-title: Protein Sci.
  doi: 10.1002/pro.2253
– volume: 47
  start-page: 1775
  year: 1961
  ident: 10.1016/j.jphotobiol.2020.112022_bb0115
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.47.11.1775
– volume: 96
  start-page: 314
  year: 1962
  ident: 10.1016/j.jphotobiol.2020.112022_bb0125
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(62)90413-7
– volume: 136
  start-page: 3859
  year: 2014
  ident: 10.1016/j.jphotobiol.2020.112022_bb0010
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411577t
– volume: 52
  start-page: 142
  year: 1952
  ident: 10.1016/j.jphotobiol.2020.112022_bb0060
  publication-title: Biochem. J.
  doi: 10.1042/bj0520142
SSID ssj0000567
Score 2.5383508
Snippet The interpretation of the UV absorption spectra of proteins was a matter of intense debate in the second half of the last century. The study of the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112022
SubjectTerms absorbance
Absorption
Absorption spectra
Agglomeration
Aggregation mechanism
Amino acids
Amyloid
Aromatic region
Hydrogen bonding
Ion concentration
Light scattering
Peptide bond region
Peptides
Perturbation
pH effects
photobiology
photochemistry
Proteins
Residues
spectroscopy
Synuclein
Ultraviolet absorption
Ultraviolet radiation
UV absorption
α-Synuclein
Title Interpretation of α-synuclein UV absorption spectra in the peptide bond and the aromatic regions
URI https://dx.doi.org/10.1016/j.jphotobiol.2020.112022
https://www.proquest.com/docview/2469190177
https://www.proquest.com/docview/2444875870
https://www.proquest.com/docview/2552020797
Volume 212
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB5CQmgvpU1bukkaFOjVXdmSrTU9hSVh20IuyZbcxEiy6YZiL7ubQy59p75Inykzsp2QQkugBx9sSVjMjOYHzcwH8IFMeh2UrBPvSwpQtFSkB9ElPqQFWdswSTF2-zwvZnP95Sq_2oLpUAvDaZW97u90etTW_ZdxT83xcrEYX6QRJl3rjG_3TMYdP7U2LOUffz6keZCBjwArMXWLZvfZPF2O1_Xye7uJ7Y4oUsxiPY3Msr-ZqD-UdbRAZy_hRe86ipNud69gq2r2YLcDk7zdg2fTAbvtNeDjXELR1uL3r2R923D34kUj5t8EunW7ivpCxGrLFQoaIHdQLDnRJVTCtU0QSA9_xFUbm7sKRnIgSX0D87PTy-ks6cEUEq_TbJOgwSCJK15VymR8UFNZoUkdRWReeqlCwMoUuXcBgzdljY4NGZapCtLnqN7CdtM21TsQus7RkOvhyPnQuSomE1fnDF1dGlmqUo7ADPSzvu80zoAXP-yQUnZtHyhvmfK2o_wI0vuVy67bxhPWfBpYZB9JjiWj8ITVhwNXbX961zbTRcmOkjEjOL4fJhbyZQo2VXvDczTHeqTu_jEnz_lXpjT7_7XJA3jOb10J5CFsb1Y31XvyhTbuKAr7EeycfP46O78DmUIKGA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NahsxEB5Sh5JcSpu21GnaqtDrYmklrbz0FEyC06S-NC65Cf3sUoeya2znkMfKi-SZOtJqExJoCfSwF0nDihlpftDMfABf0KTXntM6c67EAEVQjnrQ2Mx5VqC19WNmYrfPWTGdi28X8mILJn0tTEirTLq_0-lRW6eRUeLmaLlYjH6wCJMuRB5e91TOn8F26E4lB7B9eHI6nd0rZBmBZFnM3kKClNDTpXldLn-1m9jxCIPFPJbU0Dz_m5V6pK-jETp-CS-S90gOuw2-gq2q2YPnHZ7k9R7sTHr4ttdgHqYTkrYmtzfZ-roJDYwXDZn_JMau21VUGSQWXK4MwQn0CMky5Lr4iti28cTgFwbNqo39XUkAc8DD-gbmx0fnk2mW8BQyJ1i-yYwynqJgHK-4ysNdZbQyilkMyhx1lHtvKlVIZ73xTpW1scGWmZJxT500_C0Mmrap3gERtTQKvQ-L_oeQvBiPbS0DenWpaMlLOgTV80-71Gw8YF781n1W2aW-57wOnNcd54fA7iiXXcONJ9B87UWkHxwejXbhCdQHvVR1usBrnYuiDL6SUkP4fDeNIgzvKaap2quwRoRwDzXeP9ZIGX6lSrX_X5v8BDvT8-9n-uxkdvoedsNMVxF5AIPN6qr6gK7Rxn5MR_8PqcgMyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretation+of+%CE%B1-synuclein+UV+absorption+spectra+in+the+peptide+bond+and+the+aromatic+regions&rft.jtitle=Journal+of+photochemistry+and+photobiology.+B%2C+Biology&rft.au=Saraiva%2C+Marco+A&rft.date=2020-11-01&rft.pub=Elsevier+BV&rft.issn=1011-1344&rft.eissn=1873-2682&rft.volume=212&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jphotobiol.2020.112022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-1344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-1344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-1344&client=summon