Insight into the Microbiological Control Strategies against Botrytis cinerea Using Systemic Plant Resistance Activation
Botrytis cinerea is a polyphagous necrotrophic fungus and is the causal agent of grey mold diseases in more than 1400 different hosts. This fungus causes serious economic losses in both preharvest and post-harvest—mainly in grape, strawberry, and tomato crops—and is the second most important pathoge...
Saved in:
Published in | Agronomy (Basel) Vol. 10; no. 11; p. 1822 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2073-4395 2073-4395 |
DOI | 10.3390/agronomy10111822 |
Cover
Loading…
Abstract | Botrytis cinerea is a polyphagous necrotrophic fungus and is the causal agent of grey mold diseases in more than 1400 different hosts. This fungus causes serious economic losses in both preharvest and post-harvest—mainly in grape, strawberry, and tomato crops—and is the second most important pathogen worldwide, to our knowledge. Beneficial bacteria and fungi are efficient biocontrol agents against B. cinerea through direct mechanisms, such as parasitism, antibiosis, and competition, but also indirectly through the activation of systemic plant resistance. The interaction between plants and these microorganisms can lead to the development of defensive responses in distant plant organs, which are highly effective against foliar, flower, and fruit pathogens, such as B. cinerea. This review aimed to explore the systemic plant defense responses against B. cinerea by compiling all cases reported (to the best of our knowledge) on the use of beneficial bacteria and fungi for agriculture, a subject not yet specifically addressed. |
---|---|
AbstractList | Botrytis cinerea is a polyphagous necrotrophic fungus and is the causal agent of grey mold diseases in more than 1400 different hosts. This fungus causes serious economic losses in both preharvest and post-harvest—mainly in grape, strawberry, and tomato crops—and is the second most important pathogen worldwide, to our knowledge. Beneficial bacteria and fungi are efficient biocontrol agents against B. cinerea through direct mechanisms, such as parasitism, antibiosis, and competition, but also indirectly through the activation of systemic plant resistance. The interaction between plants and these microorganisms can lead to the development of defensive responses in distant plant organs, which are highly effective against foliar, flower, and fruit pathogens, such as B. cinerea. This review aimed to explore the systemic plant defense responses against B. cinerea by compiling all cases reported (to the best of our knowledge) on the use of beneficial bacteria and fungi for agriculture, a subject not yet specifically addressed. |
Author | Barquero, Marcia Poveda, Jorge González-Andrés, Fernando |
Author_xml | – sequence: 1 givenname: Jorge orcidid: 0000-0002-1415-3580 surname: Poveda fullname: Poveda, Jorge – sequence: 2 givenname: Marcia orcidid: 0000-0002-7701-7439 surname: Barquero fullname: Barquero, Marcia – sequence: 3 givenname: Fernando surname: González-Andrés fullname: González-Andrés, Fernando |
BookMark | eNp1kc1rVDEUxR9SwVq77zLgxs1oPt9LlnXQOlBRbLsOecmd1zu8SWqSscx_b9pRkAHvJpfwOwfOua-7k5gidN0Fo--FMPSDm3KKabtnlDGmOX_RnXI6iIUURp38s7_qzkvZ0DaGCU2H0-5xFQtO95VgrInUeyBf0ec0YprThN7NZJlizWkmNzW7ChNCIW5yGEslH1PN-4qFeIyQwZG7gnEiN_tSYYuefJ9drOQHFCzVRQ_k0lf85Sqm-KZ7uXZzgfM_71l39_nT7fLL4vrb1Wp5eb3wkvG6cALAKcmUVyKAk4wGv_Y9Dw700FNuvNJKCd2PQkjjjRq1hnGg4-iFkjqIs2518A3JbexDxq3Le5sc2uePlCfrckU_g6VOD9IHY7SUMnjZjIJeS0oZpYGJJ693B6-HnH7uoFS7xeJhbikh7Yrl0mhuVK_6hr49Qjdpl2NL2qhecj7onjWqP1Ct8VIyrK3H-lxP6xpny6h9Oq89Pm8T0iPh32T_lfwGWWitlw |
CitedBy_id | crossref_primary_10_3390_plants12030637 crossref_primary_10_1186_s12864_023_09371_9 crossref_primary_10_3390_ijms23031526 crossref_primary_10_3390_cells12091271 crossref_primary_10_3390_microorganisms13030483 crossref_primary_10_1016_j_bcab_2023_102862 crossref_primary_10_3389_fpls_2023_1288408 crossref_primary_10_3390_pathogens11010035 crossref_primary_10_3390_antibiotics13030215 crossref_primary_10_1016_j_biocontrol_2024_105572 crossref_primary_10_1111_1750_3841_16796 crossref_primary_10_1016_j_pmpp_2021_101780 crossref_primary_10_1016_j_pmpp_2025_102661 crossref_primary_10_1093_biomethods_bpad042 crossref_primary_10_1007_s10725_024_01218_x crossref_primary_10_3389_fmicb_2022_921762 crossref_primary_10_1007_s13580_022_00501_y crossref_primary_10_3389_fmicb_2022_1030982 crossref_primary_10_3390_plants10081716 crossref_primary_10_1016_j_micres_2023_127486 crossref_primary_10_3390_plants12081694 crossref_primary_10_1016_j_biocontrol_2024_105621 crossref_primary_10_3389_fpls_2021_780099 crossref_primary_10_3390_agronomy11112188 crossref_primary_10_1016_j_plantsci_2023_111664 crossref_primary_10_1016_j_jhazmat_2022_129232 crossref_primary_10_1016_j_cropro_2024_107085 crossref_primary_10_1007_s10658_022_02575_x crossref_primary_10_3390_microbiolres15020037 crossref_primary_10_1002_ps_7150 crossref_primary_10_1021_acs_jafc_4c08612 crossref_primary_10_3390_ijms25010591 crossref_primary_10_1021_acs_jafc_4c03323 crossref_primary_10_1079_cabireviews_2024_0032 crossref_primary_10_1007_s00253_021_11492_8 crossref_primary_10_3390_microorganisms12030457 crossref_primary_10_3390_buildings13030620 crossref_primary_10_3389_fpls_2023_1282050 crossref_primary_10_1016_j_indcrop_2024_119187 crossref_primary_10_1016_j_scienta_2023_112696 crossref_primary_10_1079_planthealthcases_2025_0010 crossref_primary_10_1093_jxb_erae040 crossref_primary_10_3390_ijms25126798 crossref_primary_10_1186_s43897_024_00086_3 crossref_primary_10_3390_jof9050511 crossref_primary_10_1007_s41348_024_01040_7 crossref_primary_10_17584_rcch_2023v17i1_15284 crossref_primary_10_3389_fpls_2023_1309747 crossref_primary_10_1007_s10658_021_02286_9 crossref_primary_10_1128_msphere_00667_23 crossref_primary_10_3390_foods10071650 |
Cites_doi | 10.1038/s41598-017-12944-w 10.1007/s10658-011-9782-6 10.1094/PHYTO-09-17-0306-R 10.1007/s00253-019-10321-3 10.3390/ijms19040952 10.1139/w11-081 10.1023/A:1015141503755 10.3389/fpls.2019.01478 10.1007/978-3-319-23371-0 10.1016/j.biocontrol.2006.01.001 10.1016/j.fm.2014.11.013 10.1007/s10526-017-9825-9 10.1111/mpp.12189 10.1093/jxb/erp295 10.1080/09583157.2018.1515890 10.1111/j.1574-6968.2007.00930.x 10.7150/ijbs.14333 10.3389/fpls.2017.00238 10.1111/pce.13016 10.3390/microorganisms8070992 10.1111/jph.12692 10.1094/MPMI-20-12-1535 10.1080/17429145.2015.1068959 10.1111/1462-2920.14829 10.1094/MPMI.2004.17.9.1009 10.1094/PHYTO-01-19-0025-R 10.1094/MPMI-19-1138 10.1002/ps.3301 10.1094/PHYTO-02-13-0043-R 10.5604/12321966.1203879 10.3390/agronomy3040632 10.1080/12298093.2018.1454013 10.1094/MPMI.2003.16.12.1118 10.1080/13102818.2017.1286950 10.5423/PPJ.2005.21.1.059 10.1007/s10658-020-02054-1 10.1007/s40858-016-0082-8 10.1111/j.1364-3703.2005.00276.x 10.1016/j.biocontrol.2014.06.012 10.1007/s10526-020-10003-4 10.1094/PHYTO.2000.90.9.981 10.1094/MPMI-11-17-0273-R 10.1016/j.biocontrol.2016.06.006 10.1104/pp.126.2.517 10.1051/agro:2003018 10.1111/j.1365-2672.2004.02252.x 10.1094/PHYTO-09-10-0242 10.1016/j.pmpp.2011.04.002 10.1007/s00425-018-2860-7 10.1007/s10658-006-0005-5 10.1111/jph.12864 10.1104/pp.112.212969 10.1016/j.plantsci.2020.110595 10.1016/j.pmpp.2013.02.002 10.3389/fpls.2017.00880 10.1007/978-3-030-41870-0 10.1016/j.biocontrol.2018.07.017 10.3389/fpls.2016.01236 10.1111/j.1469-8137.2007.02322.x 10.1128/AEM.71.7.3959-3965.2005 10.3390/agronomy10010118 10.1016/j.biocontrol.2007.05.009 10.3389/fpls.2012.00108 10.1016/j.jbiotec.2018.07.044 10.1093/fqsafe/fyy016 10.1371/journal.pone.0190932 10.1007/s11104-015-2445-1 10.1111/j.1364-3703.2010.00674.x 10.1016/S0038-0717(02)00283-3 10.1016/j.biocontrol.2009.04.013 10.1016/j.micpath.2018.05.026 10.1007/s11738-002-0051-3 10.1007/s10526-007-9103-3 10.21203/rs.2.10988/v1 10.1016/j.fm.2017.11.010 10.1094/PHYTO-09-19-0347-R 10.1016/j.ijfoodmicro.2006.07.003 10.1007/s00425-015-2460-8 10.1093/jxb/eraa030 10.1007/s00284-001-0011-y 10.1111/j.1365-3059.2005.01285.x 10.3390/pathogens9030213 10.1016/j.biocontrol.2006.10.008 10.1016/j.biocontrol.2020.104306 10.1111/j.1462-2920.2006.01202.x 10.1007/978-981-10-6593-4_6 10.3389/fmicb.2020.00992 10.1016/j.pmpp.2020.101521 10.1094/PHYTO-97-2-0250 10.1094/PHYTO-03-16-0139-R 10.1094/MPMI-22-11-1455 10.1007/s10658-019-01768-1 10.5423/PPJ.OA.11.2018.0276 10.1007/978-981-15-3321-1 10.4161/psb.6.10.17443 10.1007/s00294-006-0091-0 10.1016/S0885-5765(03)00089-4 10.1111/j.1365-3040.2008.01911.x 10.1007/s10529-007-9626-9 10.1007/s11104-015-2783-z 10.3390/ijms19051371 10.1016/j.micpath.2018.06.019 10.1094/MPMI-04-15-0092-R 10.1080/17429145.2017.1319502 10.1007/s11104-013-1864-0 10.1007/978-1-4020-2626-3_2 10.1111/j.1364-3703.2007.00417.x 10.1111/ppa.12725 10.1007/s10658-008-9411-1 10.1038/s41598-019-48269-z 10.1007/s10658-012-0134-y 10.1016/j.pmpp.2010.08.001 10.3389/fmicb.2018.01596 10.3389/fmicb.2018.01315 10.3389/fpls.2016.01658 10.3389/fmicb.2016.00196 10.3390/ijms20082007 10.1016/j.micres.2017.11.004 10.1094/MPMI.2002.15.11.1147 10.3390/plants9060762 10.1016/S1049-9644(02)00052-X 10.1111/jph.12718 10.1186/1471-2229-8-113 10.1016/j.jplph.2014.12.013 10.1080/07388551.2016.1271767 10.1071/AP02017 10.1016/j.carbpol.2018.07.045 10.1101/507491 10.1016/j.biocontrol.2013.01.009 10.1007/s10658-007-9111-2 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI 7S9 L.6 DOA |
DOI | 10.3390/agronomy10111822 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection (UHCL Subscription) Agricultural Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2073-4395 |
ExternalDocumentID | oai_doaj_org_article_0a874cd998444dc48ebd8f400100d13d 10_3390_agronomy10111822 |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO KQ8 M0K MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PROAC PYCSY 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c412t-a3eea5415c53dea410dcfc62dae876029c5855386b3349c95b88eb70bbc3548d3 |
IEDL.DBID | DOA |
ISSN | 2073-4395 |
IngestDate | Wed Aug 27 01:30:51 EDT 2025 Thu Jul 10 18:04:54 EDT 2025 Mon Jun 30 11:24:46 EDT 2025 Tue Jul 01 03:19:58 EDT 2025 Thu Apr 24 22:59:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-a3eea5415c53dea410dcfc62dae876029c5855386b3349c95b88eb70bbc3548d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7701-7439 0000-0002-1415-3580 |
OpenAccessLink | https://doaj.org/article/0a874cd998444dc48ebd8f400100d13d |
PQID | 2464227861 |
PQPubID | 2032440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0a874cd998444dc48ebd8f400100d13d proquest_miscellaneous_2498295656 proquest_journals_2464227861 crossref_citationtrail_10_3390_agronomy10111822 crossref_primary_10_3390_agronomy10111822 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agronomy (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_138 Tucci (ref_128) 2011; 12 Wang (ref_27) 2018; 108 Zimmerli (ref_43) 2001; 126 (ref_45) 2002; 24 ref_99 ref_10 Chen (ref_28) 2018; 46 You (ref_135) 2016; 101 Vos (ref_33) 2014; 16 Quantinet (ref_78) 2012; 58 Narayan (ref_114) 2017; 7 ref_19 Parafati (ref_26) 2015; 47 Gasser (ref_22) 2012; 4 Veloso (ref_111) 2012; 83 Kumar (ref_57) 2018; 207 Meziane (ref_88) 2005; 6 Hang (ref_11) 2005; 21 Vijayabharathi (ref_95) 2018; 28 Williamson (ref_3) 2007; 8 Jatoi (ref_71) 2019; 35 Verhagen (ref_82) 2010; 61 Sun (ref_145) 2018; 199 ref_120 Brunner (ref_123) 2005; 71 (ref_125) 2011; 6 Bala (ref_147) 2009; 42 Schoonbeek (ref_74) 2007; 20 Weller (ref_101) 2007; 97 Rey (ref_146) 2003; 23 Ongena (ref_86) 2002; 108 Adikaram (ref_144) 2002; 31 Perato (ref_107) 2020; 65 Xu (ref_61) 2016; 41 Diaz (ref_112) 2005; 54 Pastor (ref_118) 2020; 71 Chen (ref_21) 2020; 148 Wang (ref_60) 2016; 12 Verhagen (ref_77) 2011; 101 Varnier (ref_81) 2009; 32 Olson (ref_129) 2007; 42 Poveda (ref_139) 2019; 9 ref_70 Vijayabharathi (ref_96) 2018; 122 Wilkinson (ref_44) 2018; 67 Kamensky (ref_20) 2003; 35 Sarrocco (ref_137) 2017; 107 ref_79 Toral (ref_13) 2018; 9 Yoshida (ref_68) 2019; 167 ref_73 Shafi (ref_98) 2017; 31 Raacke (ref_119) 2006; 19 Jiang (ref_69) 2018; 126 Harel (ref_133) 2014; 104 Zhang (ref_29) 2007; 40 Hu (ref_97) 2018; 247 Chinta (ref_54) 2015; 10 Chen (ref_15) 2008; 30 Hua (ref_7) 2018; 2 ref_140 Paz (ref_16) 2018; 121 Alizadeh (ref_83) 2013; 65 ref_89 Lehr (ref_93) 2008; 177 Segarra (ref_121) 2014; 78 Gruau (ref_84) 2015; 28 Bremont (ref_127) 2015; 6 (ref_47) 2010; 75 Fira (ref_8) 2018; 285 Pozo (ref_75) 2015; 6 Poveda (ref_141) 2020; 11 Mercier (ref_53) 2000; 90 Wu (ref_63) 2018; 31 Aziz (ref_85) 2015; 405 Masih (ref_30) 2002; 44 Widiastuti (ref_52) 2011; 75 Veloso (ref_50) 2015; 176 Poveda (ref_39) 2020; 111 Mari (ref_25) 2018; 72 Pieterse (ref_122) 2017; 40 ref_58 Conrad (ref_51) 2017; 37 Quantinet (ref_59) 2007; 118 Salla (ref_94) 2016; 243 Lee (ref_9) 2006; 37 Troncho (ref_116) 2016; 7 (ref_126) 2011; 131 Gomes (ref_134) 2017; 8 Pastor (ref_117) 2020; 298 Ongena (ref_87) 2004; 17 Mercier (ref_6) 2019; 21 Nie (ref_65) 2017; 8 Mathys (ref_130) 2012; 3 Arancibia (ref_17) 2018; 166 ref_62 Jaoua (ref_72) 2011; 57 Toure (ref_14) 2004; 96 Vallance (ref_110) 2009; 50 Li (ref_36) 2020; 110 Huang (ref_64) 2012; 68 Boukaew (ref_18) 2017; 62 Kim (ref_12) 2007; 17 Mehari (ref_55) 2015; 395 AbuQamar (ref_41) 2017; 37 Kim (ref_76) 2017; 12 Aziz (ref_49) 2003; 16 Zhao (ref_136) 2018; 166 Formey (ref_113) 2018; 9 ref_35 Muzammil (ref_91) 2013; 374 ref_34 Audenaert (ref_80) 2002; 15 ref_32 Ongena (ref_66) 2007; 9 Couderchet (ref_48) 2006; 114 Sharifi (ref_67) 2016; 7 Mukherjee (ref_143) 2020; 104 Wang (ref_105) 2019; 109 Segarra (ref_56) 2013; 82 ref_38 Vicedo (ref_46) 2009; 22 Marra (ref_124) 2006; 50 ref_104 Calvo (ref_24) 2007; 113 ref_103 ref_106 Korolev (ref_131) 2008; 53 Daulagala (ref_90) 2003; 62 Fiorilli (ref_109) 2011; 93 Choquer (ref_4) 2007; 277 Salazar (ref_108) 2012; 135 Buxdorf (ref_115) 2013; 161 Saligkarias (ref_31) 2002; 25 ref_100 ref_42 ref_102 ref_40 ref_1 Ronseaux (ref_37) 2013; 3 Kim (ref_23) 2019; 155 ref_2 ref_5 Efernandez (ref_132) 2013; 4 Pang (ref_92) 2009; 124 Trillas (ref_142) 2017; 32 |
References_xml | – volume: 42 start-page: 11 year: 2009 ident: ref_147 article-title: Pythium elicitors in biological control of Botrytis cinerea publication-title: IOBC/WPRS Bull. – volume: 7 start-page: 1 year: 2017 ident: ref_114 article-title: Antioxidant enzymes in chickpea colonized by Piriformospora indica participate in defense against the pathogen Botrytis cinerea publication-title: Sci. Rep. doi: 10.1038/s41598-017-12944-w – volume: 131 start-page: 15 year: 2011 ident: ref_126 article-title: Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways publication-title: Eur. J. Plant. Pathol. doi: 10.1007/s10658-011-9782-6 – volume: 108 start-page: 691 year: 2018 ident: ref_27 article-title: Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State publication-title: Phytopathology doi: 10.1094/PHYTO-09-17-0306-R – volume: 104 start-page: 1497 year: 2020 ident: ref_143 article-title: Yeast a potential bio-agent: Future for plant growth and postharvest disease management for sustainable agriculture publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-019-10321-3 – ident: ref_102 doi: 10.3390/ijms19040952 – volume: 32 start-page: 666 year: 2017 ident: ref_142 article-title: Increased rhizosphere populations of Trichoderma asperellum strain T34 caused by secretion pattern of root exudates in tomato plants inoculated with Botrytis cinerea publication-title: Plant. Pathol. – volume: 57 start-page: 896 year: 2011 ident: ref_72 article-title: Biological control of Botrytis cinerea using the antagonistic and endophytic Burkholderia cepacia Cs5 for vine plantlet protection publication-title: Can. J. Microbiol. doi: 10.1139/w11-081 – volume: 108 start-page: 187 year: 2002 ident: ref_86 article-title: Study of Bacterial Determinants Involved in the Induction of Systemic Resistance in Bean by Pseudomonas putida BTP1 publication-title: Eur. J. Plant. Pathol. doi: 10.1023/A:1015141503755 – ident: ref_100 – ident: ref_34 doi: 10.3389/fpls.2019.01478 – ident: ref_1 doi: 10.1007/978-3-319-23371-0 – volume: 37 start-page: 329 year: 2006 ident: ref_9 article-title: Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea publication-title: Biol. Control doi: 10.1016/j.biocontrol.2006.01.001 – volume: 47 start-page: 85 year: 2015 ident: ref_26 article-title: Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape publication-title: Food Microbiol. doi: 10.1016/j.fm.2014.11.013 – volume: 62 start-page: 793 year: 2017 ident: ref_18 article-title: Biological control of tomato gray mold caused by Botrytis cinerea by using Streptomyces spp. publication-title: BioControl doi: 10.1007/s10526-017-9825-9 – volume: 16 start-page: 400 year: 2014 ident: ref_33 article-title: The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease publication-title: Mol. Plant. Pathol. doi: 10.1111/mpp.12189 – volume: 4 start-page: 206 year: 2013 ident: ref_132 article-title: Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato publication-title: Front. Plant. Sci. – ident: ref_42 – volume: 61 start-page: 249 year: 2010 ident: ref_82 article-title: Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp295 – volume: 28 start-page: 1140 year: 2018 ident: ref_95 article-title: Streptomyces sp. as plant growth-promoters and host-plant resistance inducers against Botrytis cinerea in chickpea publication-title: Biocontrol Sci. Technol. doi: 10.1080/09583157.2018.1515890 – volume: 277 start-page: 1 year: 2007 ident: ref_4 article-title: Botrytis cinereavirulence factors: New insights into a necrotrophic and polyphageous pathogen publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2007.00930.x – volume: 12 start-page: 757 year: 2016 ident: ref_60 article-title: A Novel Protein Elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 Induces Systemic Resistance in Tobacco publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.14333 – volume: 8 start-page: 238 year: 2017 ident: ref_65 article-title: Induced Systemic Resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-Dependent Signaling Pathway and Activates PAMP-Triggered Immunity in Arabidopsis publication-title: Front. Plant. Sci. doi: 10.3389/fpls.2017.00238 – volume: 40 start-page: 2691 year: 2017 ident: ref_122 article-title: Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum publication-title: Plant Cell Environ. doi: 10.1111/pce.13016 – ident: ref_70 doi: 10.3390/microorganisms8070992 – volume: 93 start-page: 237 year: 2011 ident: ref_109 article-title: The arbuscular mycorrhizal symbiosis reduces disease severity in tomato plants infected by Botrytis cinerea publication-title: J. Plant Pathol. – volume: 166 start-page: 346 year: 2018 ident: ref_136 article-title: The antimicrobial peptaibol trichokonin IV promotes plant growth and induces systemic resistance against Botrytis cinerea infection in moth orchid publication-title: J. Phytopathol. doi: 10.1111/jph.12692 – volume: 17 start-page: 438 year: 2007 ident: ref_12 article-title: Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation publication-title: J. Microbiol. Biotechnol. – volume: 20 start-page: 1535 year: 2007 ident: ref_74 article-title: Oxalate-Degrading Bacteria Can Protect Arabidopsis thaliana and Crop Plants Against Botrytis cinerea publication-title: Mol. Plant. Microbe Interact. doi: 10.1094/MPMI-20-12-1535 – volume: 10 start-page: 1 year: 2015 ident: ref_54 article-title: Organic hydroponics induces systemic resistance against the air-borne pathogen, Botrytis cinerea (grey mould) publication-title: J. Plant. Interactions doi: 10.1080/17429145.2015.1068959 – volume: 21 start-page: 4808 year: 2019 ident: ref_6 article-title: The polyphagous plant pathogenic fungus Botrytis cinerea encompasses host-specialized and generalist populations publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.14829 – volume: 17 start-page: 1009 year: 2004 ident: ref_87 article-title: Stimulation of the Lipoxygenase Pathway Is Associated with Systemic Resistance Induced in Bean by a Nonpathogenic Pseudomonas Strain publication-title: Mol. Plant. Microbe Interact. doi: 10.1094/MPMI.2004.17.9.1009 – volume: 109 start-page: 1102 year: 2019 ident: ref_105 article-title: The Involvement of Jasmonic Acid, Ethylene, and Salicylic Acid in the Signaling Pathway of Clonostachys rosea-Induced Resistance to Gray Mold Disease in Tomato publication-title: Phytopathology doi: 10.1094/PHYTO-01-19-0025-R – volume: 19 start-page: 1138 year: 2006 ident: ref_119 article-title: Yeast Increases Resistance in Arabidopsis Against Pseudomonas syringae and Botrytis cinerea by Salicylic Acid-Dependent as Well as Independent Mechanisms publication-title: Mol. Plant. Microbe Interactions doi: 10.1094/MPMI-19-1138 – ident: ref_62 – volume: 68 start-page: 1306 year: 2012 ident: ref_64 article-title: Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L publication-title: Pest. Manag. Sci. doi: 10.1002/ps.3301 – volume: 6 start-page: 77 year: 2015 ident: ref_127 article-title: The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum publication-title: Front. Plant. Sci. – volume: 104 start-page: 150 year: 2014 ident: ref_133 article-title: Systemic Resistance to Gray Mold Induced in Tomato by Benzothiadiazole and Trichoderma harzianum T39 publication-title: Phytopathology doi: 10.1094/PHYTO-02-13-0043-R – ident: ref_103 doi: 10.5604/12321966.1203879 – volume: 3 start-page: 632 year: 2013 ident: ref_37 article-title: Interaction of Ulocladium atrum, a Potential Biological Control Agent, with Botrytis cinerea and Grapevine Plantlets publication-title: Agronomy doi: 10.3390/agronomy3040632 – volume: 46 start-page: 33 year: 2018 ident: ref_28 article-title: Screening and evaluation of yeast antagonists for biological control of Botrytis cinerea on strawberry fruits publication-title: Mycobiology doi: 10.1080/12298093.2018.1454013 – volume: 16 start-page: 1118 year: 2003 ident: ref_49 article-title: Laminarin Elicits Defense Responses in Grapevine and Induces Protection Against Botrytis cinerea and Plasmopara viticola publication-title: Mol. Plant. Microbe Interact. doi: 10.1094/MPMI.2003.16.12.1118 – volume: 31 start-page: 446 year: 2017 ident: ref_98 article-title: Bacillus species as versatile weapons for plant pathogens: A review publication-title: Biotechnol. Biotechnol. Equip. doi: 10.1080/13102818.2017.1286950 – volume: 21 start-page: 59 year: 2005 ident: ref_11 article-title: Bacillus subtilis S1-0210 as a Biocontrol Agent against Botrytis cinerea in Strawberries publication-title: Plant. Pathol. J. doi: 10.5423/PPJ.2005.21.1.059 – ident: ref_106 doi: 10.1007/s10658-020-02054-1 – volume: 41 start-page: 169 year: 2016 ident: ref_61 article-title: Biological control of gray mold and growth promotion of tomato using Bacillus spp. isolated from soil publication-title: Trop. Plant. Pathol. doi: 10.1007/s40858-016-0082-8 – volume: 6 start-page: 177 year: 2005 ident: ref_88 article-title: Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants publication-title: Mol. Plant. Pathol. doi: 10.1111/j.1364-3703.2005.00276.x – volume: 78 start-page: 77 year: 2014 ident: ref_121 article-title: Physiological effects of the induction of resistance by compost or Trichoderma asperellum strain T34 against Botrytis cinerea in tomato publication-title: Biol. Control doi: 10.1016/j.biocontrol.2014.06.012 – volume: 65 start-page: 461 year: 2020 ident: ref_107 article-title: Biological control of strawberry grey mold disease caused by Botrytis cinerea mediated by Colletotrichum acutatum extracts publication-title: BioControl doi: 10.1007/s10526-020-10003-4 – volume: 90 start-page: 981 year: 2000 ident: ref_53 article-title: Systemic and Local Responses Associated with UV- and Pathogen-Induced Resistance to Botrytis cinerea in Stored Carrot publication-title: Phytopathology doi: 10.1094/PHYTO.2000.90.9.981 – volume: 31 start-page: 560 year: 2018 ident: ref_63 article-title: Exploring Elicitors of the Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 to Induce Plant Systemic Resistance and Their Interactions with Plant Signaling Pathways publication-title: Mol. Plant. Microbe Interact. doi: 10.1094/MPMI-11-17-0273-R – volume: 7 start-page: 1598 year: 2016 ident: ref_116 article-title: The Nitrogen Availability Interferes with Mycorrhiza-Induced Resistance against Botrytis cinerea in Tomato publication-title: Front. Microbiol. – volume: 58 start-page: 117 year: 2012 ident: ref_78 article-title: Differential induction of grapevine resistance and defense reactions against Botrytis cinerea by bacterial mixtures in vineyards publication-title: BioControl – volume: 101 start-page: 31 year: 2016 ident: ref_135 article-title: Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato publication-title: Biol. Control doi: 10.1016/j.biocontrol.2016.06.006 – volume: 126 start-page: 517 year: 2001 ident: ref_43 article-title: β-Aminobutyric Acid-Induced Protection of Arabidopsis against the Necrotrophic Fungus Botrytis cinerea publication-title: Plant. Physiol. doi: 10.1104/pp.126.2.517 – volume: 23 start-page: 455 year: 2003 ident: ref_146 article-title: Enhancement of development and induction of resistance in tomato plants by the antagonist, Pythium oligandrum publication-title: Agronomy doi: 10.1051/agro:2003018 – volume: 96 start-page: 1151 year: 2004 ident: ref_14 article-title: Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2004.02252.x – volume: 101 start-page: 768 year: 2011 ident: ref_77 article-title: Improved Resistance Against Botrytis cinerea by Grapevine-Associated Bacteria that Induce a Prime Oxidative Burst and Phytoalexin Production publication-title: Phytopathology doi: 10.1094/PHYTO-09-10-0242 – volume: 75 start-page: 157 year: 2011 ident: ref_52 article-title: Induction of disease resistance against Botrytis cinerea by heat shock treatment in melon (Cucumis melo L.) publication-title: Physiol. Mol. Plant. Pathol. doi: 10.1016/j.pmpp.2011.04.002 – volume: 247 start-page: 1217 year: 2018 ident: ref_97 article-title: Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling publication-title: Planta doi: 10.1007/s00425-018-2860-7 – volume: 114 start-page: 405 year: 2006 ident: ref_48 article-title: Chitosan Stimulates Defense Reactions in Grapevine Leaves and Inhibits Development of Botrytis cinerea publication-title: Eur. J. Plant. Pathol. doi: 10.1007/s10658-006-0005-5 – volume: 167 start-page: 679 year: 2019 ident: ref_68 article-title: Potential of bioinsecticidal Bacillus thuringiensis inoculum to suppress gray mold in tomato based on induced systemic resistance publication-title: J. Phytopathol. doi: 10.1111/jph.12864 – volume: 161 start-page: 2014 year: 2013 ident: ref_115 article-title: The Epiphytic Fungus Pseudozyma aphidis Induces Jasmonic Acid- and Salicylic Acid/Nonexpressor of PR1-Independent Local and Systemic Resistance publication-title: Plant. Physiol. doi: 10.1104/pp.112.212969 – volume: 298 start-page: 110595 year: 2020 ident: ref_117 article-title: Root-to-shoot signalling in mycorrhizal tomato plants upon Botrytis cinerea infection publication-title: Plant. Sci. doi: 10.1016/j.plantsci.2020.110595 – volume: 82 start-page: 46 year: 2013 ident: ref_56 article-title: Systemic resistance against Botrytis cinerea in Arabidopsis triggered by an olive marc compost substrate requires functional SA signalling publication-title: Physiol. Mol. Plant. Pathol. doi: 10.1016/j.pmpp.2013.02.002 – volume: 8 start-page: 880 year: 2017 ident: ref_134 article-title: Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes publication-title: Front. Plant. Sci. doi: 10.3389/fpls.2017.00880 – ident: ref_38 doi: 10.1007/978-3-030-41870-0 – volume: 126 start-page: 147 year: 2018 ident: ref_69 article-title: Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea publication-title: Biol. Control doi: 10.1016/j.biocontrol.2018.07.017 – ident: ref_73 doi: 10.3389/fpls.2016.01236 – volume: 177 start-page: 965 year: 2008 ident: ref_93 article-title: Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02322.x – volume: 71 start-page: 3959 year: 2005 ident: ref_123 article-title: Improvement of the Fungal Biocontrol Agent Trichoderma atroviride to Enhance both Antagonism and Induction of Plant Systemic Disease Resistance publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.7.3959-3965.2005 – ident: ref_140 doi: 10.3390/agronomy10010118 – volume: 42 start-page: 233 year: 2007 ident: ref_129 article-title: Induced systemic resistance and the role of binucleate Rhizoctonia and Trichoderma hamatum 382 in biocontrol of Botrytis blight in geranium publication-title: Biol. Control doi: 10.1016/j.biocontrol.2007.05.009 – volume: 3 start-page: 108 year: 2012 ident: ref_130 article-title: Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection publication-title: Front. Plant. Sci. doi: 10.3389/fpls.2012.00108 – volume: 4 start-page: 53 year: 2012 ident: ref_22 article-title: Biocontrol of Botrytis cinerea by successful introduction of Pantoea ananatis in the grapevine phyllosphere publication-title: Int. J. Wine Res. – volume: 285 start-page: 44 year: 2018 ident: ref_8 article-title: Biological control of plant pathogens by Bacillus species publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2018.07.044 – volume: 2 start-page: 111 year: 2018 ident: ref_7 article-title: Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables publication-title: Food Qual. Saf. doi: 10.1093/fqsafe/fyy016 – ident: ref_19 doi: 10.1371/journal.pone.0190932 – ident: ref_58 – volume: 395 start-page: 31 year: 2015 ident: ref_55 article-title: Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling publication-title: Plant. Soil doi: 10.1007/s11104-015-2445-1 – volume: 12 start-page: 341 year: 2011 ident: ref_128 article-title: The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype publication-title: Mol. Plant. Pathol. doi: 10.1111/j.1364-3703.2010.00674.x – volume: 35 start-page: 323 year: 2003 ident: ref_20 article-title: Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00283-3 – volume: 50 start-page: 288 year: 2009 ident: ref_110 article-title: Combining the oomycete Pythium oligandrum with two other antagonistic fungi: Root relationships and tomato grey mold biocontrol publication-title: Biol. Control doi: 10.1016/j.biocontrol.2009.04.013 – volume: 121 start-page: 106 year: 2018 ident: ref_16 article-title: Biocontrol of Botrytis cinerea and Calonectria gracilis by eucalypts growth promoters Bacillus spp. publication-title: Microb. Pathog. doi: 10.1016/j.micpath.2018.05.026 – volume: 24 start-page: 273 year: 2002 ident: ref_45 article-title: Local and systemic protection of poinsettia (Euphorbia pulcherrima Willd.) against Botrytis cinerea Pers. induced by benzothiadiazole publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-002-0051-3 – volume: 53 start-page: 667 year: 2008 ident: ref_131 article-title: The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana publication-title: BioControl doi: 10.1007/s10526-007-9103-3 – ident: ref_99 doi: 10.21203/rs.2.10988/v1 – volume: 72 start-page: 67 year: 2018 ident: ref_25 article-title: Effect of Aureobasidium pullulans strains against Botrytis cinerea on kiwifruit during storage and on fruit nutritional composition publication-title: Food Microbiol. doi: 10.1016/j.fm.2017.11.010 – volume: 110 start-page: 843 year: 2020 ident: ref_36 article-title: The Endophytic Fungus Albifimbria verrucaria from Wild Grape as an Antagonist of Botrytis cinerea and Other Grape Pathogens publication-title: Phytopathology doi: 10.1094/PHYTO-09-19-0347-R – volume: 113 start-page: 251 year: 2007 ident: ref_24 article-title: Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2006.07.003 – volume: 243 start-page: 1055 year: 2016 ident: ref_94 article-title: Defense responses in plants of Eucalyptus elicited by Streptomyces and challenged with Botrytis cinerea publication-title: Planta doi: 10.1007/s00425-015-2460-8 – volume: 71 start-page: 2769 year: 2020 ident: ref_118 article-title: Role and mechanisms of callose priming in mycorrhiza-induced resistance publication-title: J. Exp. Bot. doi: 10.1093/jxb/eraa030 – volume: 44 start-page: 391 year: 2002 ident: ref_30 article-title: Secretion of β-1,3-Glucanases by the Yeast Pichia membranifaciens and Its Possible Role in the Biocontrol of Botrytis cinerea Causing Grey Mold Disease of the Grapevine publication-title: Curr. Microbiol. doi: 10.1007/s00284-001-0011-y – volume: 54 start-page: 773 year: 2005 ident: ref_112 article-title: Fusarium confers protection against several mycelial pathogens of pepper plants publication-title: Plant. Pathol. doi: 10.1111/j.1365-3059.2005.01285.x – ident: ref_35 doi: 10.3390/pathogens9030213 – volume: 40 start-page: 287 year: 2007 ident: ref_29 article-title: Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis publication-title: Biol. Control doi: 10.1016/j.biocontrol.2006.10.008 – volume: 148 start-page: 104306 year: 2020 ident: ref_21 article-title: A novel endophytic strain of Lactobacillus plantarum CM-3 with antagonistic activity against Botrytis cinerea on strawberry fruit publication-title: Biol. Control doi: 10.1016/j.biocontrol.2020.104306 – volume: 9 start-page: 1084 year: 2007 ident: ref_66 article-title: Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2006.01202.x – ident: ref_104 doi: 10.1007/978-981-10-6593-4_6 – volume: 11 start-page: 992 year: 2020 ident: ref_141 article-title: Biological Control of Plant-Parasitic Nematodes by Filamentous Fungi Inducers of Resistance: Trichoderma, Mycorrhizal and Endophytic Fungi publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.00992 – volume: 111 start-page: 101521 year: 2020 ident: ref_39 article-title: Use of plant-defense hormones against pathogen-diseases of postharvest fresh produce publication-title: Physiol. Mol. Plant. Pathol. doi: 10.1016/j.pmpp.2020.101521 – volume: 83 start-page: 269 year: 2012 ident: ref_111 article-title: A Fusarium oxysporum extract induces resistance against Botrytis in pepper plants publication-title: IOBC/WPRS Bull. – volume: 97 start-page: 250 year: 2007 ident: ref_101 article-title: Pseudomonas Biocontrol Agents of Soilborne Pathogens: Looking Back Over 30 Years publication-title: Phytopathology doi: 10.1094/PHYTO-97-2-0250 – volume: 107 start-page: 537 year: 2017 ident: ref_137 article-title: The Constitutive Endopolygalacturonase TvPG2 Regulates the Induction of Plant Systemic Resistance by Trichoderma virens publication-title: Phytopathology doi: 10.1094/PHYTO-03-16-0139-R – volume: 22 start-page: 1455 year: 2009 ident: ref_46 article-title: Hexanoic Acid-Induced Resistance Against Botrytis cinerea in Tomato Plants publication-title: Mol. Plant. Microbe Interactions doi: 10.1094/MPMI-22-11-1455 – volume: 155 start-page: 253 year: 2019 ident: ref_23 article-title: Biocontrol of Botrytis cinerea by chitin-based cultures of Paenibacillus elgii HOA73 publication-title: Eur. J. Plant. Pathol. doi: 10.1007/s10658-019-01768-1 – volume: 35 start-page: 208 year: 2019 ident: ref_71 article-title: A Novel Protein Elicitor PeBL2, from Brevibacillus laterosporus A60, Induces Systemic Resistance against Botrytis cinerea in Tobacco Plant publication-title: Plant. Pathol. J. doi: 10.5423/PPJ.OA.11.2018.0276 – ident: ref_138 doi: 10.1007/978-981-15-3321-1 – volume: 6 start-page: 1554 year: 2011 ident: ref_125 article-title: Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea publication-title: Plant. Signal. Behav. doi: 10.4161/psb.6.10.17443 – volume: 50 start-page: 307 year: 2006 ident: ref_124 article-title: Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach publication-title: Curr. Genet. doi: 10.1007/s00294-006-0091-0 – volume: 62 start-page: 253 year: 2003 ident: ref_90 article-title: L-form bacteria of Pseudomonas syringae pv. phaseolicola induce chitinases and enhance resistance to Botrytis cinerea infection in Chinese cabbage publication-title: Physiol. Mol. Plant. Pathol. doi: 10.1016/S0885-5765(03)00089-4 – volume: 32 start-page: 178 year: 2009 ident: ref_81 article-title: Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine publication-title: Plant. Cell Environ. doi: 10.1111/j.1365-3040.2008.01911.x – volume: 30 start-page: 919 year: 2008 ident: ref_15 article-title: Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea publication-title: Biotechnol. Lett. doi: 10.1007/s10529-007-9626-9 – volume: 405 start-page: 141 year: 2015 ident: ref_85 article-title: Effectiveness of beneficial bacteria to promote systemic resistance of grapevine to gray mold as related to phytoalexin production in vineyards publication-title: Plant. Soil doi: 10.1007/s11104-015-2783-z – ident: ref_10 doi: 10.3390/ijms19051371 – volume: 122 start-page: 98 year: 2018 ident: ref_96 article-title: Deciphering the tri-dimensional effect of endophytic Streptomyces sp. on chickpea for plant growth promotion, helper effect with Mesorhizobium ciceri and host-plant resistance induction against Botrytis cinerea publication-title: Microb. Pathog. doi: 10.1016/j.micpath.2018.06.019 – volume: 6 start-page: 922 year: 2015 ident: ref_75 article-title: Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules publication-title: Front. Microbiol. – volume: 28 start-page: 1117 year: 2015 ident: ref_84 article-title: Pseudomonas fluorescens PTA-CT2 Triggers Local and Systemic Immune Response Against Botrytis cinerea in Grapevine publication-title: Mol. Plant. Microbe Interact. doi: 10.1094/MPMI-04-15-0092-R – volume: 12 start-page: 244 year: 2017 ident: ref_76 article-title: Paenibacillus terrae AY-38 resistance against Botrytis cinerea in Solanum lycopersicum L. plants through defence hormones regulation publication-title: J. Plant. Interact. doi: 10.1080/17429145.2017.1319502 – volume: 374 start-page: 423 year: 2013 ident: ref_91 article-title: The Saharan isolate Saccharothrix algeriensis NRRL B-24137 induces systemic resistance in Arabidopsis thaliana seedlings against Botrytis cinerea publication-title: Plant. Soil doi: 10.1007/s11104-013-1864-0 – ident: ref_2 doi: 10.1007/978-1-4020-2626-3_2 – volume: 8 start-page: 561 year: 2007 ident: ref_3 article-title: Botrytis cinerea: The cause of grey mould disease publication-title: Mol. Plant. Pathol. doi: 10.1111/j.1364-3703.2007.00417.x – volume: 67 start-page: 30 year: 2018 ident: ref_44 article-title: Long-lasting β-aminobutyric acid-induced resistance protects tomato fruit against Botrytis cinerea publication-title: Plant. Pathol. doi: 10.1111/ppa.12725 – volume: 124 start-page: 261 year: 2009 ident: ref_92 article-title: Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones publication-title: Eur. J. Plant. Pathol. doi: 10.1007/s10658-008-9411-1 – volume: 9 start-page: 1 year: 2019 ident: ref_139 article-title: Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity publication-title: Sci. Rep. doi: 10.1038/s41598-019-48269-z – ident: ref_79 – volume: 135 start-page: 877 year: 2012 ident: ref_108 article-title: Avirulent strain of Colletotrichum induces a systemic resistance in strawberry publication-title: Eur. J. Plant. Pathol. doi: 10.1007/s10658-012-0134-y – volume: 75 start-page: 23 year: 2010 ident: ref_47 article-title: Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxide-fueled resistance response publication-title: Physiol. Mol. Plant. Pathol. doi: 10.1016/j.pmpp.2010.08.001 – volume: 9 start-page: 1596 year: 2018 ident: ref_113 article-title: Compounds Released by the Biocontrol Yeast Hanseniaspora opuntiae Protect Plants Against Corynespora cassiicola and Botrytis cinerea publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01596 – volume: 9 start-page: 1315 year: 2018 ident: ref_13 article-title: Antifungal Activity of Lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01315 – ident: ref_40 doi: 10.3389/fpls.2016.01658 – volume: 37 start-page: 239 year: 2017 ident: ref_51 article-title: Soft mechanical stimulation induces a defense response against Botrytis cinerea in strawberry publication-title: Plant. Cell Rep. – volume: 7 start-page: 196 year: 2016 ident: ref_67 article-title: Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both? publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00196 – ident: ref_120 doi: 10.3390/ijms20082007 – volume: 207 start-page: 41 year: 2018 ident: ref_57 article-title: Does plant—Microbe interaction confer stress tolerance in plants: A review? publication-title: Microbiol. Res. doi: 10.1016/j.micres.2017.11.004 – volume: 15 start-page: 1147 year: 2002 ident: ref_80 article-title: Induction of Systemic Resistance to Botrytis cinerea in Tomato by Pseudomonas aeruginosa 7NSK2: Role of Salicylic Acid, Pyochelin, and Pyocyanin publication-title: Mol. Plant. Microbe Interact. doi: 10.1094/MPMI.2002.15.11.1147 – ident: ref_32 doi: 10.3390/plants9060762 – volume: 25 start-page: 151 year: 2002 ident: ref_31 article-title: Biological control of Botrytis cinerea on tomato plants by the use of epiphytic yeasts Candida guilliermondii strains 101 and US 7 and Candida oleophila strain I-182: II. A study on mode of action publication-title: Biol. Control doi: 10.1016/S1049-9644(02)00052-X – volume: 166 start-page: 601 year: 2018 ident: ref_17 article-title: Colonization ability as an indicator of enhanced biocontrol capacity—An example using two Bacillus amyloliquefaciens strains and Botrytis cinerea infection of tomatoes publication-title: J. Phytopathol. doi: 10.1111/jph.12718 – ident: ref_89 doi: 10.1186/1471-2229-8-113 – volume: 176 start-page: 202 year: 2015 ident: ref_50 article-title: Wounding induces local resistance but systemic susceptibility to Botrytis cinerea in pepper plants publication-title: J. Plant. Physiol. doi: 10.1016/j.jplph.2014.12.013 – volume: 37 start-page: 262 year: 2017 ident: ref_41 article-title: Mechanisms and strategies of plant defense against Botrytis cinerea publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388551.2016.1271767 – volume: 31 start-page: 223 year: 2002 ident: ref_144 article-title: Biocontrol activity and induced resistance as a possible mode of action for Aureobasidium pullulans against grey mould of strawberry fruit publication-title: Australas. Plant Pathol. doi: 10.1071/AP02017 – volume: 199 start-page: 341 year: 2018 ident: ref_145 article-title: Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.07.045 – ident: ref_5 doi: 10.1101/507491 – volume: 65 start-page: 14 year: 2013 ident: ref_83 article-title: Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14 publication-title: Biol. Control doi: 10.1016/j.biocontrol.2013.01.009 – volume: 118 start-page: 43 year: 2007 ident: ref_59 article-title: Biological control of Botrytis cinerea by selected grapevine-associated bacteria and stimulation of chitinase and β-1,3 glucanase activities under field conditions publication-title: Eur. J. Plant. Pathol. doi: 10.1007/s10658-007-9111-2 |
SSID | ssj0000913807 |
Score | 2.3899155 |
SecondaryResourceType | review_article |
Snippet | Botrytis cinerea is a polyphagous necrotrophic fungus and is the causal agent of grey mold diseases in more than 1400 different hosts. This fungus causes... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1822 |
SubjectTerms | agriculture agronomy Antibiosis Asexuality Bacillus Bacteria beneficial microorganisms Biological control biological control agents Botrytis cinerea Crop diseases Crops Economic impact Enzymes financial economics flowers Fruits Fungi Fungicides grapes Grey mold Harvest hosts jasmonic acid knowledge lead Metabolites Microorganisms Mold Organs Parasitism Pathogens Pesticides plant organs Plant resistance Pseudomonas salicylic acid Strawberries Tomatoes Trichoderma |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZpckkPoXmUbpoWBXrpwaz1sC2fym5ISAIJJTSQm9HLi6HYie1Q-u87Y8sObSHgky0bPJJmvk8jfUPIFy8zy1mZRzZXIpKpjiMlGY-sy5gREIBzg2eHb27Ty3t5_ZA8hAW3LmyrnHzi4KhdY3GNfMklIGWeqZR9e3yKsGoUZldDCY03ZAdcsALytbM-v_1-N6-yoOqlirMxPymA3y_1ph1OCzAssq44_yseDbL9_3nlIdRcvCN7ASPS1dip-2TL1wfk7WrTBp0Mf0h-XdUd0mpa1X1DAcTRm2qWVEK707NxDzqd5Gd9R_VGV4AG6brp29991VFMqgNopMO-ATqKl1eWYiGjnt75DrElDAq6slMRtCNyf3H-4-wyCjUUIgsm7yMtvNcJRGmbCOe1ZLGzpU250x78YMxzC3wBnF5qhJC5zROjlDdZbIwVQGaceE-266b2HwgVBsEIXCZ10iRMp6zMSiMH2ORFsiDLyZKFDQLjWOfiZwFEA21f_Gv7Bfk6v_E4imu80naNnTO3Q1ns4UbTboowy4pYq0xaBxRSSumshF9xqpRIfGPHhFuQk6lrizBXu-JlZC3I6fwYZhmmTnTtm2dskyueI_g9fv0TH8kuR0Y-nFY8Idt9--w_AWzpzecwNv8AEFrwRQ priority: 102 providerName: ProQuest |
Title | Insight into the Microbiological Control Strategies against Botrytis cinerea Using Systemic Plant Resistance Activation |
URI | https://www.proquest.com/docview/2464227861 https://www.proquest.com/docview/2498295656 https://doaj.org/article/0a874cd998444dc48ebd8f400100d13d |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS-RAEG0W96IHcd2VndWVFvayhzDpjyTdxxmZQQUHGVbwFvorw4BkZBJZ_PdWdTKDruBehJySCjTV1VXv0d2vCPkVZOE4q3TitBKJzE2aKMl44nzBrIACrC3eHb6e5Re38uouu3vR6gvPhHXywJ3jhqlRhXQeWIGU0jupgvWqkshlUs-Ex-wLNe8FmYo5WDNUUu_2JQXw-qFZrOMtAYbN1RXnr-pQlOt_k41jiZkekP0eG9JRN6Yv5FOoD8neaLHu9THCV_L3sm6QTtNl3a4ogDd6vdxKKaG_6Xl39pxuZGdDQ80C6H_T0vGqXT-1y4biZjqARRrPC9BOtHzpKDYwauk8NIgpIRjoyG2an30jt9PJn_OLpO-dkDhwdZsYEYLJoDq7TPhgJEu9q1zOvQmQ_1KuHfAESHa5FUJqpzOrwLNFaq0TQGK8OCI79aoO3wkVFkEIPDb30mbM5KwqKisjXAoiG5DhxpOl64XFsb_FfQkEA31f_uv7Afm9_eOhE9V4x3aMk7O1Qzns-AKCpOyDpPxfkAzIyWZqy36NNiWXwL14oXI2IGfbz7C6cMvE1GH1iDZacY2g98dHjOOY7HLk6_Eu4wnZadeP4SeAmtaeks_jyexmfhrj-BkBMviq |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAcEE91oYCR4MAh2sR2EueA0G5ptUu7K1S1Um_Br6wioaQkqar-KX4jM3khQOqtUk6JYyUz45lvPJ4ZQt47ERsWZIlnEsk9ESnfkyJgnrFxoDkY4ERj7vB6Ey3PxdeL8GKH_BpyYfBY5aATW0VtS4N75DMmACmzWEbB58ufHnaNwujq0EKjE4tjd3MNLlv9afUF-PuBsaPDs4Ol13cV8Ax8ROMp7pwKwW6ZkFunROBbk5mIWeVAM_gsMYCgQQ1EmnORmCTUUjod-1obDvDecpj3HtkVHFyZCdldHG6-nY67OlhlU_pxFw_lPPFnalu12QkBNnWXjP1l_9o2Af9Zgda0HT0mj3pMSuedED0hO654Sh7Ot1Vfl8M9I9erokY3nuZFU1IAjXSdjyWckM_0oDvzTodyt66maqtyQJ90UTbVTZPXFIP4AFJpe06BdsXSc0OxcVJDT12NWBaEkM7N0HTtOTm_E-q-IJOiLNweoVwj-IFLR1boMFBRkMWZFi1MczycktlAydT0Bc2xr8aPFBwbpH36L-2n5OP4xmVXzOOWsQtkzjgOy3C3N8pqm_arOvWVjIWx4LIKIawR8CtWZgIdbd8G3E7J_sDatNcNdfpHkqfk3fgYVjWGalThyisck0iWINh-efsUb8n95dn6JD1ZbY5fkQcMdwPaTMl9MmmqK_caIFOj3_RySsn3u14avwEIRy1X |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbpBkp7CH2SbdJWhfbQg1lbkm35UMpukiXbNEsIDeTm6uXFUOzUdgj5a_11nfGrtIXcAj7ZsrBHo5lvNNJ8hLx3IjYsyBLPJJJ7IlK-J0XAPGPjQHNwwInGs8On6-j4Qny5DC-3yK_hLAxuqxxsYmuobWlwjXzGBCBlFssomGX9toizw-Xnq58eMkhhpnWg0-hU5MTd3kD4Vn9aHcJYf2BsefTt4NjrGQY8Ax_UeIo7p0LwYSbk1ikR-NZkJmJWObASPksMoGkwCZHmXCQmCbWUTse-1oYD1Lcc-n1AtmOIivwJ2V4crc_OxxUerLgp_bjLjXKe-DO1qdqTCgESvEvG_vKFLWXAfx6hdXPLJ2Snx6d03inUU7Llimfk8XxT9TU63HNysypqDOlpXjQlBQBJT_OxnBOOOT3o9r_TofStq6naqByQKF2UTXXb5DXFhD4AVtruWaBd4fTcUCRRaui5qxHXgkLSuRkI2F6Qi3uR7ksyKcrC7RLKNQIhuHRkhQ4DFQVZnGnRQjbHwymZDZJMTV_cHDk2fqQQ5KDs039lPyUfxzeuusIed7Rd4OCM7bAkd3ujrDZpP8NTX8lYGAvhqxDCGgG_YmUmMOj2bcDtlOwPQ5v2dqJO_2j1lLwbH8MMx7SNKlx5jW0SyRIE3q_u7uIteQhTIv26Wp_skUcMFwbaQ5P7ZNJU1-41oKdGv-nVlJLv9z0zfgO0LjGM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+the+Microbiological+Control+Strategies+against+Botrytis+cinerea+Using+Systemic+Plant+Resistance+Activation&rft.jtitle=Agronomy+%28Basel%29&rft.au=Poveda%2C+Jorge&rft.au=Barquero%2C+Marcia&rft.au=Gonz%C3%A1lez-Andr%C3%A9s%2C+Fernando&rft.date=2020-11-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=10&rft.issue=11&rft.spage=1822&rft_id=info:doi/10.3390%2Fagronomy10111822&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agronomy10111822 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |