Insight into the Microbiological Control Strategies against Botrytis cinerea Using Systemic Plant Resistance Activation

Botrytis cinerea is a polyphagous necrotrophic fungus and is the causal agent of grey mold diseases in more than 1400 different hosts. This fungus causes serious economic losses in both preharvest and post-harvest—mainly in grape, strawberry, and tomato crops—and is the second most important pathoge...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 10; no. 11; p. 1822
Main Authors Poveda, Jorge, Barquero, Marcia, González-Andrés, Fernando
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2020
Subjects
Online AccessGet full text
ISSN2073-4395
2073-4395
DOI10.3390/agronomy10111822

Cover

Loading…
Abstract Botrytis cinerea is a polyphagous necrotrophic fungus and is the causal agent of grey mold diseases in more than 1400 different hosts. This fungus causes serious economic losses in both preharvest and post-harvest—mainly in grape, strawberry, and tomato crops—and is the second most important pathogen worldwide, to our knowledge. Beneficial bacteria and fungi are efficient biocontrol agents against B. cinerea through direct mechanisms, such as parasitism, antibiosis, and competition, but also indirectly through the activation of systemic plant resistance. The interaction between plants and these microorganisms can lead to the development of defensive responses in distant plant organs, which are highly effective against foliar, flower, and fruit pathogens, such as B. cinerea. This review aimed to explore the systemic plant defense responses against B. cinerea by compiling all cases reported (to the best of our knowledge) on the use of beneficial bacteria and fungi for agriculture, a subject not yet specifically addressed.
AbstractList Botrytis cinerea is a polyphagous necrotrophic fungus and is the causal agent of grey mold diseases in more than 1400 different hosts. This fungus causes serious economic losses in both preharvest and post-harvest—mainly in grape, strawberry, and tomato crops—and is the second most important pathogen worldwide, to our knowledge. Beneficial bacteria and fungi are efficient biocontrol agents against B. cinerea through direct mechanisms, such as parasitism, antibiosis, and competition, but also indirectly through the activation of systemic plant resistance. The interaction between plants and these microorganisms can lead to the development of defensive responses in distant plant organs, which are highly effective against foliar, flower, and fruit pathogens, such as B. cinerea. This review aimed to explore the systemic plant defense responses against B. cinerea by compiling all cases reported (to the best of our knowledge) on the use of beneficial bacteria and fungi for agriculture, a subject not yet specifically addressed.
Author Barquero, Marcia
Poveda, Jorge
González-Andrés, Fernando
Author_xml – sequence: 1
  givenname: Jorge
  orcidid: 0000-0002-1415-3580
  surname: Poveda
  fullname: Poveda, Jorge
– sequence: 2
  givenname: Marcia
  orcidid: 0000-0002-7701-7439
  surname: Barquero
  fullname: Barquero, Marcia
– sequence: 3
  givenname: Fernando
  surname: González-Andrés
  fullname: González-Andrés, Fernando
BookMark eNp1kc1rVDEUxR9SwVq77zLgxs1oPt9LlnXQOlBRbLsOecmd1zu8SWqSscx_b9pRkAHvJpfwOwfOua-7k5gidN0Fo--FMPSDm3KKabtnlDGmOX_RnXI6iIUURp38s7_qzkvZ0DaGCU2H0-5xFQtO95VgrInUeyBf0ec0YprThN7NZJlizWkmNzW7ChNCIW5yGEslH1PN-4qFeIyQwZG7gnEiN_tSYYuefJ9drOQHFCzVRQ_k0lf85Sqm-KZ7uXZzgfM_71l39_nT7fLL4vrb1Wp5eb3wkvG6cALAKcmUVyKAk4wGv_Y9Dw700FNuvNJKCd2PQkjjjRq1hnGg4-iFkjqIs2518A3JbexDxq3Le5sc2uePlCfrckU_g6VOD9IHY7SUMnjZjIJeS0oZpYGJJ693B6-HnH7uoFS7xeJhbikh7Yrl0mhuVK_6hr49Qjdpl2NL2qhecj7onjWqP1Ct8VIyrK3H-lxP6xpny6h9Oq89Pm8T0iPh32T_lfwGWWitlw
CitedBy_id crossref_primary_10_3390_plants12030637
crossref_primary_10_1186_s12864_023_09371_9
crossref_primary_10_3390_ijms23031526
crossref_primary_10_3390_cells12091271
crossref_primary_10_3390_microorganisms13030483
crossref_primary_10_1016_j_bcab_2023_102862
crossref_primary_10_3389_fpls_2023_1288408
crossref_primary_10_3390_pathogens11010035
crossref_primary_10_3390_antibiotics13030215
crossref_primary_10_1016_j_biocontrol_2024_105572
crossref_primary_10_1111_1750_3841_16796
crossref_primary_10_1016_j_pmpp_2021_101780
crossref_primary_10_1016_j_pmpp_2025_102661
crossref_primary_10_1093_biomethods_bpad042
crossref_primary_10_1007_s10725_024_01218_x
crossref_primary_10_3389_fmicb_2022_921762
crossref_primary_10_1007_s13580_022_00501_y
crossref_primary_10_3389_fmicb_2022_1030982
crossref_primary_10_3390_plants10081716
crossref_primary_10_1016_j_micres_2023_127486
crossref_primary_10_3390_plants12081694
crossref_primary_10_1016_j_biocontrol_2024_105621
crossref_primary_10_3389_fpls_2021_780099
crossref_primary_10_3390_agronomy11112188
crossref_primary_10_1016_j_plantsci_2023_111664
crossref_primary_10_1016_j_jhazmat_2022_129232
crossref_primary_10_1016_j_cropro_2024_107085
crossref_primary_10_1007_s10658_022_02575_x
crossref_primary_10_3390_microbiolres15020037
crossref_primary_10_1002_ps_7150
crossref_primary_10_1021_acs_jafc_4c08612
crossref_primary_10_3390_ijms25010591
crossref_primary_10_1021_acs_jafc_4c03323
crossref_primary_10_1079_cabireviews_2024_0032
crossref_primary_10_1007_s00253_021_11492_8
crossref_primary_10_3390_microorganisms12030457
crossref_primary_10_3390_buildings13030620
crossref_primary_10_3389_fpls_2023_1282050
crossref_primary_10_1016_j_indcrop_2024_119187
crossref_primary_10_1016_j_scienta_2023_112696
crossref_primary_10_1079_planthealthcases_2025_0010
crossref_primary_10_1093_jxb_erae040
crossref_primary_10_3390_ijms25126798
crossref_primary_10_1186_s43897_024_00086_3
crossref_primary_10_3390_jof9050511
crossref_primary_10_1007_s41348_024_01040_7
crossref_primary_10_17584_rcch_2023v17i1_15284
crossref_primary_10_3389_fpls_2023_1309747
crossref_primary_10_1007_s10658_021_02286_9
crossref_primary_10_1128_msphere_00667_23
crossref_primary_10_3390_foods10071650
Cites_doi 10.1038/s41598-017-12944-w
10.1007/s10658-011-9782-6
10.1094/PHYTO-09-17-0306-R
10.1007/s00253-019-10321-3
10.3390/ijms19040952
10.1139/w11-081
10.1023/A:1015141503755
10.3389/fpls.2019.01478
10.1007/978-3-319-23371-0
10.1016/j.biocontrol.2006.01.001
10.1016/j.fm.2014.11.013
10.1007/s10526-017-9825-9
10.1111/mpp.12189
10.1093/jxb/erp295
10.1080/09583157.2018.1515890
10.1111/j.1574-6968.2007.00930.x
10.7150/ijbs.14333
10.3389/fpls.2017.00238
10.1111/pce.13016
10.3390/microorganisms8070992
10.1111/jph.12692
10.1094/MPMI-20-12-1535
10.1080/17429145.2015.1068959
10.1111/1462-2920.14829
10.1094/MPMI.2004.17.9.1009
10.1094/PHYTO-01-19-0025-R
10.1094/MPMI-19-1138
10.1002/ps.3301
10.1094/PHYTO-02-13-0043-R
10.5604/12321966.1203879
10.3390/agronomy3040632
10.1080/12298093.2018.1454013
10.1094/MPMI.2003.16.12.1118
10.1080/13102818.2017.1286950
10.5423/PPJ.2005.21.1.059
10.1007/s10658-020-02054-1
10.1007/s40858-016-0082-8
10.1111/j.1364-3703.2005.00276.x
10.1016/j.biocontrol.2014.06.012
10.1007/s10526-020-10003-4
10.1094/PHYTO.2000.90.9.981
10.1094/MPMI-11-17-0273-R
10.1016/j.biocontrol.2016.06.006
10.1104/pp.126.2.517
10.1051/agro:2003018
10.1111/j.1365-2672.2004.02252.x
10.1094/PHYTO-09-10-0242
10.1016/j.pmpp.2011.04.002
10.1007/s00425-018-2860-7
10.1007/s10658-006-0005-5
10.1111/jph.12864
10.1104/pp.112.212969
10.1016/j.plantsci.2020.110595
10.1016/j.pmpp.2013.02.002
10.3389/fpls.2017.00880
10.1007/978-3-030-41870-0
10.1016/j.biocontrol.2018.07.017
10.3389/fpls.2016.01236
10.1111/j.1469-8137.2007.02322.x
10.1128/AEM.71.7.3959-3965.2005
10.3390/agronomy10010118
10.1016/j.biocontrol.2007.05.009
10.3389/fpls.2012.00108
10.1016/j.jbiotec.2018.07.044
10.1093/fqsafe/fyy016
10.1371/journal.pone.0190932
10.1007/s11104-015-2445-1
10.1111/j.1364-3703.2010.00674.x
10.1016/S0038-0717(02)00283-3
10.1016/j.biocontrol.2009.04.013
10.1016/j.micpath.2018.05.026
10.1007/s11738-002-0051-3
10.1007/s10526-007-9103-3
10.21203/rs.2.10988/v1
10.1016/j.fm.2017.11.010
10.1094/PHYTO-09-19-0347-R
10.1016/j.ijfoodmicro.2006.07.003
10.1007/s00425-015-2460-8
10.1093/jxb/eraa030
10.1007/s00284-001-0011-y
10.1111/j.1365-3059.2005.01285.x
10.3390/pathogens9030213
10.1016/j.biocontrol.2006.10.008
10.1016/j.biocontrol.2020.104306
10.1111/j.1462-2920.2006.01202.x
10.1007/978-981-10-6593-4_6
10.3389/fmicb.2020.00992
10.1016/j.pmpp.2020.101521
10.1094/PHYTO-97-2-0250
10.1094/PHYTO-03-16-0139-R
10.1094/MPMI-22-11-1455
10.1007/s10658-019-01768-1
10.5423/PPJ.OA.11.2018.0276
10.1007/978-981-15-3321-1
10.4161/psb.6.10.17443
10.1007/s00294-006-0091-0
10.1016/S0885-5765(03)00089-4
10.1111/j.1365-3040.2008.01911.x
10.1007/s10529-007-9626-9
10.1007/s11104-015-2783-z
10.3390/ijms19051371
10.1016/j.micpath.2018.06.019
10.1094/MPMI-04-15-0092-R
10.1080/17429145.2017.1319502
10.1007/s11104-013-1864-0
10.1007/978-1-4020-2626-3_2
10.1111/j.1364-3703.2007.00417.x
10.1111/ppa.12725
10.1007/s10658-008-9411-1
10.1038/s41598-019-48269-z
10.1007/s10658-012-0134-y
10.1016/j.pmpp.2010.08.001
10.3389/fmicb.2018.01596
10.3389/fmicb.2018.01315
10.3389/fpls.2016.01658
10.3389/fmicb.2016.00196
10.3390/ijms20082007
10.1016/j.micres.2017.11.004
10.1094/MPMI.2002.15.11.1147
10.3390/plants9060762
10.1016/S1049-9644(02)00052-X
10.1111/jph.12718
10.1186/1471-2229-8-113
10.1016/j.jplph.2014.12.013
10.1080/07388551.2016.1271767
10.1071/AP02017
10.1016/j.carbpol.2018.07.045
10.1101/507491
10.1016/j.biocontrol.2013.01.009
10.1007/s10658-007-9111-2
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7S9
L.6
DOA
DOI 10.3390/agronomy10111822
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (UHCL Subscription)
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_0a874cd998444dc48ebd8f400100d13d
10_3390_agronomy10111822
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
KQ8
M0K
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c412t-a3eea5415c53dea410dcfc62dae876029c5855386b3349c95b88eb70bbc3548d3
IEDL.DBID DOA
ISSN 2073-4395
IngestDate Wed Aug 27 01:30:51 EDT 2025
Thu Jul 10 18:04:54 EDT 2025
Mon Jun 30 11:24:46 EDT 2025
Tue Jul 01 03:19:58 EDT 2025
Thu Apr 24 22:59:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-a3eea5415c53dea410dcfc62dae876029c5855386b3349c95b88eb70bbc3548d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7701-7439
0000-0002-1415-3580
OpenAccessLink https://doaj.org/article/0a874cd998444dc48ebd8f400100d13d
PQID 2464227861
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_0a874cd998444dc48ebd8f400100d13d
proquest_miscellaneous_2498295656
proquest_journals_2464227861
crossref_citationtrail_10_3390_agronomy10111822
crossref_primary_10_3390_agronomy10111822
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_138
Tucci (ref_128) 2011; 12
Wang (ref_27) 2018; 108
Zimmerli (ref_43) 2001; 126
(ref_45) 2002; 24
ref_99
ref_10
Chen (ref_28) 2018; 46
You (ref_135) 2016; 101
Vos (ref_33) 2014; 16
Quantinet (ref_78) 2012; 58
Narayan (ref_114) 2017; 7
ref_19
Parafati (ref_26) 2015; 47
Gasser (ref_22) 2012; 4
Veloso (ref_111) 2012; 83
Kumar (ref_57) 2018; 207
Meziane (ref_88) 2005; 6
Hang (ref_11) 2005; 21
Vijayabharathi (ref_95) 2018; 28
Williamson (ref_3) 2007; 8
Jatoi (ref_71) 2019; 35
Verhagen (ref_82) 2010; 61
Sun (ref_145) 2018; 199
ref_120
Brunner (ref_123) 2005; 71
(ref_125) 2011; 6
Bala (ref_147) 2009; 42
Schoonbeek (ref_74) 2007; 20
Weller (ref_101) 2007; 97
Rey (ref_146) 2003; 23
Ongena (ref_86) 2002; 108
Adikaram (ref_144) 2002; 31
Perato (ref_107) 2020; 65
Xu (ref_61) 2016; 41
Diaz (ref_112) 2005; 54
Pastor (ref_118) 2020; 71
Chen (ref_21) 2020; 148
Wang (ref_60) 2016; 12
Verhagen (ref_77) 2011; 101
Varnier (ref_81) 2009; 32
Olson (ref_129) 2007; 42
Poveda (ref_139) 2019; 9
ref_70
Vijayabharathi (ref_96) 2018; 122
Wilkinson (ref_44) 2018; 67
Kamensky (ref_20) 2003; 35
Sarrocco (ref_137) 2017; 107
ref_79
Toral (ref_13) 2018; 9
Yoshida (ref_68) 2019; 167
ref_73
Shafi (ref_98) 2017; 31
Raacke (ref_119) 2006; 19
Jiang (ref_69) 2018; 126
Harel (ref_133) 2014; 104
Zhang (ref_29) 2007; 40
Hu (ref_97) 2018; 247
Chinta (ref_54) 2015; 10
Chen (ref_15) 2008; 30
Hua (ref_7) 2018; 2
ref_140
Paz (ref_16) 2018; 121
Alizadeh (ref_83) 2013; 65
ref_89
Lehr (ref_93) 2008; 177
Segarra (ref_121) 2014; 78
Gruau (ref_84) 2015; 28
Bremont (ref_127) 2015; 6
(ref_47) 2010; 75
Fira (ref_8) 2018; 285
Pozo (ref_75) 2015; 6
Poveda (ref_141) 2020; 11
Mercier (ref_53) 2000; 90
Wu (ref_63) 2018; 31
Aziz (ref_85) 2015; 405
Masih (ref_30) 2002; 44
Widiastuti (ref_52) 2011; 75
Veloso (ref_50) 2015; 176
Poveda (ref_39) 2020; 111
Mari (ref_25) 2018; 72
Pieterse (ref_122) 2017; 40
ref_58
Conrad (ref_51) 2017; 37
Quantinet (ref_59) 2007; 118
Salla (ref_94) 2016; 243
Lee (ref_9) 2006; 37
Troncho (ref_116) 2016; 7
(ref_126) 2011; 131
Gomes (ref_134) 2017; 8
Pastor (ref_117) 2020; 298
Ongena (ref_87) 2004; 17
Mercier (ref_6) 2019; 21
Nie (ref_65) 2017; 8
Mathys (ref_130) 2012; 3
Arancibia (ref_17) 2018; 166
ref_62
Jaoua (ref_72) 2011; 57
Toure (ref_14) 2004; 96
Vallance (ref_110) 2009; 50
Li (ref_36) 2020; 110
Huang (ref_64) 2012; 68
Boukaew (ref_18) 2017; 62
Kim (ref_12) 2007; 17
Mehari (ref_55) 2015; 395
AbuQamar (ref_41) 2017; 37
Kim (ref_76) 2017; 12
Aziz (ref_49) 2003; 16
Zhao (ref_136) 2018; 166
Formey (ref_113) 2018; 9
ref_35
Muzammil (ref_91) 2013; 374
ref_34
Audenaert (ref_80) 2002; 15
ref_32
Ongena (ref_66) 2007; 9
Couderchet (ref_48) 2006; 114
Sharifi (ref_67) 2016; 7
Mukherjee (ref_143) 2020; 104
Wang (ref_105) 2019; 109
Segarra (ref_56) 2013; 82
ref_38
Vicedo (ref_46) 2009; 22
Marra (ref_124) 2006; 50
ref_104
Calvo (ref_24) 2007; 113
ref_103
ref_106
Korolev (ref_131) 2008; 53
Daulagala (ref_90) 2003; 62
Fiorilli (ref_109) 2011; 93
Choquer (ref_4) 2007; 277
Salazar (ref_108) 2012; 135
Buxdorf (ref_115) 2013; 161
Saligkarias (ref_31) 2002; 25
ref_100
ref_42
ref_102
ref_40
ref_1
Ronseaux (ref_37) 2013; 3
Kim (ref_23) 2019; 155
ref_2
ref_5
Efernandez (ref_132) 2013; 4
Pang (ref_92) 2009; 124
Trillas (ref_142) 2017; 32
References_xml – volume: 42
  start-page: 11
  year: 2009
  ident: ref_147
  article-title: Pythium elicitors in biological control of Botrytis cinerea
  publication-title: IOBC/WPRS Bull.
– volume: 7
  start-page: 1
  year: 2017
  ident: ref_114
  article-title: Antioxidant enzymes in chickpea colonized by Piriformospora indica participate in defense against the pathogen Botrytis cinerea
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-12944-w
– volume: 131
  start-page: 15
  year: 2011
  ident: ref_126
  article-title: Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways
  publication-title: Eur. J. Plant. Pathol.
  doi: 10.1007/s10658-011-9782-6
– volume: 108
  start-page: 691
  year: 2018
  ident: ref_27
  article-title: Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-09-17-0306-R
– volume: 104
  start-page: 1497
  year: 2020
  ident: ref_143
  article-title: Yeast a potential bio-agent: Future for plant growth and postharvest disease management for sustainable agriculture
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-019-10321-3
– ident: ref_102
  doi: 10.3390/ijms19040952
– volume: 32
  start-page: 666
  year: 2017
  ident: ref_142
  article-title: Increased rhizosphere populations of Trichoderma asperellum strain T34 caused by secretion pattern of root exudates in tomato plants inoculated with Botrytis cinerea
  publication-title: Plant. Pathol.
– volume: 57
  start-page: 896
  year: 2011
  ident: ref_72
  article-title: Biological control of Botrytis cinerea using the antagonistic and endophytic Burkholderia cepacia Cs5 for vine plantlet protection
  publication-title: Can. J. Microbiol.
  doi: 10.1139/w11-081
– volume: 108
  start-page: 187
  year: 2002
  ident: ref_86
  article-title: Study of Bacterial Determinants Involved in the Induction of Systemic Resistance in Bean by Pseudomonas putida BTP1
  publication-title: Eur. J. Plant. Pathol.
  doi: 10.1023/A:1015141503755
– ident: ref_100
– ident: ref_34
  doi: 10.3389/fpls.2019.01478
– ident: ref_1
  doi: 10.1007/978-3-319-23371-0
– volume: 37
  start-page: 329
  year: 2006
  ident: ref_9
  article-title: Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2006.01.001
– volume: 47
  start-page: 85
  year: 2015
  ident: ref_26
  article-title: Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape
  publication-title: Food Microbiol.
  doi: 10.1016/j.fm.2014.11.013
– volume: 62
  start-page: 793
  year: 2017
  ident: ref_18
  article-title: Biological control of tomato gray mold caused by Botrytis cinerea by using Streptomyces spp.
  publication-title: BioControl
  doi: 10.1007/s10526-017-9825-9
– volume: 16
  start-page: 400
  year: 2014
  ident: ref_33
  article-title: The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease
  publication-title: Mol. Plant. Pathol.
  doi: 10.1111/mpp.12189
– volume: 4
  start-page: 206
  year: 2013
  ident: ref_132
  article-title: Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato
  publication-title: Front. Plant. Sci.
– ident: ref_42
– volume: 61
  start-page: 249
  year: 2010
  ident: ref_82
  article-title: Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp295
– volume: 28
  start-page: 1140
  year: 2018
  ident: ref_95
  article-title: Streptomyces sp. as plant growth-promoters and host-plant resistance inducers against Botrytis cinerea in chickpea
  publication-title: Biocontrol Sci. Technol.
  doi: 10.1080/09583157.2018.1515890
– volume: 277
  start-page: 1
  year: 2007
  ident: ref_4
  article-title: Botrytis cinereavirulence factors: New insights into a necrotrophic and polyphageous pathogen
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2007.00930.x
– volume: 12
  start-page: 757
  year: 2016
  ident: ref_60
  article-title: A Novel Protein Elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 Induces Systemic Resistance in Tobacco
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.14333
– volume: 8
  start-page: 238
  year: 2017
  ident: ref_65
  article-title: Induced Systemic Resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-Dependent Signaling Pathway and Activates PAMP-Triggered Immunity in Arabidopsis
  publication-title: Front. Plant. Sci.
  doi: 10.3389/fpls.2017.00238
– volume: 40
  start-page: 2691
  year: 2017
  ident: ref_122
  article-title: Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13016
– ident: ref_70
  doi: 10.3390/microorganisms8070992
– volume: 93
  start-page: 237
  year: 2011
  ident: ref_109
  article-title: The arbuscular mycorrhizal symbiosis reduces disease severity in tomato plants infected by Botrytis cinerea
  publication-title: J. Plant Pathol.
– volume: 166
  start-page: 346
  year: 2018
  ident: ref_136
  article-title: The antimicrobial peptaibol trichokonin IV promotes plant growth and induces systemic resistance against Botrytis cinerea infection in moth orchid
  publication-title: J. Phytopathol.
  doi: 10.1111/jph.12692
– volume: 17
  start-page: 438
  year: 2007
  ident: ref_12
  article-title: Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation
  publication-title: J. Microbiol. Biotechnol.
– volume: 20
  start-page: 1535
  year: 2007
  ident: ref_74
  article-title: Oxalate-Degrading Bacteria Can Protect Arabidopsis thaliana and Crop Plants Against Botrytis cinerea
  publication-title: Mol. Plant. Microbe Interact.
  doi: 10.1094/MPMI-20-12-1535
– volume: 10
  start-page: 1
  year: 2015
  ident: ref_54
  article-title: Organic hydroponics induces systemic resistance against the air-borne pathogen, Botrytis cinerea (grey mould)
  publication-title: J. Plant. Interactions
  doi: 10.1080/17429145.2015.1068959
– volume: 21
  start-page: 4808
  year: 2019
  ident: ref_6
  article-title: The polyphagous plant pathogenic fungus Botrytis cinerea encompasses host-specialized and generalist populations
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.14829
– volume: 17
  start-page: 1009
  year: 2004
  ident: ref_87
  article-title: Stimulation of the Lipoxygenase Pathway Is Associated with Systemic Resistance Induced in Bean by a Nonpathogenic Pseudomonas Strain
  publication-title: Mol. Plant. Microbe Interact.
  doi: 10.1094/MPMI.2004.17.9.1009
– volume: 109
  start-page: 1102
  year: 2019
  ident: ref_105
  article-title: The Involvement of Jasmonic Acid, Ethylene, and Salicylic Acid in the Signaling Pathway of Clonostachys rosea-Induced Resistance to Gray Mold Disease in Tomato
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-01-19-0025-R
– volume: 19
  start-page: 1138
  year: 2006
  ident: ref_119
  article-title: Yeast Increases Resistance in Arabidopsis Against Pseudomonas syringae and Botrytis cinerea by Salicylic Acid-Dependent as Well as Independent Mechanisms
  publication-title: Mol. Plant. Microbe Interactions
  doi: 10.1094/MPMI-19-1138
– ident: ref_62
– volume: 68
  start-page: 1306
  year: 2012
  ident: ref_64
  article-title: Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L
  publication-title: Pest. Manag. Sci.
  doi: 10.1002/ps.3301
– volume: 6
  start-page: 77
  year: 2015
  ident: ref_127
  article-title: The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum
  publication-title: Front. Plant. Sci.
– volume: 104
  start-page: 150
  year: 2014
  ident: ref_133
  article-title: Systemic Resistance to Gray Mold Induced in Tomato by Benzothiadiazole and Trichoderma harzianum T39
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-02-13-0043-R
– ident: ref_103
  doi: 10.5604/12321966.1203879
– volume: 3
  start-page: 632
  year: 2013
  ident: ref_37
  article-title: Interaction of Ulocladium atrum, a Potential Biological Control Agent, with Botrytis cinerea and Grapevine Plantlets
  publication-title: Agronomy
  doi: 10.3390/agronomy3040632
– volume: 46
  start-page: 33
  year: 2018
  ident: ref_28
  article-title: Screening and evaluation of yeast antagonists for biological control of Botrytis cinerea on strawberry fruits
  publication-title: Mycobiology
  doi: 10.1080/12298093.2018.1454013
– volume: 16
  start-page: 1118
  year: 2003
  ident: ref_49
  article-title: Laminarin Elicits Defense Responses in Grapevine and Induces Protection Against Botrytis cinerea and Plasmopara viticola
  publication-title: Mol. Plant. Microbe Interact.
  doi: 10.1094/MPMI.2003.16.12.1118
– volume: 31
  start-page: 446
  year: 2017
  ident: ref_98
  article-title: Bacillus species as versatile weapons for plant pathogens: A review
  publication-title: Biotechnol. Biotechnol. Equip.
  doi: 10.1080/13102818.2017.1286950
– volume: 21
  start-page: 59
  year: 2005
  ident: ref_11
  article-title: Bacillus subtilis S1-0210 as a Biocontrol Agent against Botrytis cinerea in Strawberries
  publication-title: Plant. Pathol. J.
  doi: 10.5423/PPJ.2005.21.1.059
– ident: ref_106
  doi: 10.1007/s10658-020-02054-1
– volume: 41
  start-page: 169
  year: 2016
  ident: ref_61
  article-title: Biological control of gray mold and growth promotion of tomato using Bacillus spp. isolated from soil
  publication-title: Trop. Plant. Pathol.
  doi: 10.1007/s40858-016-0082-8
– volume: 6
  start-page: 177
  year: 2005
  ident: ref_88
  article-title: Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants
  publication-title: Mol. Plant. Pathol.
  doi: 10.1111/j.1364-3703.2005.00276.x
– volume: 78
  start-page: 77
  year: 2014
  ident: ref_121
  article-title: Physiological effects of the induction of resistance by compost or Trichoderma asperellum strain T34 against Botrytis cinerea in tomato
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2014.06.012
– volume: 65
  start-page: 461
  year: 2020
  ident: ref_107
  article-title: Biological control of strawberry grey mold disease caused by Botrytis cinerea mediated by Colletotrichum acutatum extracts
  publication-title: BioControl
  doi: 10.1007/s10526-020-10003-4
– volume: 90
  start-page: 981
  year: 2000
  ident: ref_53
  article-title: Systemic and Local Responses Associated with UV- and Pathogen-Induced Resistance to Botrytis cinerea in Stored Carrot
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.2000.90.9.981
– volume: 31
  start-page: 560
  year: 2018
  ident: ref_63
  article-title: Exploring Elicitors of the Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 to Induce Plant Systemic Resistance and Their Interactions with Plant Signaling Pathways
  publication-title: Mol. Plant. Microbe Interact.
  doi: 10.1094/MPMI-11-17-0273-R
– volume: 7
  start-page: 1598
  year: 2016
  ident: ref_116
  article-title: The Nitrogen Availability Interferes with Mycorrhiza-Induced Resistance against Botrytis cinerea in Tomato
  publication-title: Front. Microbiol.
– volume: 58
  start-page: 117
  year: 2012
  ident: ref_78
  article-title: Differential induction of grapevine resistance and defense reactions against Botrytis cinerea by bacterial mixtures in vineyards
  publication-title: BioControl
– volume: 101
  start-page: 31
  year: 2016
  ident: ref_135
  article-title: Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2016.06.006
– volume: 126
  start-page: 517
  year: 2001
  ident: ref_43
  article-title: β-Aminobutyric Acid-Induced Protection of Arabidopsis against the Necrotrophic Fungus Botrytis cinerea
  publication-title: Plant. Physiol.
  doi: 10.1104/pp.126.2.517
– volume: 23
  start-page: 455
  year: 2003
  ident: ref_146
  article-title: Enhancement of development and induction of resistance in tomato plants by the antagonist, Pythium oligandrum
  publication-title: Agronomy
  doi: 10.1051/agro:2003018
– volume: 96
  start-page: 1151
  year: 2004
  ident: ref_14
  article-title: Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2004.02252.x
– volume: 101
  start-page: 768
  year: 2011
  ident: ref_77
  article-title: Improved Resistance Against Botrytis cinerea by Grapevine-Associated Bacteria that Induce a Prime Oxidative Burst and Phytoalexin Production
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-09-10-0242
– volume: 75
  start-page: 157
  year: 2011
  ident: ref_52
  article-title: Induction of disease resistance against Botrytis cinerea by heat shock treatment in melon (Cucumis melo L.)
  publication-title: Physiol. Mol. Plant. Pathol.
  doi: 10.1016/j.pmpp.2011.04.002
– volume: 247
  start-page: 1217
  year: 2018
  ident: ref_97
  article-title: Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling
  publication-title: Planta
  doi: 10.1007/s00425-018-2860-7
– volume: 114
  start-page: 405
  year: 2006
  ident: ref_48
  article-title: Chitosan Stimulates Defense Reactions in Grapevine Leaves and Inhibits Development of Botrytis cinerea
  publication-title: Eur. J. Plant. Pathol.
  doi: 10.1007/s10658-006-0005-5
– volume: 167
  start-page: 679
  year: 2019
  ident: ref_68
  article-title: Potential of bioinsecticidal Bacillus thuringiensis inoculum to suppress gray mold in tomato based on induced systemic resistance
  publication-title: J. Phytopathol.
  doi: 10.1111/jph.12864
– volume: 161
  start-page: 2014
  year: 2013
  ident: ref_115
  article-title: The Epiphytic Fungus Pseudozyma aphidis Induces Jasmonic Acid- and Salicylic Acid/Nonexpressor of PR1-Independent Local and Systemic Resistance
  publication-title: Plant. Physiol.
  doi: 10.1104/pp.112.212969
– volume: 298
  start-page: 110595
  year: 2020
  ident: ref_117
  article-title: Root-to-shoot signalling in mycorrhizal tomato plants upon Botrytis cinerea infection
  publication-title: Plant. Sci.
  doi: 10.1016/j.plantsci.2020.110595
– volume: 82
  start-page: 46
  year: 2013
  ident: ref_56
  article-title: Systemic resistance against Botrytis cinerea in Arabidopsis triggered by an olive marc compost substrate requires functional SA signalling
  publication-title: Physiol. Mol. Plant. Pathol.
  doi: 10.1016/j.pmpp.2013.02.002
– volume: 8
  start-page: 880
  year: 2017
  ident: ref_134
  article-title: Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes
  publication-title: Front. Plant. Sci.
  doi: 10.3389/fpls.2017.00880
– ident: ref_38
  doi: 10.1007/978-3-030-41870-0
– volume: 126
  start-page: 147
  year: 2018
  ident: ref_69
  article-title: Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2018.07.017
– ident: ref_73
  doi: 10.3389/fpls.2016.01236
– volume: 177
  start-page: 965
  year: 2008
  ident: ref_93
  article-title: Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2007.02322.x
– volume: 71
  start-page: 3959
  year: 2005
  ident: ref_123
  article-title: Improvement of the Fungal Biocontrol Agent Trichoderma atroviride to Enhance both Antagonism and Induction of Plant Systemic Disease Resistance
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.71.7.3959-3965.2005
– ident: ref_140
  doi: 10.3390/agronomy10010118
– volume: 42
  start-page: 233
  year: 2007
  ident: ref_129
  article-title: Induced systemic resistance and the role of binucleate Rhizoctonia and Trichoderma hamatum 382 in biocontrol of Botrytis blight in geranium
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2007.05.009
– volume: 3
  start-page: 108
  year: 2012
  ident: ref_130
  article-title: Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection
  publication-title: Front. Plant. Sci.
  doi: 10.3389/fpls.2012.00108
– volume: 4
  start-page: 53
  year: 2012
  ident: ref_22
  article-title: Biocontrol of Botrytis cinerea by successful introduction of Pantoea ananatis in the grapevine phyllosphere
  publication-title: Int. J. Wine Res.
– volume: 285
  start-page: 44
  year: 2018
  ident: ref_8
  article-title: Biological control of plant pathogens by Bacillus species
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2018.07.044
– volume: 2
  start-page: 111
  year: 2018
  ident: ref_7
  article-title: Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables
  publication-title: Food Qual. Saf.
  doi: 10.1093/fqsafe/fyy016
– ident: ref_19
  doi: 10.1371/journal.pone.0190932
– ident: ref_58
– volume: 395
  start-page: 31
  year: 2015
  ident: ref_55
  article-title: Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling
  publication-title: Plant. Soil
  doi: 10.1007/s11104-015-2445-1
– volume: 12
  start-page: 341
  year: 2011
  ident: ref_128
  article-title: The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype
  publication-title: Mol. Plant. Pathol.
  doi: 10.1111/j.1364-3703.2010.00674.x
– volume: 35
  start-page: 323
  year: 2003
  ident: ref_20
  article-title: Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(02)00283-3
– volume: 50
  start-page: 288
  year: 2009
  ident: ref_110
  article-title: Combining the oomycete Pythium oligandrum with two other antagonistic fungi: Root relationships and tomato grey mold biocontrol
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2009.04.013
– volume: 121
  start-page: 106
  year: 2018
  ident: ref_16
  article-title: Biocontrol of Botrytis cinerea and Calonectria gracilis by eucalypts growth promoters Bacillus spp.
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2018.05.026
– volume: 24
  start-page: 273
  year: 2002
  ident: ref_45
  article-title: Local and systemic protection of poinsettia (Euphorbia pulcherrima Willd.) against Botrytis cinerea Pers. induced by benzothiadiazole
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-002-0051-3
– volume: 53
  start-page: 667
  year: 2008
  ident: ref_131
  article-title: The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana
  publication-title: BioControl
  doi: 10.1007/s10526-007-9103-3
– ident: ref_99
  doi: 10.21203/rs.2.10988/v1
– volume: 72
  start-page: 67
  year: 2018
  ident: ref_25
  article-title: Effect of Aureobasidium pullulans strains against Botrytis cinerea on kiwifruit during storage and on fruit nutritional composition
  publication-title: Food Microbiol.
  doi: 10.1016/j.fm.2017.11.010
– volume: 110
  start-page: 843
  year: 2020
  ident: ref_36
  article-title: The Endophytic Fungus Albifimbria verrucaria from Wild Grape as an Antagonist of Botrytis cinerea and Other Grape Pathogens
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-09-19-0347-R
– volume: 113
  start-page: 251
  year: 2007
  ident: ref_24
  article-title: Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2006.07.003
– volume: 243
  start-page: 1055
  year: 2016
  ident: ref_94
  article-title: Defense responses in plants of Eucalyptus elicited by Streptomyces and challenged with Botrytis cinerea
  publication-title: Planta
  doi: 10.1007/s00425-015-2460-8
– volume: 71
  start-page: 2769
  year: 2020
  ident: ref_118
  article-title: Role and mechanisms of callose priming in mycorrhiza-induced resistance
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eraa030
– volume: 44
  start-page: 391
  year: 2002
  ident: ref_30
  article-title: Secretion of β-1,3-Glucanases by the Yeast Pichia membranifaciens and Its Possible Role in the Biocontrol of Botrytis cinerea Causing Grey Mold Disease of the Grapevine
  publication-title: Curr. Microbiol.
  doi: 10.1007/s00284-001-0011-y
– volume: 54
  start-page: 773
  year: 2005
  ident: ref_112
  article-title: Fusarium confers protection against several mycelial pathogens of pepper plants
  publication-title: Plant. Pathol.
  doi: 10.1111/j.1365-3059.2005.01285.x
– ident: ref_35
  doi: 10.3390/pathogens9030213
– volume: 40
  start-page: 287
  year: 2007
  ident: ref_29
  article-title: Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2006.10.008
– volume: 148
  start-page: 104306
  year: 2020
  ident: ref_21
  article-title: A novel endophytic strain of Lactobacillus plantarum CM-3 with antagonistic activity against Botrytis cinerea on strawberry fruit
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2020.104306
– volume: 9
  start-page: 1084
  year: 2007
  ident: ref_66
  article-title: Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2006.01202.x
– ident: ref_104
  doi: 10.1007/978-981-10-6593-4_6
– volume: 11
  start-page: 992
  year: 2020
  ident: ref_141
  article-title: Biological Control of Plant-Parasitic Nematodes by Filamentous Fungi Inducers of Resistance: Trichoderma, Mycorrhizal and Endophytic Fungi
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00992
– volume: 111
  start-page: 101521
  year: 2020
  ident: ref_39
  article-title: Use of plant-defense hormones against pathogen-diseases of postharvest fresh produce
  publication-title: Physiol. Mol. Plant. Pathol.
  doi: 10.1016/j.pmpp.2020.101521
– volume: 83
  start-page: 269
  year: 2012
  ident: ref_111
  article-title: A Fusarium oxysporum extract induces resistance against Botrytis in pepper plants
  publication-title: IOBC/WPRS Bull.
– volume: 97
  start-page: 250
  year: 2007
  ident: ref_101
  article-title: Pseudomonas Biocontrol Agents of Soilborne Pathogens: Looking Back Over 30 Years
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-97-2-0250
– volume: 107
  start-page: 537
  year: 2017
  ident: ref_137
  article-title: The Constitutive Endopolygalacturonase TvPG2 Regulates the Induction of Plant Systemic Resistance by Trichoderma virens
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-03-16-0139-R
– volume: 22
  start-page: 1455
  year: 2009
  ident: ref_46
  article-title: Hexanoic Acid-Induced Resistance Against Botrytis cinerea in Tomato Plants
  publication-title: Mol. Plant. Microbe Interactions
  doi: 10.1094/MPMI-22-11-1455
– volume: 155
  start-page: 253
  year: 2019
  ident: ref_23
  article-title: Biocontrol of Botrytis cinerea by chitin-based cultures of Paenibacillus elgii HOA73
  publication-title: Eur. J. Plant. Pathol.
  doi: 10.1007/s10658-019-01768-1
– volume: 35
  start-page: 208
  year: 2019
  ident: ref_71
  article-title: A Novel Protein Elicitor PeBL2, from Brevibacillus laterosporus A60, Induces Systemic Resistance against Botrytis cinerea in Tobacco Plant
  publication-title: Plant. Pathol. J.
  doi: 10.5423/PPJ.OA.11.2018.0276
– ident: ref_138
  doi: 10.1007/978-981-15-3321-1
– volume: 6
  start-page: 1554
  year: 2011
  ident: ref_125
  article-title: Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea
  publication-title: Plant. Signal. Behav.
  doi: 10.4161/psb.6.10.17443
– volume: 50
  start-page: 307
  year: 2006
  ident: ref_124
  article-title: Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-006-0091-0
– volume: 62
  start-page: 253
  year: 2003
  ident: ref_90
  article-title: L-form bacteria of Pseudomonas syringae pv. phaseolicola induce chitinases and enhance resistance to Botrytis cinerea infection in Chinese cabbage
  publication-title: Physiol. Mol. Plant. Pathol.
  doi: 10.1016/S0885-5765(03)00089-4
– volume: 32
  start-page: 178
  year: 2009
  ident: ref_81
  article-title: Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine
  publication-title: Plant. Cell Environ.
  doi: 10.1111/j.1365-3040.2008.01911.x
– volume: 30
  start-page: 919
  year: 2008
  ident: ref_15
  article-title: Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-007-9626-9
– volume: 405
  start-page: 141
  year: 2015
  ident: ref_85
  article-title: Effectiveness of beneficial bacteria to promote systemic resistance of grapevine to gray mold as related to phytoalexin production in vineyards
  publication-title: Plant. Soil
  doi: 10.1007/s11104-015-2783-z
– ident: ref_10
  doi: 10.3390/ijms19051371
– volume: 122
  start-page: 98
  year: 2018
  ident: ref_96
  article-title: Deciphering the tri-dimensional effect of endophytic Streptomyces sp. on chickpea for plant growth promotion, helper effect with Mesorhizobium ciceri and host-plant resistance induction against Botrytis cinerea
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2018.06.019
– volume: 6
  start-page: 922
  year: 2015
  ident: ref_75
  article-title: Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules
  publication-title: Front. Microbiol.
– volume: 28
  start-page: 1117
  year: 2015
  ident: ref_84
  article-title: Pseudomonas fluorescens PTA-CT2 Triggers Local and Systemic Immune Response Against Botrytis cinerea in Grapevine
  publication-title: Mol. Plant. Microbe Interact.
  doi: 10.1094/MPMI-04-15-0092-R
– volume: 12
  start-page: 244
  year: 2017
  ident: ref_76
  article-title: Paenibacillus terrae AY-38 resistance against Botrytis cinerea in Solanum lycopersicum L. plants through defence hormones regulation
  publication-title: J. Plant. Interact.
  doi: 10.1080/17429145.2017.1319502
– volume: 374
  start-page: 423
  year: 2013
  ident: ref_91
  article-title: The Saharan isolate Saccharothrix algeriensis NRRL B-24137 induces systemic resistance in Arabidopsis thaliana seedlings against Botrytis cinerea
  publication-title: Plant. Soil
  doi: 10.1007/s11104-013-1864-0
– ident: ref_2
  doi: 10.1007/978-1-4020-2626-3_2
– volume: 8
  start-page: 561
  year: 2007
  ident: ref_3
  article-title: Botrytis cinerea: The cause of grey mould disease
  publication-title: Mol. Plant. Pathol.
  doi: 10.1111/j.1364-3703.2007.00417.x
– volume: 67
  start-page: 30
  year: 2018
  ident: ref_44
  article-title: Long-lasting β-aminobutyric acid-induced resistance protects tomato fruit against Botrytis cinerea
  publication-title: Plant. Pathol.
  doi: 10.1111/ppa.12725
– volume: 124
  start-page: 261
  year: 2009
  ident: ref_92
  article-title: Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones
  publication-title: Eur. J. Plant. Pathol.
  doi: 10.1007/s10658-008-9411-1
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_139
  article-title: Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-48269-z
– ident: ref_79
– volume: 135
  start-page: 877
  year: 2012
  ident: ref_108
  article-title: Avirulent strain of Colletotrichum induces a systemic resistance in strawberry
  publication-title: Eur. J. Plant. Pathol.
  doi: 10.1007/s10658-012-0134-y
– volume: 75
  start-page: 23
  year: 2010
  ident: ref_47
  article-title: Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxide-fueled resistance response
  publication-title: Physiol. Mol. Plant. Pathol.
  doi: 10.1016/j.pmpp.2010.08.001
– volume: 9
  start-page: 1596
  year: 2018
  ident: ref_113
  article-title: Compounds Released by the Biocontrol Yeast Hanseniaspora opuntiae Protect Plants Against Corynespora cassiicola and Botrytis cinerea
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.01596
– volume: 9
  start-page: 1315
  year: 2018
  ident: ref_13
  article-title: Antifungal Activity of Lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.01315
– ident: ref_40
  doi: 10.3389/fpls.2016.01658
– volume: 37
  start-page: 239
  year: 2017
  ident: ref_51
  article-title: Soft mechanical stimulation induces a defense response against Botrytis cinerea in strawberry
  publication-title: Plant. Cell Rep.
– volume: 7
  start-page: 196
  year: 2016
  ident: ref_67
  article-title: Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both?
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00196
– ident: ref_120
  doi: 10.3390/ijms20082007
– volume: 207
  start-page: 41
  year: 2018
  ident: ref_57
  article-title: Does plant—Microbe interaction confer stress tolerance in plants: A review?
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2017.11.004
– volume: 15
  start-page: 1147
  year: 2002
  ident: ref_80
  article-title: Induction of Systemic Resistance to Botrytis cinerea in Tomato by Pseudomonas aeruginosa 7NSK2: Role of Salicylic Acid, Pyochelin, and Pyocyanin
  publication-title: Mol. Plant. Microbe Interact.
  doi: 10.1094/MPMI.2002.15.11.1147
– ident: ref_32
  doi: 10.3390/plants9060762
– volume: 25
  start-page: 151
  year: 2002
  ident: ref_31
  article-title: Biological control of Botrytis cinerea on tomato plants by the use of epiphytic yeasts Candida guilliermondii strains 101 and US 7 and Candida oleophila strain I-182: II. A study on mode of action
  publication-title: Biol. Control
  doi: 10.1016/S1049-9644(02)00052-X
– volume: 166
  start-page: 601
  year: 2018
  ident: ref_17
  article-title: Colonization ability as an indicator of enhanced biocontrol capacity—An example using two Bacillus amyloliquefaciens strains and Botrytis cinerea infection of tomatoes
  publication-title: J. Phytopathol.
  doi: 10.1111/jph.12718
– ident: ref_89
  doi: 10.1186/1471-2229-8-113
– volume: 176
  start-page: 202
  year: 2015
  ident: ref_50
  article-title: Wounding induces local resistance but systemic susceptibility to Botrytis cinerea in pepper plants
  publication-title: J. Plant. Physiol.
  doi: 10.1016/j.jplph.2014.12.013
– volume: 37
  start-page: 262
  year: 2017
  ident: ref_41
  article-title: Mechanisms and strategies of plant defense against Botrytis cinerea
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388551.2016.1271767
– volume: 31
  start-page: 223
  year: 2002
  ident: ref_144
  article-title: Biocontrol activity and induced resistance as a possible mode of action for Aureobasidium pullulans against grey mould of strawberry fruit
  publication-title: Australas. Plant Pathol.
  doi: 10.1071/AP02017
– volume: 199
  start-page: 341
  year: 2018
  ident: ref_145
  article-title: Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.07.045
– ident: ref_5
  doi: 10.1101/507491
– volume: 65
  start-page: 14
  year: 2013
  ident: ref_83
  article-title: Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2013.01.009
– volume: 118
  start-page: 43
  year: 2007
  ident: ref_59
  article-title: Biological control of Botrytis cinerea by selected grapevine-associated bacteria and stimulation of chitinase and β-1,3 glucanase activities under field conditions
  publication-title: Eur. J. Plant. Pathol.
  doi: 10.1007/s10658-007-9111-2
SSID ssj0000913807
Score 2.3899155
SecondaryResourceType review_article
Snippet Botrytis cinerea is a polyphagous necrotrophic fungus and is the causal agent of grey mold diseases in more than 1400 different hosts. This fungus causes...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1822
SubjectTerms agriculture
agronomy
Antibiosis
Asexuality
Bacillus
Bacteria
beneficial microorganisms
Biological control
biological control agents
Botrytis cinerea
Crop diseases
Crops
Economic impact
Enzymes
financial economics
flowers
Fruits
Fungi
Fungicides
grapes
Grey mold
Harvest
hosts
jasmonic acid
knowledge
lead
Metabolites
Microorganisms
Mold
Organs
Parasitism
Pathogens
Pesticides
plant organs
Plant resistance
Pseudomonas
salicylic acid
Strawberries
Tomatoes
Trichoderma
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZpckkPoXmUbpoWBXrpwaz1sC2fym5ISAIJJTSQm9HLi6HYie1Q-u87Y8sObSHgky0bPJJmvk8jfUPIFy8zy1mZRzZXIpKpjiMlGY-sy5gREIBzg2eHb27Ty3t5_ZA8hAW3LmyrnHzi4KhdY3GNfMklIGWeqZR9e3yKsGoUZldDCY03ZAdcsALytbM-v_1-N6-yoOqlirMxPymA3y_1ph1OCzAssq44_yseDbL9_3nlIdRcvCN7ASPS1dip-2TL1wfk7WrTBp0Mf0h-XdUd0mpa1X1DAcTRm2qWVEK707NxDzqd5Gd9R_VGV4AG6brp29991VFMqgNopMO-ATqKl1eWYiGjnt75DrElDAq6slMRtCNyf3H-4-wyCjUUIgsm7yMtvNcJRGmbCOe1ZLGzpU250x78YMxzC3wBnF5qhJC5zROjlDdZbIwVQGaceE-266b2HwgVBsEIXCZ10iRMp6zMSiMH2ORFsiDLyZKFDQLjWOfiZwFEA21f_Gv7Bfk6v_E4imu80naNnTO3Q1ns4UbTboowy4pYq0xaBxRSSumshF9xqpRIfGPHhFuQk6lrizBXu-JlZC3I6fwYZhmmTnTtm2dskyueI_g9fv0TH8kuR0Y-nFY8Idt9--w_AWzpzecwNv8AEFrwRQ
  priority: 102
  providerName: ProQuest
Title Insight into the Microbiological Control Strategies against Botrytis cinerea Using Systemic Plant Resistance Activation
URI https://www.proquest.com/docview/2464227861
https://www.proquest.com/docview/2498295656
https://doaj.org/article/0a874cd998444dc48ebd8f400100d13d
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS-RAEG0W96IHcd2VndWVFvayhzDpjyTdxxmZQQUHGVbwFvorw4BkZBJZ_PdWdTKDruBehJySCjTV1VXv0d2vCPkVZOE4q3TitBKJzE2aKMl44nzBrIACrC3eHb6e5Re38uouu3vR6gvPhHXywJ3jhqlRhXQeWIGU0jupgvWqkshlUs-Ex-wLNe8FmYo5WDNUUu_2JQXw-qFZrOMtAYbN1RXnr-pQlOt_k41jiZkekP0eG9JRN6Yv5FOoD8neaLHu9THCV_L3sm6QTtNl3a4ogDd6vdxKKaG_6Xl39pxuZGdDQ80C6H_T0vGqXT-1y4biZjqARRrPC9BOtHzpKDYwauk8NIgpIRjoyG2an30jt9PJn_OLpO-dkDhwdZsYEYLJoDq7TPhgJEu9q1zOvQmQ_1KuHfAESHa5FUJqpzOrwLNFaq0TQGK8OCI79aoO3wkVFkEIPDb30mbM5KwqKisjXAoiG5DhxpOl64XFsb_FfQkEA31f_uv7Afm9_eOhE9V4x3aMk7O1Qzns-AKCpOyDpPxfkAzIyWZqy36NNiWXwL14oXI2IGfbz7C6cMvE1GH1iDZacY2g98dHjOOY7HLk6_Eu4wnZadeP4SeAmtaeks_jyexmfhrj-BkBMviq
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAcEE91oYCR4MAh2sR2EueA0G5ptUu7K1S1Um_Br6wioaQkqar-KX4jM3khQOqtUk6JYyUz45lvPJ4ZQt47ERsWZIlnEsk9ESnfkyJgnrFxoDkY4ERj7vB6Ey3PxdeL8GKH_BpyYfBY5aATW0VtS4N75DMmACmzWEbB58ufHnaNwujq0EKjE4tjd3MNLlv9afUF-PuBsaPDs4Ol13cV8Ax8ROMp7pwKwW6ZkFunROBbk5mIWeVAM_gsMYCgQQ1EmnORmCTUUjod-1obDvDecpj3HtkVHFyZCdldHG6-nY67OlhlU_pxFw_lPPFnalu12QkBNnWXjP1l_9o2Af9Zgda0HT0mj3pMSuedED0hO654Sh7Ot1Vfl8M9I9erokY3nuZFU1IAjXSdjyWckM_0oDvzTodyt66maqtyQJ90UTbVTZPXFIP4AFJpe06BdsXSc0OxcVJDT12NWBaEkM7N0HTtOTm_E-q-IJOiLNweoVwj-IFLR1boMFBRkMWZFi1MczycktlAydT0Bc2xr8aPFBwbpH36L-2n5OP4xmVXzOOWsQtkzjgOy3C3N8pqm_arOvWVjIWx4LIKIawR8CtWZgIdbd8G3E7J_sDatNcNdfpHkqfk3fgYVjWGalThyisck0iWINh-efsUb8n95dn6JD1ZbY5fkQcMdwPaTMl9MmmqK_caIFOj3_RySsn3u14avwEIRy1X
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbpBkp7CH2SbdJWhfbQg1lbkm35UMpukiXbNEsIDeTm6uXFUOzUdgj5a_11nfGrtIXcAj7ZsrBHo5lvNNJ8hLx3IjYsyBLPJJJ7IlK-J0XAPGPjQHNwwInGs8On6-j4Qny5DC-3yK_hLAxuqxxsYmuobWlwjXzGBCBlFssomGX9toizw-Xnq58eMkhhpnWg0-hU5MTd3kD4Vn9aHcJYf2BsefTt4NjrGQY8Ax_UeIo7p0LwYSbk1ikR-NZkJmJWObASPksMoGkwCZHmXCQmCbWUTse-1oYD1Lcc-n1AtmOIivwJ2V4crc_OxxUerLgp_bjLjXKe-DO1qdqTCgESvEvG_vKFLWXAfx6hdXPLJ2Snx6d03inUU7Llimfk8XxT9TU63HNysypqDOlpXjQlBQBJT_OxnBOOOT3o9r_TofStq6naqByQKF2UTXXb5DXFhD4AVtruWaBd4fTcUCRRaui5qxHXgkLSuRkI2F6Qi3uR7ksyKcrC7RLKNQIhuHRkhQ4DFQVZnGnRQjbHwymZDZJMTV_cHDk2fqQQ5KDs039lPyUfxzeuusIed7Rd4OCM7bAkd3ujrDZpP8NTX8lYGAvhqxDCGgG_YmUmMOj2bcDtlOwPQ5v2dqJO_2j1lLwbH8MMx7SNKlx5jW0SyRIE3q_u7uIteQhTIv26Wp_skUcMFwbaQ5P7ZNJU1-41oKdGv-nVlJLv9z0zfgO0LjGM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+the+Microbiological+Control+Strategies+against+Botrytis+cinerea+Using+Systemic+Plant+Resistance+Activation&rft.jtitle=Agronomy+%28Basel%29&rft.au=Poveda%2C+Jorge&rft.au=Barquero%2C+Marcia&rft.au=Gonz%C3%A1lez-Andr%C3%A9s%2C+Fernando&rft.date=2020-11-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=10&rft.issue=11&rft.spage=1822&rft_id=info:doi/10.3390%2Fagronomy10111822&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agronomy10111822
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon