Effect of Salinity Stress on Physiological Changes in Winter and Spring Wheat

Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five spring and five winter w...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 11; no. 6; p. 1193
Main Authors Saddiq, Muhammad Sohail, Iqbal, Shahid, Hafeez, Muhammad Bilal, Ibrahim, Amir M. H., Raza, Ali, Fatima, Esha Mehik, Baloch, Heer, Jahanzaib, Woodrow, Pasqualina, Ciarmiello, Loredana Filomena
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five spring and five winter wheat genotypes seedlings. We evaluated the salt stress on root and shoot growth attributes, i.e., root length (RL), shoot length (SL), the relative growth rate of root length (RGR-RL), and shoot length (RGR-SL). The ionic content of the leaves was also measured. Physiological traits were also assessed, including stomatal conductance (gs), chlorophyll content index (CCI), and light-adapted leaf chlorophyll fluorescence, i.e., the quantum yield of photosystem II (Fv′/Fm′) and instantaneous chlorophyll fluorescence (Ft). Physiological and growth performance under salt stress (0, 100, and 200 mol/L) were explored at the seedling stage. The analysis showed that spring wheat accumulated low Na+ and high K+ in leaf blades compared with winter wheat. Among the genotypes, Sakha 8, S-24, W4909, and W4910 performed better and had improved physiological attributes (gs, Fv′/Fm′, and Ft) and seedling growth traits (RL, SL, RGR-SL, and RGR-RL), which were strongly linked with proper Na+ and K+ discrimination in leaves and the CCI in leaves. The identified genotypes could represent valuable resources for genetic improvement programs to provide a greater understanding of plant tolerance to salt stress.
AbstractList Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five spring and five winter wheat genotypes seedlings. We evaluated the salt stress on root and shoot growth attributes, i.e., root length (RL), shoot length (SL), the relative growth rate of root length (RGR-RL), and shoot length (RGR-SL). The ionic content of the leaves was also measured. Physiological traits were also assessed, including stomatal conductance (gs), chlorophyll content index (CCI), and light-adapted leaf chlorophyll fluorescence, i.e., the quantum yield of photosystem II (Fv′/Fm′) and instantaneous chlorophyll fluorescence (Ft). Physiological and growth performance under salt stress (0, 100, and 200 mol/L) were explored at the seedling stage. The analysis showed that spring wheat accumulated low Na+ and high K+ in leaf blades compared with winter wheat. Among the genotypes, Sakha 8, S-24, W4909, and W4910 performed better and had improved physiological attributes (gs, Fv′/Fm′, and Ft) and seedling growth traits (RL, SL, RGR-SL, and RGR-RL), which were strongly linked with proper Na+ and K+ discrimination in leaves and the CCI in leaves. The identified genotypes could represent valuable resources for genetic improvement programs to provide a greater understanding of plant tolerance to salt stress.
Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five spring and five winter wheat genotypes seedlings. We evaluated the salt stress on root and shoot growth attributes, i.e., root length (RL), shoot length (SL), the relative growth rate of root length (RGR-RL), and shoot length (RGR-SL). The ionic content of the leaves was also measured. Physiological traits were also assessed, including stomatal conductance (gs), chlorophyll content index (CCI), and light-adapted leaf chlorophyll fluorescence, i.e., the quantum yield of photosystem II (Fv′/Fm′) and instantaneous chlorophyll fluorescence (Ft). Physiological and growth performance under salt stress (0, 100, and 200 mol/L) were explored at the seedling stage. The analysis showed that spring wheat accumulated low Na+ and high K+ in leaf blades compared with winter wheat. Among the genotypes, Sakha 8, S-24, W4909, and W4910 performed better and had improved physiological attributes (gs, Fv′/Fm′, and Ft) and seedling growth traits (RL, SL, RGR-SL, and RGR-RL), which were strongly linked with proper Na⁺ and K⁺ discrimination in leaves and the CCI in leaves. The identified genotypes could represent valuable resources for genetic improvement programs to provide a greater understanding of plant tolerance to salt stress.
Author Jahanzaib
Raza, Ali
Fatima, Esha Mehik
Ciarmiello, Loredana Filomena
Ibrahim, Amir M. H.
Baloch, Heer
Woodrow, Pasqualina
Saddiq, Muhammad Sohail
Iqbal, Shahid
Hafeez, Muhammad Bilal
Author_xml – sequence: 1
  givenname: Muhammad Sohail
  surname: Saddiq
  fullname: Saddiq, Muhammad Sohail
– sequence: 2
  givenname: Shahid
  surname: Iqbal
  fullname: Iqbal, Shahid
– sequence: 3
  givenname: Muhammad Bilal
  orcidid: 0000-0001-6719-6667
  surname: Hafeez
  fullname: Hafeez, Muhammad Bilal
– sequence: 4
  givenname: Amir M. H.
  surname: Ibrahim
  fullname: Ibrahim, Amir M. H.
– sequence: 5
  givenname: Ali
  orcidid: 0000-0002-5120-2791
  surname: Raza
  fullname: Raza, Ali
– sequence: 6
  givenname: Esha Mehik
  surname: Fatima
  fullname: Fatima, Esha Mehik
– sequence: 7
  givenname: Heer
  surname: Baloch
  fullname: Baloch, Heer
– sequence: 8
  surname: Jahanzaib
  fullname: Jahanzaib
– sequence: 9
  givenname: Pasqualina
  orcidid: 0000-0002-5475-409X
  surname: Woodrow
  fullname: Woodrow, Pasqualina
– sequence: 10
  givenname: Loredana Filomena
  orcidid: 0000-0002-4420-019X
  surname: Ciarmiello
  fullname: Ciarmiello, Loredana Filomena
BookMark eNp1UU1rGzEQXUoCSZPccxT00otbSSNpV8di0jSQ0oIDOYqxdnYts5ZSST7432dbtxAMncsMw_vg8d43ZzFFappbwT8BWP4Zx5xi2h2E4EYIC--aS8lbWCiw-uzNfdHclLLl81gBHW8vm-93w0C-sjSwFU4hhnpgq5qpFJYi-7k5lJCmNAaPE1tuMI5UWIjsOcRKmWHs2eolhziy5w1hvW7OB5wK3fzdV83T17un5bfF44_7h-WXx4VXQtYFCtBgBqWlBi81BwFr3gnCvrPGGm5MTx0XUujWK8WVFG277r3olLXSAFw1D0fZPuHWzf47zAeXMLg_j5RHh7kGP5GjwWq_1p30ulUSsaOBAIzqoLWcwM5aH49aLzn92lOpbheKp2nCSGlf3OxnwFrTyhn64QS6Tfsc56BOaqW0kcqYGWWOKJ9TKZkG50PFGlKsGcPkBHe_O3Onnc1EfkL8l-y_lFfNWJox
CitedBy_id crossref_primary_10_1016_j_jplph_2025_154448
crossref_primary_10_12688_openreseurope_15821_1
crossref_primary_10_12688_openreseurope_15821_3
crossref_primary_10_12688_openreseurope_15821_2
crossref_primary_10_31590_ejosat_1188665
crossref_primary_10_1007_s11356_023_30364_4
crossref_primary_10_1016_j_rhisph_2023_100792
crossref_primary_10_1007_s11033_022_07681_x
crossref_primary_10_3390_su14126973
crossref_primary_10_1016_j_cpb_2024_100334
crossref_primary_10_1016_j_sajb_2022_03_050
crossref_primary_10_3390_horticulturae10040388
crossref_primary_10_1007_s00425_022_04023_w
crossref_primary_10_1590_1807_1929_agriambi_v29n4e287913
crossref_primary_10_1007_s42729_025_02383_2
crossref_primary_10_1016_j_cj_2024_01_005
crossref_primary_10_1007_s44187_022_00027_3
crossref_primary_10_1016_j_plaphy_2022_03_003
crossref_primary_10_1038_s41598_022_18481_5
crossref_primary_10_1088_1748_9326_ad9bcd
crossref_primary_10_1007_s00344_023_11070_4
crossref_primary_10_1007_s11101_024_10057_7
crossref_primary_10_1590_1519_6984_268350
crossref_primary_10_1007_s42729_022_00921_w
crossref_primary_10_1016_j_heliyon_2024_e37160
crossref_primary_10_26898_0370_8799_2022_6_2
crossref_primary_10_3390_d15040481
crossref_primary_10_3390_ijms231911386
crossref_primary_10_3390_microorganisms10010150
crossref_primary_10_3390_ijms242316878
crossref_primary_10_1007_s42729_024_02104_1
crossref_primary_10_1016_j_stress_2021_100029
crossref_primary_10_1111_plb_13368
crossref_primary_10_12688_openreseurope_15821_4
crossref_primary_10_1007_s10725_022_00820_1
crossref_primary_10_1016_j_sjbs_2022_01_028
crossref_primary_10_3390_ijms252413297
crossref_primary_10_32604_biocell_2023_023704
crossref_primary_10_1016_j_envexpbot_2024_106033
crossref_primary_10_3389_fpls_2022_990541
crossref_primary_10_1007_s10725_025_01304_8
crossref_primary_10_3390_genes13071112
crossref_primary_10_3390_microorganisms12102023
crossref_primary_10_3390_horticulturae8100868
crossref_primary_10_29133_yyutbd_1539560
crossref_primary_10_1038_s41598_022_09519_9
crossref_primary_10_1590_1983_40632021v5167663
crossref_primary_10_3390_rs15153772
crossref_primary_10_1007_s10343_022_00774_4
crossref_primary_10_3390_plants13091179
crossref_primary_10_36790_epistemus_v16i33_285
crossref_primary_10_7717_peerj_15684
crossref_primary_10_1016_j_eti_2022_102799
crossref_primary_10_1038_s41598_024_72614_6
crossref_primary_10_1080_00103624_2025_2475976
crossref_primary_10_7717_peerj_16256
crossref_primary_10_1080_15592324_2023_2189371
crossref_primary_10_1007_s42729_025_02354_7
crossref_primary_10_31083_j_fbl2904150
crossref_primary_10_1007_s00344_023_10974_5
crossref_primary_10_32604_phyton_2022_017365
crossref_primary_10_1590_s1678_3921_pab2023_v58_03131
crossref_primary_10_5586_aa_764
crossref_primary_10_7717_peerj_14621
crossref_primary_10_1371_journal_pone_0267127
crossref_primary_10_3390_genes15050573
crossref_primary_10_3390_agronomy12030598
crossref_primary_10_1186_s12870_025_06078_9
crossref_primary_10_26898_0370_8799_2023_12_3
crossref_primary_10_1186_s13007_023_01107_w
crossref_primary_10_1007_s00344_022_10826_8
crossref_primary_10_54021_seesv5n2_747
crossref_primary_10_1016_j_sajb_2023_02_040
crossref_primary_10_3390_agriculture13030734
crossref_primary_10_3390_horticulturae10060598
crossref_primary_10_1016_j_heliyon_2024_e29042
crossref_primary_10_1016_j_ejar_2025_02_006
crossref_primary_10_1007_s10343_022_00759_3
crossref_primary_10_3390_stresses3010027
crossref_primary_10_1111_jac_12587
crossref_primary_10_1016_j_scienta_2024_112919
crossref_primary_10_3390_ijms26062570
crossref_primary_10_1038_s41598_023_36018_2
crossref_primary_10_3390_metabo14090470
crossref_primary_10_1038_s41598_024_66677_8
crossref_primary_10_4103_epj_epj_132_23
crossref_primary_10_3390_plants12152783
crossref_primary_10_1038_s41598_024_70917_2
crossref_primary_10_1007_s42976_023_00374_6
crossref_primary_10_3390_ijms23168909
crossref_primary_10_3389_fpls_2023_1163451
crossref_primary_10_3390_horticulturae7120566
crossref_primary_10_1590_1677_941x_abb_2023_0243
crossref_primary_10_1038_s41598_023_49629_6
crossref_primary_10_1088_1755_1315_1182_1_012042
crossref_primary_10_26898_0370_8799_2024_8_2
crossref_primary_10_3389_fpls_2022_946217
crossref_primary_10_3390_genes14051103
crossref_primary_10_1016_j_stress_2022_100128
crossref_primary_10_3390_life14111487
crossref_primary_10_1016_j_sajb_2023_05_016
crossref_primary_10_1007_s42729_023_01406_0
crossref_primary_10_3389_fpls_2022_987641
crossref_primary_10_3390_horticulturae8070568
crossref_primary_10_1002_sae2_12061
crossref_primary_10_1371_journal_pone_0258703
crossref_primary_10_3390_plants12142606
crossref_primary_10_5937_SelSem2301009M
crossref_primary_10_3390_agronomy12112823
crossref_primary_10_1016_j_sajb_2023_08_059
crossref_primary_10_1007_s00344_021_10498_w
crossref_primary_10_3390_jof8080785
crossref_primary_10_3390_microorganisms12081516
crossref_primary_10_3390_plants13192673
crossref_primary_10_1007_s10343_023_00929_x
crossref_primary_10_1007_s10725_022_00949_z
crossref_primary_10_1051_bioconf_20236701008
crossref_primary_10_3390_plants13192718
crossref_primary_10_1002_app_53742
crossref_primary_10_1016_j_indcrop_2023_117199
crossref_primary_10_1016_j_plaphy_2024_108973
crossref_primary_10_3390_agriculture13010081
crossref_primary_10_1007_s12517_022_10485_9
crossref_primary_10_1590_1807_1929_agriambi_v27n6p472_479
crossref_primary_10_1007_s10265_021_01356_7
crossref_primary_10_3390_cells11071141
crossref_primary_10_1590_1677_941x_abb_2023_0222
crossref_primary_10_15406_jbmoa_2025_13_00389
crossref_primary_10_3389_fpls_2024_1396498
crossref_primary_10_1051_e3sconf_202339001011
crossref_primary_10_1002_pei3_70008
crossref_primary_10_1080_11263504_2024_2384972
crossref_primary_10_3390_ijms25095055
crossref_primary_10_3390_life12101530
crossref_primary_10_1007_s42729_023_01436_8
Cites_doi 10.1007/s11032-016-0451-5
10.1080/01904167.2019.1609509
10.1016/j.envexpbot.2015.06.003
10.1016/j.plaphy.2019.02.004
10.1080/01904167.2018.1452939
10.1111/ppl.12165
10.1080/01904167.2019.1676907
10.1016/j.scitotenv.2021.146466
10.1186/1999-3110-55-35
10.1270/jsbbs.59.671
10.3390/su13094799
10.1016/B978-0-12-819382-2.00022-3
10.1007/978-3-319-96190-3_2
10.3390/plants9101324
10.1071/AR03032
10.1016/j.rse.2019.111553
10.1007/s00344-020-10231-z
10.1007/978-981-15-6345-4_3
10.1016/S0378-3774(00)00146-3
10.17221/392-PSE
10.1007/s12571-013-0263-y
10.1016/j.scienta.2018.11.021
10.1080/03650340.2017.1346373
10.1038/s41598-019-55889-y
10.1016/j.plaphy.2020.09.038
10.1111/nph.13757
10.1590/1678-4324-2020200072
10.1016/j.plaphy.2012.05.012
10.1016/j.sjbs.2020.06.030
10.1111/jac.12178
10.1111/j.1744-7348.1991.tb04858.x
10.1111/jac.12290
10.1104/pp.106.086538
10.1093/jxb/err003
10.1016/j.plaphy.2019.06.010
10.1016/B978-0-12-800876-8.00017-5
10.1007/s12892-017-0037-0
10.3390/antiox9080681
10.1007/s11738-019-3004-9
10.1016/j.jplph.2006.05.010
10.1146/annurev.arplant.59.032607.092911
10.1104/pp.123.3.1047
10.1007/s10265-020-01196-x
10.1023/B:PRES.0000015391.99477.0d
10.1007/978-94-007-2220-0_9
10.1007/s12571-013-0248-x
10.1023/A:1024553303144
10.1111/j.1365-3040.2007.01726.x
10.1111/ppl.12513
10.1186/s12870-021-03236-7
10.1146/annurev.arplant.59.032607.092759
10.3923/pjbs.2000.1627.1629
10.1093/jxb/erh196
10.3198/jpr2008.05.0252crc
10.1016/j.jplph.2008.01.001
10.1016/j.plaphy.2009.10.006
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7S9
L.6
DOA
DOI 10.3390/agronomy11061193
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Agricultural Science Database
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_ef95cb582c5742aa8efe336483790e39
10_3390_agronomy11061193
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
KQ8
M0K
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
ITC
PUEGO
ID FETCH-LOGICAL-c412t-a13536f45253c250313b081ead89696066de8012157c44042177bdc184992633
IEDL.DBID BENPR
ISSN 2073-4395
IngestDate Wed Aug 27 01:30:45 EDT 2025
Thu Jul 10 19:23:19 EDT 2025
Mon Jun 30 11:21:09 EDT 2025
Thu Apr 24 23:11:03 EDT 2025
Tue Jul 01 03:20:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-a13536f45253c250313b081ead89696066de8012157c44042177bdc184992633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4420-019X
0000-0001-6719-6667
0000-0002-5475-409X
0000-0002-5120-2791
OpenAccessLink https://www.proquest.com/docview/2544562466?pq-origsite=%requestingapplication%
PQID 2544562466
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_ef95cb582c5742aa8efe336483790e39
proquest_miscellaneous_2636399672
proquest_journals_2544562466
crossref_citationtrail_10_3390_agronomy11061193
crossref_primary_10_3390_agronomy11061193
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Bulle (ref_38) 2016; 36
Baker (ref_50) 2004; 55
Viehweger (ref_8) 2014; 55
Justice (ref_20) 2020; 237
Slamka (ref_45) 2008; 54
ref_55
Shabala (ref_39) 2014; 151
ref_52
Elkelish (ref_35) 2019; 137
Husain (ref_47) 2003; 54
ref_59
Arfan (ref_49) 2007; 164
James (ref_36) 2006; 142
Brestic (ref_44) 2012; 57
Ashraf (ref_31) 2010; 4
ref_24
Oyiga (ref_23) 2016; 202
Genc (ref_29) 2007; 30
Qiong (ref_43) 2016; 48
Alamri (ref_4) 2020; 157
ref_21
Zeng (ref_57) 2001; 48
Shavrukov (ref_61) 2009; 59
ref_62
Hoagland (ref_60) 1950; 347
Majeed (ref_33) 2019; 35
Saddiq (ref_40) 2019; 42
Fanizza (ref_63) 1991; 119
Baker (ref_64) 2008; 59
Li (ref_25) 2021; 21
Mehta (ref_46) 2010; 48
Bhusal (ref_2) 2019; 246
Javaid (ref_14) 2019; 141
Zahra (ref_13) 2018; 41
Kanwal (ref_26) 2011; 43
Mahboob (ref_34) 2018; 21
Salim (ref_12) 2020; 43
Nawaz (ref_51) 2010; 9
Geissler (ref_54) 2015; 118
Zheng (ref_42) 2008; 165
Shiferaw (ref_18) 2013; 5
James (ref_37) 2011; 62
Janmohammadi (ref_41) 2012; 25
Iqbal (ref_16) 2019; 205
Woodrow (ref_22) 2017; 159
Loutfy (ref_48) 2020; 133
Genc (ref_28) 2016; 210
Yadav (ref_15) 2020; 27
Chaves (ref_19) 2013; 5
Saddiq (ref_32) 2018; 64
Munns (ref_10) 2008; 59
Kramer (ref_65) 2004; 79
Ami (ref_17) 2020; 42
Allakhverdiev (ref_27) 2000; 123
Bhusal (ref_53) 2021; 779
Khaleghi (ref_56) 2019; 9
ref_1
ref_3
Bhutta (ref_30) 2010; 60
ref_9
Akhtar (ref_11) 2000; 3
Munns (ref_58) 2003; 253
ref_5
ref_7
ref_6
References_xml – volume: 36
  start-page: 36
  year: 2016
  ident: ref_38
  article-title: Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene
  publication-title: Mol. Breed.
  doi: 10.1007/s11032-016-0451-5
– volume: 42
  start-page: 1192
  year: 2019
  ident: ref_40
  article-title: Mitigation of salinity stress in wheat (Triticum aestivum L.) seedlings through physiological seed enhancements
  publication-title: J. Plant Nutri.
  doi: 10.1080/01904167.2019.1609509
– volume: 118
  start-page: 67
  year: 2015
  ident: ref_54
  article-title: Elevated atmospheric CO2 concentration leads to different salt resistance mechanisms in a C3 (Chenopodium quinoa) and a C4 (Atriplex nummularia) halophyte
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2015.06.003
– volume: 137
  start-page: 144
  year: 2019
  ident: ref_35
  article-title: Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2019.02.004
– volume: 41
  start-page: 1368
  year: 2018
  ident: ref_13
  article-title: Salinity stress on various physiological and biochemical attributes of two distinct maize (Zea mays L.) genotypes
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2018.1452939
– volume: 151
  start-page: 257
  year: 2014
  ident: ref_39
  article-title: Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12165
– volume: 43
  start-page: 297
  year: 2020
  ident: ref_12
  article-title: Nutrient use efficiency (NUE) for sustainable wheat production: A review
  publication-title: J. Plant Nutri.
  doi: 10.1080/01904167.2019.1676907
– volume: 779
  start-page: 146466
  year: 2021
  ident: ref_53
  article-title: Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.146466
– volume: 35
  start-page: 1107
  year: 2019
  ident: ref_33
  article-title: Comparison of Soil and Hydroponic Based Screening Process to Select Salt Tolerant Wheat Varieties
  publication-title: Sarhad J. Agric.
– volume: 55
  start-page: 1
  year: 2014
  ident: ref_8
  article-title: How plants cope with heavy metals
  publication-title: Bot. Stud.
  doi: 10.1186/1999-3110-55-35
– volume: 59
  start-page: 671
  year: 2009
  ident: ref_61
  article-title: Salinity tolerance and sodium exclusion in genus Triticum
  publication-title: Breed. Sci.
  doi: 10.1270/jsbbs.59.671
– ident: ref_1
  doi: 10.3390/su13094799
– ident: ref_5
  doi: 10.1016/B978-0-12-819382-2.00022-3
– ident: ref_9
  doi: 10.1007/978-3-319-96190-3_2
– ident: ref_59
  doi: 10.3390/plants9101324
– volume: 54
  start-page: 589
  year: 2003
  ident: ref_47
  article-title: Effect of sodium exclusion trait on chlorophyll retention and growth of durum wheat in saline soil
  publication-title: Aust. J. Agric. Res.
  doi: 10.1071/AR03032
– volume: 48
  start-page: 1775
  year: 2016
  ident: ref_43
  article-title: Effects of salt stress on tillering nodes to the growth of winter wheat (Triticum aestivum L.)
  publication-title: Pak. J. Bot.
– volume: 237
  start-page: 111553
  year: 2020
  ident: ref_20
  article-title: Strengthening agricultural decisions in countries at risk of food insecurity: The GEOGLAM Crop Monitor for Early Warning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111553
– ident: ref_6
  doi: 10.1007/s00344-020-10231-z
– ident: ref_24
  doi: 10.1007/978-981-15-6345-4_3
– volume: 48
  start-page: 191
  year: 2001
  ident: ref_57
  article-title: Timing of salinity stress affects rice growth and yield components
  publication-title: Agric. Water Manag.
  doi: 10.1016/S0378-3774(00)00146-3
– volume: 54
  start-page: 133
  year: 2008
  ident: ref_45
  article-title: Performance index as a sensitive indicator of water stress in Triticum aestivum L.
  publication-title: Plant Soil Environ.
  doi: 10.17221/392-PSE
– volume: 5
  start-page: 291
  year: 2013
  ident: ref_18
  article-title: Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security
  publication-title: Food Sec.
  doi: 10.1007/s12571-013-0263-y
– ident: ref_62
– volume: 246
  start-page: 535
  year: 2019
  ident: ref_2
  article-title: Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus× domestica Borkh.)
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2018.11.021
– volume: 64
  start-page: 272
  year: 2018
  ident: ref_32
  article-title: Sodium exclusion is a reliable trait for the improvement of salinity tolerance in bread wheat
  publication-title: Arch. Agron. Soil Sci.
  doi: 10.1080/03650340.2017.1346373
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_56
  article-title: Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-55889-y
– volume: 157
  start-page: 47
  year: 2020
  ident: ref_4
  article-title: Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2020.09.038
– volume: 210
  start-page: 145
  year: 2016
  ident: ref_28
  article-title: Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops
  publication-title: New Phytol.
  doi: 10.1111/nph.13757
– ident: ref_55
  doi: 10.1590/1678-4324-2020200072
– volume: 60
  start-page: 256
  year: 2010
  ident: ref_30
  article-title: Genetic variability of salinity tolerance in spring wheat (Triticum aestivum L.)
  publication-title: Acta Agric. Scand. Section B Soil Plant Sci.
– volume: 57
  start-page: 93
  year: 2012
  ident: ref_44
  article-title: Photosystem II thermostability in situ: Environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2012.05.012
– volume: 27
  start-page: 2010
  year: 2020
  ident: ref_15
  article-title: Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet-wheat
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2020.06.030
– volume: 202
  start-page: 472
  year: 2016
  ident: ref_23
  article-title: Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach
  publication-title: J. Agron. Crop Sci.
  doi: 10.1111/jac.12178
– volume: 25
  start-page: 3
  year: 2012
  ident: ref_41
  article-title: Impact of cold acclimation, de-acclimation and re-acclimation on carbohydrate content and antioxidant enzyme activities in spring and winter wheat
  publication-title: Icel. Agric. Sci.
– volume: 119
  start-page: 203
  year: 1991
  ident: ref_63
  article-title: A non-destructive determination of leaf chlorophyll in Vitis vinifera
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.1991.tb04858.x
– volume: 205
  start-page: 13
  year: 2019
  ident: ref_16
  article-title: Yield potential and salt tolerance of quinoa on salt-degraded soils of Pakistan
  publication-title: J. Agron. Crop Sci.
  doi: 10.1111/jac.12290
– volume: 142
  start-page: 1537
  year: 2006
  ident: ref_36
  article-title: Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.086538
– volume: 62
  start-page: 2939
  year: 2011
  ident: ref_37
  article-title: Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1; 4 and HKT1; 5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/err003
– volume: 141
  start-page: 291
  year: 2019
  ident: ref_14
  article-title: Silicon nutrition improves growth of salt-stressed wheat by modulating flows and partitioning of Na+, Cl− and mineral ions
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2019.06.010
– volume: 9
  start-page: 5475
  year: 2010
  ident: ref_51
  article-title: Fatality of salt stress to plants: Morphological, physiological and biochemical aspects
  publication-title: Afr. J. Biotechnol.
– ident: ref_7
  doi: 10.1016/B978-0-12-800876-8.00017-5
– volume: 21
  start-page: 173
  year: 2018
  ident: ref_34
  article-title: Using growth and ionic contents of wheat seedlings as rapid screening tool for salt tolerance
  publication-title: J. Crop Sci. Biotechnol.
  doi: 10.1007/s12892-017-0037-0
– ident: ref_52
  doi: 10.3390/antiox9080681
– ident: ref_21
– volume: 42
  start-page: 1
  year: 2020
  ident: ref_17
  article-title: Different proline responses of two Algerian durum wheat cultivars to in vitro salt stress
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-019-3004-9
– volume: 164
  start-page: 685
  year: 2007
  ident: ref_49
  article-title: Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress?
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2006.05.010
– volume: 59
  start-page: 651
  year: 2008
  ident: ref_10
  article-title: Mechanisms of salinity tolerance
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092911
– volume: 123
  start-page: 1047
  year: 2000
  ident: ref_27
  article-title: Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.123.3.1047
– volume: 133
  start-page: 549
  year: 2020
  ident: ref_48
  article-title: Modifications of water status, growth rate and antioxidant system in two wheat cultivars as affected by salinity stress and salicylic acid
  publication-title: J. Plant Res.
  doi: 10.1007/s10265-020-01196-x
– volume: 79
  start-page: 209
  year: 2004
  ident: ref_65
  article-title: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes
  publication-title: Photosy Res.
  doi: 10.1023/B:PRES.0000015391.99477.0d
– ident: ref_3
  doi: 10.1007/978-94-007-2220-0_9
– volume: 347
  start-page: 32
  year: 1950
  ident: ref_60
  article-title: The water-culture method for growing plants without soil
  publication-title: Circ. Calif. Agric. Exp. Stn.
– volume: 5
  start-page: 157
  year: 2013
  ident: ref_19
  article-title: The importance for food security of maintaining rust resistance in wheat
  publication-title: Food Sec.
  doi: 10.1007/s12571-013-0248-x
– volume: 253
  start-page: 201
  year: 2003
  ident: ref_58
  article-title: Screening methods for salinity tolerance: A case study with tetraploid wheat
  publication-title: Plant Soil
  doi: 10.1023/A:1024553303144
– volume: 30
  start-page: 1486
  year: 2007
  ident: ref_29
  article-title: Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2007.01726.x
– volume: 159
  start-page: 290
  year: 2017
  ident: ref_22
  article-title: Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12513
– volume: 21
  start-page: 1
  year: 2021
  ident: ref_25
  article-title: Heterologous expression of Arabidopsis thaliana rty gene in strawberry (Fragaria× ananassa Duch.) improves drought tolerance
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-021-03236-7
– volume: 59
  start-page: 89
  year: 2008
  ident: ref_64
  article-title: Chlorophyll fluorescence: A probe of photosynthesis in vivo
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092759
– volume: 3
  start-page: 1627
  year: 2000
  ident: ref_11
  article-title: Salt-tolerance of Wheat (Triticum aestivum L.) Genotypes: A Lysimeter Study
  publication-title: Pak. J. Biol. Sci.
  doi: 10.3923/pjbs.2000.1627.1629
– volume: 55
  start-page: 1607
  year: 2004
  ident: ref_50
  article-title: Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erh196
– volume: 4
  start-page: 34
  year: 2010
  ident: ref_31
  article-title: Registration of ‘S-24’Spring Wheat with Improved Salt Tolerance
  publication-title: J. Plant Regis.
  doi: 10.3198/jpr2008.05.0252crc
– volume: 165
  start-page: 1455
  year: 2008
  ident: ref_42
  article-title: Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2008.01.001
– volume: 43
  start-page: 2693
  year: 2011
  ident: ref_26
  article-title: Assessment of salt tolerance of some newly developed and candidate wheat (Triticum aestivum L.) cultivars using gas exchange and chlorophyll fluorescence attributes
  publication-title: Pak. J. Bot.
– volume: 48
  start-page: 16
  year: 2010
  ident: ref_46
  article-title: Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2009.10.006
SSID ssj0000913807
Score 2.5612495
Snippet Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1193
SubjectTerms Abiotic stress
Agricultural production
Agriculture
agronomy
Cereals
Chlorophyll
chlorophyll fluorescence
Conductance
Crop growth
Fluorescence
Gene expression
Genetic improvement
Genetic resources
Genotypes
Germplasm
growth performance
Growth rate
Leaves
Morphology
Na+ efflux
Photosystem II
Physiological effects
Physiology
Plant growth
Rain
Resistance
Salinity
Salinity effects
Salinity tolerance
Salt
salt stress
salt tolerance
salt tolerant
Salts
seedling growth
Seedlings
Spring
Spring wheat
Stomata
Stomatal conductance
Triticum aestivum
Water shortages
Wheat
Winter wheat
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA_iSQ_iJ1anRPDioaxNmrQ5TnEMYV42cbeSJukQpJWtO_jf-17ajaGgF69tAuG95H3k5fd7hNxaYxEaIMNERTZMpNBhVoostJopGzGbRinincfPcvSSPM3EbKvVF74Ja-mBW8H1XamEKUTGjIAsTuvMlY5ziUToKnLcQ_fA520lU94GqxiZ1Nu6JIe8vq_nC48SiDEH8nXmLT_k6fp_WGPvYoaH5KCLDemgXdMR2XHVMdkfzBcdP4Y7IeOWbZjWJZ1oBDU2n3Ti4R60rqh_zrm2ZrQFDizpW0VfkRViQXVlaXuTR70RPiXT4eP0YRR2HRFCk8SsCTV2qZAl1iK5geCFx7wAnw67IUOWGwgfrEOXE4vUIPEf5BtpYQ1kcUoxyfkZ2a3qyp0TWhaihOwUcaVpYpkoYDYcx1hGhlupVED6a_HkpmMLx6YV7zlkDSjQ_LtAA3K3mfHRMmX8MvYeJb4ZhxzX_gNoPu80n_-l-YD01vrKu4O3zD3jmmSJlAG52fyGI4N1EF25egVjJMe4TKbs4j_WcUn2GD508VczPbLbLFbuCiKVprj2m_ILRHrj1A
  priority: 102
  providerName: Directory of Open Access Journals
Title Effect of Salinity Stress on Physiological Changes in Winter and Spring Wheat
URI https://www.proquest.com/docview/2544562466
https://www.proquest.com/docview/2636399672
https://doaj.org/article/ef95cb582c5742aa8efe336483790e39
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XfQgfuJ0SgQvHsrapEnbk2ziEMEhfqC3kibpEKTVbh78730vzaYoeG2TUpK8j997eb9HyKnRBksDZBBnoQliKVSQliINjGKZCZlJwgTrnW8m8uoxvn4Wzz7gNvPXKhc60SlqU2uMkQ8clZZksZTnb-8Bdo3C7KpvobFKuqCC07RDuqPLye3dMsqCrJdpmLT5SQ74fqCmjasWiBALuXzzD3vkaPv_aGVnasabZMP7iHTYbuoWWbHVNlkfThvPk2F3yE3LOkzrkt4rLG6cf9J7V_ZB64q6a50LrUbbAoIZfanoE7JDNFRVhrYRPeqU8S55GF8-XFwFvjNCoOOIzQOF3SpkiTlJrsGJ4REvwLbDqUiR7QbcCGPR9EQi0UgACLgjKYwGNJdlTHK-RzpVXdl9QstClIBSsb40iQ0TBcwGsYxkqLmRWdYjg8Xy5NqzhmPzitcc0AMuaP57QXvkbDnjrWXM-GfsCFd8OQ65rt2DupnmXnRyW2ZCFyJlWgCOVyq1peVcIhV-FloOv9hf7FfuBXCWfx-XHjlZvgbRwXyIqmz9AWMkR_9MJuzg_08ckjWGV1lc8KVPOvPmwx6BLzIvjv2BO3ZY_gvIud3P
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNwQJSHWCjFSHDgEG1ix058QKiFVlvaXSG6iN6sxHZWlVBSsluh_ij-IzNOsiCQeut140TZyXie_r4BeO2sI2iAilIduyhVsojySuaRK7h2MXdZnBHeeTZX06_pp3N5vgW_BiwMHascbGIw1K6xVCOfBCotxVOl3l_-iGhqFHVXhxEanVqc-OufmLKt3h1_xO_7hvOjw8WHadRPFYhsmvB1VNCkB1VRP09YDABEIkr0iyjRnJhi0AU7T2Y7kZkl8jyM2bPSWcyEtOaK6p9o8bdT_IN8BNsHh_PPXzZFHSLZzOOsa4cKoeNJsWwDOCGh1Cu0t_9yf2FKwH9OIHi2owdwvw9J2X6nQzuw5euHcG9_2fa0HP4RzDqSY9ZU7KwgLOX6mp0FlAlrahZOkQ5GlHV4hRW7qNk3IqNoWVE71hUQWbD9j2FxGyJ7AqO6qf1TYFUpK0yKCc6apY7LEu9GK5Co2AqntB7DZBCPsT1JOc3K-G4wWSGBmn8FOoa3mzsuO4KOG9YekMQ364haO_zQtEvT71TjKy1tKXNuZZbyosh95YVQxLyvYy_wFXeH72X6_b4yf7RzDK82l3GnUvulqH1zhWuUoHBQZfzZzY94CXemi9mpOT2enzyHu5xO0YS6zy6M1u2Vf4Fh0Lrc65WPgblldf8Nac0U5g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZhA6U9lPRFt3lUhfbQg1lbsiTrUErSZEmaZglNSnMTsiQvhWIn3g0hP63_rjOyvS0t5JarLRkzGs17viHkrXceWwNkkuvUJ7kUNikqUSTeMu1T5lWqsN_5ZCYPv-WfL8TFGvk19MJgWeUgE6Og9o3DGPkkQmlJlks5qfqyiNP96cfLqwQnSGGmdRin0bHIcbi9Afdt8eFoH876HWPTg_NPh0k_YSBxecaWicWpD7LC3B53YAzwjJegI4G6BaLGgDr2AUV4JpRDID2w31XpHXhFWjOJsVCQ_usKnaIRWd87mJ1-XQV4EHCzSFWXGuVcpxM7b2OjQoZuWEx1_6UK48SA_xRC1HLTDfK4N0_pbsdPT8haqJ-SR7vztofoCM_ISQd4TJuKnlnsq1ze0rPYcUKbmsaK0kGg0q53YUF_1PQ7AlO01NaedsFEGvXAc3J-HyR7QUZ1U4eXhFalqMBBxtZWlXsmStgNEiGTqeNeaj0mk4E8xvWA5Tg346cBxwUJav4l6Ji8X-247MA67li7hxRfrUOY7figaeemv7UmVFq4UhTMCZUza4tQBc4lovDrNHD4xa3hvEx_9xfmD6eOyZvVa7i1mIqxdWiuYY3kaBpKxV7d_YnX5AGwuflyNDveJA8ZFtTEENAWGS3b67ANFtGy3Ol5jxJzz9z-G2EeGRs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Salinity+Stress+on+Physiological+Changes+in+Winter+and+Spring+Wheat&rft.jtitle=Agronomy+%28Basel%29&rft.au=Saddiq%2C+Muhammad+Sohail&rft.au=Iqbal%2C+Shahid&rft.au=Hafeez%2C+Muhammad+Bilal&rft.au=Ibrahim%2C+Amir+M+H&rft.date=2021-06-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=11&rft.issue=6&rft_id=info:doi/10.3390%2Fagronomy11061193&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon