Effect of Salinity Stress on Physiological Changes in Winter and Spring Wheat
Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five spring and five winter w...
Saved in:
Published in | Agronomy (Basel) Vol. 11; no. 6; p. 1193 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five spring and five winter wheat genotypes seedlings. We evaluated the salt stress on root and shoot growth attributes, i.e., root length (RL), shoot length (SL), the relative growth rate of root length (RGR-RL), and shoot length (RGR-SL). The ionic content of the leaves was also measured. Physiological traits were also assessed, including stomatal conductance (gs), chlorophyll content index (CCI), and light-adapted leaf chlorophyll fluorescence, i.e., the quantum yield of photosystem II (Fv′/Fm′) and instantaneous chlorophyll fluorescence (Ft). Physiological and growth performance under salt stress (0, 100, and 200 mol/L) were explored at the seedling stage. The analysis showed that spring wheat accumulated low Na+ and high K+ in leaf blades compared with winter wheat. Among the genotypes, Sakha 8, S-24, W4909, and W4910 performed better and had improved physiological attributes (gs, Fv′/Fm′, and Ft) and seedling growth traits (RL, SL, RGR-SL, and RGR-RL), which were strongly linked with proper Na+ and K+ discrimination in leaves and the CCI in leaves. The identified genotypes could represent valuable resources for genetic improvement programs to provide a greater understanding of plant tolerance to salt stress. |
---|---|
AbstractList | Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five spring and five winter wheat genotypes seedlings. We evaluated the salt stress on root and shoot growth attributes, i.e., root length (RL), shoot length (SL), the relative growth rate of root length (RGR-RL), and shoot length (RGR-SL). The ionic content of the leaves was also measured. Physiological traits were also assessed, including stomatal conductance (gs), chlorophyll content index (CCI), and light-adapted leaf chlorophyll fluorescence, i.e., the quantum yield of photosystem II (Fv′/Fm′) and instantaneous chlorophyll fluorescence (Ft). Physiological and growth performance under salt stress (0, 100, and 200 mol/L) were explored at the seedling stage. The analysis showed that spring wheat accumulated low Na+ and high K+ in leaf blades compared with winter wheat. Among the genotypes, Sakha 8, S-24, W4909, and W4910 performed better and had improved physiological attributes (gs, Fv′/Fm′, and Ft) and seedling growth traits (RL, SL, RGR-SL, and RGR-RL), which were strongly linked with proper Na+ and K+ discrimination in leaves and the CCI in leaves. The identified genotypes could represent valuable resources for genetic improvement programs to provide a greater understanding of plant tolerance to salt stress. Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five spring and five winter wheat genotypes seedlings. We evaluated the salt stress on root and shoot growth attributes, i.e., root length (RL), shoot length (SL), the relative growth rate of root length (RGR-RL), and shoot length (RGR-SL). The ionic content of the leaves was also measured. Physiological traits were also assessed, including stomatal conductance (gs), chlorophyll content index (CCI), and light-adapted leaf chlorophyll fluorescence, i.e., the quantum yield of photosystem II (Fv′/Fm′) and instantaneous chlorophyll fluorescence (Ft). Physiological and growth performance under salt stress (0, 100, and 200 mol/L) were explored at the seedling stage. The analysis showed that spring wheat accumulated low Na+ and high K+ in leaf blades compared with winter wheat. Among the genotypes, Sakha 8, S-24, W4909, and W4910 performed better and had improved physiological attributes (gs, Fv′/Fm′, and Ft) and seedling growth traits (RL, SL, RGR-SL, and RGR-RL), which were strongly linked with proper Na⁺ and K⁺ discrimination in leaves and the CCI in leaves. The identified genotypes could represent valuable resources for genetic improvement programs to provide a greater understanding of plant tolerance to salt stress. |
Author | Jahanzaib Raza, Ali Fatima, Esha Mehik Ciarmiello, Loredana Filomena Ibrahim, Amir M. H. Baloch, Heer Woodrow, Pasqualina Saddiq, Muhammad Sohail Iqbal, Shahid Hafeez, Muhammad Bilal |
Author_xml | – sequence: 1 givenname: Muhammad Sohail surname: Saddiq fullname: Saddiq, Muhammad Sohail – sequence: 2 givenname: Shahid surname: Iqbal fullname: Iqbal, Shahid – sequence: 3 givenname: Muhammad Bilal orcidid: 0000-0001-6719-6667 surname: Hafeez fullname: Hafeez, Muhammad Bilal – sequence: 4 givenname: Amir M. H. surname: Ibrahim fullname: Ibrahim, Amir M. H. – sequence: 5 givenname: Ali orcidid: 0000-0002-5120-2791 surname: Raza fullname: Raza, Ali – sequence: 6 givenname: Esha Mehik surname: Fatima fullname: Fatima, Esha Mehik – sequence: 7 givenname: Heer surname: Baloch fullname: Baloch, Heer – sequence: 8 surname: Jahanzaib fullname: Jahanzaib – sequence: 9 givenname: Pasqualina orcidid: 0000-0002-5475-409X surname: Woodrow fullname: Woodrow, Pasqualina – sequence: 10 givenname: Loredana Filomena orcidid: 0000-0002-4420-019X surname: Ciarmiello fullname: Ciarmiello, Loredana Filomena |
BookMark | eNp1UU1rGzEQXUoCSZPccxT00otbSSNpV8di0jSQ0oIDOYqxdnYts5ZSST7432dbtxAMncsMw_vg8d43ZzFFappbwT8BWP4Zx5xi2h2E4EYIC--aS8lbWCiw-uzNfdHclLLl81gBHW8vm-93w0C-sjSwFU4hhnpgq5qpFJYi-7k5lJCmNAaPE1tuMI5UWIjsOcRKmWHs2eolhziy5w1hvW7OB5wK3fzdV83T17un5bfF44_7h-WXx4VXQtYFCtBgBqWlBi81BwFr3gnCvrPGGm5MTx0XUujWK8WVFG277r3olLXSAFw1D0fZPuHWzf47zAeXMLg_j5RHh7kGP5GjwWq_1p30ulUSsaOBAIzqoLWcwM5aH49aLzn92lOpbheKp2nCSGlf3OxnwFrTyhn64QS6Tfsc56BOaqW0kcqYGWWOKJ9TKZkG50PFGlKsGcPkBHe_O3Onnc1EfkL8l-y_lFfNWJox |
CitedBy_id | crossref_primary_10_1016_j_jplph_2025_154448 crossref_primary_10_12688_openreseurope_15821_1 crossref_primary_10_12688_openreseurope_15821_3 crossref_primary_10_12688_openreseurope_15821_2 crossref_primary_10_31590_ejosat_1188665 crossref_primary_10_1007_s11356_023_30364_4 crossref_primary_10_1016_j_rhisph_2023_100792 crossref_primary_10_1007_s11033_022_07681_x crossref_primary_10_3390_su14126973 crossref_primary_10_1016_j_cpb_2024_100334 crossref_primary_10_1016_j_sajb_2022_03_050 crossref_primary_10_3390_horticulturae10040388 crossref_primary_10_1007_s00425_022_04023_w crossref_primary_10_1590_1807_1929_agriambi_v29n4e287913 crossref_primary_10_1007_s42729_025_02383_2 crossref_primary_10_1016_j_cj_2024_01_005 crossref_primary_10_1007_s44187_022_00027_3 crossref_primary_10_1016_j_plaphy_2022_03_003 crossref_primary_10_1038_s41598_022_18481_5 crossref_primary_10_1088_1748_9326_ad9bcd crossref_primary_10_1007_s00344_023_11070_4 crossref_primary_10_1007_s11101_024_10057_7 crossref_primary_10_1590_1519_6984_268350 crossref_primary_10_1007_s42729_022_00921_w crossref_primary_10_1016_j_heliyon_2024_e37160 crossref_primary_10_26898_0370_8799_2022_6_2 crossref_primary_10_3390_d15040481 crossref_primary_10_3390_ijms231911386 crossref_primary_10_3390_microorganisms10010150 crossref_primary_10_3390_ijms242316878 crossref_primary_10_1007_s42729_024_02104_1 crossref_primary_10_1016_j_stress_2021_100029 crossref_primary_10_1111_plb_13368 crossref_primary_10_12688_openreseurope_15821_4 crossref_primary_10_1007_s10725_022_00820_1 crossref_primary_10_1016_j_sjbs_2022_01_028 crossref_primary_10_3390_ijms252413297 crossref_primary_10_32604_biocell_2023_023704 crossref_primary_10_1016_j_envexpbot_2024_106033 crossref_primary_10_3389_fpls_2022_990541 crossref_primary_10_1007_s10725_025_01304_8 crossref_primary_10_3390_genes13071112 crossref_primary_10_3390_microorganisms12102023 crossref_primary_10_3390_horticulturae8100868 crossref_primary_10_29133_yyutbd_1539560 crossref_primary_10_1038_s41598_022_09519_9 crossref_primary_10_1590_1983_40632021v5167663 crossref_primary_10_3390_rs15153772 crossref_primary_10_1007_s10343_022_00774_4 crossref_primary_10_3390_plants13091179 crossref_primary_10_36790_epistemus_v16i33_285 crossref_primary_10_7717_peerj_15684 crossref_primary_10_1016_j_eti_2022_102799 crossref_primary_10_1038_s41598_024_72614_6 crossref_primary_10_1080_00103624_2025_2475976 crossref_primary_10_7717_peerj_16256 crossref_primary_10_1080_15592324_2023_2189371 crossref_primary_10_1007_s42729_025_02354_7 crossref_primary_10_31083_j_fbl2904150 crossref_primary_10_1007_s00344_023_10974_5 crossref_primary_10_32604_phyton_2022_017365 crossref_primary_10_1590_s1678_3921_pab2023_v58_03131 crossref_primary_10_5586_aa_764 crossref_primary_10_7717_peerj_14621 crossref_primary_10_1371_journal_pone_0267127 crossref_primary_10_3390_genes15050573 crossref_primary_10_3390_agronomy12030598 crossref_primary_10_1186_s12870_025_06078_9 crossref_primary_10_26898_0370_8799_2023_12_3 crossref_primary_10_1186_s13007_023_01107_w crossref_primary_10_1007_s00344_022_10826_8 crossref_primary_10_54021_seesv5n2_747 crossref_primary_10_1016_j_sajb_2023_02_040 crossref_primary_10_3390_agriculture13030734 crossref_primary_10_3390_horticulturae10060598 crossref_primary_10_1016_j_heliyon_2024_e29042 crossref_primary_10_1016_j_ejar_2025_02_006 crossref_primary_10_1007_s10343_022_00759_3 crossref_primary_10_3390_stresses3010027 crossref_primary_10_1111_jac_12587 crossref_primary_10_1016_j_scienta_2024_112919 crossref_primary_10_3390_ijms26062570 crossref_primary_10_1038_s41598_023_36018_2 crossref_primary_10_3390_metabo14090470 crossref_primary_10_1038_s41598_024_66677_8 crossref_primary_10_4103_epj_epj_132_23 crossref_primary_10_3390_plants12152783 crossref_primary_10_1038_s41598_024_70917_2 crossref_primary_10_1007_s42976_023_00374_6 crossref_primary_10_3390_ijms23168909 crossref_primary_10_3389_fpls_2023_1163451 crossref_primary_10_3390_horticulturae7120566 crossref_primary_10_1590_1677_941x_abb_2023_0243 crossref_primary_10_1038_s41598_023_49629_6 crossref_primary_10_1088_1755_1315_1182_1_012042 crossref_primary_10_26898_0370_8799_2024_8_2 crossref_primary_10_3389_fpls_2022_946217 crossref_primary_10_3390_genes14051103 crossref_primary_10_1016_j_stress_2022_100128 crossref_primary_10_3390_life14111487 crossref_primary_10_1016_j_sajb_2023_05_016 crossref_primary_10_1007_s42729_023_01406_0 crossref_primary_10_3389_fpls_2022_987641 crossref_primary_10_3390_horticulturae8070568 crossref_primary_10_1002_sae2_12061 crossref_primary_10_1371_journal_pone_0258703 crossref_primary_10_3390_plants12142606 crossref_primary_10_5937_SelSem2301009M crossref_primary_10_3390_agronomy12112823 crossref_primary_10_1016_j_sajb_2023_08_059 crossref_primary_10_1007_s00344_021_10498_w crossref_primary_10_3390_jof8080785 crossref_primary_10_3390_microorganisms12081516 crossref_primary_10_3390_plants13192673 crossref_primary_10_1007_s10343_023_00929_x crossref_primary_10_1007_s10725_022_00949_z crossref_primary_10_1051_bioconf_20236701008 crossref_primary_10_3390_plants13192718 crossref_primary_10_1002_app_53742 crossref_primary_10_1016_j_indcrop_2023_117199 crossref_primary_10_1016_j_plaphy_2024_108973 crossref_primary_10_3390_agriculture13010081 crossref_primary_10_1007_s12517_022_10485_9 crossref_primary_10_1590_1807_1929_agriambi_v27n6p472_479 crossref_primary_10_1007_s10265_021_01356_7 crossref_primary_10_3390_cells11071141 crossref_primary_10_1590_1677_941x_abb_2023_0222 crossref_primary_10_15406_jbmoa_2025_13_00389 crossref_primary_10_3389_fpls_2024_1396498 crossref_primary_10_1051_e3sconf_202339001011 crossref_primary_10_1002_pei3_70008 crossref_primary_10_1080_11263504_2024_2384972 crossref_primary_10_3390_ijms25095055 crossref_primary_10_3390_life12101530 crossref_primary_10_1007_s42729_023_01436_8 |
Cites_doi | 10.1007/s11032-016-0451-5 10.1080/01904167.2019.1609509 10.1016/j.envexpbot.2015.06.003 10.1016/j.plaphy.2019.02.004 10.1080/01904167.2018.1452939 10.1111/ppl.12165 10.1080/01904167.2019.1676907 10.1016/j.scitotenv.2021.146466 10.1186/1999-3110-55-35 10.1270/jsbbs.59.671 10.3390/su13094799 10.1016/B978-0-12-819382-2.00022-3 10.1007/978-3-319-96190-3_2 10.3390/plants9101324 10.1071/AR03032 10.1016/j.rse.2019.111553 10.1007/s00344-020-10231-z 10.1007/978-981-15-6345-4_3 10.1016/S0378-3774(00)00146-3 10.17221/392-PSE 10.1007/s12571-013-0263-y 10.1016/j.scienta.2018.11.021 10.1080/03650340.2017.1346373 10.1038/s41598-019-55889-y 10.1016/j.plaphy.2020.09.038 10.1111/nph.13757 10.1590/1678-4324-2020200072 10.1016/j.plaphy.2012.05.012 10.1016/j.sjbs.2020.06.030 10.1111/jac.12178 10.1111/j.1744-7348.1991.tb04858.x 10.1111/jac.12290 10.1104/pp.106.086538 10.1093/jxb/err003 10.1016/j.plaphy.2019.06.010 10.1016/B978-0-12-800876-8.00017-5 10.1007/s12892-017-0037-0 10.3390/antiox9080681 10.1007/s11738-019-3004-9 10.1016/j.jplph.2006.05.010 10.1146/annurev.arplant.59.032607.092911 10.1104/pp.123.3.1047 10.1007/s10265-020-01196-x 10.1023/B:PRES.0000015391.99477.0d 10.1007/978-94-007-2220-0_9 10.1007/s12571-013-0248-x 10.1023/A:1024553303144 10.1111/j.1365-3040.2007.01726.x 10.1111/ppl.12513 10.1186/s12870-021-03236-7 10.1146/annurev.arplant.59.032607.092759 10.3923/pjbs.2000.1627.1629 10.1093/jxb/erh196 10.3198/jpr2008.05.0252crc 10.1016/j.jplph.2008.01.001 10.1016/j.plaphy.2009.10.006 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI 7S9 L.6 DOA |
DOI | 10.3390/agronomy11061193 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2073-4395 |
ExternalDocumentID | oai_doaj_org_article_ef95cb582c5742aa8efe336483790e39 10_3390_agronomy11061193 |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO KQ8 M0K MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PROAC PYCSY 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 ITC PUEGO |
ID | FETCH-LOGICAL-c412t-a13536f45253c250313b081ead89696066de8012157c44042177bdc184992633 |
IEDL.DBID | BENPR |
ISSN | 2073-4395 |
IngestDate | Wed Aug 27 01:30:45 EDT 2025 Thu Jul 10 19:23:19 EDT 2025 Mon Jun 30 11:21:09 EDT 2025 Thu Apr 24 23:11:03 EDT 2025 Tue Jul 01 03:20:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-a13536f45253c250313b081ead89696066de8012157c44042177bdc184992633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4420-019X 0000-0001-6719-6667 0000-0002-5475-409X 0000-0002-5120-2791 |
OpenAccessLink | https://www.proquest.com/docview/2544562466?pq-origsite=%requestingapplication% |
PQID | 2544562466 |
PQPubID | 2032440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ef95cb582c5742aa8efe336483790e39 proquest_miscellaneous_2636399672 proquest_journals_2544562466 crossref_citationtrail_10_3390_agronomy11061193 crossref_primary_10_3390_agronomy11061193 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agronomy (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Bulle (ref_38) 2016; 36 Baker (ref_50) 2004; 55 Viehweger (ref_8) 2014; 55 Justice (ref_20) 2020; 237 Slamka (ref_45) 2008; 54 ref_55 Shabala (ref_39) 2014; 151 ref_52 Elkelish (ref_35) 2019; 137 Husain (ref_47) 2003; 54 ref_59 Arfan (ref_49) 2007; 164 James (ref_36) 2006; 142 Brestic (ref_44) 2012; 57 Ashraf (ref_31) 2010; 4 ref_24 Oyiga (ref_23) 2016; 202 Genc (ref_29) 2007; 30 Qiong (ref_43) 2016; 48 Alamri (ref_4) 2020; 157 ref_21 Zeng (ref_57) 2001; 48 Shavrukov (ref_61) 2009; 59 ref_62 Hoagland (ref_60) 1950; 347 Majeed (ref_33) 2019; 35 Saddiq (ref_40) 2019; 42 Fanizza (ref_63) 1991; 119 Baker (ref_64) 2008; 59 Li (ref_25) 2021; 21 Mehta (ref_46) 2010; 48 Bhusal (ref_2) 2019; 246 Javaid (ref_14) 2019; 141 Zahra (ref_13) 2018; 41 Kanwal (ref_26) 2011; 43 Mahboob (ref_34) 2018; 21 Salim (ref_12) 2020; 43 Nawaz (ref_51) 2010; 9 Geissler (ref_54) 2015; 118 Zheng (ref_42) 2008; 165 Shiferaw (ref_18) 2013; 5 James (ref_37) 2011; 62 Janmohammadi (ref_41) 2012; 25 Iqbal (ref_16) 2019; 205 Woodrow (ref_22) 2017; 159 Loutfy (ref_48) 2020; 133 Genc (ref_28) 2016; 210 Yadav (ref_15) 2020; 27 Chaves (ref_19) 2013; 5 Saddiq (ref_32) 2018; 64 Munns (ref_10) 2008; 59 Kramer (ref_65) 2004; 79 Ami (ref_17) 2020; 42 Allakhverdiev (ref_27) 2000; 123 Bhusal (ref_53) 2021; 779 Khaleghi (ref_56) 2019; 9 ref_1 ref_3 Bhutta (ref_30) 2010; 60 ref_9 Akhtar (ref_11) 2000; 3 Munns (ref_58) 2003; 253 ref_5 ref_7 ref_6 |
References_xml | – volume: 36 start-page: 36 year: 2016 ident: ref_38 article-title: Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene publication-title: Mol. Breed. doi: 10.1007/s11032-016-0451-5 – volume: 42 start-page: 1192 year: 2019 ident: ref_40 article-title: Mitigation of salinity stress in wheat (Triticum aestivum L.) seedlings through physiological seed enhancements publication-title: J. Plant Nutri. doi: 10.1080/01904167.2019.1609509 – volume: 118 start-page: 67 year: 2015 ident: ref_54 article-title: Elevated atmospheric CO2 concentration leads to different salt resistance mechanisms in a C3 (Chenopodium quinoa) and a C4 (Atriplex nummularia) halophyte publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2015.06.003 – volume: 137 start-page: 144 year: 2019 ident: ref_35 article-title: Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.02.004 – volume: 41 start-page: 1368 year: 2018 ident: ref_13 article-title: Salinity stress on various physiological and biochemical attributes of two distinct maize (Zea mays L.) genotypes publication-title: J. Plant Nutr. doi: 10.1080/01904167.2018.1452939 – volume: 151 start-page: 257 year: 2014 ident: ref_39 article-title: Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance publication-title: Physiol. Plant. doi: 10.1111/ppl.12165 – volume: 43 start-page: 297 year: 2020 ident: ref_12 article-title: Nutrient use efficiency (NUE) for sustainable wheat production: A review publication-title: J. Plant Nutri. doi: 10.1080/01904167.2019.1676907 – volume: 779 start-page: 146466 year: 2021 ident: ref_53 article-title: Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146466 – volume: 35 start-page: 1107 year: 2019 ident: ref_33 article-title: Comparison of Soil and Hydroponic Based Screening Process to Select Salt Tolerant Wheat Varieties publication-title: Sarhad J. Agric. – volume: 55 start-page: 1 year: 2014 ident: ref_8 article-title: How plants cope with heavy metals publication-title: Bot. Stud. doi: 10.1186/1999-3110-55-35 – volume: 59 start-page: 671 year: 2009 ident: ref_61 article-title: Salinity tolerance and sodium exclusion in genus Triticum publication-title: Breed. Sci. doi: 10.1270/jsbbs.59.671 – ident: ref_1 doi: 10.3390/su13094799 – ident: ref_5 doi: 10.1016/B978-0-12-819382-2.00022-3 – ident: ref_9 doi: 10.1007/978-3-319-96190-3_2 – ident: ref_59 doi: 10.3390/plants9101324 – volume: 54 start-page: 589 year: 2003 ident: ref_47 article-title: Effect of sodium exclusion trait on chlorophyll retention and growth of durum wheat in saline soil publication-title: Aust. J. Agric. Res. doi: 10.1071/AR03032 – volume: 48 start-page: 1775 year: 2016 ident: ref_43 article-title: Effects of salt stress on tillering nodes to the growth of winter wheat (Triticum aestivum L.) publication-title: Pak. J. Bot. – volume: 237 start-page: 111553 year: 2020 ident: ref_20 article-title: Strengthening agricultural decisions in countries at risk of food insecurity: The GEOGLAM Crop Monitor for Early Warning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111553 – ident: ref_6 doi: 10.1007/s00344-020-10231-z – ident: ref_24 doi: 10.1007/978-981-15-6345-4_3 – volume: 48 start-page: 191 year: 2001 ident: ref_57 article-title: Timing of salinity stress affects rice growth and yield components publication-title: Agric. Water Manag. doi: 10.1016/S0378-3774(00)00146-3 – volume: 54 start-page: 133 year: 2008 ident: ref_45 article-title: Performance index as a sensitive indicator of water stress in Triticum aestivum L. publication-title: Plant Soil Environ. doi: 10.17221/392-PSE – volume: 5 start-page: 291 year: 2013 ident: ref_18 article-title: Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security publication-title: Food Sec. doi: 10.1007/s12571-013-0263-y – ident: ref_62 – volume: 246 start-page: 535 year: 2019 ident: ref_2 article-title: Impact of drought stress on photosynthetic response, leaf water potential, and stem sap flow in two cultivars of bi-leader apple trees (Malus× domestica Borkh.) publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2018.11.021 – volume: 64 start-page: 272 year: 2018 ident: ref_32 article-title: Sodium exclusion is a reliable trait for the improvement of salinity tolerance in bread wheat publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2017.1346373 – volume: 9 start-page: 1 year: 2019 ident: ref_56 article-title: Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress publication-title: Sci. Rep. doi: 10.1038/s41598-019-55889-y – volume: 157 start-page: 47 year: 2020 ident: ref_4 article-title: Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.09.038 – volume: 210 start-page: 145 year: 2016 ident: ref_28 article-title: Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops publication-title: New Phytol. doi: 10.1111/nph.13757 – ident: ref_55 doi: 10.1590/1678-4324-2020200072 – volume: 60 start-page: 256 year: 2010 ident: ref_30 article-title: Genetic variability of salinity tolerance in spring wheat (Triticum aestivum L.) publication-title: Acta Agric. Scand. Section B Soil Plant Sci. – volume: 57 start-page: 93 year: 2012 ident: ref_44 article-title: Photosystem II thermostability in situ: Environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2012.05.012 – volume: 27 start-page: 2010 year: 2020 ident: ref_15 article-title: Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet-wheat publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2020.06.030 – volume: 202 start-page: 472 year: 2016 ident: ref_23 article-title: Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach publication-title: J. Agron. Crop Sci. doi: 10.1111/jac.12178 – volume: 25 start-page: 3 year: 2012 ident: ref_41 article-title: Impact of cold acclimation, de-acclimation and re-acclimation on carbohydrate content and antioxidant enzyme activities in spring and winter wheat publication-title: Icel. Agric. Sci. – volume: 119 start-page: 203 year: 1991 ident: ref_63 article-title: A non-destructive determination of leaf chlorophyll in Vitis vinifera publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.1991.tb04858.x – volume: 205 start-page: 13 year: 2019 ident: ref_16 article-title: Yield potential and salt tolerance of quinoa on salt-degraded soils of Pakistan publication-title: J. Agron. Crop Sci. doi: 10.1111/jac.12290 – volume: 142 start-page: 1537 year: 2006 ident: ref_36 article-title: Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2 publication-title: Plant Physiol. doi: 10.1104/pp.106.086538 – volume: 62 start-page: 2939 year: 2011 ident: ref_37 article-title: Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1; 4 and HKT1; 5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions publication-title: J. Exp. Bot. doi: 10.1093/jxb/err003 – volume: 141 start-page: 291 year: 2019 ident: ref_14 article-title: Silicon nutrition improves growth of salt-stressed wheat by modulating flows and partitioning of Na+, Cl− and mineral ions publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.06.010 – volume: 9 start-page: 5475 year: 2010 ident: ref_51 article-title: Fatality of salt stress to plants: Morphological, physiological and biochemical aspects publication-title: Afr. J. Biotechnol. – ident: ref_7 doi: 10.1016/B978-0-12-800876-8.00017-5 – volume: 21 start-page: 173 year: 2018 ident: ref_34 article-title: Using growth and ionic contents of wheat seedlings as rapid screening tool for salt tolerance publication-title: J. Crop Sci. Biotechnol. doi: 10.1007/s12892-017-0037-0 – ident: ref_52 doi: 10.3390/antiox9080681 – ident: ref_21 – volume: 42 start-page: 1 year: 2020 ident: ref_17 article-title: Different proline responses of two Algerian durum wheat cultivars to in vitro salt stress publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-019-3004-9 – volume: 164 start-page: 685 year: 2007 ident: ref_49 article-title: Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2006.05.010 – volume: 59 start-page: 651 year: 2008 ident: ref_10 article-title: Mechanisms of salinity tolerance publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092911 – volume: 123 start-page: 1047 year: 2000 ident: ref_27 article-title: Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. publication-title: Plant Physiol. doi: 10.1104/pp.123.3.1047 – volume: 133 start-page: 549 year: 2020 ident: ref_48 article-title: Modifications of water status, growth rate and antioxidant system in two wheat cultivars as affected by salinity stress and salicylic acid publication-title: J. Plant Res. doi: 10.1007/s10265-020-01196-x – volume: 79 start-page: 209 year: 2004 ident: ref_65 article-title: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes publication-title: Photosy Res. doi: 10.1023/B:PRES.0000015391.99477.0d – ident: ref_3 doi: 10.1007/978-94-007-2220-0_9 – volume: 347 start-page: 32 year: 1950 ident: ref_60 article-title: The water-culture method for growing plants without soil publication-title: Circ. Calif. Agric. Exp. Stn. – volume: 5 start-page: 157 year: 2013 ident: ref_19 article-title: The importance for food security of maintaining rust resistance in wheat publication-title: Food Sec. doi: 10.1007/s12571-013-0248-x – volume: 253 start-page: 201 year: 2003 ident: ref_58 article-title: Screening methods for salinity tolerance: A case study with tetraploid wheat publication-title: Plant Soil doi: 10.1023/A:1024553303144 – volume: 30 start-page: 1486 year: 2007 ident: ref_29 article-title: Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2007.01726.x – volume: 159 start-page: 290 year: 2017 ident: ref_22 article-title: Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism publication-title: Physiol. Plant. doi: 10.1111/ppl.12513 – volume: 21 start-page: 1 year: 2021 ident: ref_25 article-title: Heterologous expression of Arabidopsis thaliana rty gene in strawberry (Fragaria× ananassa Duch.) improves drought tolerance publication-title: BMC Plant Biol. doi: 10.1186/s12870-021-03236-7 – volume: 59 start-page: 89 year: 2008 ident: ref_64 article-title: Chlorophyll fluorescence: A probe of photosynthesis in vivo publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092759 – volume: 3 start-page: 1627 year: 2000 ident: ref_11 article-title: Salt-tolerance of Wheat (Triticum aestivum L.) Genotypes: A Lysimeter Study publication-title: Pak. J. Biol. Sci. doi: 10.3923/pjbs.2000.1627.1629 – volume: 55 start-page: 1607 year: 2004 ident: ref_50 article-title: Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities publication-title: J. Exp. Bot. doi: 10.1093/jxb/erh196 – volume: 4 start-page: 34 year: 2010 ident: ref_31 article-title: Registration of ‘S-24’Spring Wheat with Improved Salt Tolerance publication-title: J. Plant Regis. doi: 10.3198/jpr2008.05.0252crc – volume: 165 start-page: 1455 year: 2008 ident: ref_42 article-title: Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2008.01.001 – volume: 43 start-page: 2693 year: 2011 ident: ref_26 article-title: Assessment of salt tolerance of some newly developed and candidate wheat (Triticum aestivum L.) cultivars using gas exchange and chlorophyll fluorescence attributes publication-title: Pak. J. Bot. – volume: 48 start-page: 16 year: 2010 ident: ref_46 article-title: Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2009.10.006 |
SSID | ssj0000913807 |
Score | 2.5612495 |
Snippet | Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1193 |
SubjectTerms | Abiotic stress Agricultural production Agriculture agronomy Cereals Chlorophyll chlorophyll fluorescence Conductance Crop growth Fluorescence Gene expression Genetic improvement Genetic resources Genotypes Germplasm growth performance Growth rate Leaves Morphology Na+ efflux Photosystem II Physiological effects Physiology Plant growth Rain Resistance Salinity Salinity effects Salinity tolerance Salt salt stress salt tolerance salt tolerant Salts seedling growth Seedlings Spring Spring wheat Stomata Stomatal conductance Triticum aestivum Water shortages Wheat Winter wheat |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA_iSQ_iJ1anRPDioaxNmrQ5TnEMYV42cbeSJukQpJWtO_jf-17ajaGgF69tAuG95H3k5fd7hNxaYxEaIMNERTZMpNBhVoostJopGzGbRinincfPcvSSPM3EbKvVF74Ja-mBW8H1XamEKUTGjIAsTuvMlY5ziUToKnLcQ_fA520lU94GqxiZ1Nu6JIe8vq_nC48SiDEH8nXmLT_k6fp_WGPvYoaH5KCLDemgXdMR2XHVMdkfzBcdP4Y7IeOWbZjWJZ1oBDU2n3Ti4R60rqh_zrm2ZrQFDizpW0VfkRViQXVlaXuTR70RPiXT4eP0YRR2HRFCk8SsCTV2qZAl1iK5geCFx7wAnw67IUOWGwgfrEOXE4vUIPEf5BtpYQ1kcUoxyfkZ2a3qyp0TWhaihOwUcaVpYpkoYDYcx1hGhlupVED6a_HkpmMLx6YV7zlkDSjQ_LtAA3K3mfHRMmX8MvYeJb4ZhxzX_gNoPu80n_-l-YD01vrKu4O3zD3jmmSJlAG52fyGI4N1EF25egVjJMe4TKbs4j_WcUn2GD508VczPbLbLFbuCiKVprj2m_ILRHrj1A priority: 102 providerName: Directory of Open Access Journals |
Title | Effect of Salinity Stress on Physiological Changes in Winter and Spring Wheat |
URI | https://www.proquest.com/docview/2544562466 https://www.proquest.com/docview/2636399672 https://doaj.org/article/ef95cb582c5742aa8efe336483790e39 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XfQgfuJ0SgQvHsrapEnbk2ziEMEhfqC3kibpEKTVbh78730vzaYoeG2TUpK8j997eb9HyKnRBksDZBBnoQliKVSQliINjGKZCZlJwgTrnW8m8uoxvn4Wzz7gNvPXKhc60SlqU2uMkQ8clZZksZTnb-8Bdo3C7KpvobFKuqCC07RDuqPLye3dMsqCrJdpmLT5SQ74fqCmjasWiBALuXzzD3vkaPv_aGVnasabZMP7iHTYbuoWWbHVNlkfThvPk2F3yE3LOkzrkt4rLG6cf9J7V_ZB64q6a50LrUbbAoIZfanoE7JDNFRVhrYRPeqU8S55GF8-XFwFvjNCoOOIzQOF3SpkiTlJrsGJ4REvwLbDqUiR7QbcCGPR9EQi0UgACLgjKYwGNJdlTHK-RzpVXdl9QstClIBSsb40iQ0TBcwGsYxkqLmRWdYjg8Xy5NqzhmPzitcc0AMuaP57QXvkbDnjrWXM-GfsCFd8OQ65rt2DupnmXnRyW2ZCFyJlWgCOVyq1peVcIhV-FloOv9hf7FfuBXCWfx-XHjlZvgbRwXyIqmz9AWMkR_9MJuzg_08ckjWGV1lc8KVPOvPmwx6BLzIvjv2BO3ZY_gvIud3P |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNwQJSHWCjFSHDgEG1ix058QKiFVlvaXSG6iN6sxHZWlVBSsluh_ij-IzNOsiCQeut140TZyXie_r4BeO2sI2iAilIduyhVsojySuaRK7h2MXdZnBHeeTZX06_pp3N5vgW_BiwMHascbGIw1K6xVCOfBCotxVOl3l_-iGhqFHVXhxEanVqc-OufmLKt3h1_xO_7hvOjw8WHadRPFYhsmvB1VNCkB1VRP09YDABEIkr0iyjRnJhi0AU7T2Y7kZkl8jyM2bPSWcyEtOaK6p9o8bdT_IN8BNsHh_PPXzZFHSLZzOOsa4cKoeNJsWwDOCGh1Cu0t_9yf2FKwH9OIHi2owdwvw9J2X6nQzuw5euHcG9_2fa0HP4RzDqSY9ZU7KwgLOX6mp0FlAlrahZOkQ5GlHV4hRW7qNk3IqNoWVE71hUQWbD9j2FxGyJ7AqO6qf1TYFUpK0yKCc6apY7LEu9GK5Co2AqntB7DZBCPsT1JOc3K-G4wWSGBmn8FOoa3mzsuO4KOG9YekMQ364haO_zQtEvT71TjKy1tKXNuZZbyosh95YVQxLyvYy_wFXeH72X6_b4yf7RzDK82l3GnUvulqH1zhWuUoHBQZfzZzY94CXemi9mpOT2enzyHu5xO0YS6zy6M1u2Vf4Fh0Lrc65WPgblldf8Nac0U5g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZhA6U9lPRFt3lUhfbQg1lbsiTrUErSZEmaZglNSnMTsiQvhWIn3g0hP63_rjOyvS0t5JarLRkzGs17viHkrXceWwNkkuvUJ7kUNikqUSTeMu1T5lWqsN_5ZCYPv-WfL8TFGvk19MJgWeUgE6Og9o3DGPkkQmlJlks5qfqyiNP96cfLqwQnSGGmdRin0bHIcbi9Afdt8eFoH876HWPTg_NPh0k_YSBxecaWicWpD7LC3B53YAzwjJegI4G6BaLGgDr2AUV4JpRDID2w31XpHXhFWjOJsVCQ_usKnaIRWd87mJ1-XQV4EHCzSFWXGuVcpxM7b2OjQoZuWEx1_6UK48SA_xRC1HLTDfK4N0_pbsdPT8haqJ-SR7vztofoCM_ISQd4TJuKnlnsq1ze0rPYcUKbmsaK0kGg0q53YUF_1PQ7AlO01NaedsFEGvXAc3J-HyR7QUZ1U4eXhFalqMBBxtZWlXsmStgNEiGTqeNeaj0mk4E8xvWA5Tg346cBxwUJav4l6Ji8X-247MA67li7hxRfrUOY7figaeemv7UmVFq4UhTMCZUza4tQBc4lovDrNHD4xa3hvEx_9xfmD6eOyZvVa7i1mIqxdWiuYY3kaBpKxV7d_YnX5AGwuflyNDveJA8ZFtTEENAWGS3b67ANFtGy3Ol5jxJzz9z-G2EeGRs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Salinity+Stress+on+Physiological+Changes+in+Winter+and+Spring+Wheat&rft.jtitle=Agronomy+%28Basel%29&rft.au=Saddiq%2C+Muhammad+Sohail&rft.au=Iqbal%2C+Shahid&rft.au=Hafeez%2C+Muhammad+Bilal&rft.au=Ibrahim%2C+Amir+M+H&rft.date=2021-06-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=11&rft.issue=6&rft_id=info:doi/10.3390%2Fagronomy11061193&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |