Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules
Although formamidinium-based lead iodide (PbI 2 ) perovskites have a favorable bandgap and good thermal stability, the difficulty in controlling nucleation makes it difficult to grow high-quality, large-area films compared with methylammonium counterparts. Bu et al. show that adding N -methyl-2-pyrr...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 372; no. 6548; pp. 1327 - 1332 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
The American Association for the Advancement of Science
18.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although formamidinium-based lead iodide (PbI
2
) perovskites have a favorable bandgap and good thermal stability, the difficulty in controlling nucleation makes it difficult to grow high-quality, large-area films compared with methylammonium counterparts. Bu
et al.
show that adding
N
-methyl-2-pyrrolidone to the perovskite precursors forms an adduct with PbI
2
that promotes the formation of the desired black α-phase at room temperature. The addition of potassium hexafluorophosphate eliminated hysteresis by passivating interfacial defects and promoted long-term thermal stability at 85°C in unencapsulated devices. Large-area modules (17 square centimeters) achieved power conversion efficiencies of 20.4%.
Science
, abh1035, this issue p.
1327
Added
N
-methylpyrrolidone inhibits nucleation and enables growth of large-area α-phase formamidinium-based perovskite films.
Upscaling efficient and stable perovskite layers is one of the most challenging issues in the commercialization of perovskite solar cells. Here, a lead halide–templated crystallization strategy is developed for printing formamidinium (FA)–cesium (Cs) lead triiodide perovskite films. High-quality large-area films are achieved through controlled nucleation and growth of a lead halide•
N
-methyl-2-pyrrolidone adduct that can react in situ with embedded FAI/CsI to directly form α-phase perovskite, sidestepping the phase transformation from δ-phase. A nonencapsulated device with 23% efficiency and excellent long-term thermal stability (at 85°C) in ambient air (~80% efficiency retention after 500 hours) is achieved with further addition of potassium hexafluorophosphate. The slot die–printed minimodules achieve champion efficiencies of 20.42% (certified efficiency 19.3%) and 19.54% with an active area of 17.1 and 65.0 square centimeters, respectively. |
---|---|
AbstractList | Although formamidinium-based lead iodide (PbI
2
) perovskites have a favorable bandgap and good thermal stability, the difficulty in controlling nucleation makes it difficult to grow high-quality, large-area films compared with methylammonium counterparts. Bu
et al.
show that adding
N
-methyl-2-pyrrolidone to the perovskite precursors forms an adduct with PbI
2
that promotes the formation of the desired black α-phase at room temperature. The addition of potassium hexafluorophosphate eliminated hysteresis by passivating interfacial defects and promoted long-term thermal stability at 85°C in unencapsulated devices. Large-area modules (17 square centimeters) achieved power conversion efficiencies of 20.4%.
Science
, abh1035, this issue p.
1327
Added
N
-methylpyrrolidone inhibits nucleation and enables growth of large-area α-phase formamidinium-based perovskite films.
Upscaling efficient and stable perovskite layers is one of the most challenging issues in the commercialization of perovskite solar cells. Here, a lead halide–templated crystallization strategy is developed for printing formamidinium (FA)–cesium (Cs) lead triiodide perovskite films. High-quality large-area films are achieved through controlled nucleation and growth of a lead halide•
N
-methyl-2-pyrrolidone adduct that can react in situ with embedded FAI/CsI to directly form α-phase perovskite, sidestepping the phase transformation from δ-phase. A nonencapsulated device with 23% efficiency and excellent long-term thermal stability (at 85°C) in ambient air (~80% efficiency retention after 500 hours) is achieved with further addition of potassium hexafluorophosphate. The slot die–printed minimodules achieve champion efficiencies of 20.42% (certified efficiency 19.3%) and 19.54% with an active area of 17.1 and 65.0 square centimeters, respectively. Upscaling efficient and stable perovskite layers is one of the most challenging issues in the commercialization of perovskite solar cells. Here, a lead halide-templated crystallization strategy is developed for printing formamidinium (FA)-cesium (Cs) lead triiodide perovskite films. High-quality large-area films are achieved through controlled nucleation and growth of a lead halide•N-methyl-2-pyrrolidone adduct that can react in situ with embedded FAI/CsI to directly form α-phase perovskite, sidestepping the phase transformation from δ-phase. A nonencapsulated device with 23% efficiency and excellent long-term thermal stability (at 85°C) in ambient air (~80% efficiency retention after 500 hours) is achieved with further addition of potassium hexafluorophosphate. The slot die-printed minimodules achieve champion efficiencies of 20.42% (certified efficiency 19.3%) and 19.54% with an active area of 17.1 and 65.0 square centimeters, respectively.Upscaling efficient and stable perovskite layers is one of the most challenging issues in the commercialization of perovskite solar cells. Here, a lead halide-templated crystallization strategy is developed for printing formamidinium (FA)-cesium (Cs) lead triiodide perovskite films. High-quality large-area films are achieved through controlled nucleation and growth of a lead halide•N-methyl-2-pyrrolidone adduct that can react in situ with embedded FAI/CsI to directly form α-phase perovskite, sidestepping the phase transformation from δ-phase. A nonencapsulated device with 23% efficiency and excellent long-term thermal stability (at 85°C) in ambient air (~80% efficiency retention after 500 hours) is achieved with further addition of potassium hexafluorophosphate. The slot die-printed minimodules achieve champion efficiencies of 20.42% (certified efficiency 19.3%) and 19.54% with an active area of 17.1 and 65.0 square centimeters, respectively. Suppressing nucleation over large areasAlthough formamidinium-based lead iodide (PbI2) perovskites have a favorable bandgap and good thermal stability, the difficulty in controlling nucleation makes it difficult to grow high-quality, large-area films compared with methylammonium counterparts. Bu et al. show that adding N-methyl-2-pyrrolidone to the perovskite precursors forms an adduct with PbI2 that promotes the formation of the desired black α-phase at room temperature. The addition of potassium hexafluorophosphate eliminated hysteresis by passivating interfacial defects and promoted long-term thermal stability at 85°C in unencapsulated devices. Large-area modules (17 square centimeters) achieved power conversion efficiencies of 20.4%.Science, abh1035, this issue p. 1327Upscaling efficient and stable perovskite layers is one of the most challenging issues in the commercialization of perovskite solar cells. Here, a lead halide–templated crystallization strategy is developed for printing formamidinium (FA)–cesium (Cs) lead triiodide perovskite films. High-quality large-area films are achieved through controlled nucleation and growth of a lead halide•N-methyl-2-pyrrolidone adduct that can react in situ with embedded FAI/CsI to directly form α-phase perovskite, sidestepping the phase transformation from δ-phase. A nonencapsulated device with 23% efficiency and excellent long-term thermal stability (at 85°C) in ambient air (~80% efficiency retention after 500 hours) is achieved with further addition of potassium hexafluorophosphate. The slot die–printed minimodules achieve champion efficiencies of 20.42% (certified efficiency 19.3%) and 19.54% with an active area of 17.1 and 65.0 square centimeters, respectively. |
Author | Lin, Zhipeng Bu, Tongle Huang, Fuzhi Li, Jing Li, Hengyi Huang, Wenchao Zhang, Xiao-Li Chang, Jingjing Wang, Chao Zhong, Jie Tian, Congcong Su, Jie Cheng, Yi-Bing Ono, Luis K. Lu, Jianfeng Qi, Yabing Tong, Guoqing Chai, Nianyao |
Author_xml | – sequence: 1 givenname: Tongle orcidid: 0000-0002-7309-9422 surname: Bu fullname: Bu, Tongle organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China., Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, PR China., Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan – sequence: 2 givenname: Jing surname: Li fullname: Li, Jing organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 3 givenname: Hengyi surname: Li fullname: Li, Hengyi organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 4 givenname: Congcong surname: Tian fullname: Tian, Congcong organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 5 givenname: Jie orcidid: 0000-0002-2132-1597 surname: Su fullname: Su, Jie organization: Xidian University, School of Microelectronics, State Key Discipline Lab of Wide Band Gap Semiconductor Technology, Shaanxi Joint Key Lab of Graphene, Advanced Interdisciplinary Research Center for Flexible Electronics, Xian 710071, PR China – sequence: 6 givenname: Guoqing orcidid: 0000-0002-9689-6061 surname: Tong fullname: Tong, Guoqing organization: Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan – sequence: 7 givenname: Luis K. orcidid: 0000-0003-3176-1876 surname: Ono fullname: Ono, Luis K. organization: Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan – sequence: 8 givenname: Chao surname: Wang fullname: Wang, Chao organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 9 givenname: Zhipeng surname: Lin fullname: Lin, Zhipeng organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 10 givenname: Nianyao orcidid: 0000-0002-5492-8985 surname: Chai fullname: Chai, Nianyao organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 11 givenname: Xiao-Li orcidid: 0000-0002-4226-7622 surname: Zhang fullname: Zhang, Xiao-Li organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China – sequence: 12 givenname: Jingjing orcidid: 0000-0003-3773-182X surname: Chang fullname: Chang, Jingjing organization: Xidian University, School of Microelectronics, State Key Discipline Lab of Wide Band Gap Semiconductor Technology, Shaanxi Joint Key Lab of Graphene, Advanced Interdisciplinary Research Center for Flexible Electronics, Xian 710071, PR China – sequence: 13 givenname: Jianfeng orcidid: 0000-0001-5586-4656 surname: Lu fullname: Lu, Jianfeng organization: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, PR China., State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 14 givenname: Jie orcidid: 0000-0003-4967-6987 surname: Zhong fullname: Zhong, Jie organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China., Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, PR China – sequence: 15 givenname: Wenchao orcidid: 0000-0003-4992-1727 surname: Huang fullname: Huang, Wenchao organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China – sequence: 16 givenname: Yabing orcidid: 0000-0002-4876-8049 surname: Qi fullname: Qi, Yabing organization: Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan – sequence: 17 givenname: Yi-Bing orcidid: 0000-0003-0604-1965 surname: Cheng fullname: Cheng, Yi-Bing organization: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, PR China – sequence: 18 givenname: Fuzhi orcidid: 0000-0002-8635-9262 surname: Huang fullname: Huang, Fuzhi organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China., Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, PR China |
BookMark | eNp1kb1OwzAUhS0EEm1hZrXEwhLwX9J4RIg_qRILzNGNc6ManDjYbqUy8Q68IU9CSjshMd3hfOfo6J4pOex9j4SccXbJuSiuorHYG7yEesmZzA_IhDOdZ1oweUgmjMkiK9k8PybTGF8ZGzUtJ8QuEBq6BGcb_P78StgNDhI21IRNTOCc_YBkfU99SztMy42DzvaYtQGRDhj8Or7ZhLT1gWLb2m2JRIelT37tXQJraOeblcN4Qo5acBFP93dGXu5un28essXT_ePN9SIziouUaWRc1CWK0qhSMhCS67liuijmsp0D5BoVgzKvS8a1kRrqpi6lqpUWZmSlnJGLXe4Q_PsKY6o6Gw06Bz36VaxErqTKhZJb9PwP-upXoR_bbSkxRha6HKl8R5ngYwzYVsam36ekANZVnFXbAar9ANV-gNF39cc3BNtB2Pzr-AHTRY_u |
CitedBy_id | crossref_primary_10_1002_adfm_202425620 crossref_primary_10_1038_s41467_023_36229_1 crossref_primary_10_1002_pip_3741 crossref_primary_10_1016_j_nanoen_2024_110513 crossref_primary_10_1002_solr_202400176 crossref_primary_10_1038_s41560_023_01444_z crossref_primary_10_1038_s43246_024_00585_2 crossref_primary_10_1002_admt_202401834 crossref_primary_10_1021_acscentsci_2c00385 crossref_primary_10_1002_aenm_202403088 crossref_primary_10_1038_s41560_024_01680_x crossref_primary_10_1002_adfm_202309894 crossref_primary_10_1016_j_cej_2023_145707 crossref_primary_10_1021_acsaem_4c00874 crossref_primary_10_1016_j_cej_2025_161518 crossref_primary_10_1002_adfm_202307104 crossref_primary_10_1021_acsmaterialslett_3c00275 crossref_primary_10_1002_admt_202302082 crossref_primary_10_1002_solr_202101095 crossref_primary_10_1016_j_nanoen_2025_110905 crossref_primary_10_1039_D1SE01045J crossref_primary_10_1002_anie_202300265 crossref_primary_10_1016_j_nanoen_2024_109751 crossref_primary_10_1007_s11664_023_10242_y crossref_primary_10_1002_smtd_202402177 crossref_primary_10_1002_adfm_202201193 crossref_primary_10_1088_1361_6528_ac29d9 crossref_primary_10_1002_admt_202201387 crossref_primary_10_1002_adma_202401916 crossref_primary_10_1016_j_xcrp_2022_100827 crossref_primary_10_1002_adma_202302393 crossref_primary_10_1007_s11426_022_1445_2 crossref_primary_10_1039_D3CP02476H crossref_primary_10_1039_D4RA08786K crossref_primary_10_1021_acsenergylett_3c02426 crossref_primary_10_1039_D4EE01008F crossref_primary_10_1002_aenm_202203607 crossref_primary_10_1038_s41560_022_01076_9 crossref_primary_10_1002_aenm_202202880 crossref_primary_10_1002_solr_202200737 crossref_primary_10_1039_D3TC04591A crossref_primary_10_1002_smtd_202200669 crossref_primary_10_1021_acsenergylett_4c01095 crossref_primary_10_1002_anie_202419726 crossref_primary_10_1038_s41560_023_01358_w crossref_primary_10_1088_2752_5724_ac9248 crossref_primary_10_1002_solr_202400020 crossref_primary_10_1002_solr_202300438 crossref_primary_10_1016_j_joule_2022_07_008 crossref_primary_10_1002_aenm_202200111 crossref_primary_10_1016_j_cej_2022_136626 crossref_primary_10_23919_IEN_2024_0024 crossref_primary_10_1021_acs_nanolett_3c02444 crossref_primary_10_1088_1674_4926_42_10_101606 crossref_primary_10_1002_aenm_202400932 crossref_primary_10_1002_adma_202303384 crossref_primary_10_1016_j_apsusc_2022_155269 crossref_primary_10_1002_aenm_202304486 crossref_primary_10_1021_acsenergylett_3c00345 crossref_primary_10_1016_j_colsurfa_2023_132406 crossref_primary_10_1016_j_nxmate_2024_100283 crossref_primary_10_1002_ange_202419726 crossref_primary_10_1038_s41560_023_01249_0 crossref_primary_10_1002_adma_202200276 crossref_primary_10_1002_solr_202300890 crossref_primary_10_1039_D1EE01778K crossref_primary_10_1002_smll_202106632 crossref_primary_10_1002_smll_202301630 crossref_primary_10_1021_acsami_4c04706 crossref_primary_10_54097_hset_v27i_3805 crossref_primary_10_1126_sciadv_adr2290 crossref_primary_10_1002_aenm_202300153 crossref_primary_10_1016_j_mser_2023_100727 crossref_primary_10_1007_s40820_024_01408_2 crossref_primary_10_1021_acs_jpclett_3c02633 crossref_primary_10_1038_s41560_023_01205_y crossref_primary_10_1038_s41586_023_06208_z crossref_primary_10_1016_j_cej_2022_136644 crossref_primary_10_1002_adma_202200041 crossref_primary_10_1002_aenm_202203681 crossref_primary_10_1039_D2QM01147F crossref_primary_10_1016_j_jpcs_2024_112247 crossref_primary_10_1039_D2EE01634F crossref_primary_10_1002_adfm_202408480 crossref_primary_10_1016_j_joule_2023_10_019 crossref_primary_10_1002_adfm_202211900 crossref_primary_10_1002_adma_202304149 crossref_primary_10_1016_j_jmst_2024_05_069 crossref_primary_10_1021_acsenergylett_3c02617 crossref_primary_10_1093_bulcsj_uoaf018 crossref_primary_10_1002_aenm_202203649 crossref_primary_10_1002_adfm_202304262 crossref_primary_10_1038_s41566_023_01180_6 crossref_primary_10_1039_D2EE04045J crossref_primary_10_1021_acs_energyfuels_1c02175 crossref_primary_10_1039_D4EE00568F crossref_primary_10_1039_D4EE00229F crossref_primary_10_1002_aenm_202202680 crossref_primary_10_1002_solr_202200414 crossref_primary_10_1038_s41467_022_32047_z crossref_primary_10_1002_adma_202210186 crossref_primary_10_1021_acsami_3c17468 crossref_primary_10_1016_j_cej_2022_139808 crossref_primary_10_1002_adma_202107111 crossref_primary_10_1021_acsaom_3c00364 crossref_primary_10_1038_s41570_023_00492_z crossref_primary_10_1016_j_nanoen_2024_110402 crossref_primary_10_1002_aenm_202300491 crossref_primary_10_1021_acs_jpclett_1c03984 crossref_primary_10_1002_solr_202400184 crossref_primary_10_1002_smll_202403566 crossref_primary_10_2139_ssrn_3917207 crossref_primary_10_1021_acs_inorgchem_2c04316 crossref_primary_10_1002_anie_202315233 crossref_primary_10_1016_j_mtadv_2022_100277 crossref_primary_10_1093_nsr_nwad245 crossref_primary_10_1063_5_0064073 crossref_primary_10_1016_j_cej_2022_137515 crossref_primary_10_1002_adma_202210176 crossref_primary_10_1016_j_joule_2022_06_014 crossref_primary_10_1039_D2TC02632E crossref_primary_10_1016_j_nanoen_2024_109487 crossref_primary_10_1002_adfm_202404402 crossref_primary_10_1016_j_joule_2021_11_013 crossref_primary_10_26599_NRE_2022_9120024 crossref_primary_10_3390_catal13060953 crossref_primary_10_1002_adfm_202300552 crossref_primary_10_1002_smtd_202400948 crossref_primary_10_1002_adfm_202200029 crossref_primary_10_1002_adfm_202412389 crossref_primary_10_1016_j_apsusc_2024_161909 crossref_primary_10_1002_adom_202201741 crossref_primary_10_1021_acsenergylett_1c02768 crossref_primary_10_1007_s10854_022_09293_4 crossref_primary_10_1039_D4CC00111G crossref_primary_10_1038_s41377_024_01461_x crossref_primary_10_1039_D4SC07759H crossref_primary_10_1088_2515_7655_ace12c crossref_primary_10_1002_solr_202300187 crossref_primary_10_1038_s43246_024_00566_5 crossref_primary_10_3390_coatings11101184 crossref_primary_10_26599_NRE_2022_9120004 crossref_primary_10_1038_s41586_024_07226_1 crossref_primary_10_1039_D1EE02018H crossref_primary_10_1002_adfm_202418915 crossref_primary_10_1016_j_jechem_2022_05_042 crossref_primary_10_1038_s41467_023_36224_6 crossref_primary_10_1021_acs_langmuir_3c00637 crossref_primary_10_1002_adfm_202206703 crossref_primary_10_1002_adma_202309998 crossref_primary_10_1021_accountsmr_1c00154 crossref_primary_10_1002_lpor_202200871 crossref_primary_10_1021_acsami_2c10901 crossref_primary_10_1021_acsnano_2c02876 crossref_primary_10_1039_D4TC05093B crossref_primary_10_1039_D3TA07759D crossref_primary_10_1039_D4SE01321B crossref_primary_10_1002_inf2_12522 crossref_primary_10_1038_s41560_022_01058_x crossref_primary_10_1016_j_cej_2024_153422 crossref_primary_10_1002_solr_202301016 crossref_primary_10_1002_adfm_202210071 crossref_primary_10_1002_admi_202201497 crossref_primary_10_1002_adma_202307583 crossref_primary_10_1002_admi_202201259 crossref_primary_10_1002_ange_202501764 crossref_primary_10_1016_j_cej_2024_151228 crossref_primary_10_1016_j_jlumin_2022_118963 crossref_primary_10_1039_D4TC02231A crossref_primary_10_1021_acsenergylett_1c02338 crossref_primary_10_1039_D2EE04087E crossref_primary_10_3390_en17163896 crossref_primary_10_1002_solr_202300253 crossref_primary_10_1002_adma_202310651 crossref_primary_10_1002_aenm_202103019 crossref_primary_10_1016_j_joule_2023_09_009 crossref_primary_10_1002_cjoc_202300128 crossref_primary_10_1007_s44251_024_00054_5 crossref_primary_10_1021_acsami_1c23062 crossref_primary_10_1063_5_0097939 crossref_primary_10_1002_solr_202300370 crossref_primary_10_1007_s11664_022_09688_3 crossref_primary_10_1002_advs_202303992 crossref_primary_10_1021_acsenergylett_3c02357 crossref_primary_10_1007_s12209_022_00341_y crossref_primary_10_1002_adom_202402924 crossref_primary_10_1016_j_chempr_2021_11_004 crossref_primary_10_1002_advs_202206325 crossref_primary_10_1039_D4TA02248C crossref_primary_10_1002_admt_202302043 crossref_primary_10_1016_j_enrev_2022_100010 crossref_primary_10_1016_j_cclet_2022_107883 crossref_primary_10_1088_1674_4926_43_9_092201 crossref_primary_10_1016_j_solmat_2023_112278 crossref_primary_10_1002_anie_202300971 crossref_primary_10_1002_ente_202200544 crossref_primary_10_1038_s41467_024_54113_4 crossref_primary_10_1038_s41467_024_55075_3 crossref_primary_10_1002_adfm_202301956 crossref_primary_10_1002_aenm_202304302 crossref_primary_10_1002_ange_202300265 crossref_primary_10_1038_s41467_024_51762_3 crossref_primary_10_1002_admi_202200102 crossref_primary_10_1007_s40843_022_2437_9 crossref_primary_10_1021_accountsmr_4c00148 crossref_primary_10_1016_j_matt_2023_06_039 crossref_primary_10_1126_science_ade9463 crossref_primary_10_1002_adom_202202982 crossref_primary_10_1016_j_rineng_2023_101158 crossref_primary_10_1002_ente_202300295 crossref_primary_10_1016_j_cej_2024_159056 crossref_primary_10_1016_j_jechem_2023_08_041 crossref_primary_10_1002_aenm_202200417 crossref_primary_10_1002_admt_202302056 crossref_primary_10_1039_D4SE00914B crossref_primary_10_1246_bcsj_20220071 crossref_primary_10_1039_D2TA01096H crossref_primary_10_1002_solr_202300232 crossref_primary_10_35848_1347_4065_acc6d8 crossref_primary_10_1002_solr_202200816 crossref_primary_10_1007_s11426_024_2234_x crossref_primary_10_1002_adfm_202422266 crossref_primary_10_1002_adma_202309208 crossref_primary_10_1002_ange_202116308 crossref_primary_10_1088_1674_1056_ac693e crossref_primary_10_1002_ange_202411708 crossref_primary_10_1039_D3EE00413A crossref_primary_10_1002_solr_202300486 crossref_primary_10_1016_j_nantod_2021_101371 crossref_primary_10_1002_ange_202302342 crossref_primary_10_1039_D1QM00960E crossref_primary_10_1002_adma_202412021 crossref_primary_10_1002_smll_202301323 crossref_primary_10_1021_acsaem_2c00775 crossref_primary_10_1002_aesr_202200140 crossref_primary_10_1002_anie_202407192 crossref_primary_10_1002_solr_202100554 crossref_primary_10_1002_adfm_202316500 crossref_primary_10_3390_electronics11050700 crossref_primary_10_1016_j_apsusc_2022_154410 crossref_primary_10_1002_adma_202301852 crossref_primary_10_1002_smtd_202400428 crossref_primary_10_1016_j_electacta_2023_141985 crossref_primary_10_1016_j_nanoms_2025_02_005 crossref_primary_10_1016_j_joule_2023_05_020 crossref_primary_10_1002_solr_202201132 crossref_primary_10_1002_adma_202208522 crossref_primary_10_1016_j_mtener_2024_101540 crossref_primary_10_1039_D2SC01804G crossref_primary_10_1016_j_cej_2022_140894 crossref_primary_10_26599_NRE_2024_9120111 crossref_primary_10_1002_adfm_202310194 crossref_primary_10_1002_solr_202100683 crossref_primary_10_1002_anie_202112352 crossref_primary_10_1002_solr_202100545 crossref_primary_10_1002_aesr_202200133 crossref_primary_10_1007_s12274_023_6115_y crossref_primary_10_1002_anie_202410378 crossref_primary_10_1002_solr_202200297 crossref_primary_10_1016_j_nanoen_2024_110063 crossref_primary_10_1038_s41586_024_08073_w crossref_primary_10_1002_solr_202200053 crossref_primary_10_1002_adma_202307161 crossref_primary_10_1002_adma_202211806 crossref_primary_10_1002_smll_202404272 crossref_primary_10_1021_acs_chemrev_4c00073 crossref_primary_10_1002_smll_202208289 crossref_primary_10_1016_j_cej_2025_161173 crossref_primary_10_1002_adma_202413304 crossref_primary_10_1002_aesr_202200160 crossref_primary_10_1002_solr_202200060 crossref_primary_10_1016_j_solener_2024_112454 crossref_primary_10_1016_j_nanoen_2024_110296 crossref_primary_10_1002_adfm_202418792 crossref_primary_10_1002_advs_202204017 crossref_primary_10_1002_adma_202313860 crossref_primary_10_1002_aenm_202103236 crossref_primary_10_1016_j_joule_2024_06_008 crossref_primary_10_1016_j_nxmate_2023_100010 crossref_primary_10_1039_D4TC03961K crossref_primary_10_1002_adma_202410395 crossref_primary_10_1002_anie_202306229 crossref_primary_10_1088_2752_5724_ad37cf crossref_primary_10_1002_adma_202405921 crossref_primary_10_1002_solr_202400824 crossref_primary_10_1039_D2EE02227C crossref_primary_10_1557_s43579_024_00535_6 crossref_primary_10_1063_5_0142461 crossref_primary_10_1038_s41563_023_01711_0 crossref_primary_10_1088_1674_4926_24070017 crossref_primary_10_1002_adma_202413559 crossref_primary_10_1002_aenm_202302732 crossref_primary_10_1002_aesr_202200151 crossref_primary_10_1016_j_matt_2021_10_026 crossref_primary_10_1002_aenm_202301888 crossref_primary_10_1002_smtd_202400214 crossref_primary_10_1002_solr_202100767 crossref_primary_10_1039_D2CC06511H crossref_primary_10_1039_D4EE02251C crossref_primary_10_1016_j_cej_2021_131444 crossref_primary_10_1021_acsami_4c16316 crossref_primary_10_1016_j_jallcom_2023_169104 crossref_primary_10_1002_ange_202406167 crossref_primary_10_1002_smll_202404058 crossref_primary_10_1007_s42247_024_00796_w crossref_primary_10_1007_s11801_024_3194_2 crossref_primary_10_1002_advs_202410266 crossref_primary_10_1002_inf2_12369 crossref_primary_10_1002_solr_202201039 crossref_primary_10_1016_j_mtener_2023_101392 crossref_primary_10_1021_acs_jpclett_2c01506 crossref_primary_10_1126_science_adn9646 crossref_primary_10_1016_j_cej_2022_140566 crossref_primary_10_1002_ange_202306229 crossref_primary_10_1021_jacs_4c14955 crossref_primary_10_1021_acsami_3c05933 crossref_primary_10_1021_acs_jpclett_1c04241 crossref_primary_10_1038_s41467_025_57195_w crossref_primary_10_1002_ange_202315233 crossref_primary_10_1038_s43246_024_00643_9 crossref_primary_10_1002_adma_202304809 crossref_primary_10_3390_coatings14091113 crossref_primary_10_1016_j_mtener_2023_101343 crossref_primary_10_1016_j_joule_2022_02_003 crossref_primary_10_1039_D2TA08966A crossref_primary_10_1002_solr_202400521 crossref_primary_10_1039_D4TC00255E crossref_primary_10_1002_ange_202407192 crossref_primary_10_1021_acsenergylett_1c01878 crossref_primary_10_3390_molecules29204976 crossref_primary_10_1002_aenm_202402616 crossref_primary_10_1002_smll_202410865 crossref_primary_10_1016_j_mtener_2024_101757 crossref_primary_10_1039_D4EE01044B crossref_primary_10_1039_D3CP00514C crossref_primary_10_1088_1674_1056_ad23d5 crossref_primary_10_1126_science_ads0901 crossref_primary_10_1016_j_joule_2025_101825 crossref_primary_10_1016_j_cej_2023_143392 crossref_primary_10_1088_1742_6596_2749_1_012004 crossref_primary_10_1016_j_jcis_2023_09_032 crossref_primary_10_1039_D1TA06459B crossref_primary_10_1002_solr_202100455 crossref_primary_10_1002_solr_202400750 crossref_primary_10_1002_solr_202100458 crossref_primary_10_1088_2515_7639_acc893 crossref_primary_10_1039_D3EE00247K crossref_primary_10_1002_smll_202302383 crossref_primary_10_1039_D4EE01371A crossref_primary_10_1016_j_matre_2021_100060 crossref_primary_10_26599_EMD_2024_9370030 crossref_primary_10_1039_D3TA04666D crossref_primary_10_1021_acsphotonics_4c01330 crossref_primary_10_1002_smll_202207189 crossref_primary_10_1002_aenm_202302654 crossref_primary_10_1002_adma_202200705 crossref_primary_10_1021_acs_jpcc_4c01839 crossref_primary_10_1016_j_joule_2024_05_019 crossref_primary_10_1021_acsami_3c00358 crossref_primary_10_1039_D4RA05082G crossref_primary_10_1021_acs_jpclett_4c01997 crossref_primary_10_2139_ssrn_4046134 crossref_primary_10_1002_adma_202205027 crossref_primary_10_1038_s41467_024_50962_1 crossref_primary_10_1063_5_0061483 crossref_primary_10_1016_j_mtchem_2023_101729 crossref_primary_10_1038_s41467_025_57303_w crossref_primary_10_1002_ange_202112352 crossref_primary_10_1016_j_matlet_2024_136472 crossref_primary_10_1002_solr_202100710 crossref_primary_10_1021_acsenergylett_3c00656 crossref_primary_10_3389_fchem_2023_1341935 crossref_primary_10_1002_smll_202400985 crossref_primary_10_1021_acs_jpcc_4c00757 crossref_primary_10_1002_adma_202201840 crossref_primary_10_1016_j_eneco_2025_108423 crossref_primary_10_3390_molecules27217566 crossref_primary_10_1002_adma_202311145 crossref_primary_10_1016_j_joule_2025_101850 crossref_primary_10_1002_adfm_202215096 crossref_primary_10_1002_adfm_202404099 crossref_primary_10_1021_acsami_2c05085 crossref_primary_10_1039_D4EE05613B crossref_primary_10_2139_ssrn_4073011 crossref_primary_10_1002_ange_202300971 crossref_primary_10_1007_s40843_022_2277_9 crossref_primary_10_1016_j_jcis_2022_07_175 crossref_primary_10_1016_j_cej_2023_148133 crossref_primary_10_1038_s41893_023_01196_4 crossref_primary_10_1002_aenm_202300595 crossref_primary_10_1002_anie_202501764 crossref_primary_10_1002_smll_202302194 crossref_primary_10_1007_s40820_024_01406_4 crossref_primary_10_1002_smtd_202401244 crossref_primary_10_1002_aelm_202201222 crossref_primary_10_1002_advs_202202441 crossref_primary_10_1002_solr_202200571 crossref_primary_10_3390_pr11051450 crossref_primary_10_1002_adma_202313673 crossref_primary_10_23919_IEN_2023_0026 crossref_primary_10_1039_D1TA09705A crossref_primary_10_1039_D4EE01230E crossref_primary_10_1002_solr_202300860 crossref_primary_10_1021_acs_jpclett_2c00278 crossref_primary_10_1002_adfm_202401951 crossref_primary_10_1002_adma_202406296 crossref_primary_10_1007_s11426_022_1426_x crossref_primary_10_1016_j_jechem_2023_02_017 crossref_primary_10_1002_adfm_202206030 crossref_primary_10_1002_adma_202301115 crossref_primary_10_3390_nano13020249 crossref_primary_10_1002_anie_202406167 crossref_primary_10_1038_s41560_023_01288_7 crossref_primary_10_1002_adma_202406295 crossref_primary_10_1002_aenm_202203448 crossref_primary_10_1002_adma_202204098 crossref_primary_10_1039_D3TC01259J crossref_primary_10_1016_j_xcrp_2022_101170 crossref_primary_10_1016_j_mtphys_2021_100557 crossref_primary_10_1002_solr_202100923 crossref_primary_10_1364_AO_510980 crossref_primary_10_1002_solr_202200232 crossref_primary_10_1038_s41560_023_01254_3 crossref_primary_10_1002_aenm_202103652 crossref_primary_10_1002_solr_202200590 crossref_primary_10_1016_j_jssc_2024_124657 crossref_primary_10_1002_adfm_202401945 crossref_primary_10_1186_s40580_024_00464_z crossref_primary_10_1038_s41563_023_01705_y crossref_primary_10_1016_j_cej_2022_137676 crossref_primary_10_1039_D3NR06513H crossref_primary_10_1002_ange_202410378 crossref_primary_10_1021_acs_jpclett_2c00013 crossref_primary_10_1039_D4EE01147C crossref_primary_10_1016_j_cej_2023_148464 crossref_primary_10_1016_j_decarb_2023_100020 crossref_primary_10_1016_j_nanoen_2023_108990 crossref_primary_10_1002_admt_202200928 crossref_primary_10_1002_smll_202401877 crossref_primary_10_1002_solr_202100637 crossref_primary_10_1021_acsami_4c12718 crossref_primary_10_1038_s41560_022_01039_0 crossref_primary_10_1039_D2EE00966H crossref_primary_10_1002_solr_202300803 crossref_primary_10_1016_j_cej_2024_157212 crossref_primary_10_1038_s41560_024_01451_8 crossref_primary_10_1007_s10118_024_3156_y crossref_primary_10_1016_j_jechem_2024_05_012 crossref_primary_10_1016_j_cej_2024_156368 crossref_primary_10_1002_adma_202417289 crossref_primary_10_1016_j_nanoen_2023_108759 crossref_primary_10_1126_science_adn7930 crossref_primary_10_1038_s41586_023_06784_0 crossref_primary_10_1002_adfm_202404173 crossref_primary_10_1039_D1TC04101K crossref_primary_10_1002_adma_202408101 crossref_primary_10_1002_solr_202400365 crossref_primary_10_1039_D3SE00564J crossref_primary_10_1039_D4EE01552E crossref_primary_10_1021_acsaem_1c03042 crossref_primary_10_1002_adom_202301949 crossref_primary_10_1109_LED_2024_3404618 crossref_primary_10_1002_solr_202200134 crossref_primary_10_1002_solr_202300814 crossref_primary_10_1021_acsami_3c07286 crossref_primary_10_1002_anie_202411708 crossref_primary_10_1016_j_solmat_2022_111884 crossref_primary_10_1002_aenm_202102730 crossref_primary_10_1007_s12274_024_6639_9 crossref_primary_10_1088_1742_6596_2751_1_012016 crossref_primary_10_1002_smll_202205962 crossref_primary_10_1002_solr_202100973 crossref_primary_10_1039_D1TA10313J crossref_primary_10_1002_aelm_202300093 crossref_primary_10_1039_D4TC05165C crossref_primary_10_1002_solr_202200145 crossref_primary_10_1002_anie_202116308 crossref_primary_10_1016_j_jechem_2024_11_024 crossref_primary_10_1002_aenm_202401039 crossref_primary_10_3390_inorganics13010015 crossref_primary_10_1002_aenm_202402249 crossref_primary_10_1002_adma_202211317 crossref_primary_10_1002_aenm_202202287 crossref_primary_10_1016_j_nantod_2023_102133 crossref_primary_10_1002_aenm_202300537 crossref_primary_10_1002_eem2_12435 crossref_primary_10_1016_j_nanoen_2022_108014 crossref_primary_10_1002_anie_202302342 crossref_primary_10_1002_adfm_202107726 crossref_primary_10_1016_j_nanoen_2022_107394 crossref_primary_10_1002_solr_202100600 crossref_primary_10_1002_adma_202106540 crossref_primary_10_1002_smll_202401669 crossref_primary_10_1002_adfm_202417493 crossref_primary_10_1016_j_cej_2024_157303 crossref_primary_10_1016_j_joule_2022_10_015 crossref_primary_10_1126_science_abl4890 crossref_primary_10_1016_j_mtnano_2022_100252 crossref_primary_10_15541_jim20230448 crossref_primary_10_1016_j_apsusc_2022_155745 crossref_primary_10_1088_2752_5724_acba35 crossref_primary_10_1016_j_nanoen_2024_109933 crossref_primary_10_1039_D3DT02051G crossref_primary_10_1088_1361_6463_ad82f7 crossref_primary_10_1002_smll_202305127 crossref_primary_10_1021_acsami_1c23991 |
Cites_doi | 10.1039/C5EE03874J 10.1126/science.abb7167 10.1038/s41560-018-0192-2 10.1002/jcc.20495 10.1038/s41560-017-0060-5 10.1126/science.aaa5760 10.1126/science.aat3583 10.1002/adma.202004979 10.1002/anie.202005211 10.1126/science.1243982 10.1039/C9TA09101G 10.1002/anie.201405334 10.1021/jacs.5b04930 10.1021/acsenergylett.9b02720 10.1063/1.1329672 10.1016/j.joule.2020.04.013 10.1002/adma.201801948 10.1038/nenergy.2016.177 10.1039/C8TA03501F 10.1063/1.1323224 10.1002/adfm.201900964 10.1103/PhysRevB.50.17953 10.1126/sciadv.aax7537 10.1021/jacs.9b01305 10.1002/aenm.201903108 10.1002/adma.201905502 10.1038/s41467-018-06317-8 10.1103/PhysRev.140.A1133 10.1002/solr.201900263 10.1038/s41467-020-18940-5 10.1002/aenm.201500477 10.1016/j.joule.2020.03.005 10.1016/j.joule.2018.10.025 10.1126/science.aap9282 10.1103/PhysRevB.59.1758 10.1038/nature23877 10.1126/science.aba1628 10.1002/aenm.201803017 10.1038/s41560-018-0153-9 10.1016/j.nanoen.2014.08.015 10.1126/science.aaa2725 |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
DBID | AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abh1035 |
DatabaseName | CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1332 |
ExternalDocumentID | 10_1126_science_abh1035 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c412t-9e012b8e28c4830a231974096673f7aa59e40a85b8019c39abdb834b492c23133 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Jul 10 22:49:47 EDT 2025 Fri Jul 25 10:52:24 EDT 2025 Tue Jul 01 01:35:33 EDT 2025 Thu Apr 24 22:56:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6548 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c412t-9e012b8e28c4830a231974096673f7aa59e40a85b8019c39abdb834b492c23133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7309-9422 0000-0002-9689-6061 0000-0003-3176-1876 0000-0001-5586-4656 0000-0002-4876-8049 0000-0003-0604-1965 0000-0002-8635-9262 0000-0003-3773-182X 0000-0002-2132-1597 0000-0002-4226-7622 0000-0003-4992-1727 0000-0003-4967-6987 0000-0002-5492-8985 |
OpenAccessLink | http://id.nii.ac.jp/1394/00001984/ |
PQID | 2542492698 |
PQPubID | 1256 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2543452433 proquest_journals_2542492698 crossref_citationtrail_10_1126_science_abh1035 crossref_primary_10_1126_science_abh1035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-18 20210618 |
PublicationDateYYYYMMDD | 2021-06-18 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationYear | 2021 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 John P. (e_1_3_2_41_2) 2006; 27 |
References_xml | – ident: e_1_3_2_24_2 doi: 10.1039/C5EE03874J – ident: e_1_3_2_20_2 doi: 10.1126/science.abb7167 – ident: e_1_3_2_27_2 doi: 10.1038/s41560-018-0192-2 – ident: e_1_3_2_42_2 doi: 10.1002/jcc.20495 – ident: e_1_3_2_34_2 doi: 10.1038/s41560-017-0060-5 – ident: e_1_3_2_5_2 doi: 10.1126/science.aaa5760 – ident: e_1_3_2_17_2 doi: 10.1126/science.aat3583 – ident: e_1_3_2_21_2 doi: 10.1002/adma.202004979 – ident: e_1_3_2_28_2 doi: 10.1002/anie.202005211 – ident: e_1_3_2_3_2 doi: 10.1126/science.1243982 – ident: e_1_3_2_11_2 doi: 10.1039/C9TA09101G – volume: 27 start-page: 1787 year: 2006 ident: e_1_3_2_41_2 publication-title: Phys. Rev. Lett. – ident: e_1_3_2_7_2 doi: 10.1002/anie.201405334 – ident: e_1_3_2_22_2 doi: 10.1021/jacs.5b04930 – ident: e_1_3_2_32_2 doi: 10.1021/acsenergylett.9b02720 – ident: e_1_3_2_43_2 doi: 10.1063/1.1329672 – ident: e_1_3_2_26_2 doi: 10.1016/j.joule.2020.04.013 – ident: e_1_3_2_33_2 doi: 10.1002/adma.201801948 – ident: e_1_3_2_25_2 doi: 10.1038/nenergy.2016.177 – ident: e_1_3_2_16_2 doi: 10.1039/C8TA03501F – ident: e_1_3_2_44_2 doi: 10.1063/1.1323224 – ident: e_1_3_2_23_2 doi: 10.1002/adfm.201900964 – ident: e_1_3_2_40_2 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_3_2_10_2 doi: 10.1126/sciadv.aax7537 – ident: e_1_3_2_13_2 doi: 10.1021/jacs.9b01305 – ident: e_1_3_2_37_2 doi: 10.1002/aenm.201903108 – ident: e_1_3_2_19_2 doi: 10.1002/adma.201905502 – ident: e_1_3_2_31_2 doi: 10.1038/s41467-018-06317-8 – ident: e_1_3_2_38_2 doi: 10.1103/PhysRev.140.A1133 – ident: e_1_3_2_35_2 doi: 10.1002/solr.201900263 – ident: e_1_3_2_8_2 doi: 10.1038/s41467-020-18940-5 – ident: e_1_3_2_15_2 doi: 10.1002/aenm.201500477 – ident: e_1_3_2_36_2 doi: 10.1016/j.joule.2020.03.005 – ident: e_1_3_2_14_2 doi: 10.1016/j.joule.2018.10.025 – ident: e_1_3_2_29_2 doi: 10.1126/science.aap9282 – ident: e_1_3_2_39_2 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_3_2_9_2 doi: 10.1038/nature23877 – ident: e_1_3_2_18_2 doi: 10.1126/science.aba1628 – ident: e_1_3_2_30_2 doi: 10.1002/aenm.201803017 – ident: e_1_3_2_12_2 doi: 10.1038/s41560-018-0153-9 – ident: e_1_3_2_6_2 doi: 10.1016/j.nanoen.2014.08.015 – ident: e_1_3_2_4_2 doi: 10.1126/science.aaa2725 – ident: e_1_3_2_2_2 |
SSID | ssj0009593 |
Score | 2.7249784 |
Snippet | Although formamidinium-based lead iodide (PbI
2
) perovskites have a favorable bandgap and good thermal stability, the difficulty in controlling nucleation... Suppressing nucleation over large areasAlthough formamidinium-based lead iodide (PbI2) perovskites have a favorable bandgap and good thermal stability, the... Upscaling efficient and stable perovskite layers is one of the most challenging issues in the commercialization of perovskite solar cells. Here, a lead... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1327 |
SubjectTerms | Cesium Commercialization Control stability Crystal defects Crystallization Efficiency Energy conversion efficiency Interface stability Iodides Lead Lead compounds Metal halides Methylamine Modules N-Methyl-2-pyrrolidone Nucleation Perovskites Phase transitions Photovoltaic cells Photovoltaics Potassium Room temperature Solar cells Thermal stability |
Title | Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules |
URI | https://www.proquest.com/docview/2542492698 https://www.proquest.com/docview/2543452433 |
Volume | 372 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZCKyQuiBYQgYKMxKEcNtrY3r9jUqiiCji1Um8r2_GmkVa7VbKLFE68Aw_Eu_AkjNdex40aqXBZRY7tRJkvM9-MxzMIfSjAQctoLIKQ8TRgWVEEQsZFINOoM-eZ5Ppy8tdv8eyKXVxH14PBby9rqW3ESP64917J_0gVxkCu-pbsP0jWbQoD8BrkC0-QMDwfJGPdH1N3Q1nOVZ-0QHWtqZJrHilXG6B-ZWlvWpqTdJALYACoZVCslNJVi-vvax3BNbW_u4ISOj3g9qZualBdDV9K3S6nLW2yoSWyvU4AguoOfTxRu-zFickx6FMO7DIv_jBtO8jU1aJ0GPvSpRhc9FbVjcxUtdgsXbBhaYK3Z7AWvPqFH8AgXaKVr3NdTWRjkoweDnULSRJSX1HThHiI1A3vPc0LXnXiWXFwvcn9FsLraalGXNyMQxptjWGfALBjI13mYuczkTi3G-R2g0fokICfAor2cDL9ND3fW_fZVpfy7m313-EuMbrLCzqyc_kMPbVeCp4YyB2hgaqO0WPTt3RzjI6sGNf41JYt__gcLTUasUHjn5-_HA7xDg5xXeBdHOItDjEgBzscYh-H2OLwBbo6_3x5NgtsI49AsjFpgkwBDRKpIqlkKQ05-BTgxoLzHCe0SDiPMsVCnkYC6FImacbFXKSUCZYRCXMpfYkOqrpSrxAGOqWSOU8510Ed4PZEFdk4UTGRNOWxGKJR_yvm0la5181WynyP5Ibo1C24NQVe9k896cWSWy2wzknEuqKbWTpE793boKP1wRuvVN12cyiLCKP09cM_7Q16sv23nKCDZtWqt0CAG_HOguwv6IG5EA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lead+halide%E2%80%93templated+crystallization+of+methylamine-free+perovskite+for+efficient+photovoltaic+modules&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Bu%2C+Tongle&rft.au=Li%2C+Jing&rft.au=Li%2C+Hengyi&rft.au=Tian%2C+Congcong&rft.date=2021-06-18&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=372&rft.issue=6548&rft.spage=1327&rft.epage=1332&rft_id=info:doi/10.1126%2Fscience.abh1035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_abh1035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |