Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules

Although formamidinium-based lead iodide (PbI 2 ) perovskites have a favorable bandgap and good thermal stability, the difficulty in controlling nucleation makes it difficult to grow high-quality, large-area films compared with methylammonium counterparts. Bu et al. show that adding N -methyl-2-pyrr...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 372; no. 6548; pp. 1327 - 1332
Main Authors Bu, Tongle, Li, Jing, Li, Hengyi, Tian, Congcong, Su, Jie, Tong, Guoqing, Ono, Luis K., Wang, Chao, Lin, Zhipeng, Chai, Nianyao, Zhang, Xiao-Li, Chang, Jingjing, Lu, Jianfeng, Zhong, Jie, Huang, Wenchao, Qi, Yabing, Cheng, Yi-Bing, Huang, Fuzhi
Format Journal Article
LanguageEnglish
Published Washington The American Association for the Advancement of Science 18.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although formamidinium-based lead iodide (PbI 2 ) perovskites have a favorable bandgap and good thermal stability, the difficulty in controlling nucleation makes it difficult to grow high-quality, large-area films compared with methylammonium counterparts. Bu et al. show that adding N -methyl-2-pyrrolidone to the perovskite precursors forms an adduct with PbI 2 that promotes the formation of the desired black α-phase at room temperature. The addition of potassium hexafluorophosphate eliminated hysteresis by passivating interfacial defects and promoted long-term thermal stability at 85°C in unencapsulated devices. Large-area modules (17 square centimeters) achieved power conversion efficiencies of 20.4%. Science , abh1035, this issue p. 1327 Added N -methylpyrrolidone inhibits nucleation and enables growth of large-area α-phase formamidinium-based perovskite films. Upscaling efficient and stable perovskite layers is one of the most challenging issues in the commercialization of perovskite solar cells. Here, a lead halide–templated crystallization strategy is developed for printing formamidinium (FA)–cesium (Cs) lead triiodide perovskite films. High-quality large-area films are achieved through controlled nucleation and growth of a lead halide• N -methyl-2-pyrrolidone adduct that can react in situ with embedded FAI/CsI to directly form α-phase perovskite, sidestepping the phase transformation from δ-phase. A nonencapsulated device with 23% efficiency and excellent long-term thermal stability (at 85°C) in ambient air (~80% efficiency retention after 500 hours) is achieved with further addition of potassium hexafluorophosphate. The slot die–printed minimodules achieve champion efficiencies of 20.42% (certified efficiency 19.3%) and 19.54% with an active area of 17.1 and 65.0 square centimeters, respectively.
AbstractList Although formamidinium-based lead iodide (PbI 2 ) perovskites have a favorable bandgap and good thermal stability, the difficulty in controlling nucleation makes it difficult to grow high-quality, large-area films compared with methylammonium counterparts. Bu et al. show that adding N -methyl-2-pyrrolidone to the perovskite precursors forms an adduct with PbI 2 that promotes the formation of the desired black α-phase at room temperature. The addition of potassium hexafluorophosphate eliminated hysteresis by passivating interfacial defects and promoted long-term thermal stability at 85°C in unencapsulated devices. Large-area modules (17 square centimeters) achieved power conversion efficiencies of 20.4%. Science , abh1035, this issue p. 1327 Added N -methylpyrrolidone inhibits nucleation and enables growth of large-area α-phase formamidinium-based perovskite films. Upscaling efficient and stable perovskite layers is one of the most challenging issues in the commercialization of perovskite solar cells. Here, a lead halide–templated crystallization strategy is developed for printing formamidinium (FA)–cesium (Cs) lead triiodide perovskite films. High-quality large-area films are achieved through controlled nucleation and growth of a lead halide• N -methyl-2-pyrrolidone adduct that can react in situ with embedded FAI/CsI to directly form α-phase perovskite, sidestepping the phase transformation from δ-phase. A nonencapsulated device with 23% efficiency and excellent long-term thermal stability (at 85°C) in ambient air (~80% efficiency retention after 500 hours) is achieved with further addition of potassium hexafluorophosphate. The slot die–printed minimodules achieve champion efficiencies of 20.42% (certified efficiency 19.3%) and 19.54% with an active area of 17.1 and 65.0 square centimeters, respectively.
Upscaling efficient and stable perovskite layers is one of the most challenging issues in the commercialization of perovskite solar cells. Here, a lead halide-templated crystallization strategy is developed for printing formamidinium (FA)-cesium (Cs) lead triiodide perovskite films. High-quality large-area films are achieved through controlled nucleation and growth of a lead halide•N-methyl-2-pyrrolidone adduct that can react in situ with embedded FAI/CsI to directly form α-phase perovskite, sidestepping the phase transformation from δ-phase. A nonencapsulated device with 23% efficiency and excellent long-term thermal stability (at 85°C) in ambient air (~80% efficiency retention after 500 hours) is achieved with further addition of potassium hexafluorophosphate. The slot die-printed minimodules achieve champion efficiencies of 20.42% (certified efficiency 19.3%) and 19.54% with an active area of 17.1 and 65.0 square centimeters, respectively.Upscaling efficient and stable perovskite layers is one of the most challenging issues in the commercialization of perovskite solar cells. Here, a lead halide-templated crystallization strategy is developed for printing formamidinium (FA)-cesium (Cs) lead triiodide perovskite films. High-quality large-area films are achieved through controlled nucleation and growth of a lead halide•N-methyl-2-pyrrolidone adduct that can react in situ with embedded FAI/CsI to directly form α-phase perovskite, sidestepping the phase transformation from δ-phase. A nonencapsulated device with 23% efficiency and excellent long-term thermal stability (at 85°C) in ambient air (~80% efficiency retention after 500 hours) is achieved with further addition of potassium hexafluorophosphate. The slot die-printed minimodules achieve champion efficiencies of 20.42% (certified efficiency 19.3%) and 19.54% with an active area of 17.1 and 65.0 square centimeters, respectively.
Suppressing nucleation over large areasAlthough formamidinium-based lead iodide (PbI2) perovskites have a favorable bandgap and good thermal stability, the difficulty in controlling nucleation makes it difficult to grow high-quality, large-area films compared with methylammonium counterparts. Bu et al. show that adding N-methyl-2-pyrrolidone to the perovskite precursors forms an adduct with PbI2 that promotes the formation of the desired black α-phase at room temperature. The addition of potassium hexafluorophosphate eliminated hysteresis by passivating interfacial defects and promoted long-term thermal stability at 85°C in unencapsulated devices. Large-area modules (17 square centimeters) achieved power conversion efficiencies of 20.4%.Science, abh1035, this issue p. 1327Upscaling efficient and stable perovskite layers is one of the most challenging issues in the commercialization of perovskite solar cells. Here, a lead halide–templated crystallization strategy is developed for printing formamidinium (FA)–cesium (Cs) lead triiodide perovskite films. High-quality large-area films are achieved through controlled nucleation and growth of a lead halide•N-methyl-2-pyrrolidone adduct that can react in situ with embedded FAI/CsI to directly form α-phase perovskite, sidestepping the phase transformation from δ-phase. A nonencapsulated device with 23% efficiency and excellent long-term thermal stability (at 85°C) in ambient air (~80% efficiency retention after 500 hours) is achieved with further addition of potassium hexafluorophosphate. The slot die–printed minimodules achieve champion efficiencies of 20.42% (certified efficiency 19.3%) and 19.54% with an active area of 17.1 and 65.0 square centimeters, respectively.
Author Lin, Zhipeng
Bu, Tongle
Huang, Fuzhi
Li, Jing
Li, Hengyi
Huang, Wenchao
Zhang, Xiao-Li
Chang, Jingjing
Wang, Chao
Zhong, Jie
Tian, Congcong
Su, Jie
Cheng, Yi-Bing
Ono, Luis K.
Lu, Jianfeng
Qi, Yabing
Tong, Guoqing
Chai, Nianyao
Author_xml – sequence: 1
  givenname: Tongle
  orcidid: 0000-0002-7309-9422
  surname: Bu
  fullname: Bu, Tongle
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China., Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, PR China., Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
– sequence: 2
  givenname: Jing
  surname: Li
  fullname: Li, Jing
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 3
  givenname: Hengyi
  surname: Li
  fullname: Li, Hengyi
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 4
  givenname: Congcong
  surname: Tian
  fullname: Tian, Congcong
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 5
  givenname: Jie
  orcidid: 0000-0002-2132-1597
  surname: Su
  fullname: Su, Jie
  organization: Xidian University, School of Microelectronics, State Key Discipline Lab of Wide Band Gap Semiconductor Technology, Shaanxi Joint Key Lab of Graphene, Advanced Interdisciplinary Research Center for Flexible Electronics, Xian 710071, PR China
– sequence: 6
  givenname: Guoqing
  orcidid: 0000-0002-9689-6061
  surname: Tong
  fullname: Tong, Guoqing
  organization: Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
– sequence: 7
  givenname: Luis K.
  orcidid: 0000-0003-3176-1876
  surname: Ono
  fullname: Ono, Luis K.
  organization: Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
– sequence: 8
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 9
  givenname: Zhipeng
  surname: Lin
  fullname: Lin, Zhipeng
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 10
  givenname: Nianyao
  orcidid: 0000-0002-5492-8985
  surname: Chai
  fullname: Chai, Nianyao
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 11
  givenname: Xiao-Li
  orcidid: 0000-0002-4226-7622
  surname: Zhang
  fullname: Zhang, Xiao-Li
  organization: School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
– sequence: 12
  givenname: Jingjing
  orcidid: 0000-0003-3773-182X
  surname: Chang
  fullname: Chang, Jingjing
  organization: Xidian University, School of Microelectronics, State Key Discipline Lab of Wide Band Gap Semiconductor Technology, Shaanxi Joint Key Lab of Graphene, Advanced Interdisciplinary Research Center for Flexible Electronics, Xian 710071, PR China
– sequence: 13
  givenname: Jianfeng
  orcidid: 0000-0001-5586-4656
  surname: Lu
  fullname: Lu, Jianfeng
  organization: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, PR China., State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 14
  givenname: Jie
  orcidid: 0000-0003-4967-6987
  surname: Zhong
  fullname: Zhong, Jie
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China., Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, PR China
– sequence: 15
  givenname: Wenchao
  orcidid: 0000-0003-4992-1727
  surname: Huang
  fullname: Huang, Wenchao
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
– sequence: 16
  givenname: Yabing
  orcidid: 0000-0002-4876-8049
  surname: Qi
  fullname: Qi, Yabing
  organization: Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
– sequence: 17
  givenname: Yi-Bing
  orcidid: 0000-0003-0604-1965
  surname: Cheng
  fullname: Cheng, Yi-Bing
  organization: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, PR China
– sequence: 18
  givenname: Fuzhi
  orcidid: 0000-0002-8635-9262
  surname: Huang
  fullname: Huang, Fuzhi
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China., Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, PR China
BookMark eNp1kb1OwzAUhS0EEm1hZrXEwhLwX9J4RIg_qRILzNGNc6ManDjYbqUy8Q68IU9CSjshMd3hfOfo6J4pOex9j4SccXbJuSiuorHYG7yEesmZzA_IhDOdZ1oweUgmjMkiK9k8PybTGF8ZGzUtJ8QuEBq6BGcb_P78StgNDhI21IRNTOCc_YBkfU99SztMy42DzvaYtQGRDhj8Or7ZhLT1gWLb2m2JRIelT37tXQJraOeblcN4Qo5acBFP93dGXu5un28essXT_ePN9SIziouUaWRc1CWK0qhSMhCS67liuijmsp0D5BoVgzKvS8a1kRrqpi6lqpUWZmSlnJGLXe4Q_PsKY6o6Gw06Bz36VaxErqTKhZJb9PwP-upXoR_bbSkxRha6HKl8R5ngYwzYVsam36ekANZVnFXbAar9ANV-gNF39cc3BNtB2Pzr-AHTRY_u
CitedBy_id crossref_primary_10_1002_adfm_202425620
crossref_primary_10_1038_s41467_023_36229_1
crossref_primary_10_1002_pip_3741
crossref_primary_10_1016_j_nanoen_2024_110513
crossref_primary_10_1002_solr_202400176
crossref_primary_10_1038_s41560_023_01444_z
crossref_primary_10_1038_s43246_024_00585_2
crossref_primary_10_1002_admt_202401834
crossref_primary_10_1021_acscentsci_2c00385
crossref_primary_10_1002_aenm_202403088
crossref_primary_10_1038_s41560_024_01680_x
crossref_primary_10_1002_adfm_202309894
crossref_primary_10_1016_j_cej_2023_145707
crossref_primary_10_1021_acsaem_4c00874
crossref_primary_10_1016_j_cej_2025_161518
crossref_primary_10_1002_adfm_202307104
crossref_primary_10_1021_acsmaterialslett_3c00275
crossref_primary_10_1002_admt_202302082
crossref_primary_10_1002_solr_202101095
crossref_primary_10_1016_j_nanoen_2025_110905
crossref_primary_10_1039_D1SE01045J
crossref_primary_10_1002_anie_202300265
crossref_primary_10_1016_j_nanoen_2024_109751
crossref_primary_10_1007_s11664_023_10242_y
crossref_primary_10_1002_smtd_202402177
crossref_primary_10_1002_adfm_202201193
crossref_primary_10_1088_1361_6528_ac29d9
crossref_primary_10_1002_admt_202201387
crossref_primary_10_1002_adma_202401916
crossref_primary_10_1016_j_xcrp_2022_100827
crossref_primary_10_1002_adma_202302393
crossref_primary_10_1007_s11426_022_1445_2
crossref_primary_10_1039_D3CP02476H
crossref_primary_10_1039_D4RA08786K
crossref_primary_10_1021_acsenergylett_3c02426
crossref_primary_10_1039_D4EE01008F
crossref_primary_10_1002_aenm_202203607
crossref_primary_10_1038_s41560_022_01076_9
crossref_primary_10_1002_aenm_202202880
crossref_primary_10_1002_solr_202200737
crossref_primary_10_1039_D3TC04591A
crossref_primary_10_1002_smtd_202200669
crossref_primary_10_1021_acsenergylett_4c01095
crossref_primary_10_1002_anie_202419726
crossref_primary_10_1038_s41560_023_01358_w
crossref_primary_10_1088_2752_5724_ac9248
crossref_primary_10_1002_solr_202400020
crossref_primary_10_1002_solr_202300438
crossref_primary_10_1016_j_joule_2022_07_008
crossref_primary_10_1002_aenm_202200111
crossref_primary_10_1016_j_cej_2022_136626
crossref_primary_10_23919_IEN_2024_0024
crossref_primary_10_1021_acs_nanolett_3c02444
crossref_primary_10_1088_1674_4926_42_10_101606
crossref_primary_10_1002_aenm_202400932
crossref_primary_10_1002_adma_202303384
crossref_primary_10_1016_j_apsusc_2022_155269
crossref_primary_10_1002_aenm_202304486
crossref_primary_10_1021_acsenergylett_3c00345
crossref_primary_10_1016_j_colsurfa_2023_132406
crossref_primary_10_1016_j_nxmate_2024_100283
crossref_primary_10_1002_ange_202419726
crossref_primary_10_1038_s41560_023_01249_0
crossref_primary_10_1002_adma_202200276
crossref_primary_10_1002_solr_202300890
crossref_primary_10_1039_D1EE01778K
crossref_primary_10_1002_smll_202106632
crossref_primary_10_1002_smll_202301630
crossref_primary_10_1021_acsami_4c04706
crossref_primary_10_54097_hset_v27i_3805
crossref_primary_10_1126_sciadv_adr2290
crossref_primary_10_1002_aenm_202300153
crossref_primary_10_1016_j_mser_2023_100727
crossref_primary_10_1007_s40820_024_01408_2
crossref_primary_10_1021_acs_jpclett_3c02633
crossref_primary_10_1038_s41560_023_01205_y
crossref_primary_10_1038_s41586_023_06208_z
crossref_primary_10_1016_j_cej_2022_136644
crossref_primary_10_1002_adma_202200041
crossref_primary_10_1002_aenm_202203681
crossref_primary_10_1039_D2QM01147F
crossref_primary_10_1016_j_jpcs_2024_112247
crossref_primary_10_1039_D2EE01634F
crossref_primary_10_1002_adfm_202408480
crossref_primary_10_1016_j_joule_2023_10_019
crossref_primary_10_1002_adfm_202211900
crossref_primary_10_1002_adma_202304149
crossref_primary_10_1016_j_jmst_2024_05_069
crossref_primary_10_1021_acsenergylett_3c02617
crossref_primary_10_1093_bulcsj_uoaf018
crossref_primary_10_1002_aenm_202203649
crossref_primary_10_1002_adfm_202304262
crossref_primary_10_1038_s41566_023_01180_6
crossref_primary_10_1039_D2EE04045J
crossref_primary_10_1021_acs_energyfuels_1c02175
crossref_primary_10_1039_D4EE00568F
crossref_primary_10_1039_D4EE00229F
crossref_primary_10_1002_aenm_202202680
crossref_primary_10_1002_solr_202200414
crossref_primary_10_1038_s41467_022_32047_z
crossref_primary_10_1002_adma_202210186
crossref_primary_10_1021_acsami_3c17468
crossref_primary_10_1016_j_cej_2022_139808
crossref_primary_10_1002_adma_202107111
crossref_primary_10_1021_acsaom_3c00364
crossref_primary_10_1038_s41570_023_00492_z
crossref_primary_10_1016_j_nanoen_2024_110402
crossref_primary_10_1002_aenm_202300491
crossref_primary_10_1021_acs_jpclett_1c03984
crossref_primary_10_1002_solr_202400184
crossref_primary_10_1002_smll_202403566
crossref_primary_10_2139_ssrn_3917207
crossref_primary_10_1021_acs_inorgchem_2c04316
crossref_primary_10_1002_anie_202315233
crossref_primary_10_1016_j_mtadv_2022_100277
crossref_primary_10_1093_nsr_nwad245
crossref_primary_10_1063_5_0064073
crossref_primary_10_1016_j_cej_2022_137515
crossref_primary_10_1002_adma_202210176
crossref_primary_10_1016_j_joule_2022_06_014
crossref_primary_10_1039_D2TC02632E
crossref_primary_10_1016_j_nanoen_2024_109487
crossref_primary_10_1002_adfm_202404402
crossref_primary_10_1016_j_joule_2021_11_013
crossref_primary_10_26599_NRE_2022_9120024
crossref_primary_10_3390_catal13060953
crossref_primary_10_1002_adfm_202300552
crossref_primary_10_1002_smtd_202400948
crossref_primary_10_1002_adfm_202200029
crossref_primary_10_1002_adfm_202412389
crossref_primary_10_1016_j_apsusc_2024_161909
crossref_primary_10_1002_adom_202201741
crossref_primary_10_1021_acsenergylett_1c02768
crossref_primary_10_1007_s10854_022_09293_4
crossref_primary_10_1039_D4CC00111G
crossref_primary_10_1038_s41377_024_01461_x
crossref_primary_10_1039_D4SC07759H
crossref_primary_10_1088_2515_7655_ace12c
crossref_primary_10_1002_solr_202300187
crossref_primary_10_1038_s43246_024_00566_5
crossref_primary_10_3390_coatings11101184
crossref_primary_10_26599_NRE_2022_9120004
crossref_primary_10_1038_s41586_024_07226_1
crossref_primary_10_1039_D1EE02018H
crossref_primary_10_1002_adfm_202418915
crossref_primary_10_1016_j_jechem_2022_05_042
crossref_primary_10_1038_s41467_023_36224_6
crossref_primary_10_1021_acs_langmuir_3c00637
crossref_primary_10_1002_adfm_202206703
crossref_primary_10_1002_adma_202309998
crossref_primary_10_1021_accountsmr_1c00154
crossref_primary_10_1002_lpor_202200871
crossref_primary_10_1021_acsami_2c10901
crossref_primary_10_1021_acsnano_2c02876
crossref_primary_10_1039_D4TC05093B
crossref_primary_10_1039_D3TA07759D
crossref_primary_10_1039_D4SE01321B
crossref_primary_10_1002_inf2_12522
crossref_primary_10_1038_s41560_022_01058_x
crossref_primary_10_1016_j_cej_2024_153422
crossref_primary_10_1002_solr_202301016
crossref_primary_10_1002_adfm_202210071
crossref_primary_10_1002_admi_202201497
crossref_primary_10_1002_adma_202307583
crossref_primary_10_1002_admi_202201259
crossref_primary_10_1002_ange_202501764
crossref_primary_10_1016_j_cej_2024_151228
crossref_primary_10_1016_j_jlumin_2022_118963
crossref_primary_10_1039_D4TC02231A
crossref_primary_10_1021_acsenergylett_1c02338
crossref_primary_10_1039_D2EE04087E
crossref_primary_10_3390_en17163896
crossref_primary_10_1002_solr_202300253
crossref_primary_10_1002_adma_202310651
crossref_primary_10_1002_aenm_202103019
crossref_primary_10_1016_j_joule_2023_09_009
crossref_primary_10_1002_cjoc_202300128
crossref_primary_10_1007_s44251_024_00054_5
crossref_primary_10_1021_acsami_1c23062
crossref_primary_10_1063_5_0097939
crossref_primary_10_1002_solr_202300370
crossref_primary_10_1007_s11664_022_09688_3
crossref_primary_10_1002_advs_202303992
crossref_primary_10_1021_acsenergylett_3c02357
crossref_primary_10_1007_s12209_022_00341_y
crossref_primary_10_1002_adom_202402924
crossref_primary_10_1016_j_chempr_2021_11_004
crossref_primary_10_1002_advs_202206325
crossref_primary_10_1039_D4TA02248C
crossref_primary_10_1002_admt_202302043
crossref_primary_10_1016_j_enrev_2022_100010
crossref_primary_10_1016_j_cclet_2022_107883
crossref_primary_10_1088_1674_4926_43_9_092201
crossref_primary_10_1016_j_solmat_2023_112278
crossref_primary_10_1002_anie_202300971
crossref_primary_10_1002_ente_202200544
crossref_primary_10_1038_s41467_024_54113_4
crossref_primary_10_1038_s41467_024_55075_3
crossref_primary_10_1002_adfm_202301956
crossref_primary_10_1002_aenm_202304302
crossref_primary_10_1002_ange_202300265
crossref_primary_10_1038_s41467_024_51762_3
crossref_primary_10_1002_admi_202200102
crossref_primary_10_1007_s40843_022_2437_9
crossref_primary_10_1021_accountsmr_4c00148
crossref_primary_10_1016_j_matt_2023_06_039
crossref_primary_10_1126_science_ade9463
crossref_primary_10_1002_adom_202202982
crossref_primary_10_1016_j_rineng_2023_101158
crossref_primary_10_1002_ente_202300295
crossref_primary_10_1016_j_cej_2024_159056
crossref_primary_10_1016_j_jechem_2023_08_041
crossref_primary_10_1002_aenm_202200417
crossref_primary_10_1002_admt_202302056
crossref_primary_10_1039_D4SE00914B
crossref_primary_10_1246_bcsj_20220071
crossref_primary_10_1039_D2TA01096H
crossref_primary_10_1002_solr_202300232
crossref_primary_10_35848_1347_4065_acc6d8
crossref_primary_10_1002_solr_202200816
crossref_primary_10_1007_s11426_024_2234_x
crossref_primary_10_1002_adfm_202422266
crossref_primary_10_1002_adma_202309208
crossref_primary_10_1002_ange_202116308
crossref_primary_10_1088_1674_1056_ac693e
crossref_primary_10_1002_ange_202411708
crossref_primary_10_1039_D3EE00413A
crossref_primary_10_1002_solr_202300486
crossref_primary_10_1016_j_nantod_2021_101371
crossref_primary_10_1002_ange_202302342
crossref_primary_10_1039_D1QM00960E
crossref_primary_10_1002_adma_202412021
crossref_primary_10_1002_smll_202301323
crossref_primary_10_1021_acsaem_2c00775
crossref_primary_10_1002_aesr_202200140
crossref_primary_10_1002_anie_202407192
crossref_primary_10_1002_solr_202100554
crossref_primary_10_1002_adfm_202316500
crossref_primary_10_3390_electronics11050700
crossref_primary_10_1016_j_apsusc_2022_154410
crossref_primary_10_1002_adma_202301852
crossref_primary_10_1002_smtd_202400428
crossref_primary_10_1016_j_electacta_2023_141985
crossref_primary_10_1016_j_nanoms_2025_02_005
crossref_primary_10_1016_j_joule_2023_05_020
crossref_primary_10_1002_solr_202201132
crossref_primary_10_1002_adma_202208522
crossref_primary_10_1016_j_mtener_2024_101540
crossref_primary_10_1039_D2SC01804G
crossref_primary_10_1016_j_cej_2022_140894
crossref_primary_10_26599_NRE_2024_9120111
crossref_primary_10_1002_adfm_202310194
crossref_primary_10_1002_solr_202100683
crossref_primary_10_1002_anie_202112352
crossref_primary_10_1002_solr_202100545
crossref_primary_10_1002_aesr_202200133
crossref_primary_10_1007_s12274_023_6115_y
crossref_primary_10_1002_anie_202410378
crossref_primary_10_1002_solr_202200297
crossref_primary_10_1016_j_nanoen_2024_110063
crossref_primary_10_1038_s41586_024_08073_w
crossref_primary_10_1002_solr_202200053
crossref_primary_10_1002_adma_202307161
crossref_primary_10_1002_adma_202211806
crossref_primary_10_1002_smll_202404272
crossref_primary_10_1021_acs_chemrev_4c00073
crossref_primary_10_1002_smll_202208289
crossref_primary_10_1016_j_cej_2025_161173
crossref_primary_10_1002_adma_202413304
crossref_primary_10_1002_aesr_202200160
crossref_primary_10_1002_solr_202200060
crossref_primary_10_1016_j_solener_2024_112454
crossref_primary_10_1016_j_nanoen_2024_110296
crossref_primary_10_1002_adfm_202418792
crossref_primary_10_1002_advs_202204017
crossref_primary_10_1002_adma_202313860
crossref_primary_10_1002_aenm_202103236
crossref_primary_10_1016_j_joule_2024_06_008
crossref_primary_10_1016_j_nxmate_2023_100010
crossref_primary_10_1039_D4TC03961K
crossref_primary_10_1002_adma_202410395
crossref_primary_10_1002_anie_202306229
crossref_primary_10_1088_2752_5724_ad37cf
crossref_primary_10_1002_adma_202405921
crossref_primary_10_1002_solr_202400824
crossref_primary_10_1039_D2EE02227C
crossref_primary_10_1557_s43579_024_00535_6
crossref_primary_10_1063_5_0142461
crossref_primary_10_1038_s41563_023_01711_0
crossref_primary_10_1088_1674_4926_24070017
crossref_primary_10_1002_adma_202413559
crossref_primary_10_1002_aenm_202302732
crossref_primary_10_1002_aesr_202200151
crossref_primary_10_1016_j_matt_2021_10_026
crossref_primary_10_1002_aenm_202301888
crossref_primary_10_1002_smtd_202400214
crossref_primary_10_1002_solr_202100767
crossref_primary_10_1039_D2CC06511H
crossref_primary_10_1039_D4EE02251C
crossref_primary_10_1016_j_cej_2021_131444
crossref_primary_10_1021_acsami_4c16316
crossref_primary_10_1016_j_jallcom_2023_169104
crossref_primary_10_1002_ange_202406167
crossref_primary_10_1002_smll_202404058
crossref_primary_10_1007_s42247_024_00796_w
crossref_primary_10_1007_s11801_024_3194_2
crossref_primary_10_1002_advs_202410266
crossref_primary_10_1002_inf2_12369
crossref_primary_10_1002_solr_202201039
crossref_primary_10_1016_j_mtener_2023_101392
crossref_primary_10_1021_acs_jpclett_2c01506
crossref_primary_10_1126_science_adn9646
crossref_primary_10_1016_j_cej_2022_140566
crossref_primary_10_1002_ange_202306229
crossref_primary_10_1021_jacs_4c14955
crossref_primary_10_1021_acsami_3c05933
crossref_primary_10_1021_acs_jpclett_1c04241
crossref_primary_10_1038_s41467_025_57195_w
crossref_primary_10_1002_ange_202315233
crossref_primary_10_1038_s43246_024_00643_9
crossref_primary_10_1002_adma_202304809
crossref_primary_10_3390_coatings14091113
crossref_primary_10_1016_j_mtener_2023_101343
crossref_primary_10_1016_j_joule_2022_02_003
crossref_primary_10_1039_D2TA08966A
crossref_primary_10_1002_solr_202400521
crossref_primary_10_1039_D4TC00255E
crossref_primary_10_1002_ange_202407192
crossref_primary_10_1021_acsenergylett_1c01878
crossref_primary_10_3390_molecules29204976
crossref_primary_10_1002_aenm_202402616
crossref_primary_10_1002_smll_202410865
crossref_primary_10_1016_j_mtener_2024_101757
crossref_primary_10_1039_D4EE01044B
crossref_primary_10_1039_D3CP00514C
crossref_primary_10_1088_1674_1056_ad23d5
crossref_primary_10_1126_science_ads0901
crossref_primary_10_1016_j_joule_2025_101825
crossref_primary_10_1016_j_cej_2023_143392
crossref_primary_10_1088_1742_6596_2749_1_012004
crossref_primary_10_1016_j_jcis_2023_09_032
crossref_primary_10_1039_D1TA06459B
crossref_primary_10_1002_solr_202100455
crossref_primary_10_1002_solr_202400750
crossref_primary_10_1002_solr_202100458
crossref_primary_10_1088_2515_7639_acc893
crossref_primary_10_1039_D3EE00247K
crossref_primary_10_1002_smll_202302383
crossref_primary_10_1039_D4EE01371A
crossref_primary_10_1016_j_matre_2021_100060
crossref_primary_10_26599_EMD_2024_9370030
crossref_primary_10_1039_D3TA04666D
crossref_primary_10_1021_acsphotonics_4c01330
crossref_primary_10_1002_smll_202207189
crossref_primary_10_1002_aenm_202302654
crossref_primary_10_1002_adma_202200705
crossref_primary_10_1021_acs_jpcc_4c01839
crossref_primary_10_1016_j_joule_2024_05_019
crossref_primary_10_1021_acsami_3c00358
crossref_primary_10_1039_D4RA05082G
crossref_primary_10_1021_acs_jpclett_4c01997
crossref_primary_10_2139_ssrn_4046134
crossref_primary_10_1002_adma_202205027
crossref_primary_10_1038_s41467_024_50962_1
crossref_primary_10_1063_5_0061483
crossref_primary_10_1016_j_mtchem_2023_101729
crossref_primary_10_1038_s41467_025_57303_w
crossref_primary_10_1002_ange_202112352
crossref_primary_10_1016_j_matlet_2024_136472
crossref_primary_10_1002_solr_202100710
crossref_primary_10_1021_acsenergylett_3c00656
crossref_primary_10_3389_fchem_2023_1341935
crossref_primary_10_1002_smll_202400985
crossref_primary_10_1021_acs_jpcc_4c00757
crossref_primary_10_1002_adma_202201840
crossref_primary_10_1016_j_eneco_2025_108423
crossref_primary_10_3390_molecules27217566
crossref_primary_10_1002_adma_202311145
crossref_primary_10_1016_j_joule_2025_101850
crossref_primary_10_1002_adfm_202215096
crossref_primary_10_1002_adfm_202404099
crossref_primary_10_1021_acsami_2c05085
crossref_primary_10_1039_D4EE05613B
crossref_primary_10_2139_ssrn_4073011
crossref_primary_10_1002_ange_202300971
crossref_primary_10_1007_s40843_022_2277_9
crossref_primary_10_1016_j_jcis_2022_07_175
crossref_primary_10_1016_j_cej_2023_148133
crossref_primary_10_1038_s41893_023_01196_4
crossref_primary_10_1002_aenm_202300595
crossref_primary_10_1002_anie_202501764
crossref_primary_10_1002_smll_202302194
crossref_primary_10_1007_s40820_024_01406_4
crossref_primary_10_1002_smtd_202401244
crossref_primary_10_1002_aelm_202201222
crossref_primary_10_1002_advs_202202441
crossref_primary_10_1002_solr_202200571
crossref_primary_10_3390_pr11051450
crossref_primary_10_1002_adma_202313673
crossref_primary_10_23919_IEN_2023_0026
crossref_primary_10_1039_D1TA09705A
crossref_primary_10_1039_D4EE01230E
crossref_primary_10_1002_solr_202300860
crossref_primary_10_1021_acs_jpclett_2c00278
crossref_primary_10_1002_adfm_202401951
crossref_primary_10_1002_adma_202406296
crossref_primary_10_1007_s11426_022_1426_x
crossref_primary_10_1016_j_jechem_2023_02_017
crossref_primary_10_1002_adfm_202206030
crossref_primary_10_1002_adma_202301115
crossref_primary_10_3390_nano13020249
crossref_primary_10_1002_anie_202406167
crossref_primary_10_1038_s41560_023_01288_7
crossref_primary_10_1002_adma_202406295
crossref_primary_10_1002_aenm_202203448
crossref_primary_10_1002_adma_202204098
crossref_primary_10_1039_D3TC01259J
crossref_primary_10_1016_j_xcrp_2022_101170
crossref_primary_10_1016_j_mtphys_2021_100557
crossref_primary_10_1002_solr_202100923
crossref_primary_10_1364_AO_510980
crossref_primary_10_1002_solr_202200232
crossref_primary_10_1038_s41560_023_01254_3
crossref_primary_10_1002_aenm_202103652
crossref_primary_10_1002_solr_202200590
crossref_primary_10_1016_j_jssc_2024_124657
crossref_primary_10_1002_adfm_202401945
crossref_primary_10_1186_s40580_024_00464_z
crossref_primary_10_1038_s41563_023_01705_y
crossref_primary_10_1016_j_cej_2022_137676
crossref_primary_10_1039_D3NR06513H
crossref_primary_10_1002_ange_202410378
crossref_primary_10_1021_acs_jpclett_2c00013
crossref_primary_10_1039_D4EE01147C
crossref_primary_10_1016_j_cej_2023_148464
crossref_primary_10_1016_j_decarb_2023_100020
crossref_primary_10_1016_j_nanoen_2023_108990
crossref_primary_10_1002_admt_202200928
crossref_primary_10_1002_smll_202401877
crossref_primary_10_1002_solr_202100637
crossref_primary_10_1021_acsami_4c12718
crossref_primary_10_1038_s41560_022_01039_0
crossref_primary_10_1039_D2EE00966H
crossref_primary_10_1002_solr_202300803
crossref_primary_10_1016_j_cej_2024_157212
crossref_primary_10_1038_s41560_024_01451_8
crossref_primary_10_1007_s10118_024_3156_y
crossref_primary_10_1016_j_jechem_2024_05_012
crossref_primary_10_1016_j_cej_2024_156368
crossref_primary_10_1002_adma_202417289
crossref_primary_10_1016_j_nanoen_2023_108759
crossref_primary_10_1126_science_adn7930
crossref_primary_10_1038_s41586_023_06784_0
crossref_primary_10_1002_adfm_202404173
crossref_primary_10_1039_D1TC04101K
crossref_primary_10_1002_adma_202408101
crossref_primary_10_1002_solr_202400365
crossref_primary_10_1039_D3SE00564J
crossref_primary_10_1039_D4EE01552E
crossref_primary_10_1021_acsaem_1c03042
crossref_primary_10_1002_adom_202301949
crossref_primary_10_1109_LED_2024_3404618
crossref_primary_10_1002_solr_202200134
crossref_primary_10_1002_solr_202300814
crossref_primary_10_1021_acsami_3c07286
crossref_primary_10_1002_anie_202411708
crossref_primary_10_1016_j_solmat_2022_111884
crossref_primary_10_1002_aenm_202102730
crossref_primary_10_1007_s12274_024_6639_9
crossref_primary_10_1088_1742_6596_2751_1_012016
crossref_primary_10_1002_smll_202205962
crossref_primary_10_1002_solr_202100973
crossref_primary_10_1039_D1TA10313J
crossref_primary_10_1002_aelm_202300093
crossref_primary_10_1039_D4TC05165C
crossref_primary_10_1002_solr_202200145
crossref_primary_10_1002_anie_202116308
crossref_primary_10_1016_j_jechem_2024_11_024
crossref_primary_10_1002_aenm_202401039
crossref_primary_10_3390_inorganics13010015
crossref_primary_10_1002_aenm_202402249
crossref_primary_10_1002_adma_202211317
crossref_primary_10_1002_aenm_202202287
crossref_primary_10_1016_j_nantod_2023_102133
crossref_primary_10_1002_aenm_202300537
crossref_primary_10_1002_eem2_12435
crossref_primary_10_1016_j_nanoen_2022_108014
crossref_primary_10_1002_anie_202302342
crossref_primary_10_1002_adfm_202107726
crossref_primary_10_1016_j_nanoen_2022_107394
crossref_primary_10_1002_solr_202100600
crossref_primary_10_1002_adma_202106540
crossref_primary_10_1002_smll_202401669
crossref_primary_10_1002_adfm_202417493
crossref_primary_10_1016_j_cej_2024_157303
crossref_primary_10_1016_j_joule_2022_10_015
crossref_primary_10_1126_science_abl4890
crossref_primary_10_1016_j_mtnano_2022_100252
crossref_primary_10_15541_jim20230448
crossref_primary_10_1016_j_apsusc_2022_155745
crossref_primary_10_1088_2752_5724_acba35
crossref_primary_10_1016_j_nanoen_2024_109933
crossref_primary_10_1039_D3DT02051G
crossref_primary_10_1088_1361_6463_ad82f7
crossref_primary_10_1002_smll_202305127
crossref_primary_10_1021_acsami_1c23991
Cites_doi 10.1039/C5EE03874J
10.1126/science.abb7167
10.1038/s41560-018-0192-2
10.1002/jcc.20495
10.1038/s41560-017-0060-5
10.1126/science.aaa5760
10.1126/science.aat3583
10.1002/adma.202004979
10.1002/anie.202005211
10.1126/science.1243982
10.1039/C9TA09101G
10.1002/anie.201405334
10.1021/jacs.5b04930
10.1021/acsenergylett.9b02720
10.1063/1.1329672
10.1016/j.joule.2020.04.013
10.1002/adma.201801948
10.1038/nenergy.2016.177
10.1039/C8TA03501F
10.1063/1.1323224
10.1002/adfm.201900964
10.1103/PhysRevB.50.17953
10.1126/sciadv.aax7537
10.1021/jacs.9b01305
10.1002/aenm.201903108
10.1002/adma.201905502
10.1038/s41467-018-06317-8
10.1103/PhysRev.140.A1133
10.1002/solr.201900263
10.1038/s41467-020-18940-5
10.1002/aenm.201500477
10.1016/j.joule.2020.03.005
10.1016/j.joule.2018.10.025
10.1126/science.aap9282
10.1103/PhysRevB.59.1758
10.1038/nature23877
10.1126/science.aba1628
10.1002/aenm.201803017
10.1038/s41560-018-0153-9
10.1016/j.nanoen.2014.08.015
10.1126/science.aaa2725
ContentType Journal Article
Copyright Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright_xml – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
– notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
DBID AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.abh1035
DatabaseName CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1332
ExternalDocumentID 10_1126_science_abh1035
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c412t-9e012b8e28c4830a231974096673f7aa59e40a85b8019c39abdb834b492c23133
ISSN 0036-8075
1095-9203
IngestDate Thu Jul 10 22:49:47 EDT 2025
Fri Jul 25 10:52:24 EDT 2025
Tue Jul 01 01:35:33 EDT 2025
Thu Apr 24 22:56:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6548
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-9e012b8e28c4830a231974096673f7aa59e40a85b8019c39abdb834b492c23133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7309-9422
0000-0002-9689-6061
0000-0003-3176-1876
0000-0001-5586-4656
0000-0002-4876-8049
0000-0003-0604-1965
0000-0002-8635-9262
0000-0003-3773-182X
0000-0002-2132-1597
0000-0002-4226-7622
0000-0003-4992-1727
0000-0003-4967-6987
0000-0002-5492-8985
OpenAccessLink http://id.nii.ac.jp/1394/00001984/
PQID 2542492698
PQPubID 1256
PageCount 6
ParticipantIDs proquest_miscellaneous_2543452433
proquest_journals_2542492698
crossref_citationtrail_10_1126_science_abh1035
crossref_primary_10_1126_science_abh1035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-18
20210618
PublicationDateYYYYMMDD 2021-06-18
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-18
  day: 18
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationYear 2021
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
John P. (e_1_3_2_41_2) 2006; 27
References_xml – ident: e_1_3_2_24_2
  doi: 10.1039/C5EE03874J
– ident: e_1_3_2_20_2
  doi: 10.1126/science.abb7167
– ident: e_1_3_2_27_2
  doi: 10.1038/s41560-018-0192-2
– ident: e_1_3_2_42_2
  doi: 10.1002/jcc.20495
– ident: e_1_3_2_34_2
  doi: 10.1038/s41560-017-0060-5
– ident: e_1_3_2_5_2
  doi: 10.1126/science.aaa5760
– ident: e_1_3_2_17_2
  doi: 10.1126/science.aat3583
– ident: e_1_3_2_21_2
  doi: 10.1002/adma.202004979
– ident: e_1_3_2_28_2
  doi: 10.1002/anie.202005211
– ident: e_1_3_2_3_2
  doi: 10.1126/science.1243982
– ident: e_1_3_2_11_2
  doi: 10.1039/C9TA09101G
– volume: 27
  start-page: 1787
  year: 2006
  ident: e_1_3_2_41_2
  publication-title: Phys. Rev. Lett.
– ident: e_1_3_2_7_2
  doi: 10.1002/anie.201405334
– ident: e_1_3_2_22_2
  doi: 10.1021/jacs.5b04930
– ident: e_1_3_2_32_2
  doi: 10.1021/acsenergylett.9b02720
– ident: e_1_3_2_43_2
  doi: 10.1063/1.1329672
– ident: e_1_3_2_26_2
  doi: 10.1016/j.joule.2020.04.013
– ident: e_1_3_2_33_2
  doi: 10.1002/adma.201801948
– ident: e_1_3_2_25_2
  doi: 10.1038/nenergy.2016.177
– ident: e_1_3_2_16_2
  doi: 10.1039/C8TA03501F
– ident: e_1_3_2_44_2
  doi: 10.1063/1.1323224
– ident: e_1_3_2_23_2
  doi: 10.1002/adfm.201900964
– ident: e_1_3_2_40_2
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_3_2_10_2
  doi: 10.1126/sciadv.aax7537
– ident: e_1_3_2_13_2
  doi: 10.1021/jacs.9b01305
– ident: e_1_3_2_37_2
  doi: 10.1002/aenm.201903108
– ident: e_1_3_2_19_2
  doi: 10.1002/adma.201905502
– ident: e_1_3_2_31_2
  doi: 10.1038/s41467-018-06317-8
– ident: e_1_3_2_38_2
  doi: 10.1103/PhysRev.140.A1133
– ident: e_1_3_2_35_2
  doi: 10.1002/solr.201900263
– ident: e_1_3_2_8_2
  doi: 10.1038/s41467-020-18940-5
– ident: e_1_3_2_15_2
  doi: 10.1002/aenm.201500477
– ident: e_1_3_2_36_2
  doi: 10.1016/j.joule.2020.03.005
– ident: e_1_3_2_14_2
  doi: 10.1016/j.joule.2018.10.025
– ident: e_1_3_2_29_2
  doi: 10.1126/science.aap9282
– ident: e_1_3_2_39_2
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_3_2_9_2
  doi: 10.1038/nature23877
– ident: e_1_3_2_18_2
  doi: 10.1126/science.aba1628
– ident: e_1_3_2_30_2
  doi: 10.1002/aenm.201803017
– ident: e_1_3_2_12_2
  doi: 10.1038/s41560-018-0153-9
– ident: e_1_3_2_6_2
  doi: 10.1016/j.nanoen.2014.08.015
– ident: e_1_3_2_4_2
  doi: 10.1126/science.aaa2725
– ident: e_1_3_2_2_2
SSID ssj0009593
Score 2.7249784
Snippet Although formamidinium-based lead iodide (PbI 2 ) perovskites have a favorable bandgap and good thermal stability, the difficulty in controlling nucleation...
Suppressing nucleation over large areasAlthough formamidinium-based lead iodide (PbI2) perovskites have a favorable bandgap and good thermal stability, the...
Upscaling efficient and stable perovskite layers is one of the most challenging issues in the commercialization of perovskite solar cells. Here, a lead...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1327
SubjectTerms Cesium
Commercialization
Control stability
Crystal defects
Crystallization
Efficiency
Energy conversion efficiency
Interface stability
Iodides
Lead
Lead compounds
Metal halides
Methylamine
Modules
N-Methyl-2-pyrrolidone
Nucleation
Perovskites
Phase transitions
Photovoltaic cells
Photovoltaics
Potassium
Room temperature
Solar cells
Thermal stability
Title Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules
URI https://www.proquest.com/docview/2542492698
https://www.proquest.com/docview/2543452433
Volume 372
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxELZCKyQuiBYQgYKMxKEcNtrY3r9jUqiiCji1Um8r2_GmkVa7VbKLFE68Aw_Eu_AkjNdex40aqXBZRY7tRJkvM9-MxzMIfSjAQctoLIKQ8TRgWVEEQsZFINOoM-eZ5Ppy8tdv8eyKXVxH14PBby9rqW3ESP64917J_0gVxkCu-pbsP0jWbQoD8BrkC0-QMDwfJGPdH1N3Q1nOVZ-0QHWtqZJrHilXG6B-ZWlvWpqTdJALYACoZVCslNJVi-vvax3BNbW_u4ISOj3g9qZualBdDV9K3S6nLW2yoSWyvU4AguoOfTxRu-zFickx6FMO7DIv_jBtO8jU1aJ0GPvSpRhc9FbVjcxUtdgsXbBhaYK3Z7AWvPqFH8AgXaKVr3NdTWRjkoweDnULSRJSX1HThHiI1A3vPc0LXnXiWXFwvcn9FsLraalGXNyMQxptjWGfALBjI13mYuczkTi3G-R2g0fokICfAor2cDL9ND3fW_fZVpfy7m313-EuMbrLCzqyc_kMPbVeCp4YyB2hgaqO0WPTt3RzjI6sGNf41JYt__gcLTUasUHjn5-_HA7xDg5xXeBdHOItDjEgBzscYh-H2OLwBbo6_3x5NgtsI49AsjFpgkwBDRKpIqlkKQ05-BTgxoLzHCe0SDiPMsVCnkYC6FImacbFXKSUCZYRCXMpfYkOqrpSrxAGOqWSOU8510Ed4PZEFdk4UTGRNOWxGKJR_yvm0la5181WynyP5Ibo1C24NQVe9k896cWSWy2wzknEuqKbWTpE793boKP1wRuvVN12cyiLCKP09cM_7Q16sv23nKCDZtWqt0CAG_HOguwv6IG5EA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lead+halide%E2%80%93templated+crystallization+of+methylamine-free+perovskite+for+efficient+photovoltaic+modules&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Bu%2C+Tongle&rft.au=Li%2C+Jing&rft.au=Li%2C+Hengyi&rft.au=Tian%2C+Congcong&rft.date=2021-06-18&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=372&rft.issue=6548&rft.spage=1327&rft.epage=1332&rft_id=info:doi/10.1126%2Fscience.abh1035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_abh1035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon