Novel synthetic approach of 2D-metal–organic frameworks (MOF) for wastewater treatment

In addition to their adjustable functionality, structural tunability, and compositional tunability, metal–organic frameworks (MOFs), often known as MOFs, are a distinct form of crystalline porous material. When reduced to two dimensions, ultrathin layers of MOF retain more of its fantastic external...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 34; no. 44; pp. 442001 - 442015
Main Authors Nath, Nibedita, Chakroborty, Subhendu, Pal, Kaushik, Barik, Arundhati, Soren, Siba
Format Journal Article
LanguageEnglish
Published England IOP Publishing 30.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In addition to their adjustable functionality, structural tunability, and compositional tunability, metal–organic frameworks (MOFs), often known as MOFs, are a distinct form of crystalline porous material. When reduced to two dimensions, ultrathin layers of MOF retain more of its fantastic external features, which is beneficial for a variety of technological applications. Due to their ultrathin atomic-level thickness, easily modifiable structure, and huge surface area, 2D MOF nanosheets and nanocomposites have been the subject of significant research. MOFs are considered intriguing materials for removing toxic contaminants among the novel technologies taken into account in water remediation processes because they exhibit numerous qualities that make them advantageous in water treatment: large surface area, easily functionalizable cavities, a few stable in water, large-scale synthesis, etc Nowadays, water pollution is a rising environmental concern that must be addressed. Due to their special qualities, which include chemical activities, a variety of functionalities, excellent stability, and the ability to be modified for the detection or adsorption of particular molecules, MOFs are widely used in detecting and removing contaminants from water. This review explores most recent wastewater treatment advancements (WWT) using the 2D MOFs mechanism.
AbstractList In addition to their adjustable functionality, structural tunability, and compositional tunability, metal-organic frameworks (MOFs), often known as MOFs, are a distinct form of crystalline porous material. When reduced to two dimensions, ultrathin layers of MOF retain more of its fantastic external features, which is beneficial for a variety of technological applications. Due to their ultrathin atomic-level thickness, easily modifiable structure, and huge surface area, 2D MOF nanosheets and nanocomposites have been the subject of significant research. MOFs are considered intriguing materials for removing toxic contaminants among the novel technologies taken into account in water remediation processes because they exhibit numerous qualities that make them advantageous in water treatment: large surface area, easily functionalizable cavities, a few stable in water, large-scale synthesis, etc Nowadays, water pollution is a rising environmental concern that must be addressed. Due to their special qualities, which include chemical activities, a variety of functionalities, excellent stability, and the ability to be modified for the detection or adsorption of particular molecules, MOFs are widely used in detecting and removing contaminants from water. This review explores most recent wastewater treatment advancements (WWT) using the 2D MOFs mechanism.In addition to their adjustable functionality, structural tunability, and compositional tunability, metal-organic frameworks (MOFs), often known as MOFs, are a distinct form of crystalline porous material. When reduced to two dimensions, ultrathin layers of MOF retain more of its fantastic external features, which is beneficial for a variety of technological applications. Due to their ultrathin atomic-level thickness, easily modifiable structure, and huge surface area, 2D MOF nanosheets and nanocomposites have been the subject of significant research. MOFs are considered intriguing materials for removing toxic contaminants among the novel technologies taken into account in water remediation processes because they exhibit numerous qualities that make them advantageous in water treatment: large surface area, easily functionalizable cavities, a few stable in water, large-scale synthesis, etc Nowadays, water pollution is a rising environmental concern that must be addressed. Due to their special qualities, which include chemical activities, a variety of functionalities, excellent stability, and the ability to be modified for the detection or adsorption of particular molecules, MOFs are widely used in detecting and removing contaminants from water. This review explores most recent wastewater treatment advancements (WWT) using the 2D MOFs mechanism.
In addition to its adjustable functionality, structural tunability, and compositional tunability, metal-organic frameworks, often known as MOFs, are a distinct form of crystalline porous material. When reduced to two dimensions, ultrathin layers of metalorganic framework retain more of its fantastic external features, which is beneficial for a variety of technological applications. Due to their ultrathin atomic-level thickness, their easily modifiable structure, and their huge surface area, 2D MOF nanosheets and their nanocomposites have been the subject of a significant amount of research. Since many poisons cause cancer in both people and fish, water pollution is a rising environmental concern that must be addressed. Due to the fact that its pore structure is both adjustable and regular, MOF, which contains multifunctional organic ligands and metallic ions, is one of the materials that presents the greatest challenge. MOFs perform exceptionally well in processes involving membrane separation and adsorption. This review explores most recent advancements in wastewater treatment (WWT) by using 2D MOFs mechanism.&#xD.
In addition to their adjustable functionality, structural tunability, and compositional tunability, metal–organic frameworks (MOFs), often known as MOFs, are a distinct form of crystalline porous material. When reduced to two dimensions, ultrathin layers of MOF retain more of its fantastic external features, which is beneficial for a variety of technological applications. Due to their ultrathin atomic-level thickness, easily modifiable structure, and huge surface area, 2D MOF nanosheets and nanocomposites have been the subject of significant research. MOFs are considered intriguing materials for removing toxic contaminants among the novel technologies taken into account in water remediation processes because they exhibit numerous qualities that make them advantageous in water treatment: large surface area, easily functionalizable cavities, a few stable in water, large-scale synthesis, etc Nowadays, water pollution is a rising environmental concern that must be addressed. Due to their special qualities, which include chemical activities, a variety of functionalities, excellent stability, and the ability to be modified for the detection or adsorption of particular molecules, MOFs are widely used in detecting and removing contaminants from water. This review explores most recent wastewater treatment advancements (WWT) using the 2D MOFs mechanism.
Author Pal, Kaushik
Soren, Siba
Nath, Nibedita
Barik, Arundhati
Chakroborty, Subhendu
Author_xml – sequence: 1
  givenname: Nibedita
  surname: Nath
  fullname: Nath, Nibedita
  organization: Department of Chemistry, D.S. Degree College, Laida, Sambalpur, Odisha 768214, India
– sequence: 2
  givenname: Subhendu
  orcidid: 0000-0002-3283-4080
  surname: Chakroborty
  fullname: Chakroborty, Subhendu
  organization: IITM, IES University Department of Basic Sciences, Bhopal, MP 462044, India
– sequence: 3
  givenname: Kaushik
  orcidid: 0000-0002-9313-6497
  surname: Pal
  fullname: Pal, Kaushik
  organization: Chandigarh University University Centre for Research and Development (UCRD), Department of Physics, Gharuan, Mohali, Punjab 140413, India
– sequence: 4
  givenname: Arundhati
  surname: Barik
  fullname: Barik, Arundhati
  organization: CIPET: Institute of Petrochemicals Technology [IPT], Bhubaneswar, Odisha, India
– sequence: 5
  givenname: Siba
  surname: Soren
  fullname: Soren, Siba
  organization: Ravenshaw University Department of Chemistry, Cuttack-753003, Odisha, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37527630$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1LHDEUhkOx1N1t772SuVTo1HzNJHMpfrVg600LvQtnsyc6OpOMSdbFu_4H_6G_xFlWvZAiBAI5z_tyeDIlWz54JGSH0W-Man3ARM3KuuL6ACzain0gk9enLTKhTaVKKbXcJtOUrillTHP2iWwLVXFVCzohf3-FO-yKdO_zFebWFjAMMYC9KoIr-HHZY4bu8d9DiJfgx7GL0OMqxJtU7P28ON0vXIjFClLGFWSMRY4IuUefP5OPDrqEX57vGflzevL76Ht5fnH24-jwvLSS8Vw2wEBpdKKaQ0UlSGikRIluAUAREJhSAjhqbCwo55TUohbNvNZUSMkXYkb2Nr3j2rdLTNn0bbLYdeAxLJPhWlaMKq6aEd19RpfzHhdmiG0P8d682BiBegPYGFKK6IxtM-Q2-Byh7QyjZq3drB2btWOz0T4G6ZvgS_c7ka-bSBsGcx2W0Y-W3sP3_4N78MEIaeT68PF_zbBw4gkZvqIM
CODEN NNOTER
CitedBy_id crossref_primary_10_1016_j_inoche_2024_113583
crossref_primary_10_1016_j_molliq_2024_124828
crossref_primary_10_1016_j_chemosphere_2024_142558
crossref_primary_10_1016_j_molstruc_2024_138987
crossref_primary_10_1016_j_colsurfa_2024_133259
crossref_primary_10_1007_s00339_024_07441_7
crossref_primary_10_1016_j_molstruc_2024_138310
crossref_primary_10_1016_j_molstruc_2024_138089
crossref_primary_10_1088_1361_6528_ad4cf3
crossref_primary_10_1016_j_colsurfa_2024_133958
Cites_doi 10.1093/nsr/nwab197
10.3390/chemosensors5030021
10.1021/acs.inorgchem.9b01172
10.1002/adma.201506306
10.1016/j.ccr.2018.02.009
10.1021/acsnano.1c09301
10.1016/j.cej.2021.128431
10.1016/j.scitotenv.2021.149662
10.1016/j.cej.2019.01.068
10.1021/jacs.5b02276
10.1016/j.scitotenv.2017.04.102
10.1002/anie.201407836
10.3390/electronics4030651
10.3390/w8120586
10.1021/acs.accounts.8b00521
10.1016/j.jiec.2017.12.051
10.1016/j.gee.2022.03.005
10.1016/j.jece.2018.09.017
10.1002/advs.201500243
10.1002/adfm.201702168
10.1038/536396e
10.1016/j.cej.2021.128668
10.1038/d41586-019-00214-w
10.1021/ja073568h
10.1007/s12274-017-1595-2
10.1016/j.micromeso.2020.110340
10.1016/j.cclet.2021.06.004
10.1016/j.cej.2022.140851
10.1002/adma.201503648
10.1038/nphoton.2014.271
10.1016/j.ccr.2022.214817
10.1016/j.ultsonch.2013.12.012
10.1016/j.jcis.2016.06.032
10.1002/anie.201911477
10.1021/acsami.9b06472
10.1002/adfm.202207723
10.1002/aoc.3430
10.1016/j.snb.2018.12.064
10.1021/cr200324t
10.1021/ja201170c
10.1021/acsnano.1c07803
10.1016/j.memsci.2018.11.075
10.1039/C9QI00386J
10.1002/anie.201305530
10.1002/advs.201500283
10.1021/acsanm.2c00234
10.1021/am3028662
10.1126/science.1254227
10.1016/j.jcis.2020.05.126
10.1002/aoc.5549
10.1016/S1369-7021(10)70126-7
10.1007/s11356-020-09865-z
10.1016/j.colsurfa.2018.03.042
10.1016/j.cej.2017.11.044
10.1039/C5RA28052D
10.1016/j.nantod.2011.10.001
10.1016/j.chemosphere.2019.125043
10.1002/adfm.202102648
10.1002/anie.201707346
10.1016/j.jclepro.2016.10.109
10.1039/C9CS00609E
10.1016/j.chemosphere.2020.126008
10.1007/s11426-019-9575-8
10.3390/s140813999
10.1016/j.cej.2022.135542
10.1007/s40843-017-9020-5
10.1002/anie.201708211
10.1039/C6EE02265K
10.1021/ja501849y
10.1039/C1CE05624G
10.1186/s12951-020-00763-7
10.1002/aic.13781
10.3389/fchem.2020.00708
10.1021/jacs.6b09889
10.1016/j.jcis.2018.02.067
10.1039/C9NR10178K
10.1016/j.mattod.2021.04.020
10.1002/anie.200901678
10.1002/anie.201807935
10.1016/j.jhazmat.2017.09.043
10.1002/eem2.12196
10.1002/adma.201604898
10.1016/j.ccr.2022.214428
10.1016/j. cclet.2021.12.033
10.1021/acsomega.8b00012
10.1002/smll.202104387
10.1002/anie.201100669
10.1016/j.memsci.2018.10.080
10.1016/j.jcis.2020.01.031
10.1016/j.jhazmat.2010.05.047
10.1002/advs.201800982
10.1016/j.scitotenv.2017.05.223
10.1021/acsami.7b17477
10.1039/C9CC00349E
10.1016/j.tibtech.2019.09.001
10.1016/j.seppur.2021.119366
10.1002/wnan.1674
10.1002/cssc.201900706
10.1016/j.coelec.2020.100669
10.1016/j.jclepro.2017.09.265
10.1186/s12951-021-00905-5
10.1002/aenm.202100346
10.1016/j.jhazmat.2021.125375
10.1016/j.cej.2017.09.138
10.1021/jacs.6b02540
10.1021/acs.chemrev.0c01049
10.1016/j.seppur.2019.01.013
10.1039/C7TA01978E
10.1021/acsami.8b01371
10.1038/nmat4113
10.1002/anie.201701604
10.1016/j.ccr.2018.10.003
10.1016/j.talanta.2016.08.040
10.1038/ncomms5947
10.1002/advs.201902590
10.1016/j.ccr.2021.214037
10.1039/C7TB02970E
10.1016/j.ccr.2018.01.016
10.1016/j.cej.2019.123189
10.1038/ncomms14460
10.1002/adma.201803291
10.1002/chem.201802826
10.1039/C2JM15675J
10.1016/j.chemosphere.2021.130055
10.1016/j.jhazmat.2017.12.034
10.1002/chem.201800556
10.1016/j.cej.2019.03.173
10.1126/science.1226419
10.1021/acs.accounts.9b00113
10.1016/j.apcatb.2015.12.041
10.1016/j.cej.2021.130518
10.3390/s100404083
10.1002/asia.202100884
10.1021/acs.nanolett.9b03225
10.1016/j.micromeso.2018.06.016
10.1016/j.scitotenv.2022.159385
10.1039/D0TA03138K
10.3390/catal13020231
10.1002/anie.201800269
10.1016/j.jcis.2018.10.008
10.1021/jacs.7b04829
10.1016/j.jcis.2018.05.015
10.1007/s10311-018-0786-8
10.1002/anie.201904058
10.1039/D3TA00279A
10.1038/nmat3984
10.1016/j.watres.2020.115673
10.1016/j.apcata.2018.06.036
10.1016/j.ccr.2019.213046
10.1016/j.apcatb.2020.119295
10.2174/0929867324666170920152529
10.1016/j.seppur.2020.116947
10.1002/sstr.202000078
10.1021/acs.chemrev.6b00558
10.1016/j.jhazmat.2020.122692
10.1002/adma.201600108
10.1016/j.chemosphere.2022.133542
10.1021/ja512311a
10.1021/acsami.6b00900
10.1038/s41467-019-14056-7
10.1021/jacs.8b05136
10.1038/nchem.1569
10.1002/chem.201705415
10.1002/adma.201900617
10.1016/j.ccr.2019.03.002
10.1021/ar300009f
10.1021/acsenergylett.8b02343
10.1186/s12951-021-01053-6
10.1126/science.1102896
10.1016/j.watres.2020.116446
10.1039/C8TA02820F
10.1016/j.enchem.2021.100057
10.1039/C8CS00268A
10.1016/j.jorganchem.2022.122597
10.1039/C8MH00133B
10.1016/j.cej.2020.125346
10.1002/adma.201704303
10.1126/science.1194975
10.1002/advs.201802373
10.1016/j.seppur.2019.116360
10.1126/science.1230444
10.3390/membranes7020031
10.1016/j.cej.2017.07.156
10.1016/j.bios.2020.112730
10.3390/catal10020195
10.1002/adma.201500789
10.1039/C8QM00356D
ContentType Journal Article
Copyright 2023 IOP Publishing Ltd
2023 IOP Publishing Ltd.
Copyright_xml – notice: 2023 IOP Publishing Ltd
– notice: 2023 IOP Publishing Ltd.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1088/1361-6528/acec51
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1361-6528
ExternalDocumentID 37527630
10_1088_1361_6528_acec51
nanoacec51
Genre Journal Article
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c412t-9a1a78ef35ba504a4a944e4efdaa0eaea1773a2e8e9ca7ff7483639b6803442d3
IEDL.DBID IOP
ISSN 0957-4484
1361-6528
IngestDate Thu Jul 10 22:15:49 EDT 2025
Thu Apr 03 07:00:49 EDT 2025
Thu Apr 24 23:02:37 EDT 2025
Tue Jul 01 01:27:29 EDT 2025
Wed Aug 23 00:57:59 EDT 2023
Wed Aug 21 03:29:46 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords Hybrid composites
Nanosheets
Wastewater treatment
2D MOF
Porous materials
Language English
License This article is available under the terms of the IOP-Standard License.
2023 IOP Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-9a1a78ef35ba504a4a944e4efdaa0eaea1773a2e8e9ca7ff7483639b6803442d3
Notes NANO-134650.R4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3283-4080
0000-0002-9313-6497
OpenAccessLink https://iopscience.iop.org/article/10.1088/1361-6528/acec51/pdf
PMID 37527630
PQID 2845107279
PQPubID 23479
PageCount 15
ParticipantIDs iop_journals_10_1088_1361_6528_acec51
pubmed_primary_37527630
proquest_miscellaneous_2845107279
crossref_citationtrail_10_1088_1361_6528_acec51
crossref_primary_10_1088_1361_6528_acec51
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-30
PublicationDateYYYYMMDD 2023-10-30
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-30
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanotechnology
PublicationTitleAbbrev NANO
PublicationTitleAlternate Nanotechnology
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Fluegel (nanoacec51bib15) 2012; 22
Ahmadijokani (nanoacec51bib34) 2022; 32
Li (nanoacec51bib53) 2020; 11
Ahmadijokani (nanoacec51bib193) 2020; 399
Zhu (nanoacec51bib163) 2021; 16
Juneja (nanoacec51bib158) 2018; 347
Wang (nanoacec51bib66) 2019; 400
Shiyin (nanoacec51bib178) 2020; 27
Kondo (nanoacec51bib126) 2011; 133
Du (nanoacec51bib187) 2021; 420
Kaur (nanoacec51bib150) 2023; 857
Chen (nanoacec51bib12) 2019; 378
Liu (nanoacec51bib97) 2020; 59
Wang (nanoacec51bib49) 2018; 519
Crini (nanoacec51bib61) 2019; 17
Liu (nanoacec51bib20) 2017; 10
Wang (nanoacec51bib18) 2017; 10
Peng (nanoacec51bib179) 2018; 333
Ouedraogo (nanoacec51bib156) 2018; 563
Shan (nanoacec51bib47) 2021; 2
Navarro (nanoacec51bib142) 2018; 10
Jang (nanoacec51bib136) 2020; 10
Li (nanoacec51bib32) 2020; 395
Wang (nanoacec51bib45) 2018; 5
Nguyen (nanoacec51bib60) 2021; 188
Zhu (nanoacec51bib104) 2021; 171
Liu (nanoacec51bib90) 2017; 27
Quan (nanoacec51bib167) 2019; 58
Furukawa (nanoacec51bib6) 2013; 341
Qiao (nanoacec51bib139) 2012; 59
Lv (nanoacec51bib185) 2016; 161
Carne-Sanchez (nanoacec51bib16) 2013; 5
Karmakar (nanoacec51bib176) 2019; 215
Su (nanoacec51bib171) 2018; 547
Khanjani (nanoacec51bib186) 2014; 21
Pedireddy (nanoacec51bib84) 2014; 5
Dong (nanoacec51bib42) 2019; 535
ArunKumar (nanoacec51bib110) 2021; 13
Huang (nanoacec51bib149) 2023; 985
Guo (nanoacec51bib175) 2020; 578
Wang (nanoacec51bib129) 2016; 28
Arif (nanoacec51bib153) 2023; 13
Deng (nanoacec51bib106) 2021; 19
Hirsch (nanoacec51bib82) 2018; 57
Bai (nanoacec51bib71) 2022; 12
Huang (nanoacec51bib83) 2014; 13
Simon Yarza (nanoacec51bib14) 2017; 129
Ahmadijokani (nanoacec51bib35) 2021; 445
Liu (nanoacec51bib33) 2022; 8
Zou (nanoacec51bib46) 2018; 24
Cao (nanoacec51bib81) 2018; 2
Wei (nanoacec51bib135) 2020; 565
Tan (nanoacec51bib92) 2017; 117
Yangdan (nanoacec51bib131) 2021; 3
Wang (nanoacec51bib44) 2017; 330
K€okçam-Demir (nanoacec51bib39) 2020; 49
Candia-Onfray (nanoacec51bib41) 2021; 26
Zheng (nanoacec51bib122) 2014; 136
Liu (nanoacec51bib3) 2019; 31
Duan (nanoacec51bib107) 2021; 33
Tang (nanoacec51bib137) 2021; 31
Yibo (nanoacec51bib192) 2020; 7
Rojas (nanoacec51bib68) 2019; 11
Danning (nanoacec51bib166) 2020; 278
Kondo (nanoacec51bib125) 2007; 129
Cao (nanoacec51bib38) 2019; 283
Issaabadi (nanoacec51bib160) 2017; 142
Yu (nanoacec51bib31) 2021; 800
Liang (nanoacec51bib36) 2018; 57
Peitao (nanoacec51bib169) 2018; 6
Zhao (nanoacec51bib69) 2018; 47
Zhu (nanoacec51bib37) 2019; 389
Cao (nanoacec51bib161) 2019; 19
Adegoke (nanoacec51bib111) 2022; 473
Sewoon (nanoacec51bib59) 2018; 335
Liu (nanoacec51bib67) 2020; 241
Li (nanoacec51bib55) 2020; 237
Rao (nanoacec51bib77) 2009; 48
Jafarian (nanoacec51bib152) 2023; 455
Ding (nanoacec51bib5) 2019; 52
Ming (nanoacec51bib168) 2018; 24
Bauer (nanoacec51bib121) 2011; 50
Yuan (nanoacec51bib133) 2020; 26
Kurapati (nanoacec51bib80) 2016; 28
Zhao (nanoacec51bib88) 2014; 14
Mirsoleimani-Azizi (nanoacec51bib180) 2018; 6
Kang (nanoacec51bib4) 2019; 378
Liu (nanoacec51bib21) 2017; 60
Molavi (nanoacec51bib24) 2020; 34
Kasula (nanoacec51bib151) 2022; 439
Gao (nanoacec51bib75) 2014; 53
Liu (nanoacec51bib119) 2019; 6
Yang (nanoacec51bib102) 2022; 16
Wang (nanoacec51bib50) 2016; 186
Lahiri (nanoacec51bib123) 2017; 139
Tyagi (nanoacec51bib76) 2020; 12
Fan (nanoacec51bib52) 2018; 140
Sonia (nanoacec51bib74) 2017; 5
Yue (nanoacec51bib85) 2013; 5
Yin (nanoacec51bib154) 2021; 276
Peng (nanoacec51bib117) 2014; 346
Tian (nanoacec51bib8) 2016; 3
Dhakshinamoorthy (nanoacec51bib120) 2019; 31
Liu (nanoacec51bib173) 2021; 410
Wang (nanoacec51bib54) 2017; 8
Etman (nanoacec51bib157) 2018; 3
Jie (nanoacec51bib172) 2020; 383
Jun (nanoacec51bib30) 2020; 247
Zhao (nanoacec51bib130) 2015; 27
Zhang (nanoacec51bib182) 2021; 3
Yao (nanoacec51bib1) 2021; 18
Chakraborty (nanoacec51bib134) 2021; 121
Xu (nanoacec51bib143) 2019; 12
Zhou (nanoacec51bib177) 2019; 362
Gege (nanoacec51bib62) 2023; 11
Arun Kumar (nanoacec51bib70) 2021; 13
Yuan (nanoacec51bib140) 2019; 572
Fallah (nanoacec51bib25) 2021; 275
Coha (nanoacec51bib57) 2021; 414
Kumar (nanoacec51bib40) 2018; 62
Li (nanoacec51bib109) 2021; 17
Xu (nanoacec51bib13) 2015; 27
Ma (nanoacec51bib73) 2019; 52
Liu (nanoacec51bib138) 2022; 458
Yuan (nanoacec51bib48) 2018; 30
Au (nanoacec51bib189) 2020; 8
Liu (nanoacec51bib7) 2018; 5
Sharma (nanoacec51bib29) 2019; 372
Coleman (nanoacec51bib114) 2013; 46
Joseph (nanoacec51bib191) 2019; 369
Varghese (nanoacec51bib93) 2015; 4
Ding (nanoacec51bib118) 2017; 139
Teo (nanoacec51bib181) 2018; 272
Tan (nanoacec51bib116) 2012; 66
Khan (nanoacec51bib64) 2021; 413
Zhang (nanoacec51bib56) 2015; 137
Cao (nanoacec51bib128) 2016; 138
Zhou (nanoacec51bib23) 2016; 536
Peng (nanoacec51bib141) 2016; 8
Dhaka (nanoacec51bib65) 2019; 380
Wang (nanoacec51bib105) 2019; 26
Peng (nanoacec51bib112) 2014; 346
Spingler (nanoacec51bib124) 2012; 14
Haque (nanoacec51bib190) 2010; 181
Mingliang (nanoacec51bib58) 2020; 175
Yang (nanoacec51bib147) 2018; 10
Ahmad (nanoacec51bib63) 2020; 248
Azhar (nanoacec51bib184) 2016; 478
Murali (nanoacec51bib98) 2021; 50
Liu (nanoacec51bib2) 2015; 137
Yuan (nanoacec51bib51) 2016; 30
Choi (nanoacec51bib89) 2010; 10
Rodenas (nanoacec51bib127) 2015; 14
Kreno (nanoacec51bib94) 2012; 112
Coleman (nanoacec51bib115) 2011; 331
Siwal (nanoacec51bib26) 2022; 293
Zheng (nanoacec51bib96) 2022; 9
Shakoor (nanoacec51bib27) 2017; 601
Comini (nanoacec51bib87) 2010; 13
Bowei (nanoacec51bib165) 2019; 4
Veisi (nanoacec51bib159) 2018; 170
Liu (nanoacec51bib10) 2017; 56
Saghanejhad Tehrani (nanoacec51bib174) 2016; 6
Yang (nanoacec51bib183) 2019; 6
Wang (nanoacec51bib17) 2018; 6
Qu (nanoacec51bib162) 2022; 5
Zhao (nanoacec51bib108) 2021; 19
Zuo (nanoacec51bib148) 2016; 8
Kassem (nanoacec51bib155) 2020; 305
Huang (nanoacec51bib101) 2022; 33
Novoselov (nanoacec51bib99) 2004; 306
Geng (nanoacec51bib188) 2021; 5
Zhang (nanoacec51bib9) 2016; 3
Neri (nanoacec51bib91) 2017; 5
Zhao (nanoacec51bib132) 2019; 58
Kadhom (nanoacec51bib145) 2017; 7
Xia (nanoacec51bib79) 2014; 8
Lin (nanoacec51bib95) 2021; 16
Wu (nanoacec51bib146) 2018; 57
Dongdong (nanoacec51bib170) 2020; 8
Peng (nanoacec51bib164) 2019; 55
Xia (nanoacec51bib43) 2018; 530
Kaneti (nanoacec51bib19) 2017; 29
Szuplewska (nanoacec51bib103) 2020; 38
Yang (nanoacec51bib28) 2017; 596
Wang (nanoacec51bib100) 2021; 19
Yildirimer (nanoacec51bib86) 2011; 6
Orthodox (nanoacec51bib22a) 2019; 565
Sun (nanoacec51bib78) 2013; 52
Dai (nanoacec51bib144) 2019; 573
Nicolosi (nanoacec51bib113) 2013; 340
Zhang (nanoacec51bib11) 2018; 24
Peng (nanoacec51bib72) 2019; 62
References_xml – volume: 9
  year: 2022
  ident: nanoacec51bib96
  article-title: Dual-ligand and hard-soft-acid–base strategies to optimize metal–organic framework nanocrystals for stable electrochemical cycling performance
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwab197
– volume: 5
  start-page: 21
  year: 2017
  ident: nanoacec51bib91
  article-title: Thin 2D: the new dimensionality in gas sensing
  publication-title: Chemosensors
  doi: 10.3390/chemosensors5030021
– volume: 58
  start-page: 8787
  year: 2019
  ident: nanoacec51bib132
  article-title: UiO-66: an advanced platform for investigating the influence of functionalization in the adsorption removal of pharmaceutical waste
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b01172
– volume: 28
  start-page: 6052
  year: 2016
  ident: nanoacec51bib80
  article-title: Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506306
– volume: 378
  start-page: 262
  year: 2019
  ident: nanoacec51bib4
  article-title: Metal–organic frameworks with catalytic centers: from synthesis to catalytic application
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.02.009
– volume: 16
  start-page: 1346
  year: 2021
  ident: nanoacec51bib163
  article-title: Porphyrin-based two-dimensional layered metal–organic framework with sono-/photocatalytic activity for water decontamination
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c09301
– volume: 410
  year: 2021
  ident: nanoacec51bib173
  article-title: Synergistic dual-pyrazol sites of metal–organic framework for efficient separation and recovery of transition metals from wastewater
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128431
– volume: 800
  year: 2021
  ident: nanoacec51bib31
  article-title: Recent advances in metal–organic framework membranes for water treatment: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.149662
– volume: 362
  start-page: 628
  year: 2019
  ident: nanoacec51bib177
  article-title: Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.068
– volume: 137
  start-page: 6999
  year: 2015
  ident: nanoacec51bib2
  article-title: Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02276
– volume: 596
  start-page: 303
  year: 2017
  ident: nanoacec51bib28
  article-title: Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.04.102
– volume: 53
  start-page: 12789
  year: 2014
  ident: nanoacec51bib75
  article-title: Ultrahigh energy density realized by a single-layer b-Co(OH)2 All-Solid-State asymmetric supercapacitor
  publication-title: Angew. Chemie Int. Ed.
  doi: 10.1002/anie.201407836
– volume: 4
  start-page: 651
  year: 2015
  ident: nanoacec51bib93
  article-title: Two-dimensional materials for sensing: graphene and beyond
  publication-title: Electronics
  doi: 10.3390/electronics4030651
– volume: 8
  start-page: 586
  year: 2016
  ident: nanoacec51bib148
  article-title: Metal–organic framework-functionalized alumina membranes for vacuum membrane distillation
  publication-title: Water
  doi: 10.3390/w8120586
– volume: 52
  start-page: 356
  year: 2019
  ident: nanoacec51bib5
  article-title: Metal–organic frameworks for photocatalysis and photothermal catalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00521
– volume: 62
  start-page: 130
  year: 2018
  ident: nanoacec51bib40
  article-title: Metal–organic frameworks (MOFs) as futuristic options for wastewater treatment
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2017.12.051
– volume: 8
  start-page: 698
  year: 2022
  ident: nanoacec51bib33
  article-title: Application of metal organic framework in wastewater treatment
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2022.03.005
– volume: 6
  start-page: 6118
  year: 2018
  ident: nanoacec51bib180
  article-title: Tetracycline antibiotic removal from aqueous solutions by MOF-5: adsorption isotherm, kinetic and thermodynamic studies
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2018.09.017
– volume: 3
  year: 2016
  ident: nanoacec51bib9
  article-title: Metal–organic frameworks as promising photosensitizers for photoelectrochemical water splitting
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500243
– volume: 27
  year: 2017
  ident: nanoacec51bib90
  article-title: Two-dimensional nanostructured materials for gas sensing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702168
– volume: 536
  start-page: 396
  year: 2016
  ident: nanoacec51bib23
  article-title: Strengthen China’s flood control
  publication-title: Nature
  doi: 10.1038/536396e
– volume: 414
  year: 2021
  ident: nanoacec51bib57
  article-title: Advanced oxidation processes in the removal of organic substances from produced water: potential, configurations, and research needs
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128668
– volume: 565
  start-page: 426
  year: 2019
  ident: nanoacec51bib22a
  publication-title: Nature
  doi: 10.1038/d41586-019-00214-w
– volume: 129
  year: 2007
  ident: nanoacec51bib125
  article-title: Double-step gas sorption of a two-dimensional metal–organic framework
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja073568h
– volume: 10
  start-page: 3826
  year: 2017
  ident: nanoacec51bib18
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1595-2
– volume: 305
  year: 2020
  ident: nanoacec51bib155
  article-title: Hydrogenation reduction of dyes using metal–organic framework-derived CuO@C
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2020.110340
– volume: 33
  start-page: 163
  year: 2022
  ident: nanoacec51bib101
  article-title: Two-dimensional alloyed transition metal dichalcogenide nanosheets: synthesis and applications
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.06.004
– volume: 455
  year: 2023
  ident: nanoacec51bib152
  article-title: Synthesis of heterogeneous metal organic framework-graphene oxide nanocomposite membranes for water treatment
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140851
– volume: 27
  start-page: 7372
  year: 2015
  ident: nanoacec51bib130
  article-title: Ultrathin 2D metal–organic framework nanosheets
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503648
– volume: 8
  start-page: 899
  year: 2014
  ident: nanoacec51bib79
  article-title: Two-dimensional material nanophotonics
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2014.271
– volume: 473
  year: 2022
  ident: nanoacec51bib111
  article-title: Two-dimensional metal–organic frameworks: from synthesis to biomedical, environmental, and energy conversion applications
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214817
– volume: 21
  start-page: 1424
  year: 2014
  ident: nanoacec51bib186
  article-title: Ultrason. Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye ‘congo red’
  publication-title: Sonochemistry
  doi: 10.1016/j.ultsonch.2013.12.012
– volume: 478
  start-page: 344
  year: 2016
  ident: nanoacec51bib184
  article-title: Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.06.032
– volume: 59
  start-page: 5890
  year: 2020
  ident: nanoacec51bib97
  article-title: Two-dimensional nanomaterials for photothermal therapy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201911477
– volume: 11
  start-page: 22188
  year: 2019
  ident: nanoacec51bib68
  article-title: Ti-Based nanoMOF as an efficient oral therapeutic agent
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b06472
– volume: 32
  start-page: 2207723
  year: 2022
  ident: nanoacec51bib34
  article-title: Metal–organic frameworks and electrospinning: a happy marriage for wastewater treatment
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202207723
– volume: 30
  start-page: 289
  year: 2016
  ident: nanoacec51bib51
  article-title: One-pot self-assembly and photoreduction synthesis of silver nanoparticle-decorated reduced graphene oxide/MIL-125 (Ti) photocatalyst with improved visible light photocatalytic activity
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.3430
– volume: 283
  start-page: 487
  year: 2019
  ident: nanoacec51bib38
  article-title: An electrochemical sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate determination
  publication-title: Sensors Actuators B
  doi: 10.1016/j.snb.2018.12.064
– volume: 112
  start-page: 1105
  year: 2012
  ident: nanoacec51bib94
  article-title: Metal–organic framework materials as chemical sensors
  publication-title: Chem. Rev.
  doi: 10.1021/cr200324t
– volume: 133
  start-page: 10512
  year: 2011
  ident: nanoacec51bib126
  article-title: Super flexibility of a 2D Cu-based porous coordination framework on gas adsorption in comparison with a 3D framework of identical composition: framework dimensionality-dependent gas adsorptivities
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201170c
– volume: 16
  start-page: 597
  year: 2022
  ident: nanoacec51bib102
  article-title: Monolayer WS2 lateral homosuperlattices with two-dimensional periodic localized photoluminescence
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.1c07803
– volume: 573
  start-page: 46
  year: 2019
  ident: nanoacec51bib144
  article-title: Porous metal organic framework CuBDC nanosheet incorporated thin-film nanocomposite membrane for high-performance forward osmosis
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.11.075
– volume: 6
  start-page: 1924
  year: 2019
  ident: nanoacec51bib183
  article-title: Metal–organic framework-based materials for the recovery of uranium from aqueous solutions
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C9QI00386J
– volume: 52
  start-page: 10569
  year: 2013
  ident: nanoacec51bib78
  article-title: Atomically thin tin dioxide sheets for efficient catalytic oxidation of carbon monoxide
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201305530
– volume: 3
  year: 2016
  ident: nanoacec51bib8
  article-title: The first example of hetero-triple-walled metal–organic frameworks with high chemical stability constructed via flexible integration of mixed molecular building blocks.
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500283
– volume: 5
  start-page: 5196
  year: 2022
  ident: nanoacec51bib162
  article-title: Graphene oxide nanofiltration membrane based on three-dimensional size-controllable metal–organic frameworks for water treatment
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.2c00234
– volume: 26
  year: 2020
  ident: nanoacec51bib133
  article-title: A review on metal organic frameworks (MOFs) modified membrane for remediation of water pollution
  publication-title: Environ. Eng. Res.
– volume: 5
  start-page: 2800
  year: 2013
  ident: nanoacec51bib85
  article-title: Quantum-dot-based photoelectrochemical sensors for chemical and biological detection
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am3028662
– volume: 346
  start-page: 1356
  year: 2014
  ident: nanoacec51bib117
  article-title: Metal–organic framework nanosheets as building blocks for molecular sieving membranes
  publication-title: Science
  doi: 10.1126/science.1254227
– volume: 578
  start-page: 500
  year: 2020
  ident: nanoacec51bib175
  article-title: Green and facile synthesis of cobalt-based metal–organic frameworks for the efficient removal of Congo red from aqueous solution
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.05.126
– volume: 34
  start-page: 4
  year: 2020
  ident: nanoacec51bib24
  article-title: Zr-based MOFs with high drug loading for adsorption removal of anti-cancer drugs: a potential drug storage
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.5549
– volume: 13
  start-page: 36
  year: 2010
  ident: nanoacec51bib87
  article-title: Metal oxide nanowires as chemical sensors
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(10)70126-7
– volume: 27
  start-page: 39186
  year: 2020
  ident: nanoacec51bib178
  article-title: Microwave-assisted hydrothermal assembly of 2D copper-porphyrin metal–organic frameworks for the removal of dyes and antibiotics from water
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-09865-z
– volume: 547
  start-page: 73
  year: 2018
  ident: nanoacec51bib171
  article-title: Zeolitic imidazolate framework-67: a promising candidate for recovery of uranium (VI) from seawater
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2018.03.042
– volume: 335
  start-page: 896
  year: 2018
  ident: nanoacec51bib59
  article-title: Removal of contaminants of emerging concern by membranes in water and wastewater: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.11.044
– volume: 6
  start-page: 27416
  year: 2016
  ident: nanoacec51bib174
  article-title: Synthesis, characterization and application of cyclam-modified magnetic SBA-15 as a novel sorbent and its optimization by central composite design for adsorption and determination of trace amounts of lead ions
  publication-title: RSC Adv.
  doi: 10.1039/C5RA28052D
– volume: 6
  start-page: 585
  year: 2011
  ident: nanoacec51bib86
  article-title: Toxicology and clinical potential of nanoparticles
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2011.10.001
– volume: 241
  year: 2020
  ident: nanoacec51bib67
  article-title: Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: a critical review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125043
– volume: 31
  year: 2021
  ident: nanoacec51bib137
  article-title: Laser-induced annealing of metal organic frameworks on conductive substrates for electrochemical water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102648
– volume: 129
  start-page: 15771
  year: 2017
  ident: nanoacec51bib14
  article-title: A smart metal–organic framework nanomaterial for lung targeting
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201707346
– volume: 142
  start-page: 3584
  year: 2017
  ident: nanoacec51bib160
  article-title: Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.10.109
– volume: 49
  start-page: 2751
  year: 2020
  ident: nanoacec51bib39
  article-title: Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00609E
– volume: 17
  year: 2021
  ident: nanoacec51bib109
  article-title: Controllable synthesis and performance modulation of 2D covalent-organic frameworks
  publication-title: Small
– volume: 248
  year: 2020
  ident: nanoacec51bib63
  article-title: Adsorptive removal of heavy metal ions using graphene-based nanomaterials: toxicity, roles of functional groups and mechanisms
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126008
– volume: 62
  start-page: 1561
  year: 2019
  ident: nanoacec51bib72
  article-title: Metal–organic framework nanosheets: a class of glamorous low-dimensional materials with distinct structural and chemical natures
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-019-9575-8
– volume: 14
  start-page: 13999
  year: 2014
  ident: nanoacec51bib88
  article-title: One-dimensional nanostructure field-effect sensors for gas detection
  publication-title: Sensors
  doi: 10.3390/s140813999
– volume: 439
  year: 2022
  ident: nanoacec51bib151
  article-title: Silver metal organic frameworks and copper metal organic frameworks immobilized on graphene oxide for enhanced adsorption in water treatment
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135542
– volume: 60
  start-page: 438
  year: 2017
  ident: nanoacec51bib21
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-017-9020-5
– volume: 57
  start-page: 4338
  year: 2018
  ident: nanoacec51bib82
  article-title: Post-Graphene 2D chemistry: the emerging field of molybdenum disulfide and black phosphorus functionalization
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708211
– volume: 10
  start-page: 402
  year: 2017
  ident: nanoacec51bib20
  article-title: Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02265K
– volume: 136
  start-page: 6103
  year: 2014
  ident: nanoacec51bib122
  article-title: Synthesis of two-dimensional analogues of copolymers by site-to-site transmetalation of organometallic monolayer sheets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja501849y
– volume: 14
  start-page: 751
  year: 2012
  ident: nanoacec51bib124
  article-title: Some thoughts about the single crystal growth of small molecules
  publication-title: CrystEngComm
  doi: 10.1039/C1CE05624G
– volume: 19
  start-page: 36
  year: 2021
  ident: nanoacec51bib108
  article-title: 2D LDH-MoS2 clay nanosheets: synthesis, catalase-mimic capacity, and imaging-guided tumor photo-therapy
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-020-00763-7
– volume: 59
  start-page: 215
  year: 2012
  ident: nanoacec51bib139
  article-title: PVAm–PIP/PS composite membrane with high performance for CO2/N2 separation
  publication-title: AIChE J.
  doi: 10.1002/aic.13781
– volume: 8
  start-page: 708
  year: 2020
  ident: nanoacec51bib189
  article-title: Recent advances in the use of metal–organic frameworks for dye adsorption
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00708
– volume: 139
  start-page: 19
  year: 2017
  ident: nanoacec51bib123
  article-title: Hexaaminobenzene as a building block for a family of 2D coordination polymers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09889
– volume: 519
  start-page: 273
  year: 2018
  ident: nanoacec51bib49
  article-title: Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.02.067
– volume: 12
  start-page: 3535
  year: 2020
  ident: nanoacec51bib76
  article-title: Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications
  publication-title: Nanoscale.
  doi: 10.1039/C9NR10178K
– volume: 3
  year: 2021
  ident: nanoacec51bib131
  article-title: Recent progress in 2D metal–organic framework photocatalysts: synthesis, photocatalytic mechanism and applications
  publication-title: J. Phys.: Energy
– volume: 50
  start-page: 276
  year: 2021
  ident: nanoacec51bib98
  article-title: Emerging 2D nanomaterials for biomedical applications
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2021.04.020
– volume: 48
  start-page: 7752
  year: 2009
  ident: nanoacec51bib77
  article-title: Graphene: the new two-dimensional nanomaterial
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200901678
– volume: 13
  year: 2021
  ident: nanoacec51bib110
  article-title: Two-dimensional metal–organic frameworks for biomedical applications
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
– volume: 57
  start-page: 15354
  year: 2018
  ident: nanoacec51bib146
  article-title: High-Flux high-selectivity metal–organic framework MIL-160 membrane for xylene isomer separation by pervaporation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201807935
– volume: 372
  start-page: 3
  year: 2019
  ident: nanoacec51bib29
  article-title: Water depollution using metal–organic frameworks-catalyzed advanced oxidation processes: a review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.09.043
– volume: 5
  start-page: 599
  year: 2021
  ident: nanoacec51bib188
  article-title: Bimetallic Metal-Organic Framework with High-Adsorption Capacity toward Lithium Polysulfides for Lithium–sulfur Batteries
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12196
– volume: 29
  year: 2017
  ident: nanoacec51bib19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604898
– volume: 458
  year: 2022
  ident: nanoacec51bib138
  article-title: Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214428
– volume: 33
  start-page: 4428
  year: 2021
  ident: nanoacec51bib107
  article-title: Recent progress on preparation and applications of layered double hydroxides
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j. cclet.2021.12.033
– volume: 3
  start-page: 2193
  year: 2018
  ident: nanoacec51bib157
  article-title: Facile water-based strategy for synthesizing MoO3–x nanosheets: efficient visible light photocatalysts for dye degradation
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00012
– volume: 18
  year: 2021
  ident: nanoacec51bib1
  article-title: Macroscopic MOF architectures: effective strategies for practical application in water treatment
  publication-title: Small
  doi: 10.1002/smll.202104387
– volume: 50
  start-page: 7879
  year: 2011
  ident: nanoacec51bib121
  article-title: Synthesis of free-standing, monolayered organometallic sheets at the air/water interface
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201100669
– volume: 572
  start-page: 20
  year: 2019
  ident: nanoacec51bib140
  article-title: Fabrication of ZIF-300 membrane and its application for efficient removal of heavy metal ions from wastewater
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.10.080
– volume: 565
  start-page: 337
  year: 2020
  ident: nanoacec51bib135
  article-title: Construction of lanthanum modified MOFs graphene oxide composite membrane for high selective phosphorus recovery and water purification
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.01.031
– volume: 181
  start-page: 535
  year: 2010
  ident: nanoacec51bib190
  article-title: Adsorptive removal of methyl orange from aqueous solution with metal–organic frameworks, porous chromium-benzenedicarboxylates
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.05.047
– volume: 5
  year: 2018
  ident: nanoacec51bib7
  article-title: Enhanced CO2/CH4 separation performance of a mixed matrix membrane based on tailored MOF-polymer formulations
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800982
– volume: 601
  start-page: 756
  year: 2017
  ident: nanoacec51bib27
  article-title: Human health implications, risk assessment and remediation of As-contaminated water: a critical review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.05.223
– volume: 66
  start-page: 15
  year: 2012
  ident: nanoacec51bib116
  article-title: Hybrid nanosheets of an inorganic–organic framework material: facile synthesis, structure, and elastic properties
  publication-title: ACS Nano
– volume: 10
  start-page: 1278
  year: 2018
  ident: nanoacec51bib142
  article-title: Thin-film nanocomposite membrane with the minimum amount of MOF by the Langmuir–schaefer technique for nanofiltration
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b17477
– volume: 55
  start-page: 3935
  year: 2019
  ident: nanoacec51bib164
  article-title: A poly (amidoamine) nanoparticle cross-linked two-dimensional metal–organic framework nanosheet membrane for water purification
  publication-title: Chem. Comm.
  doi: 10.1039/C9CC00349E
– volume: 38
  start-page: 264
  year: 2020
  ident: nanoacec51bib103
  article-title: Future applications of MXenes in biotechnology, nanomedicine,and sensors
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2019.09.001
– volume: 276
  year: 2021
  ident: nanoacec51bib154
  article-title: Oriented 2D metal organic framework coating on bacterial cellulose for nitrobenzene removal from water by filtration
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119366
– volume: 13
  year: 2021
  ident: nanoacec51bib70
  article-title: Two-dimensional metal organic frameworks for biomedical applications
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.1674
– volume: 12
  start-page: 2593
  year: 2019
  ident: nanoacec51bib143
  article-title: Highly cation permselective metal–organic framework membranes with leaf-like morphology
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201900706
– volume: 26
  year: 2021
  ident: nanoacec51bib41
  article-title: An updated review of metal–organic framework materials in photo (electro) catalytic applications: from CO2 reduction to wastewater treatments
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2020.100669
– volume: 170
  start-page: 1536
  year: 2018
  ident: nanoacec51bib159
  article-title: Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.09.265
– volume: 19
  start-page: 201
  year: 2021
  ident: nanoacec51bib106
  article-title: Designing highly stable ferrous selenide-black phosphorus nanosheets heteronanostructure via P-Se bond for MRI-guided photothermal therapy
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-021-00905-5
– volume: 12
  year: 2022
  ident: nanoacec51bib71
  article-title: Metal–organic frameworks nanocomposites with different dimensionalities for energy conversion and storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100346
– volume: 413
  year: 2021
  ident: nanoacec51bib64
  article-title: A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125375
– volume: 333
  start-page: 678
  year: 2018
  ident: nanoacec51bib179
  article-title: Flexibility induced high-performance MOF-based adsorbent for nitroimidazole antibiotics capture
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.138
– volume: 138
  start-page: 6924
  year: 2016
  ident: nanoacec51bib128
  article-title: Synthesis of two-dimensional CoS1. 097/nitrogen-doped carbon nanocomposites using metal–organic framework nanosheets as precursors for supercapacitor application
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02540
– volume: 121
  start-page: 3751
  year: 2021
  ident: nanoacec51bib134
  article-title: Two-dimensional metal–organic framework materials: synthesis, structures, properties and applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c01049
– volume: 215
  start-page: 259
  year: 2019
  ident: nanoacec51bib176
  article-title: Insights into multi-component adsorption of reactive dyes on MIL-101-Cr metal organic framework: experimental and modeling approach
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.01.013
– volume: 5
  start-page: 8662
  year: 2017
  ident: nanoacec51bib74
  article-title: Understanding the Li-storage in few layers graphene with respect to bulk graphite: experimental, analytical and computational study
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01978E
– volume: 10
  start-page: 11251
  year: 2018
  ident: nanoacec51bib147
  article-title: Metal–organic frameworks supported on nanofiber for desalination by direct contact membrane distillation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01371
– volume: 14
  start-page: 48
  year: 2015
  ident: nanoacec51bib127
  article-title: Metal–organic framework nanosheets in polymer composite materials for gas separation
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4113
– volume: 56
  start-page: 5512
  year: 2017
  ident: nanoacec51bib10
  article-title: Multi-shelled hollow metal–organic frameworks
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701604
– volume: 380
  start-page: 330
  year: 2019
  ident: nanoacec51bib65
  article-title: Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.10.003
– volume: 161
  start-page: 228
  year: 2016
  ident: nanoacec51bib185
  article-title: Sensitive and background-free determination of thiols from wastewater samples by MOF-5 extraction coupled with high-performance liquid chromatography with fluorescence detection using a novel fluorescence probe of carbazole-9-ethyl-2-maleimide
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.08.040
– volume: 5
  start-page: 4947
  year: 2014
  ident: nanoacec51bib84
  article-title: One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5947
– volume: 7
  year: 2020
  ident: nanoacec51bib192
  article-title: Electrospinning of metal–organic frameworks for energy and environmental applications
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902590
– volume: 445
  year: 2021
  ident: nanoacec51bib35
  article-title: Simultaneous detection and removal of fluoride from water using smart metal–organic framework-based adsorbents
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214037
– volume: 346
  start-page: 1356
  year: 2014
  ident: nanoacec51bib112
  article-title: Metal–organic framework nanosheets as building blocks for molecular sieving membranes
  publication-title: Science
  doi: 10.1126/science.1254227
– volume: 6
  start-page: 707
  year: 2018
  ident: nanoacec51bib17
  article-title: Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB02970E
– volume: 378
  start-page: 445
  year: 2019
  ident: nanoacec51bib12
  article-title: Designed fabrication of biomimetic metal–organic frameworks for catalytic applications
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.01.016
– volume: 383
  year: 2020
  ident: nanoacec51bib172
  article-title: Few-layered metal–organic framework nanosheets as a highly selective and efficient scavenger for heavy metal pollution treatment
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123189
– volume: 8
  year: 2017
  ident: nanoacec51bib54
  article-title: Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal–organic nanosheets for gas separation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14460
– volume: 31
  year: 2019
  ident: nanoacec51bib3
  article-title: Hollow metal–organic-framework micro/nanostructures and their derivatives: emerging multifunctional materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803291
– volume: 24
  start-page: 13792
  year: 2018
  ident: nanoacec51bib11
  article-title: Boosting lithium storage properties of MOF derivatives through a wet-spinning assembled fiber strategy
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201802826
– volume: 22
  start-page: 10119
  year: 2012
  ident: nanoacec51bib15
  article-title: Synthetic routes toward MOF nanomorphologies
  publication-title: J. Mater. Chem.
  doi: 10.1039/C2JM15675J
– volume: 275
  start-page: 130055
  year: 2021
  ident: nanoacec51bib25
  article-title: Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130055
– volume: 347
  start-page: 378
  year: 2018
  ident: nanoacec51bib158
  article-title: Synthesis of graphenized Au/ZnO plasmonic nanocomposites for simultaneous sunlight mediated photocatalysis and antimicrobial activity
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.12.034
– volume: 24
  start-page: 15131
  year: 2018
  ident: nanoacec51bib168
  article-title: Two-dimensional metal–organic framework nanosheets: a rapidly growing class of versatile nanomaterials for gas separation, MALDI-TOF matrix and biomimetic applications
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201800556
– volume: 369
  start-page: 928
  year: 2019
  ident: nanoacec51bib191
  article-title: Removal of contaminants of emerging concern by metal–organic framework nanoadsorbents: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.173
– volume: 340
  start-page: 72
  year: 2013
  ident: nanoacec51bib113
  article-title: Liquid exfoliation of layered materials
  publication-title: Science
  doi: 10.1126/science.1226419
– volume: 52
  start-page: 1461
  year: 2019
  ident: nanoacec51bib73
  article-title: Metal–organic framework films and their potential applications in environmental pollution control
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00113
– volume: 186
  start-page: 19
  year: 2016
  ident: nanoacec51bib50
  article-title: In situ synthesis of In2S3@ MIL-125 (Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2015.12.041
– volume: 420
  year: 2021
  ident: nanoacec51bib187
  article-title: Polypyrrole-enveloped Prussian blue nanocubes with multi-metal synergistic adsorption toward lithium polysulfides: high-performance lithium-sulfur batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130518
– volume: 10
  start-page: 4083
  year: 2010
  ident: nanoacec51bib89
  article-title: One-dimensional oxide nanostructures as gas-sensing materials: review and issues
  publication-title: Sensors
  doi: 10.3390/s100404083
– volume: 16
  start-page: 1
  year: 2021
  ident: nanoacec51bib95
  article-title: Two-dimensional MOFs: design and synthesis and applications
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.202100884
– volume: 19
  start-page: 8638
  year: 2019
  ident: nanoacec51bib161
  article-title: Farimani Water desalination with two-dimensional metal–organic framework membranes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03225
– volume: 272
  start-page: 109
  year: 2018
  ident: nanoacec51bib181
  article-title: Formic acid modulated (fam) aluminium fumarate MOF for improved isotherms and kinetics with water adsorption: cooling/heat pump applications
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2018.06.016
– volume: 857
  year: 2023
  ident: nanoacec51bib150
  article-title: Amine/hydrazone functionalized Cd(II)/Zn(II)metal–organic framework for ultrafast sensitive detection of hazardous 2,4,6-trinitrophenol in water
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.159385
– volume: 8
  start-page: 8143
  year: 2020
  ident: nanoacec51bib170
  article-title: Engineering pristine 2D metal–organic framework nanosheets for electrocatalysis
  publication-title: J. Mater. Chem.
  doi: 10.1039/D0TA03138K
– volume: 13
  start-page: 231
  year: 2023
  ident: nanoacec51bib153
  article-title: A new 2D metal–organic framework for photocatalytic degradation of organic dyes in water
  publication-title: Catalysts
  doi: 10.3390/catal13020231
– volume: 57
  start-page: 9604
  year: 2018
  ident: nanoacec51bib36
  article-title: Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201800269
– volume: 535
  start-page: 444
  year: 2019
  ident: nanoacec51bib42
  article-title: Facile synthesis of In2S3/UiO-66 composite with enhanced adsorption performance and photocatalytic activity for the removal of tetracycline under visible light irradiation
  publication-title: Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.10.008
– volume: 139
  start-page: 9136
  year: 2017
  ident: nanoacec51bib118
  article-title: Controlled intercalation and chemical exfoliation of layered metal–organic frameworks using a chemically labile intercalating agent
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04829
– volume: 530
  start-page: 481
  year: 2018
  ident: nanoacec51bib43
  article-title: Modified stannous sulfide nanoparticles with metal–organic framework: toward efficient and enhanced photocatalytic reduction of chromium (VI) under visible light
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.05.015
– volume: 17
  start-page: 195
  year: 2019
  ident: nanoacec51bib61
  article-title: Conventional and non-conventional adsorbents for wastewater treatment
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-018-0786-8
– volume: 58
  start-page: 10198
  year: 2019
  ident: nanoacec51bib167
  article-title: Ultrathin metal–organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201904058
– volume: 11
  start-page: 6747
  year: 2023
  ident: nanoacec51bib62
  article-title: Functional metal organic frameworks as adsorbents used for water decontamination: design strategies and applications
  publication-title: J. Mater. Chem.
  doi: 10.1039/D3TA00279A
– volume: 13
  start-page: 796
  year: 2014
  ident: nanoacec51bib83
  article-title: Improved performance and stability in quantum dot solar cells through band alignment engineering
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3984
– volume: 175
  year: 2020
  ident: nanoacec51bib58
  article-title: Intimate coupling of photocatalysis and biodegradation for wastewater treatment: mechanisms, recent advances and environmental applications
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115673
– volume: 563
  start-page: 127
  year: 2018
  ident: nanoacec51bib156
  article-title: Copper octacarboxyphthalocyanine as sensitizer of graphitic carbon nitride for efficient dye degradation under visible light irradiation
  publication-title: Appl. Catal. Gen.
  doi: 10.1016/j.apcata.2018.06.036
– volume: 400
  year: 2019
  ident: nanoacec51bib66
  article-title: Covalent organic frameworks (COFs) for environmental applications
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.213046
– volume: 278
  year: 2020
  ident: nanoacec51bib166
  article-title: Co3 (hexaiminotriphenylene) 2: a conductive two-dimensional π–d conjugated metal–organic framework for highly efficient oxygen evolution reaction
  publication-title: Appl. Catal.
  doi: 10.1016/j.apcatb.2020.119295
– volume: 26
  start-page: 1788
  year: 2019
  ident: nanoacec51bib105
  article-title: Biodegradable black phosphorus-based nanomaterials in biomedicine: theranostic applications
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867324666170920152529
– volume: 247
  year: 2020
  ident: nanoacec51bib30
  article-title: Applications of metal–organic framework based membranes in water purification: a review
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2020.116947
– volume: 2
  year: 2021
  ident: nanoacec51bib47
  article-title: Metal–organic framework-based hybrid frameworks
  publication-title: Small Struct.
  doi: 10.1002/sstr.202000078
– volume: 117
  start-page: 6225
  year: 2017
  ident: nanoacec51bib92
  article-title: Recent advances in ultrathin two-dimensional nanomaterials
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00558
– volume: 395
  year: 2020
  ident: nanoacec51bib32
  article-title: Anchoring ZIF-67 particles on amidoximerized polyacrylonitrile fibers for radionuclide sequestration in wastewater and seawater
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122692
– volume: 28
  start-page: 4149
  year: 2016
  ident: nanoacec51bib129
  article-title: Bioinspired design of ultrathin 2D bimetallic metal–organic-framework nanosheets used as biomimetic enzymes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600108
– volume: 293
  year: 2022
  ident: nanoacec51bib26
  article-title: Novel synthesis methods and applications of MXene-based nanomaterials (MBNs) for hazardous pollutants degradation: future perspectives
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.133542
– volume: 137
  start-page: 2641
  year: 2015
  ident: nanoacec51bib56
  article-title: Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal–organic framework-177
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512311a
– volume: 8
  start-page: 8527
  year: 2016
  ident: nanoacec51bib141
  article-title: Radioactive barium ion trap based on metal–organic framework for efficient and irreversible removal of barium from nuclear wastewater
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b00900
– volume: 11
  start-page: 599
  year: 2020
  ident: nanoacec51bib53
  article-title: Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14056-7
– volume: 140
  start-page: 10094
  year: 2018
  ident: nanoacec51bib52
  article-title: Covalent organic framework–covalent organic framework bilayer membranes for highly selective gas separation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05136
– volume: 5
  start-page: 203
  year: 2013
  ident: nanoacec51bib16
  article-title: A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1569
– volume: 24
  start-page: 6506
  year: 2018
  ident: nanoacec51bib46
  article-title: Controllable syntheses of MOF-derived materials
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201705415
– volume: 31
  year: 2019
  ident: nanoacec51bib120
  article-title: 2D metal–organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900617
– volume: 389
  start-page: 119
  year: 2019
  ident: nanoacec51bib37
  article-title: Interpenetrated structures appeared in supramolecular cages MOFs, COFs
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.03.002
– volume: 46
  start-page: 14
  year: 2013
  ident: nanoacec51bib114
  article-title: Liquid exfoliation of defect-free graphene
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300009f
– volume: 4
  start-page: 328
  year: 2019
  ident: nanoacec51bib165
  article-title: Defect-rich 2D material networks for advanced oxygen evolution catalysts
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02343
– volume: 19
  start-page: 340
  year: 2021
  ident: nanoacec51bib100
  article-title: Understanding of catalytic ROS generation from defect-rich graphene quantum-dots for therapeutic effects in tumor microenvironment
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-021-01053-6
– volume: 306
  start-page: 666
  year: 2004
  ident: nanoacec51bib99
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 188
  year: 2021
  ident: nanoacec51bib60
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116446
– volume: 6
  start-page: 21676
  year: 2018
  ident: nanoacec51bib169
  article-title: Recent progress in two-dimensional polymers for energy storage and conversion: design, synthesis, and applications
  publication-title: J. Mater. Chem.
  doi: 10.1039/C8TA02820F
– volume: 3
  year: 2021
  ident: nanoacec51bib182
  article-title: Metal–organic frameworks for C6–C8 hydrocarbon separations
  publication-title: Energy Chem.
  doi: 10.1016/j.enchem.2021.100057
– volume: 47
  start-page: 6267
  year: 2018
  ident: nanoacec51bib69
  article-title: Two-dimensional metal–organic framework nanosheets: synthesis and applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00268A
– volume: 985
  year: 2023
  ident: nanoacec51bib149
  article-title: Synthesis of porphyrinic metal–organic framework/rGO nanocomposite for electrochemical recognition of copper ions in water
  publication-title: J. Organomet. Chem.
  doi: 10.1016/j.jorganchem.2022.122597
– volume: 5
  start-page: 394
  year: 2018
  ident: nanoacec51bib45
  article-title: Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion
  publication-title: Mater. Horizons
  doi: 10.1039/C8MH00133B
– volume: 399
  year: 2020
  ident: nanoacec51bib193
  article-title: Superior chemical stability of UiO-66 metal–organic frameworks (MOFs) for selective dye adsorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125346
– volume: 30
  year: 2018
  ident: nanoacec51bib48
  article-title: Stable metal–organic frameworks: design, synthesis, and applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704303
– volume: 331
  start-page: 568
  year: 2011
  ident: nanoacec51bib115
  article-title: Two-dimensional nanosheets produced by liquid exfoliation of layered materials
  publication-title: Science
  doi: 10.1126/science.1194975
– volume: 6
  year: 2019
  ident: nanoacec51bib119
  article-title: Structural engineering of low-dimensional metal–organic frameworks: synthesis, properties, and applications
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201802373
– volume: 237
  year: 2020
  ident: nanoacec51bib55
  article-title: Preparation of nanofibrous metal–organic framework filter for rapid adsorption and selective separation of cationic dye from aqueous solution
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2019.116360
– volume: 341
  year: 2013
  ident: nanoacec51bib6
  article-title: The chemistry and applications of metal–organic frameworks
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 7
  start-page: 31
  year: 2017
  ident: nanoacec51bib145
  article-title: Thin film nanocomposite membrane filled with metal–organic frameworks UiO-66 and MIL-125 nanoparticles for water desalination
  publication-title: Membranes
  doi: 10.3390/membranes7020031
– volume: 330
  start-page: 262
  year: 2017
  ident: nanoacec51bib44
  article-title: Metal–organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.156
– volume: 171
  year: 2021
  ident: nanoacec51bib104
  article-title: 2D titanium carbide MXenes as emerging optical biosensing platforms
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112730
– volume: 10
  start-page: 195
  year: 2020
  ident: nanoacec51bib136
  article-title: Application of various metal–organic frameworks (MOFs) as catalysts for air and water pollution environmental remediation
  publication-title: Catalysts
  doi: 10.3390/catal10020195
– volume: 27
  start-page: 5365
  year: 2015
  ident: nanoacec51bib13
  article-title: Well-defined metal–organic-framework hollow nanostructures for catalytic reactions involving gases
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500789
– volume: 2
  start-page: 1944
  year: 2018
  ident: nanoacec51bib81
  article-title: Engineering two-dimensional layered nanomaterials for wearable biomedical sensors and power devices
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C8QM00356D
SSID ssj0011821
Score 2.4714394
SecondaryResourceType review_article
Snippet In addition to their adjustable functionality, structural tunability, and compositional tunability, metal–organic frameworks (MOFs), often known as MOFs, are a...
In addition to its adjustable functionality, structural tunability, and compositional tunability, metal-organic frameworks, often known as MOFs, are a distinct...
In addition to their adjustable functionality, structural tunability, and compositional tunability, metal-organic frameworks (MOFs), often known as MOFs, are a...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 442001
SubjectTerms 2D MOF
hybrid composites
nanosheets
porous materials
wastewater treatment
Title Novel synthetic approach of 2D-metal–organic frameworks (MOF) for wastewater treatment
URI https://iopscience.iop.org/article/10.1088/1361-6528/acec51
https://www.ncbi.nlm.nih.gov/pubmed/37527630
https://www.proquest.com/docview/2845107279
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiQ48CgUlpcMAokevJvYjuOIEwJWBaktByrtAcmaeO0LJVmRXRCc-A_8Q34J47xEEVQIKYccxok9tme-ZMbfADwyKNNQas8dCs2VXAZeOOd4kgWRlWmCZRFPIx8c6v1j9XqRLbbg6XgWpl71pn9Ktx1RcKfCPiHOzFKpU64zYWbovIvHp89Lo3UsX_Dq6M0YQiDgnHZEezmnbxDVxyj_9IRTPukcvffvcLN1O_Mr8G7ocJdt8n66WZdT9_U3Lsf_HNFVuNzDUfasE70GW77agUu_kBTuwIU2SdQ112FxWH_yJ6z5UhFqpAZsICRndWDiBf_gCcn_-Pa9qxTlWBgSvxr25OBovscIILPP2MT_dTSdbExyvwHH85dvn-_zvjIDdyoVa15girnxQWYlZolChYVSXvmwREw8ekzzXKLwxhcO8xByZSRBoVKbyDAolnIXtqu68reA5QR5yLCIUgSjCD2ilHkmQlCB3KbW2QRmw9xY19OWx-oZJ7YNnxtjo_Zs1J7ttDeBvbHFqqPsOEP2MU2K7fdtc4bcw1NyFVa1lcqqeMW0NLtahgk8GFaNpU0aIy9Y-XrTWMIAZPsIKhYTuNktp7Frcbhk5JPb_9iVO3Axlrxv_WdyF7bXHzf-HgGjdXm_3QA_Aa8oBW8
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAceJTX8jQIJHrwbuJH4hwRZdUC3fZApb25E699oSQrsguCE_-Bf8gvYZxkVxRBhYSUQw7jxJ6xZ75kxp8BnhqUaSgzzx2KjCs5C7xwzvFEB6HLNMGyiLuR9yfZ7pF6PdXT_pzTdi9MPe9d_5BuO6LgToV9QZwZpTJLeaaFGaHzTqej-SxswHktMxnJ8_cODtdpBALPaUe2l3P6DlF9nvJPTzkVlzbo3X-HnG3oGV-F41Wnu4qT98Plohy6r7_xOf7HqK7BlR6Wshed-HU456stuPwLWeEWXGiLRV1zA6aT-pM_Yc2XitAjNWArYnJWByZ2-AdPiP7Ht-_diVGOhVUBWMOe7x-MtxkBZfYZm_jfjszK1sXuN-Fo_Ordy13en9DAnUrFgheYYm58kLpEnShUWCjllQ8zxMSjxzTPJQpvfOEwDyFXhqxUlJmJTINiJm_BZlVX_g6wnKAPORhRimAUoUiUMtciBBUofGaZHsBoZR_revryeIrGiW3T6MbYqEEbNWg7DQ5ge91i3lF3nCH7jAxj-_XbnCH35JRchVVtpbIqXrE8zZLZBvB4NXMsLdaYgcHK18vGEhYgH0iQsRjA7W5KrbsWh0vOPrn7j115BBcPd8b27d7kzT24JAh7tSE1uQ-bi49L_4Cw0qJ82K6Hn4-rCtM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+synthetic+approach+of+2D-metal%E2%80%93organic+frameworks+%28MOF%29+for+wastewater+treatment&rft.jtitle=Nanotechnology&rft.au=Nath%2C+Nibedita&rft.au=Chakroborty%2C+Subhendu&rft.au=Pal%2C+Kaushik&rft.au=Barik%2C+Arundhati&rft.date=2023-10-30&rft.pub=IOP+Publishing&rft.issn=0957-4484&rft.eissn=1361-6528&rft.volume=34&rft.issue=44&rft_id=info:doi/10.1088%2F1361-6528%2Facec51&rft.externalDocID=nanoacec51
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon