Novel synthetic approach of 2D-metal–organic frameworks (MOF) for wastewater treatment
In addition to their adjustable functionality, structural tunability, and compositional tunability, metal–organic frameworks (MOFs), often known as MOFs, are a distinct form of crystalline porous material. When reduced to two dimensions, ultrathin layers of MOF retain more of its fantastic external...
Saved in:
Published in | Nanotechnology Vol. 34; no. 44; pp. 442001 - 442015 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
30.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In addition to their adjustable functionality, structural tunability, and compositional tunability, metal–organic frameworks (MOFs), often known as MOFs, are a distinct form of crystalline porous material. When reduced to two dimensions, ultrathin layers of MOF retain more of its fantastic external features, which is beneficial for a variety of technological applications. Due to their ultrathin atomic-level thickness, easily modifiable structure, and huge surface area, 2D MOF nanosheets and nanocomposites have been the subject of significant research. MOFs are considered intriguing materials for removing toxic contaminants among the novel technologies taken into account in water remediation processes because they exhibit numerous qualities that make them advantageous in water treatment: large surface area, easily functionalizable cavities, a few stable in water, large-scale synthesis, etc Nowadays, water pollution is a rising environmental concern that must be addressed. Due to their special qualities, which include chemical activities, a variety of functionalities, excellent stability, and the ability to be modified for the detection or adsorption of particular molecules, MOFs are widely used in detecting and removing contaminants from water. This review explores most recent wastewater treatment advancements (WWT) using the 2D MOFs mechanism. |
---|---|
AbstractList | In addition to their adjustable functionality, structural tunability, and compositional tunability, metal-organic frameworks (MOFs), often known as MOFs, are a distinct form of crystalline porous material. When reduced to two dimensions, ultrathin layers of MOF retain more of its fantastic external features, which is beneficial for a variety of technological applications. Due to their ultrathin atomic-level thickness, easily modifiable structure, and huge surface area, 2D MOF nanosheets and nanocomposites have been the subject of significant research. MOFs are considered intriguing materials for removing toxic contaminants among the novel technologies taken into account in water remediation processes because they exhibit numerous qualities that make them advantageous in water treatment: large surface area, easily functionalizable cavities, a few stable in water, large-scale synthesis, etc Nowadays, water pollution is a rising environmental concern that must be addressed. Due to their special qualities, which include chemical activities, a variety of functionalities, excellent stability, and the ability to be modified for the detection or adsorption of particular molecules, MOFs are widely used in detecting and removing contaminants from water. This review explores most recent wastewater treatment advancements (WWT) using the 2D MOFs mechanism.In addition to their adjustable functionality, structural tunability, and compositional tunability, metal-organic frameworks (MOFs), often known as MOFs, are a distinct form of crystalline porous material. When reduced to two dimensions, ultrathin layers of MOF retain more of its fantastic external features, which is beneficial for a variety of technological applications. Due to their ultrathin atomic-level thickness, easily modifiable structure, and huge surface area, 2D MOF nanosheets and nanocomposites have been the subject of significant research. MOFs are considered intriguing materials for removing toxic contaminants among the novel technologies taken into account in water remediation processes because they exhibit numerous qualities that make them advantageous in water treatment: large surface area, easily functionalizable cavities, a few stable in water, large-scale synthesis, etc Nowadays, water pollution is a rising environmental concern that must be addressed. Due to their special qualities, which include chemical activities, a variety of functionalities, excellent stability, and the ability to be modified for the detection or adsorption of particular molecules, MOFs are widely used in detecting and removing contaminants from water. This review explores most recent wastewater treatment advancements (WWT) using the 2D MOFs mechanism. In addition to its adjustable functionality, structural tunability, and compositional tunability, metal-organic frameworks, often known as MOFs, are a distinct form of crystalline porous material. When reduced to two dimensions, ultrathin layers of metalorganic framework retain more of its fantastic external features, which is beneficial for a variety of technological applications. Due to their ultrathin atomic-level thickness, their easily modifiable structure, and their huge surface area, 2D MOF nanosheets and their nanocomposites have been the subject of a significant amount of research. Since many poisons cause cancer in both people and fish, water pollution is a rising environmental concern that must be addressed. Due to the fact that its pore structure is both adjustable and regular, MOF, which contains multifunctional organic ligands and metallic ions, is one of the materials that presents the greatest challenge. MOFs perform exceptionally well in processes involving membrane separation and adsorption. This review explores most recent advancements in wastewater treatment (WWT) by using 2D MOFs mechanism.
. In addition to their adjustable functionality, structural tunability, and compositional tunability, metal–organic frameworks (MOFs), often known as MOFs, are a distinct form of crystalline porous material. When reduced to two dimensions, ultrathin layers of MOF retain more of its fantastic external features, which is beneficial for a variety of technological applications. Due to their ultrathin atomic-level thickness, easily modifiable structure, and huge surface area, 2D MOF nanosheets and nanocomposites have been the subject of significant research. MOFs are considered intriguing materials for removing toxic contaminants among the novel technologies taken into account in water remediation processes because they exhibit numerous qualities that make them advantageous in water treatment: large surface area, easily functionalizable cavities, a few stable in water, large-scale synthesis, etc Nowadays, water pollution is a rising environmental concern that must be addressed. Due to their special qualities, which include chemical activities, a variety of functionalities, excellent stability, and the ability to be modified for the detection or adsorption of particular molecules, MOFs are widely used in detecting and removing contaminants from water. This review explores most recent wastewater treatment advancements (WWT) using the 2D MOFs mechanism. |
Author | Pal, Kaushik Soren, Siba Nath, Nibedita Barik, Arundhati Chakroborty, Subhendu |
Author_xml | – sequence: 1 givenname: Nibedita surname: Nath fullname: Nath, Nibedita organization: Department of Chemistry, D.S. Degree College, Laida, Sambalpur, Odisha 768214, India – sequence: 2 givenname: Subhendu orcidid: 0000-0002-3283-4080 surname: Chakroborty fullname: Chakroborty, Subhendu organization: IITM, IES University Department of Basic Sciences, Bhopal, MP 462044, India – sequence: 3 givenname: Kaushik orcidid: 0000-0002-9313-6497 surname: Pal fullname: Pal, Kaushik organization: Chandigarh University University Centre for Research and Development (UCRD), Department of Physics, Gharuan, Mohali, Punjab 140413, India – sequence: 4 givenname: Arundhati surname: Barik fullname: Barik, Arundhati organization: CIPET: Institute of Petrochemicals Technology [IPT], Bhubaneswar, Odisha, India – sequence: 5 givenname: Siba surname: Soren fullname: Soren, Siba organization: Ravenshaw University Department of Chemistry, Cuttack-753003, Odisha, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37527630$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1LHDEUhkOx1N1t772SuVTo1HzNJHMpfrVg600LvQtnsyc6OpOMSdbFu_4H_6G_xFlWvZAiBAI5z_tyeDIlWz54JGSH0W-Man3ARM3KuuL6ACzain0gk9enLTKhTaVKKbXcJtOUrillTHP2iWwLVXFVCzohf3-FO-yKdO_zFebWFjAMMYC9KoIr-HHZY4bu8d9DiJfgx7GL0OMqxJtU7P28ON0vXIjFClLGFWSMRY4IuUefP5OPDrqEX57vGflzevL76Ht5fnH24-jwvLSS8Vw2wEBpdKKaQ0UlSGikRIluAUAREJhSAjhqbCwo55TUohbNvNZUSMkXYkb2Nr3j2rdLTNn0bbLYdeAxLJPhWlaMKq6aEd19RpfzHhdmiG0P8d682BiBegPYGFKK6IxtM-Q2-Byh7QyjZq3drB2btWOz0T4G6ZvgS_c7ka-bSBsGcx2W0Y-W3sP3_4N78MEIaeT68PF_zbBw4gkZvqIM |
CODEN | NNOTER |
CitedBy_id | crossref_primary_10_1016_j_inoche_2024_113583 crossref_primary_10_1016_j_molliq_2024_124828 crossref_primary_10_1016_j_chemosphere_2024_142558 crossref_primary_10_1016_j_molstruc_2024_138987 crossref_primary_10_1016_j_colsurfa_2024_133259 crossref_primary_10_1007_s00339_024_07441_7 crossref_primary_10_1016_j_molstruc_2024_138310 crossref_primary_10_1016_j_molstruc_2024_138089 crossref_primary_10_1088_1361_6528_ad4cf3 crossref_primary_10_1016_j_colsurfa_2024_133958 |
Cites_doi | 10.1093/nsr/nwab197 10.3390/chemosensors5030021 10.1021/acs.inorgchem.9b01172 10.1002/adma.201506306 10.1016/j.ccr.2018.02.009 10.1021/acsnano.1c09301 10.1016/j.cej.2021.128431 10.1016/j.scitotenv.2021.149662 10.1016/j.cej.2019.01.068 10.1021/jacs.5b02276 10.1016/j.scitotenv.2017.04.102 10.1002/anie.201407836 10.3390/electronics4030651 10.3390/w8120586 10.1021/acs.accounts.8b00521 10.1016/j.jiec.2017.12.051 10.1016/j.gee.2022.03.005 10.1016/j.jece.2018.09.017 10.1002/advs.201500243 10.1002/adfm.201702168 10.1038/536396e 10.1016/j.cej.2021.128668 10.1038/d41586-019-00214-w 10.1021/ja073568h 10.1007/s12274-017-1595-2 10.1016/j.micromeso.2020.110340 10.1016/j.cclet.2021.06.004 10.1016/j.cej.2022.140851 10.1002/adma.201503648 10.1038/nphoton.2014.271 10.1016/j.ccr.2022.214817 10.1016/j.ultsonch.2013.12.012 10.1016/j.jcis.2016.06.032 10.1002/anie.201911477 10.1021/acsami.9b06472 10.1002/adfm.202207723 10.1002/aoc.3430 10.1016/j.snb.2018.12.064 10.1021/cr200324t 10.1021/ja201170c 10.1021/acsnano.1c07803 10.1016/j.memsci.2018.11.075 10.1039/C9QI00386J 10.1002/anie.201305530 10.1002/advs.201500283 10.1021/acsanm.2c00234 10.1021/am3028662 10.1126/science.1254227 10.1016/j.jcis.2020.05.126 10.1002/aoc.5549 10.1016/S1369-7021(10)70126-7 10.1007/s11356-020-09865-z 10.1016/j.colsurfa.2018.03.042 10.1016/j.cej.2017.11.044 10.1039/C5RA28052D 10.1016/j.nantod.2011.10.001 10.1016/j.chemosphere.2019.125043 10.1002/adfm.202102648 10.1002/anie.201707346 10.1016/j.jclepro.2016.10.109 10.1039/C9CS00609E 10.1016/j.chemosphere.2020.126008 10.1007/s11426-019-9575-8 10.3390/s140813999 10.1016/j.cej.2022.135542 10.1007/s40843-017-9020-5 10.1002/anie.201708211 10.1039/C6EE02265K 10.1021/ja501849y 10.1039/C1CE05624G 10.1186/s12951-020-00763-7 10.1002/aic.13781 10.3389/fchem.2020.00708 10.1021/jacs.6b09889 10.1016/j.jcis.2018.02.067 10.1039/C9NR10178K 10.1016/j.mattod.2021.04.020 10.1002/anie.200901678 10.1002/anie.201807935 10.1016/j.jhazmat.2017.09.043 10.1002/eem2.12196 10.1002/adma.201604898 10.1016/j.ccr.2022.214428 10.1016/j. cclet.2021.12.033 10.1021/acsomega.8b00012 10.1002/smll.202104387 10.1002/anie.201100669 10.1016/j.memsci.2018.10.080 10.1016/j.jcis.2020.01.031 10.1016/j.jhazmat.2010.05.047 10.1002/advs.201800982 10.1016/j.scitotenv.2017.05.223 10.1021/acsami.7b17477 10.1039/C9CC00349E 10.1016/j.tibtech.2019.09.001 10.1016/j.seppur.2021.119366 10.1002/wnan.1674 10.1002/cssc.201900706 10.1016/j.coelec.2020.100669 10.1016/j.jclepro.2017.09.265 10.1186/s12951-021-00905-5 10.1002/aenm.202100346 10.1016/j.jhazmat.2021.125375 10.1016/j.cej.2017.09.138 10.1021/jacs.6b02540 10.1021/acs.chemrev.0c01049 10.1016/j.seppur.2019.01.013 10.1039/C7TA01978E 10.1021/acsami.8b01371 10.1038/nmat4113 10.1002/anie.201701604 10.1016/j.ccr.2018.10.003 10.1016/j.talanta.2016.08.040 10.1038/ncomms5947 10.1002/advs.201902590 10.1016/j.ccr.2021.214037 10.1039/C7TB02970E 10.1016/j.ccr.2018.01.016 10.1016/j.cej.2019.123189 10.1038/ncomms14460 10.1002/adma.201803291 10.1002/chem.201802826 10.1039/C2JM15675J 10.1016/j.chemosphere.2021.130055 10.1016/j.jhazmat.2017.12.034 10.1002/chem.201800556 10.1016/j.cej.2019.03.173 10.1126/science.1226419 10.1021/acs.accounts.9b00113 10.1016/j.apcatb.2015.12.041 10.1016/j.cej.2021.130518 10.3390/s100404083 10.1002/asia.202100884 10.1021/acs.nanolett.9b03225 10.1016/j.micromeso.2018.06.016 10.1016/j.scitotenv.2022.159385 10.1039/D0TA03138K 10.3390/catal13020231 10.1002/anie.201800269 10.1016/j.jcis.2018.10.008 10.1021/jacs.7b04829 10.1016/j.jcis.2018.05.015 10.1007/s10311-018-0786-8 10.1002/anie.201904058 10.1039/D3TA00279A 10.1038/nmat3984 10.1016/j.watres.2020.115673 10.1016/j.apcata.2018.06.036 10.1016/j.ccr.2019.213046 10.1016/j.apcatb.2020.119295 10.2174/0929867324666170920152529 10.1016/j.seppur.2020.116947 10.1002/sstr.202000078 10.1021/acs.chemrev.6b00558 10.1016/j.jhazmat.2020.122692 10.1002/adma.201600108 10.1016/j.chemosphere.2022.133542 10.1021/ja512311a 10.1021/acsami.6b00900 10.1038/s41467-019-14056-7 10.1021/jacs.8b05136 10.1038/nchem.1569 10.1002/chem.201705415 10.1002/adma.201900617 10.1016/j.ccr.2019.03.002 10.1021/ar300009f 10.1021/acsenergylett.8b02343 10.1186/s12951-021-01053-6 10.1126/science.1102896 10.1016/j.watres.2020.116446 10.1039/C8TA02820F 10.1016/j.enchem.2021.100057 10.1039/C8CS00268A 10.1016/j.jorganchem.2022.122597 10.1039/C8MH00133B 10.1016/j.cej.2020.125346 10.1002/adma.201704303 10.1126/science.1194975 10.1002/advs.201802373 10.1016/j.seppur.2019.116360 10.1126/science.1230444 10.3390/membranes7020031 10.1016/j.cej.2017.07.156 10.1016/j.bios.2020.112730 10.3390/catal10020195 10.1002/adma.201500789 10.1039/C8QM00356D |
ContentType | Journal Article |
Copyright | 2023 IOP Publishing Ltd 2023 IOP Publishing Ltd. |
Copyright_xml | – notice: 2023 IOP Publishing Ltd – notice: 2023 IOP Publishing Ltd. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1088/1361-6528/acec51 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1361-6528 |
ExternalDocumentID | 37527630 10_1088_1361_6528_acec51 nanoacec51 |
Genre | Journal Article |
GroupedDBID | --- -~X 123 1JI 4.4 53G 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c412t-9a1a78ef35ba504a4a944e4efdaa0eaea1773a2e8e9ca7ff7483639b6803442d3 |
IEDL.DBID | IOP |
ISSN | 0957-4484 1361-6528 |
IngestDate | Thu Jul 10 22:15:49 EDT 2025 Thu Apr 03 07:00:49 EDT 2025 Thu Apr 24 23:02:37 EDT 2025 Tue Jul 01 01:27:29 EDT 2025 Wed Aug 23 00:57:59 EDT 2023 Wed Aug 21 03:29:46 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Keywords | Hybrid composites Nanosheets Wastewater treatment 2D MOF Porous materials |
Language | English |
License | This article is available under the terms of the IOP-Standard License. 2023 IOP Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-9a1a78ef35ba504a4a944e4efdaa0eaea1773a2e8e9ca7ff7483639b6803442d3 |
Notes | NANO-134650.R4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3283-4080 0000-0002-9313-6497 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1361-6528/acec51/pdf |
PMID | 37527630 |
PQID | 2845107279 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | iop_journals_10_1088_1361_6528_acec51 pubmed_primary_37527630 proquest_miscellaneous_2845107279 crossref_citationtrail_10_1088_1361_6528_acec51 crossref_primary_10_1088_1361_6528_acec51 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-30 |
PublicationDateYYYYMMDD | 2023-10-30 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanotechnology |
PublicationTitleAbbrev | NANO |
PublicationTitleAlternate | Nanotechnology |
PublicationYear | 2023 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Fluegel (nanoacec51bib15) 2012; 22 Ahmadijokani (nanoacec51bib34) 2022; 32 Li (nanoacec51bib53) 2020; 11 Ahmadijokani (nanoacec51bib193) 2020; 399 Zhu (nanoacec51bib163) 2021; 16 Juneja (nanoacec51bib158) 2018; 347 Wang (nanoacec51bib66) 2019; 400 Shiyin (nanoacec51bib178) 2020; 27 Kondo (nanoacec51bib126) 2011; 133 Du (nanoacec51bib187) 2021; 420 Kaur (nanoacec51bib150) 2023; 857 Chen (nanoacec51bib12) 2019; 378 Liu (nanoacec51bib97) 2020; 59 Wang (nanoacec51bib49) 2018; 519 Crini (nanoacec51bib61) 2019; 17 Liu (nanoacec51bib20) 2017; 10 Wang (nanoacec51bib18) 2017; 10 Peng (nanoacec51bib179) 2018; 333 Ouedraogo (nanoacec51bib156) 2018; 563 Shan (nanoacec51bib47) 2021; 2 Navarro (nanoacec51bib142) 2018; 10 Jang (nanoacec51bib136) 2020; 10 Li (nanoacec51bib32) 2020; 395 Wang (nanoacec51bib45) 2018; 5 Nguyen (nanoacec51bib60) 2021; 188 Zhu (nanoacec51bib104) 2021; 171 Liu (nanoacec51bib90) 2017; 27 Quan (nanoacec51bib167) 2019; 58 Furukawa (nanoacec51bib6) 2013; 341 Qiao (nanoacec51bib139) 2012; 59 Lv (nanoacec51bib185) 2016; 161 Carne-Sanchez (nanoacec51bib16) 2013; 5 Karmakar (nanoacec51bib176) 2019; 215 Su (nanoacec51bib171) 2018; 547 Khanjani (nanoacec51bib186) 2014; 21 Pedireddy (nanoacec51bib84) 2014; 5 Dong (nanoacec51bib42) 2019; 535 ArunKumar (nanoacec51bib110) 2021; 13 Huang (nanoacec51bib149) 2023; 985 Guo (nanoacec51bib175) 2020; 578 Wang (nanoacec51bib129) 2016; 28 Arif (nanoacec51bib153) 2023; 13 Deng (nanoacec51bib106) 2021; 19 Hirsch (nanoacec51bib82) 2018; 57 Bai (nanoacec51bib71) 2022; 12 Huang (nanoacec51bib83) 2014; 13 Simon Yarza (nanoacec51bib14) 2017; 129 Ahmadijokani (nanoacec51bib35) 2021; 445 Liu (nanoacec51bib33) 2022; 8 Zou (nanoacec51bib46) 2018; 24 Cao (nanoacec51bib81) 2018; 2 Wei (nanoacec51bib135) 2020; 565 Tan (nanoacec51bib92) 2017; 117 Yangdan (nanoacec51bib131) 2021; 3 Wang (nanoacec51bib44) 2017; 330 K€okçam-Demir (nanoacec51bib39) 2020; 49 Candia-Onfray (nanoacec51bib41) 2021; 26 Zheng (nanoacec51bib122) 2014; 136 Liu (nanoacec51bib3) 2019; 31 Duan (nanoacec51bib107) 2021; 33 Tang (nanoacec51bib137) 2021; 31 Yibo (nanoacec51bib192) 2020; 7 Rojas (nanoacec51bib68) 2019; 11 Danning (nanoacec51bib166) 2020; 278 Kondo (nanoacec51bib125) 2007; 129 Cao (nanoacec51bib38) 2019; 283 Issaabadi (nanoacec51bib160) 2017; 142 Yu (nanoacec51bib31) 2021; 800 Liang (nanoacec51bib36) 2018; 57 Peitao (nanoacec51bib169) 2018; 6 Zhao (nanoacec51bib69) 2018; 47 Zhu (nanoacec51bib37) 2019; 389 Cao (nanoacec51bib161) 2019; 19 Adegoke (nanoacec51bib111) 2022; 473 Sewoon (nanoacec51bib59) 2018; 335 Liu (nanoacec51bib67) 2020; 241 Li (nanoacec51bib55) 2020; 237 Rao (nanoacec51bib77) 2009; 48 Jafarian (nanoacec51bib152) 2023; 455 Ding (nanoacec51bib5) 2019; 52 Ming (nanoacec51bib168) 2018; 24 Bauer (nanoacec51bib121) 2011; 50 Yuan (nanoacec51bib133) 2020; 26 Kurapati (nanoacec51bib80) 2016; 28 Zhao (nanoacec51bib88) 2014; 14 Mirsoleimani-Azizi (nanoacec51bib180) 2018; 6 Kang (nanoacec51bib4) 2019; 378 Liu (nanoacec51bib21) 2017; 60 Molavi (nanoacec51bib24) 2020; 34 Kasula (nanoacec51bib151) 2022; 439 Gao (nanoacec51bib75) 2014; 53 Liu (nanoacec51bib119) 2019; 6 Yang (nanoacec51bib102) 2022; 16 Wang (nanoacec51bib50) 2016; 186 Lahiri (nanoacec51bib123) 2017; 139 Tyagi (nanoacec51bib76) 2020; 12 Fan (nanoacec51bib52) 2018; 140 Sonia (nanoacec51bib74) 2017; 5 Yue (nanoacec51bib85) 2013; 5 Yin (nanoacec51bib154) 2021; 276 Peng (nanoacec51bib117) 2014; 346 Tian (nanoacec51bib8) 2016; 3 Dhakshinamoorthy (nanoacec51bib120) 2019; 31 Liu (nanoacec51bib173) 2021; 410 Wang (nanoacec51bib54) 2017; 8 Etman (nanoacec51bib157) 2018; 3 Jie (nanoacec51bib172) 2020; 383 Jun (nanoacec51bib30) 2020; 247 Zhao (nanoacec51bib130) 2015; 27 Zhang (nanoacec51bib182) 2021; 3 Yao (nanoacec51bib1) 2021; 18 Chakraborty (nanoacec51bib134) 2021; 121 Xu (nanoacec51bib143) 2019; 12 Zhou (nanoacec51bib177) 2019; 362 Gege (nanoacec51bib62) 2023; 11 Arun Kumar (nanoacec51bib70) 2021; 13 Yuan (nanoacec51bib140) 2019; 572 Fallah (nanoacec51bib25) 2021; 275 Coha (nanoacec51bib57) 2021; 414 Kumar (nanoacec51bib40) 2018; 62 Li (nanoacec51bib109) 2021; 17 Xu (nanoacec51bib13) 2015; 27 Ma (nanoacec51bib73) 2019; 52 Liu (nanoacec51bib138) 2022; 458 Yuan (nanoacec51bib48) 2018; 30 Au (nanoacec51bib189) 2020; 8 Liu (nanoacec51bib7) 2018; 5 Sharma (nanoacec51bib29) 2019; 372 Coleman (nanoacec51bib114) 2013; 46 Joseph (nanoacec51bib191) 2019; 369 Varghese (nanoacec51bib93) 2015; 4 Ding (nanoacec51bib118) 2017; 139 Teo (nanoacec51bib181) 2018; 272 Tan (nanoacec51bib116) 2012; 66 Khan (nanoacec51bib64) 2021; 413 Zhang (nanoacec51bib56) 2015; 137 Cao (nanoacec51bib128) 2016; 138 Zhou (nanoacec51bib23) 2016; 536 Peng (nanoacec51bib141) 2016; 8 Dhaka (nanoacec51bib65) 2019; 380 Wang (nanoacec51bib105) 2019; 26 Peng (nanoacec51bib112) 2014; 346 Spingler (nanoacec51bib124) 2012; 14 Haque (nanoacec51bib190) 2010; 181 Mingliang (nanoacec51bib58) 2020; 175 Yang (nanoacec51bib147) 2018; 10 Ahmad (nanoacec51bib63) 2020; 248 Azhar (nanoacec51bib184) 2016; 478 Murali (nanoacec51bib98) 2021; 50 Liu (nanoacec51bib2) 2015; 137 Yuan (nanoacec51bib51) 2016; 30 Choi (nanoacec51bib89) 2010; 10 Rodenas (nanoacec51bib127) 2015; 14 Kreno (nanoacec51bib94) 2012; 112 Coleman (nanoacec51bib115) 2011; 331 Siwal (nanoacec51bib26) 2022; 293 Zheng (nanoacec51bib96) 2022; 9 Shakoor (nanoacec51bib27) 2017; 601 Comini (nanoacec51bib87) 2010; 13 Bowei (nanoacec51bib165) 2019; 4 Veisi (nanoacec51bib159) 2018; 170 Liu (nanoacec51bib10) 2017; 56 Saghanejhad Tehrani (nanoacec51bib174) 2016; 6 Yang (nanoacec51bib183) 2019; 6 Wang (nanoacec51bib17) 2018; 6 Qu (nanoacec51bib162) 2022; 5 Zhao (nanoacec51bib108) 2021; 19 Zuo (nanoacec51bib148) 2016; 8 Kassem (nanoacec51bib155) 2020; 305 Huang (nanoacec51bib101) 2022; 33 Novoselov (nanoacec51bib99) 2004; 306 Geng (nanoacec51bib188) 2021; 5 Zhang (nanoacec51bib9) 2016; 3 Neri (nanoacec51bib91) 2017; 5 Zhao (nanoacec51bib132) 2019; 58 Kadhom (nanoacec51bib145) 2017; 7 Xia (nanoacec51bib79) 2014; 8 Lin (nanoacec51bib95) 2021; 16 Wu (nanoacec51bib146) 2018; 57 Dongdong (nanoacec51bib170) 2020; 8 Peng (nanoacec51bib164) 2019; 55 Xia (nanoacec51bib43) 2018; 530 Kaneti (nanoacec51bib19) 2017; 29 Szuplewska (nanoacec51bib103) 2020; 38 Yang (nanoacec51bib28) 2017; 596 Wang (nanoacec51bib100) 2021; 19 Yildirimer (nanoacec51bib86) 2011; 6 Orthodox (nanoacec51bib22a) 2019; 565 Sun (nanoacec51bib78) 2013; 52 Dai (nanoacec51bib144) 2019; 573 Nicolosi (nanoacec51bib113) 2013; 340 Zhang (nanoacec51bib11) 2018; 24 Peng (nanoacec51bib72) 2019; 62 |
References_xml | – volume: 9 year: 2022 ident: nanoacec51bib96 article-title: Dual-ligand and hard-soft-acid–base strategies to optimize metal–organic framework nanocrystals for stable electrochemical cycling performance publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwab197 – volume: 5 start-page: 21 year: 2017 ident: nanoacec51bib91 article-title: Thin 2D: the new dimensionality in gas sensing publication-title: Chemosensors doi: 10.3390/chemosensors5030021 – volume: 58 start-page: 8787 year: 2019 ident: nanoacec51bib132 article-title: UiO-66: an advanced platform for investigating the influence of functionalization in the adsorption removal of pharmaceutical waste publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b01172 – volume: 28 start-page: 6052 year: 2016 ident: nanoacec51bib80 article-title: Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead publication-title: Adv. Mater. doi: 10.1002/adma.201506306 – volume: 378 start-page: 262 year: 2019 ident: nanoacec51bib4 article-title: Metal–organic frameworks with catalytic centers: from synthesis to catalytic application publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.02.009 – volume: 16 start-page: 1346 year: 2021 ident: nanoacec51bib163 article-title: Porphyrin-based two-dimensional layered metal–organic framework with sono-/photocatalytic activity for water decontamination publication-title: ACS Nano doi: 10.1021/acsnano.1c09301 – volume: 410 year: 2021 ident: nanoacec51bib173 article-title: Synergistic dual-pyrazol sites of metal–organic framework for efficient separation and recovery of transition metals from wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128431 – volume: 800 year: 2021 ident: nanoacec51bib31 article-title: Recent advances in metal–organic framework membranes for water treatment: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.149662 – volume: 362 start-page: 628 year: 2019 ident: nanoacec51bib177 article-title: Simultaneous removal of mixed contaminants, copper and norfloxacin, from aqueous solution by ZIF-8 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.068 – volume: 137 start-page: 6999 year: 2015 ident: nanoacec51bib2 article-title: Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02276 – volume: 596 start-page: 303 year: 2017 ident: nanoacec51bib28 article-title: Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.04.102 – volume: 53 start-page: 12789 year: 2014 ident: nanoacec51bib75 article-title: Ultrahigh energy density realized by a single-layer b-Co(OH)2 All-Solid-State asymmetric supercapacitor publication-title: Angew. Chemie Int. Ed. doi: 10.1002/anie.201407836 – volume: 4 start-page: 651 year: 2015 ident: nanoacec51bib93 article-title: Two-dimensional materials for sensing: graphene and beyond publication-title: Electronics doi: 10.3390/electronics4030651 – volume: 8 start-page: 586 year: 2016 ident: nanoacec51bib148 article-title: Metal–organic framework-functionalized alumina membranes for vacuum membrane distillation publication-title: Water doi: 10.3390/w8120586 – volume: 52 start-page: 356 year: 2019 ident: nanoacec51bib5 article-title: Metal–organic frameworks for photocatalysis and photothermal catalysis publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00521 – volume: 62 start-page: 130 year: 2018 ident: nanoacec51bib40 article-title: Metal–organic frameworks (MOFs) as futuristic options for wastewater treatment publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2017.12.051 – volume: 8 start-page: 698 year: 2022 ident: nanoacec51bib33 article-title: Application of metal organic framework in wastewater treatment publication-title: Green Energy Environ. doi: 10.1016/j.gee.2022.03.005 – volume: 6 start-page: 6118 year: 2018 ident: nanoacec51bib180 article-title: Tetracycline antibiotic removal from aqueous solutions by MOF-5: adsorption isotherm, kinetic and thermodynamic studies publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2018.09.017 – volume: 3 year: 2016 ident: nanoacec51bib9 article-title: Metal–organic frameworks as promising photosensitizers for photoelectrochemical water splitting publication-title: Adv. Sci. doi: 10.1002/advs.201500243 – volume: 27 year: 2017 ident: nanoacec51bib90 article-title: Two-dimensional nanostructured materials for gas sensing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702168 – volume: 536 start-page: 396 year: 2016 ident: nanoacec51bib23 article-title: Strengthen China’s flood control publication-title: Nature doi: 10.1038/536396e – volume: 414 year: 2021 ident: nanoacec51bib57 article-title: Advanced oxidation processes in the removal of organic substances from produced water: potential, configurations, and research needs publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128668 – volume: 565 start-page: 426 year: 2019 ident: nanoacec51bib22a publication-title: Nature doi: 10.1038/d41586-019-00214-w – volume: 129 year: 2007 ident: nanoacec51bib125 article-title: Double-step gas sorption of a two-dimensional metal–organic framework publication-title: J. Am. Chem. Soc. doi: 10.1021/ja073568h – volume: 10 start-page: 3826 year: 2017 ident: nanoacec51bib18 publication-title: Nano Res. doi: 10.1007/s12274-017-1595-2 – volume: 305 year: 2020 ident: nanoacec51bib155 article-title: Hydrogenation reduction of dyes using metal–organic framework-derived CuO@C publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2020.110340 – volume: 33 start-page: 163 year: 2022 ident: nanoacec51bib101 article-title: Two-dimensional alloyed transition metal dichalcogenide nanosheets: synthesis and applications publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.06.004 – volume: 455 year: 2023 ident: nanoacec51bib152 article-title: Synthesis of heterogeneous metal organic framework-graphene oxide nanocomposite membranes for water treatment publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.140851 – volume: 27 start-page: 7372 year: 2015 ident: nanoacec51bib130 article-title: Ultrathin 2D metal–organic framework nanosheets publication-title: Adv. Mater. doi: 10.1002/adma.201503648 – volume: 8 start-page: 899 year: 2014 ident: nanoacec51bib79 article-title: Two-dimensional material nanophotonics publication-title: Nat. Photon. doi: 10.1038/nphoton.2014.271 – volume: 473 year: 2022 ident: nanoacec51bib111 article-title: Two-dimensional metal–organic frameworks: from synthesis to biomedical, environmental, and energy conversion applications publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214817 – volume: 21 start-page: 1424 year: 2014 ident: nanoacec51bib186 article-title: Ultrason. Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye ‘congo red’ publication-title: Sonochemistry doi: 10.1016/j.ultsonch.2013.12.012 – volume: 478 start-page: 344 year: 2016 ident: nanoacec51bib184 article-title: Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.06.032 – volume: 59 start-page: 5890 year: 2020 ident: nanoacec51bib97 article-title: Two-dimensional nanomaterials for photothermal therapy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201911477 – volume: 11 start-page: 22188 year: 2019 ident: nanoacec51bib68 article-title: Ti-Based nanoMOF as an efficient oral therapeutic agent publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b06472 – volume: 32 start-page: 2207723 year: 2022 ident: nanoacec51bib34 article-title: Metal–organic frameworks and electrospinning: a happy marriage for wastewater treatment publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202207723 – volume: 30 start-page: 289 year: 2016 ident: nanoacec51bib51 article-title: One-pot self-assembly and photoreduction synthesis of silver nanoparticle-decorated reduced graphene oxide/MIL-125 (Ti) photocatalyst with improved visible light photocatalytic activity publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.3430 – volume: 283 start-page: 487 year: 2019 ident: nanoacec51bib38 article-title: An electrochemical sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate determination publication-title: Sensors Actuators B doi: 10.1016/j.snb.2018.12.064 – volume: 112 start-page: 1105 year: 2012 ident: nanoacec51bib94 article-title: Metal–organic framework materials as chemical sensors publication-title: Chem. Rev. doi: 10.1021/cr200324t – volume: 133 start-page: 10512 year: 2011 ident: nanoacec51bib126 article-title: Super flexibility of a 2D Cu-based porous coordination framework on gas adsorption in comparison with a 3D framework of identical composition: framework dimensionality-dependent gas adsorptivities publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201170c – volume: 16 start-page: 597 year: 2022 ident: nanoacec51bib102 article-title: Monolayer WS2 lateral homosuperlattices with two-dimensional periodic localized photoluminescence publication-title: ACS Nano. doi: 10.1021/acsnano.1c07803 – volume: 573 start-page: 46 year: 2019 ident: nanoacec51bib144 article-title: Porous metal organic framework CuBDC nanosheet incorporated thin-film nanocomposite membrane for high-performance forward osmosis publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.11.075 – volume: 6 start-page: 1924 year: 2019 ident: nanoacec51bib183 article-title: Metal–organic framework-based materials for the recovery of uranium from aqueous solutions publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI00386J – volume: 52 start-page: 10569 year: 2013 ident: nanoacec51bib78 article-title: Atomically thin tin dioxide sheets for efficient catalytic oxidation of carbon monoxide publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201305530 – volume: 3 year: 2016 ident: nanoacec51bib8 article-title: The first example of hetero-triple-walled metal–organic frameworks with high chemical stability constructed via flexible integration of mixed molecular building blocks. publication-title: Adv. Sci. doi: 10.1002/advs.201500283 – volume: 5 start-page: 5196 year: 2022 ident: nanoacec51bib162 article-title: Graphene oxide nanofiltration membrane based on three-dimensional size-controllable metal–organic frameworks for water treatment publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c00234 – volume: 26 year: 2020 ident: nanoacec51bib133 article-title: A review on metal organic frameworks (MOFs) modified membrane for remediation of water pollution publication-title: Environ. Eng. Res. – volume: 5 start-page: 2800 year: 2013 ident: nanoacec51bib85 article-title: Quantum-dot-based photoelectrochemical sensors for chemical and biological detection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3028662 – volume: 346 start-page: 1356 year: 2014 ident: nanoacec51bib117 article-title: Metal–organic framework nanosheets as building blocks for molecular sieving membranes publication-title: Science doi: 10.1126/science.1254227 – volume: 578 start-page: 500 year: 2020 ident: nanoacec51bib175 article-title: Green and facile synthesis of cobalt-based metal–organic frameworks for the efficient removal of Congo red from aqueous solution publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.05.126 – volume: 34 start-page: 4 year: 2020 ident: nanoacec51bib24 article-title: Zr-based MOFs with high drug loading for adsorption removal of anti-cancer drugs: a potential drug storage publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.5549 – volume: 13 start-page: 36 year: 2010 ident: nanoacec51bib87 article-title: Metal oxide nanowires as chemical sensors publication-title: Mater. Today doi: 10.1016/S1369-7021(10)70126-7 – volume: 27 start-page: 39186 year: 2020 ident: nanoacec51bib178 article-title: Microwave-assisted hydrothermal assembly of 2D copper-porphyrin metal–organic frameworks for the removal of dyes and antibiotics from water publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-09865-z – volume: 547 start-page: 73 year: 2018 ident: nanoacec51bib171 article-title: Zeolitic imidazolate framework-67: a promising candidate for recovery of uranium (VI) from seawater publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2018.03.042 – volume: 335 start-page: 896 year: 2018 ident: nanoacec51bib59 article-title: Removal of contaminants of emerging concern by membranes in water and wastewater: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.044 – volume: 6 start-page: 27416 year: 2016 ident: nanoacec51bib174 article-title: Synthesis, characterization and application of cyclam-modified magnetic SBA-15 as a novel sorbent and its optimization by central composite design for adsorption and determination of trace amounts of lead ions publication-title: RSC Adv. doi: 10.1039/C5RA28052D – volume: 6 start-page: 585 year: 2011 ident: nanoacec51bib86 article-title: Toxicology and clinical potential of nanoparticles publication-title: Nano Today doi: 10.1016/j.nantod.2011.10.001 – volume: 241 year: 2020 ident: nanoacec51bib67 article-title: Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: a critical review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125043 – volume: 31 year: 2021 ident: nanoacec51bib137 article-title: Laser-induced annealing of metal organic frameworks on conductive substrates for electrochemical water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102648 – volume: 129 start-page: 15771 year: 2017 ident: nanoacec51bib14 article-title: A smart metal–organic framework nanomaterial for lung targeting publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201707346 – volume: 142 start-page: 3584 year: 2017 ident: nanoacec51bib160 article-title: Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.10.109 – volume: 49 start-page: 2751 year: 2020 ident: nanoacec51bib39 article-title: Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00609E – volume: 17 year: 2021 ident: nanoacec51bib109 article-title: Controllable synthesis and performance modulation of 2D covalent-organic frameworks publication-title: Small – volume: 248 year: 2020 ident: nanoacec51bib63 article-title: Adsorptive removal of heavy metal ions using graphene-based nanomaterials: toxicity, roles of functional groups and mechanisms publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126008 – volume: 62 start-page: 1561 year: 2019 ident: nanoacec51bib72 article-title: Metal–organic framework nanosheets: a class of glamorous low-dimensional materials with distinct structural and chemical natures publication-title: Sci. China Chem. doi: 10.1007/s11426-019-9575-8 – volume: 14 start-page: 13999 year: 2014 ident: nanoacec51bib88 article-title: One-dimensional nanostructure field-effect sensors for gas detection publication-title: Sensors doi: 10.3390/s140813999 – volume: 439 year: 2022 ident: nanoacec51bib151 article-title: Silver metal organic frameworks and copper metal organic frameworks immobilized on graphene oxide for enhanced adsorption in water treatment publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135542 – volume: 60 start-page: 438 year: 2017 ident: nanoacec51bib21 publication-title: Sci. China Mater. doi: 10.1007/s40843-017-9020-5 – volume: 57 start-page: 4338 year: 2018 ident: nanoacec51bib82 article-title: Post-Graphene 2D chemistry: the emerging field of molybdenum disulfide and black phosphorus functionalization publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708211 – volume: 10 start-page: 402 year: 2017 ident: nanoacec51bib20 article-title: Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02265K – volume: 136 start-page: 6103 year: 2014 ident: nanoacec51bib122 article-title: Synthesis of two-dimensional analogues of copolymers by site-to-site transmetalation of organometallic monolayer sheets publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501849y – volume: 14 start-page: 751 year: 2012 ident: nanoacec51bib124 article-title: Some thoughts about the single crystal growth of small molecules publication-title: CrystEngComm doi: 10.1039/C1CE05624G – volume: 19 start-page: 36 year: 2021 ident: nanoacec51bib108 article-title: 2D LDH-MoS2 clay nanosheets: synthesis, catalase-mimic capacity, and imaging-guided tumor photo-therapy publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-020-00763-7 – volume: 59 start-page: 215 year: 2012 ident: nanoacec51bib139 article-title: PVAm–PIP/PS composite membrane with high performance for CO2/N2 separation publication-title: AIChE J. doi: 10.1002/aic.13781 – volume: 8 start-page: 708 year: 2020 ident: nanoacec51bib189 article-title: Recent advances in the use of metal–organic frameworks for dye adsorption publication-title: Front. Chem. doi: 10.3389/fchem.2020.00708 – volume: 139 start-page: 19 year: 2017 ident: nanoacec51bib123 article-title: Hexaaminobenzene as a building block for a family of 2D coordination polymers publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09889 – volume: 519 start-page: 273 year: 2018 ident: nanoacec51bib49 article-title: Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.02.067 – volume: 12 start-page: 3535 year: 2020 ident: nanoacec51bib76 article-title: Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications publication-title: Nanoscale. doi: 10.1039/C9NR10178K – volume: 3 year: 2021 ident: nanoacec51bib131 article-title: Recent progress in 2D metal–organic framework photocatalysts: synthesis, photocatalytic mechanism and applications publication-title: J. Phys.: Energy – volume: 50 start-page: 276 year: 2021 ident: nanoacec51bib98 article-title: Emerging 2D nanomaterials for biomedical applications publication-title: Mater. Today doi: 10.1016/j.mattod.2021.04.020 – volume: 48 start-page: 7752 year: 2009 ident: nanoacec51bib77 article-title: Graphene: the new two-dimensional nanomaterial publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200901678 – volume: 13 year: 2021 ident: nanoacec51bib110 article-title: Two-dimensional metal–organic frameworks for biomedical applications publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. – volume: 57 start-page: 15354 year: 2018 ident: nanoacec51bib146 article-title: High-Flux high-selectivity metal–organic framework MIL-160 membrane for xylene isomer separation by pervaporation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201807935 – volume: 372 start-page: 3 year: 2019 ident: nanoacec51bib29 article-title: Water depollution using metal–organic frameworks-catalyzed advanced oxidation processes: a review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.09.043 – volume: 5 start-page: 599 year: 2021 ident: nanoacec51bib188 article-title: Bimetallic Metal-Organic Framework with High-Adsorption Capacity toward Lithium Polysulfides for Lithium–sulfur Batteries publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12196 – volume: 29 year: 2017 ident: nanoacec51bib19 publication-title: Adv. Mater. doi: 10.1002/adma.201604898 – volume: 458 year: 2022 ident: nanoacec51bib138 article-title: Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214428 – volume: 33 start-page: 4428 year: 2021 ident: nanoacec51bib107 article-title: Recent progress on preparation and applications of layered double hydroxides publication-title: Chin. Chem. Lett. doi: 10.1016/j. cclet.2021.12.033 – volume: 3 start-page: 2193 year: 2018 ident: nanoacec51bib157 article-title: Facile water-based strategy for synthesizing MoO3–x nanosheets: efficient visible light photocatalysts for dye degradation publication-title: ACS Omega doi: 10.1021/acsomega.8b00012 – volume: 18 year: 2021 ident: nanoacec51bib1 article-title: Macroscopic MOF architectures: effective strategies for practical application in water treatment publication-title: Small doi: 10.1002/smll.202104387 – volume: 50 start-page: 7879 year: 2011 ident: nanoacec51bib121 article-title: Synthesis of free-standing, monolayered organometallic sheets at the air/water interface publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201100669 – volume: 572 start-page: 20 year: 2019 ident: nanoacec51bib140 article-title: Fabrication of ZIF-300 membrane and its application for efficient removal of heavy metal ions from wastewater publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.10.080 – volume: 565 start-page: 337 year: 2020 ident: nanoacec51bib135 article-title: Construction of lanthanum modified MOFs graphene oxide composite membrane for high selective phosphorus recovery and water purification publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.01.031 – volume: 181 start-page: 535 year: 2010 ident: nanoacec51bib190 article-title: Adsorptive removal of methyl orange from aqueous solution with metal–organic frameworks, porous chromium-benzenedicarboxylates publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.05.047 – volume: 5 year: 2018 ident: nanoacec51bib7 article-title: Enhanced CO2/CH4 separation performance of a mixed matrix membrane based on tailored MOF-polymer formulations publication-title: Adv. Sci. doi: 10.1002/advs.201800982 – volume: 601 start-page: 756 year: 2017 ident: nanoacec51bib27 article-title: Human health implications, risk assessment and remediation of As-contaminated water: a critical review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.05.223 – volume: 66 start-page: 15 year: 2012 ident: nanoacec51bib116 article-title: Hybrid nanosheets of an inorganic–organic framework material: facile synthesis, structure, and elastic properties publication-title: ACS Nano – volume: 10 start-page: 1278 year: 2018 ident: nanoacec51bib142 article-title: Thin-film nanocomposite membrane with the minimum amount of MOF by the Langmuir–schaefer technique for nanofiltration publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17477 – volume: 55 start-page: 3935 year: 2019 ident: nanoacec51bib164 article-title: A poly (amidoamine) nanoparticle cross-linked two-dimensional metal–organic framework nanosheet membrane for water purification publication-title: Chem. Comm. doi: 10.1039/C9CC00349E – volume: 38 start-page: 264 year: 2020 ident: nanoacec51bib103 article-title: Future applications of MXenes in biotechnology, nanomedicine,and sensors publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2019.09.001 – volume: 276 year: 2021 ident: nanoacec51bib154 article-title: Oriented 2D metal organic framework coating on bacterial cellulose for nitrobenzene removal from water by filtration publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119366 – volume: 13 year: 2021 ident: nanoacec51bib70 article-title: Two-dimensional metal organic frameworks for biomedical applications publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1674 – volume: 12 start-page: 2593 year: 2019 ident: nanoacec51bib143 article-title: Highly cation permselective metal–organic framework membranes with leaf-like morphology publication-title: ChemSusChem doi: 10.1002/cssc.201900706 – volume: 26 year: 2021 ident: nanoacec51bib41 article-title: An updated review of metal–organic framework materials in photo (electro) catalytic applications: from CO2 reduction to wastewater treatments publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2020.100669 – volume: 170 start-page: 1536 year: 2018 ident: nanoacec51bib159 article-title: Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.09.265 – volume: 19 start-page: 201 year: 2021 ident: nanoacec51bib106 article-title: Designing highly stable ferrous selenide-black phosphorus nanosheets heteronanostructure via P-Se bond for MRI-guided photothermal therapy publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-021-00905-5 – volume: 12 year: 2022 ident: nanoacec51bib71 article-title: Metal–organic frameworks nanocomposites with different dimensionalities for energy conversion and storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100346 – volume: 413 year: 2021 ident: nanoacec51bib64 article-title: A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125375 – volume: 333 start-page: 678 year: 2018 ident: nanoacec51bib179 article-title: Flexibility induced high-performance MOF-based adsorbent for nitroimidazole antibiotics capture publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.138 – volume: 138 start-page: 6924 year: 2016 ident: nanoacec51bib128 article-title: Synthesis of two-dimensional CoS1. 097/nitrogen-doped carbon nanocomposites using metal–organic framework nanosheets as precursors for supercapacitor application publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02540 – volume: 121 start-page: 3751 year: 2021 ident: nanoacec51bib134 article-title: Two-dimensional metal–organic framework materials: synthesis, structures, properties and applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c01049 – volume: 215 start-page: 259 year: 2019 ident: nanoacec51bib176 article-title: Insights into multi-component adsorption of reactive dyes on MIL-101-Cr metal organic framework: experimental and modeling approach publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.01.013 – volume: 5 start-page: 8662 year: 2017 ident: nanoacec51bib74 article-title: Understanding the Li-storage in few layers graphene with respect to bulk graphite: experimental, analytical and computational study publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01978E – volume: 10 start-page: 11251 year: 2018 ident: nanoacec51bib147 article-title: Metal–organic frameworks supported on nanofiber for desalination by direct contact membrane distillation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01371 – volume: 14 start-page: 48 year: 2015 ident: nanoacec51bib127 article-title: Metal–organic framework nanosheets in polymer composite materials for gas separation publication-title: Nat. Mater. doi: 10.1038/nmat4113 – volume: 56 start-page: 5512 year: 2017 ident: nanoacec51bib10 article-title: Multi-shelled hollow metal–organic frameworks publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701604 – volume: 380 start-page: 330 year: 2019 ident: nanoacec51bib65 article-title: Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.10.003 – volume: 161 start-page: 228 year: 2016 ident: nanoacec51bib185 article-title: Sensitive and background-free determination of thiols from wastewater samples by MOF-5 extraction coupled with high-performance liquid chromatography with fluorescence detection using a novel fluorescence probe of carbazole-9-ethyl-2-maleimide publication-title: Talanta doi: 10.1016/j.talanta.2016.08.040 – volume: 5 start-page: 4947 year: 2014 ident: nanoacec51bib84 article-title: One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance publication-title: Nat. Commun. doi: 10.1038/ncomms5947 – volume: 7 year: 2020 ident: nanoacec51bib192 article-title: Electrospinning of metal–organic frameworks for energy and environmental applications publication-title: Adv. Sci. doi: 10.1002/advs.201902590 – volume: 445 year: 2021 ident: nanoacec51bib35 article-title: Simultaneous detection and removal of fluoride from water using smart metal–organic framework-based adsorbents publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214037 – volume: 346 start-page: 1356 year: 2014 ident: nanoacec51bib112 article-title: Metal–organic framework nanosheets as building blocks for molecular sieving membranes publication-title: Science doi: 10.1126/science.1254227 – volume: 6 start-page: 707 year: 2018 ident: nanoacec51bib17 article-title: Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise publication-title: J. Mater. Chem. B doi: 10.1039/C7TB02970E – volume: 378 start-page: 445 year: 2019 ident: nanoacec51bib12 article-title: Designed fabrication of biomimetic metal–organic frameworks for catalytic applications publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.01.016 – volume: 383 year: 2020 ident: nanoacec51bib172 article-title: Few-layered metal–organic framework nanosheets as a highly selective and efficient scavenger for heavy metal pollution treatment publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123189 – volume: 8 year: 2017 ident: nanoacec51bib54 article-title: Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal–organic nanosheets for gas separation publication-title: Nat. Commun. doi: 10.1038/ncomms14460 – volume: 31 year: 2019 ident: nanoacec51bib3 article-title: Hollow metal–organic-framework micro/nanostructures and their derivatives: emerging multifunctional materials publication-title: Adv. Mater. doi: 10.1002/adma.201803291 – volume: 24 start-page: 13792 year: 2018 ident: nanoacec51bib11 article-title: Boosting lithium storage properties of MOF derivatives through a wet-spinning assembled fiber strategy publication-title: Chem. Eur. J. doi: 10.1002/chem.201802826 – volume: 22 start-page: 10119 year: 2012 ident: nanoacec51bib15 article-title: Synthetic routes toward MOF nanomorphologies publication-title: J. Mater. Chem. doi: 10.1039/C2JM15675J – volume: 275 start-page: 130055 year: 2021 ident: nanoacec51bib25 article-title: Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130055 – volume: 347 start-page: 378 year: 2018 ident: nanoacec51bib158 article-title: Synthesis of graphenized Au/ZnO plasmonic nanocomposites for simultaneous sunlight mediated photocatalysis and antimicrobial activity publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.12.034 – volume: 24 start-page: 15131 year: 2018 ident: nanoacec51bib168 article-title: Two-dimensional metal–organic framework nanosheets: a rapidly growing class of versatile nanomaterials for gas separation, MALDI-TOF matrix and biomimetic applications publication-title: Chem. Eur. J. doi: 10.1002/chem.201800556 – volume: 369 start-page: 928 year: 2019 ident: nanoacec51bib191 article-title: Removal of contaminants of emerging concern by metal–organic framework nanoadsorbents: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.173 – volume: 340 start-page: 72 year: 2013 ident: nanoacec51bib113 article-title: Liquid exfoliation of layered materials publication-title: Science doi: 10.1126/science.1226419 – volume: 52 start-page: 1461 year: 2019 ident: nanoacec51bib73 article-title: Metal–organic framework films and their potential applications in environmental pollution control publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00113 – volume: 186 start-page: 19 year: 2016 ident: nanoacec51bib50 article-title: In situ synthesis of In2S3@ MIL-125 (Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.12.041 – volume: 420 year: 2021 ident: nanoacec51bib187 article-title: Polypyrrole-enveloped Prussian blue nanocubes with multi-metal synergistic adsorption toward lithium polysulfides: high-performance lithium-sulfur batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130518 – volume: 10 start-page: 4083 year: 2010 ident: nanoacec51bib89 article-title: One-dimensional oxide nanostructures as gas-sensing materials: review and issues publication-title: Sensors doi: 10.3390/s100404083 – volume: 16 start-page: 1 year: 2021 ident: nanoacec51bib95 article-title: Two-dimensional MOFs: design and synthesis and applications publication-title: Chem. Asian J. doi: 10.1002/asia.202100884 – volume: 19 start-page: 8638 year: 2019 ident: nanoacec51bib161 article-title: Farimani Water desalination with two-dimensional metal–organic framework membranes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03225 – volume: 272 start-page: 109 year: 2018 ident: nanoacec51bib181 article-title: Formic acid modulated (fam) aluminium fumarate MOF for improved isotherms and kinetics with water adsorption: cooling/heat pump applications publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2018.06.016 – volume: 857 year: 2023 ident: nanoacec51bib150 article-title: Amine/hydrazone functionalized Cd(II)/Zn(II)metal–organic framework for ultrafast sensitive detection of hazardous 2,4,6-trinitrophenol in water publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.159385 – volume: 8 start-page: 8143 year: 2020 ident: nanoacec51bib170 article-title: Engineering pristine 2D metal–organic framework nanosheets for electrocatalysis publication-title: J. Mater. Chem. doi: 10.1039/D0TA03138K – volume: 13 start-page: 231 year: 2023 ident: nanoacec51bib153 article-title: A new 2D metal–organic framework for photocatalytic degradation of organic dyes in water publication-title: Catalysts doi: 10.3390/catal13020231 – volume: 57 start-page: 9604 year: 2018 ident: nanoacec51bib36 article-title: Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201800269 – volume: 535 start-page: 444 year: 2019 ident: nanoacec51bib42 article-title: Facile synthesis of In2S3/UiO-66 composite with enhanced adsorption performance and photocatalytic activity for the removal of tetracycline under visible light irradiation publication-title: Colloid Interface Sci. doi: 10.1016/j.jcis.2018.10.008 – volume: 139 start-page: 9136 year: 2017 ident: nanoacec51bib118 article-title: Controlled intercalation and chemical exfoliation of layered metal–organic frameworks using a chemically labile intercalating agent publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04829 – volume: 530 start-page: 481 year: 2018 ident: nanoacec51bib43 article-title: Modified stannous sulfide nanoparticles with metal–organic framework: toward efficient and enhanced photocatalytic reduction of chromium (VI) under visible light publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.05.015 – volume: 17 start-page: 195 year: 2019 ident: nanoacec51bib61 article-title: Conventional and non-conventional adsorbents for wastewater treatment publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-018-0786-8 – volume: 58 start-page: 10198 year: 2019 ident: nanoacec51bib167 article-title: Ultrathin metal–organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201904058 – volume: 11 start-page: 6747 year: 2023 ident: nanoacec51bib62 article-title: Functional metal organic frameworks as adsorbents used for water decontamination: design strategies and applications publication-title: J. Mater. Chem. doi: 10.1039/D3TA00279A – volume: 13 start-page: 796 year: 2014 ident: nanoacec51bib83 article-title: Improved performance and stability in quantum dot solar cells through band alignment engineering publication-title: Nat. Mater. doi: 10.1038/nmat3984 – volume: 175 year: 2020 ident: nanoacec51bib58 article-title: Intimate coupling of photocatalysis and biodegradation for wastewater treatment: mechanisms, recent advances and environmental applications publication-title: Water Res. doi: 10.1016/j.watres.2020.115673 – volume: 563 start-page: 127 year: 2018 ident: nanoacec51bib156 article-title: Copper octacarboxyphthalocyanine as sensitizer of graphitic carbon nitride for efficient dye degradation under visible light irradiation publication-title: Appl. Catal. Gen. doi: 10.1016/j.apcata.2018.06.036 – volume: 400 year: 2019 ident: nanoacec51bib66 article-title: Covalent organic frameworks (COFs) for environmental applications publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.213046 – volume: 278 year: 2020 ident: nanoacec51bib166 article-title: Co3 (hexaiminotriphenylene) 2: a conductive two-dimensional π–d conjugated metal–organic framework for highly efficient oxygen evolution reaction publication-title: Appl. Catal. doi: 10.1016/j.apcatb.2020.119295 – volume: 26 start-page: 1788 year: 2019 ident: nanoacec51bib105 article-title: Biodegradable black phosphorus-based nanomaterials in biomedicine: theranostic applications publication-title: Curr. Med. Chem. doi: 10.2174/0929867324666170920152529 – volume: 247 year: 2020 ident: nanoacec51bib30 article-title: Applications of metal–organic framework based membranes in water purification: a review publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2020.116947 – volume: 2 year: 2021 ident: nanoacec51bib47 article-title: Metal–organic framework-based hybrid frameworks publication-title: Small Struct. doi: 10.1002/sstr.202000078 – volume: 117 start-page: 6225 year: 2017 ident: nanoacec51bib92 article-title: Recent advances in ultrathin two-dimensional nanomaterials publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00558 – volume: 395 year: 2020 ident: nanoacec51bib32 article-title: Anchoring ZIF-67 particles on amidoximerized polyacrylonitrile fibers for radionuclide sequestration in wastewater and seawater publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122692 – volume: 28 start-page: 4149 year: 2016 ident: nanoacec51bib129 article-title: Bioinspired design of ultrathin 2D bimetallic metal–organic-framework nanosheets used as biomimetic enzymes publication-title: Adv. Mater. doi: 10.1002/adma.201600108 – volume: 293 year: 2022 ident: nanoacec51bib26 article-title: Novel synthesis methods and applications of MXene-based nanomaterials (MBNs) for hazardous pollutants degradation: future perspectives publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.133542 – volume: 137 start-page: 2641 year: 2015 ident: nanoacec51bib56 article-title: Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal–organic framework-177 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512311a – volume: 8 start-page: 8527 year: 2016 ident: nanoacec51bib141 article-title: Radioactive barium ion trap based on metal–organic framework for efficient and irreversible removal of barium from nuclear wastewater publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00900 – volume: 11 start-page: 599 year: 2020 ident: nanoacec51bib53 article-title: Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving publication-title: Nat. Commun. doi: 10.1038/s41467-019-14056-7 – volume: 140 start-page: 10094 year: 2018 ident: nanoacec51bib52 article-title: Covalent organic framework–covalent organic framework bilayer membranes for highly selective gas separation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05136 – volume: 5 start-page: 203 year: 2013 ident: nanoacec51bib16 article-title: A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures publication-title: Nat. Chem. doi: 10.1038/nchem.1569 – volume: 24 start-page: 6506 year: 2018 ident: nanoacec51bib46 article-title: Controllable syntheses of MOF-derived materials publication-title: Chem. Eur. J. doi: 10.1002/chem.201705415 – volume: 31 year: 2019 ident: nanoacec51bib120 article-title: 2D metal–organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201900617 – volume: 389 start-page: 119 year: 2019 ident: nanoacec51bib37 article-title: Interpenetrated structures appeared in supramolecular cages MOFs, COFs publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.03.002 – volume: 46 start-page: 14 year: 2013 ident: nanoacec51bib114 article-title: Liquid exfoliation of defect-free graphene publication-title: Acc. Chem. Res. doi: 10.1021/ar300009f – volume: 4 start-page: 328 year: 2019 ident: nanoacec51bib165 article-title: Defect-rich 2D material networks for advanced oxygen evolution catalysts publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b02343 – volume: 19 start-page: 340 year: 2021 ident: nanoacec51bib100 article-title: Understanding of catalytic ROS generation from defect-rich graphene quantum-dots for therapeutic effects in tumor microenvironment publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-021-01053-6 – volume: 306 start-page: 666 year: 2004 ident: nanoacec51bib99 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 188 year: 2021 ident: nanoacec51bib60 publication-title: Water Res. doi: 10.1016/j.watres.2020.116446 – volume: 6 start-page: 21676 year: 2018 ident: nanoacec51bib169 article-title: Recent progress in two-dimensional polymers for energy storage and conversion: design, synthesis, and applications publication-title: J. Mater. Chem. doi: 10.1039/C8TA02820F – volume: 3 year: 2021 ident: nanoacec51bib182 article-title: Metal–organic frameworks for C6–C8 hydrocarbon separations publication-title: Energy Chem. doi: 10.1016/j.enchem.2021.100057 – volume: 47 start-page: 6267 year: 2018 ident: nanoacec51bib69 article-title: Two-dimensional metal–organic framework nanosheets: synthesis and applications publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00268A – volume: 985 year: 2023 ident: nanoacec51bib149 article-title: Synthesis of porphyrinic metal–organic framework/rGO nanocomposite for electrochemical recognition of copper ions in water publication-title: J. Organomet. Chem. doi: 10.1016/j.jorganchem.2022.122597 – volume: 5 start-page: 394 year: 2018 ident: nanoacec51bib45 article-title: Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion publication-title: Mater. Horizons doi: 10.1039/C8MH00133B – volume: 399 year: 2020 ident: nanoacec51bib193 article-title: Superior chemical stability of UiO-66 metal–organic frameworks (MOFs) for selective dye adsorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125346 – volume: 30 year: 2018 ident: nanoacec51bib48 article-title: Stable metal–organic frameworks: design, synthesis, and applications publication-title: Adv. Mater. doi: 10.1002/adma.201704303 – volume: 331 start-page: 568 year: 2011 ident: nanoacec51bib115 article-title: Two-dimensional nanosheets produced by liquid exfoliation of layered materials publication-title: Science doi: 10.1126/science.1194975 – volume: 6 year: 2019 ident: nanoacec51bib119 article-title: Structural engineering of low-dimensional metal–organic frameworks: synthesis, properties, and applications publication-title: Adv. Sci. doi: 10.1002/advs.201802373 – volume: 237 year: 2020 ident: nanoacec51bib55 article-title: Preparation of nanofibrous metal–organic framework filter for rapid adsorption and selective separation of cationic dye from aqueous solution publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2019.116360 – volume: 341 year: 2013 ident: nanoacec51bib6 article-title: The chemistry and applications of metal–organic frameworks publication-title: Science doi: 10.1126/science.1230444 – volume: 7 start-page: 31 year: 2017 ident: nanoacec51bib145 article-title: Thin film nanocomposite membrane filled with metal–organic frameworks UiO-66 and MIL-125 nanoparticles for water desalination publication-title: Membranes doi: 10.3390/membranes7020031 – volume: 330 start-page: 262 year: 2017 ident: nanoacec51bib44 article-title: Metal–organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.156 – volume: 171 year: 2021 ident: nanoacec51bib104 article-title: 2D titanium carbide MXenes as emerging optical biosensing platforms publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112730 – volume: 10 start-page: 195 year: 2020 ident: nanoacec51bib136 article-title: Application of various metal–organic frameworks (MOFs) as catalysts for air and water pollution environmental remediation publication-title: Catalysts doi: 10.3390/catal10020195 – volume: 27 start-page: 5365 year: 2015 ident: nanoacec51bib13 article-title: Well-defined metal–organic-framework hollow nanostructures for catalytic reactions involving gases publication-title: Adv. Mater. doi: 10.1002/adma.201500789 – volume: 2 start-page: 1944 year: 2018 ident: nanoacec51bib81 article-title: Engineering two-dimensional layered nanomaterials for wearable biomedical sensors and power devices publication-title: Mater. Chem. Front. doi: 10.1039/C8QM00356D |
SSID | ssj0011821 |
Score | 2.4714394 |
SecondaryResourceType | review_article |
Snippet | In addition to their adjustable functionality, structural tunability, and compositional tunability, metal–organic frameworks (MOFs), often known as MOFs, are a... In addition to its adjustable functionality, structural tunability, and compositional tunability, metal-organic frameworks, often known as MOFs, are a distinct... In addition to their adjustable functionality, structural tunability, and compositional tunability, metal-organic frameworks (MOFs), often known as MOFs, are a... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 442001 |
SubjectTerms | 2D MOF hybrid composites nanosheets porous materials wastewater treatment |
Title | Novel synthetic approach of 2D-metal–organic frameworks (MOF) for wastewater treatment |
URI | https://iopscience.iop.org/article/10.1088/1361-6528/acec51 https://www.ncbi.nlm.nih.gov/pubmed/37527630 https://www.proquest.com/docview/2845107279 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiQ48CgUlpcMAokevJvYjuOIEwJWBaktByrtAcmaeO0LJVmRXRCc-A_8Q34J47xEEVQIKYccxok9tme-ZMbfADwyKNNQas8dCs2VXAZeOOd4kgWRlWmCZRFPIx8c6v1j9XqRLbbg6XgWpl71pn9Ktx1RcKfCPiHOzFKpU64zYWbovIvHp89Lo3UsX_Dq6M0YQiDgnHZEezmnbxDVxyj_9IRTPukcvffvcLN1O_Mr8G7ocJdt8n66WZdT9_U3Lsf_HNFVuNzDUfasE70GW77agUu_kBTuwIU2SdQ112FxWH_yJ6z5UhFqpAZsICRndWDiBf_gCcn_-Pa9qxTlWBgSvxr25OBovscIILPP2MT_dTSdbExyvwHH85dvn-_zvjIDdyoVa15girnxQWYlZolChYVSXvmwREw8ekzzXKLwxhcO8xByZSRBoVKbyDAolnIXtqu68reA5QR5yLCIUgSjCD2ilHkmQlCB3KbW2QRmw9xY19OWx-oZJ7YNnxtjo_Zs1J7ttDeBvbHFqqPsOEP2MU2K7fdtc4bcw1NyFVa1lcqqeMW0NLtahgk8GFaNpU0aIy9Y-XrTWMIAZPsIKhYTuNktp7Frcbhk5JPb_9iVO3Axlrxv_WdyF7bXHzf-HgGjdXm_3QA_Aa8oBW8 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAceJTX8jQIJHrwbuJH4hwRZdUC3fZApb25E699oSQrsguCE_-Bf8gvYZxkVxRBhYSUQw7jxJ6xZ75kxp8BnhqUaSgzzx2KjCs5C7xwzvFEB6HLNMGyiLuR9yfZ7pF6PdXT_pzTdi9MPe9d_5BuO6LgToV9QZwZpTJLeaaFGaHzTqej-SxswHktMxnJ8_cODtdpBALPaUe2l3P6DlF9nvJPTzkVlzbo3X-HnG3oGV-F41Wnu4qT98Plohy6r7_xOf7HqK7BlR6Wshed-HU456stuPwLWeEWXGiLRV1zA6aT-pM_Yc2XitAjNWArYnJWByZ2-AdPiP7Ht-_diVGOhVUBWMOe7x-MtxkBZfYZm_jfjszK1sXuN-Fo_Ordy13en9DAnUrFgheYYm58kLpEnShUWCjllQ8zxMSjxzTPJQpvfOEwDyFXhqxUlJmJTINiJm_BZlVX_g6wnKAPORhRimAUoUiUMtciBBUofGaZHsBoZR_revryeIrGiW3T6MbYqEEbNWg7DQ5ge91i3lF3nCH7jAxj-_XbnCH35JRchVVtpbIqXrE8zZLZBvB4NXMsLdaYgcHK18vGEhYgH0iQsRjA7W5KrbsWh0vOPrn7j115BBcPd8b27d7kzT24JAh7tSE1uQ-bi49L_4Cw0qJ82K6Hn4-rCtM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+synthetic+approach+of+2D-metal%E2%80%93organic+frameworks+%28MOF%29+for+wastewater+treatment&rft.jtitle=Nanotechnology&rft.au=Nath%2C+Nibedita&rft.au=Chakroborty%2C+Subhendu&rft.au=Pal%2C+Kaushik&rft.au=Barik%2C+Arundhati&rft.date=2023-10-30&rft.pub=IOP+Publishing&rft.issn=0957-4484&rft.eissn=1361-6528&rft.volume=34&rft.issue=44&rft_id=info:doi/10.1088%2F1361-6528%2Facec51&rft.externalDocID=nanoacec51 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon |