Comparing Propensity Score Methods Versus Traditional Regression Analysis for the Evaluation of Observational Data: A Case Study Evaluating the Treatment of Gram-Negative Bloodstream Infections

Abstract Background Propensity score methods are increasingly being used in the infectious diseases literature to estimate causal effects from observational data. However, there remains a general gap in understanding among clinicians on how to critically review observational studies that have incorp...

Full description

Saved in:
Bibliographic Details
Published inClinical infectious diseases Vol. 71; no. 9; pp. e497 - e505
Main Authors Amoah, Joe, Stuart, Elizabeth A, Cosgrove, Sara E, Harris, Anthony D, Han, Jennifer H, Lautenbach, Ebbing, Tamma, Pranita D
Format Journal Article
LanguageEnglish
Published US Oxford University Press 03.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Background Propensity score methods are increasingly being used in the infectious diseases literature to estimate causal effects from observational data. However, there remains a general gap in understanding among clinicians on how to critically review observational studies that have incorporated these analytic techniques. Methods Using a cohort of 4967 unique patients with Enterobacterales bloodstream infections, we sought to answer the question “Does transitioning patients with gram-negative bloodstream infections from intravenous to oral therapy impact 30-day mortality?” We conducted separate analyses using traditional multivariable logistic regression, propensity score matching, propensity score inverse probability of treatment weighting, and propensity score stratification using this clinical question as a case study to guide the reader through (1) the pros and cons of each approach, (2) the general steps of each approach, and (3) the interpretation of the results of each approach. Results 2161 patients met eligibility criteria with 876 (41%) transitioned to oral therapy while 1285 (59%) remained on intravenous therapy. After repeating the analysis using the 4 aforementioned methods, we found that the odds ratios were broadly similar, ranging from 0.84–0.95. However, there were some relevant differences between the interpretations of the findings of each approach. Conclusions Propensity score analysis is overall a more favorable approach than traditional regression analysis when estimating causal effects using observational data. However, as with all analytic methods using observational data, residual confounding will remain; only variables that are measured can be accounted for. Moreover, propensity score analysis does not compensate for poor study design or questionable data accuracy. This article assists clinicians with understanding the relative pros and cons, the general steps involved, and the appropriate interpretation of the results of traditional regression analysis, propensity score matching, propensity score weighting, and propensity score stratification.
AbstractList Propensity score methods are increasingly being used in the infectious diseases literature to estimate causal effects from observational data. However, there remains a general gap in understanding among clinicians on how to critically review observational studies that have incorporated these analytic techniques.BACKGROUNDPropensity score methods are increasingly being used in the infectious diseases literature to estimate causal effects from observational data. However, there remains a general gap in understanding among clinicians on how to critically review observational studies that have incorporated these analytic techniques.Using a cohort of 4967 unique patients with Enterobacterales bloodstream infections, we sought to answer the question "Does transitioning patients with gram-negative bloodstream infections from intravenous to oral therapy impact 30-day mortality?" We conducted separate analyses using traditional multivariable logistic regression, propensity score matching, propensity score inverse probability of treatment weighting, and propensity score stratification using this clinical question as a case study to guide the reader through (1) the pros and cons of each approach, (2) the general steps of each approach, and (3) the interpretation of the results of each approach.METHODSUsing a cohort of 4967 unique patients with Enterobacterales bloodstream infections, we sought to answer the question "Does transitioning patients with gram-negative bloodstream infections from intravenous to oral therapy impact 30-day mortality?" We conducted separate analyses using traditional multivariable logistic regression, propensity score matching, propensity score inverse probability of treatment weighting, and propensity score stratification using this clinical question as a case study to guide the reader through (1) the pros and cons of each approach, (2) the general steps of each approach, and (3) the interpretation of the results of each approach.2161 patients met eligibility criteria with 876 (41%) transitioned to oral therapy while 1285 (59%) remained on intravenous therapy. After repeating the analysis using the 4 aforementioned methods, we found that the odds ratios were broadly similar, ranging from 0.84-0.95. However, there were some relevant differences between the interpretations of the findings of each approach.RESULTS2161 patients met eligibility criteria with 876 (41%) transitioned to oral therapy while 1285 (59%) remained on intravenous therapy. After repeating the analysis using the 4 aforementioned methods, we found that the odds ratios were broadly similar, ranging from 0.84-0.95. However, there were some relevant differences between the interpretations of the findings of each approach.Propensity score analysis is overall a more favorable approach than traditional regression analysis when estimating causal effects using observational data. However, as with all analytic methods using observational data, residual confounding will remain; only variables that are measured can be accounted for. Moreover, propensity score analysis does not compensate for poor study design or questionable data accuracy.CONCLUSIONSPropensity score analysis is overall a more favorable approach than traditional regression analysis when estimating causal effects using observational data. However, as with all analytic methods using observational data, residual confounding will remain; only variables that are measured can be accounted for. Moreover, propensity score analysis does not compensate for poor study design or questionable data accuracy.
Propensity score methods are increasingly being used in the infectious diseases literature to estimate causal effects from observational data. However, there remains a general gap in understanding among clinicians on how to critically review observational studies that have incorporated these analytic techniques. Using a cohort of 4967 unique patients with Enterobacterales bloodstream infections, we sought to answer the question "Does transitioning patients with gram-negative bloodstream infections from intravenous to oral therapy impact 30-day mortality?" We conducted separate analyses using traditional multivariable logistic regression, propensity score matching, propensity score inverse probability of treatment weighting, and propensity score stratification using this clinical question as a case study to guide the reader through (1) the pros and cons of each approach, (2) the general steps of each approach, and (3) the interpretation of the results of each approach. 2161 patients met eligibility criteria with 876 (41%) transitioned to oral therapy while 1285 (59%) remained on intravenous therapy. After repeating the analysis using the 4 aforementioned methods, we found that the odds ratios were broadly similar, ranging from 0.84-0.95. However, there were some relevant differences between the interpretations of the findings of each approach. Propensity score analysis is overall a more favorable approach than traditional regression analysis when estimating causal effects using observational data. However, as with all analytic methods using observational data, residual confounding will remain; only variables that are measured can be accounted for. Moreover, propensity score analysis does not compensate for poor study design or questionable data accuracy.
This article assists clinicians with understanding the relative pros and cons, the general steps involved, and the appropriate interpretation of the results of traditional regression analysis, propensity score matching, propensity score weighting, and propensity score stratification.
Abstract Background Propensity score methods are increasingly being used in the infectious diseases literature to estimate causal effects from observational data. However, there remains a general gap in understanding among clinicians on how to critically review observational studies that have incorporated these analytic techniques. Methods Using a cohort of 4967 unique patients with Enterobacterales bloodstream infections, we sought to answer the question “Does transitioning patients with gram-negative bloodstream infections from intravenous to oral therapy impact 30-day mortality?” We conducted separate analyses using traditional multivariable logistic regression, propensity score matching, propensity score inverse probability of treatment weighting, and propensity score stratification using this clinical question as a case study to guide the reader through (1) the pros and cons of each approach, (2) the general steps of each approach, and (3) the interpretation of the results of each approach. Results 2161 patients met eligibility criteria with 876 (41%) transitioned to oral therapy while 1285 (59%) remained on intravenous therapy. After repeating the analysis using the 4 aforementioned methods, we found that the odds ratios were broadly similar, ranging from 0.84–0.95. However, there were some relevant differences between the interpretations of the findings of each approach. Conclusions Propensity score analysis is overall a more favorable approach than traditional regression analysis when estimating causal effects using observational data. However, as with all analytic methods using observational data, residual confounding will remain; only variables that are measured can be accounted for. Moreover, propensity score analysis does not compensate for poor study design or questionable data accuracy. This article assists clinicians with understanding the relative pros and cons, the general steps involved, and the appropriate interpretation of the results of traditional regression analysis, propensity score matching, propensity score weighting, and propensity score stratification.
Author Cosgrove, Sara E
Stuart, Elizabeth A
Amoah, Joe
Han, Jennifer H
Lautenbach, Ebbing
Harris, Anthony D
Tamma, Pranita D
AuthorAffiliation 2 The Johns Hopkins Bloomberg School of Public Health, Department of Mental Health , Baltimore, Maryland, USA
3 The Johns Hopkins University School of Medicine, Department of Medicine , Baltimore, Maryland, USA
4 The University of Maryland School of Medicine, Department of Epidemiology and Public Health , Baltimore, Maryland, USA
1 The Johns Hopkins University School of Medicine, Department of Pediatrics , Baltimore, Maryland, USA
5 GlaxoSmithKline , Rockville, Maryland, USA
6 The University of Pennsylvania School of Medicine, Department of Medicine , Philadelphia, Pennsylvania, USA
AuthorAffiliation_xml – name: 6 The University of Pennsylvania School of Medicine, Department of Medicine , Philadelphia, Pennsylvania, USA
– name: 2 The Johns Hopkins Bloomberg School of Public Health, Department of Mental Health , Baltimore, Maryland, USA
– name: 3 The Johns Hopkins University School of Medicine, Department of Medicine , Baltimore, Maryland, USA
– name: 4 The University of Maryland School of Medicine, Department of Epidemiology and Public Health , Baltimore, Maryland, USA
– name: 1 The Johns Hopkins University School of Medicine, Department of Pediatrics , Baltimore, Maryland, USA
– name: 5 GlaxoSmithKline , Rockville, Maryland, USA
Author_xml – sequence: 1
  givenname: Joe
  surname: Amoah
  fullname: Amoah, Joe
  organization: The Johns Hopkins University School of Medicine, Department of Pediatrics, Baltimore, Maryland, USA
– sequence: 2
  givenname: Elizabeth A
  surname: Stuart
  fullname: Stuart, Elizabeth A
  organization: The Johns Hopkins Bloomberg School of Public Health, Department of Mental Health, Baltimore, Maryland, USA
– sequence: 3
  givenname: Sara E
  surname: Cosgrove
  fullname: Cosgrove, Sara E
  organization: The Johns Hopkins University School of Medicine, Department of Medicine, Baltimore, Maryland, USA
– sequence: 4
  givenname: Anthony D
  surname: Harris
  fullname: Harris, Anthony D
  organization: The University of Maryland School of Medicine, Department of Epidemiology and Public Health, Baltimore, Maryland, USA
– sequence: 5
  givenname: Jennifer H
  surname: Han
  fullname: Han, Jennifer H
  organization: GlaxoSmithKline, Rockville, Maryland, USA
– sequence: 6
  givenname: Ebbing
  surname: Lautenbach
  fullname: Lautenbach, Ebbing
  organization: The University of Pennsylvania School of Medicine, Department of Medicine, Philadelphia, Pennsylvania, USA
– sequence: 7
  givenname: Pranita D
  surname: Tamma
  fullname: Tamma, Pranita D
  email: ptamma1@jhmi.edu
  organization: The Johns Hopkins University School of Medicine, Department of Pediatrics, Baltimore, Maryland, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32069360$$D View this record in MEDLINE/PubMed
BookMark eNp9kk2P0zAQhi20iN0tnLgjnxASCthx4yQcViplWVZaWMQWrtbEmbRGSRxsp1J_Hv8Mh5YKkODgj9E87zsjzZyTk972SMhjzl5wVoqX2tTxAHBZ3iNnPBN5IrOSn8Q_y4pkXojilJx7_5UxzguWPSCnImWyFJKdke9L2w3gTL-mH50dsPcm7Oidtg7pewwbW3v6BZ0fPV05qE0wtoeWfsK1Q-9jQBcx3nnjaWMdDRukl1toR5hAaht6W3l0Wzjo3kCAV3RBl-CR3oWx3h3x2MGkXjmE0GEfJvGVgy75gOuY3iJ93drYTohAR6_7BvVk6h-S-w20Hh8d3hn5_PZytXyX3NxeXS8XN4me8zQkheRacCZlLnRVVSItpUZW17zMJWQ5iipeTZ0Xcy0Aq0LwdK7noCtWxESmxYxc7H2Hseqw1rFFB60anOnA7ZQFo_7M9Gaj1nar8pwLmWfR4NnBwNlvI_qgOuM1ti30aEevUpHFUiWLM52RJ7_XOhb5NbcIPN8D2lnvHTZHhDM1bYWKW6EOWxFp_hetTfg5ktioaf-hebrX2HH4r_kPUt3PDw
CitedBy_id crossref_primary_10_1089_sur_2020_275
crossref_primary_10_1111_jar_13103
crossref_primary_10_1245_s10434_024_15294_w
crossref_primary_10_1007_s12630_023_02567_3
crossref_primary_10_1001_jamasurg_2024_0111
crossref_primary_10_1093_jbmr_zjae059
crossref_primary_10_1001_jamainternmed_2022_5887
crossref_primary_10_2147_IDR_S387898
crossref_primary_10_1016_j_euf_2024_11_003
crossref_primary_10_1097_j_pain_0000000000003336
crossref_primary_10_1016_j_hrtlng_2024_11_008
crossref_primary_10_3390_jcm13092546
crossref_primary_10_1016_j_jhep_2025_01_038
crossref_primary_10_1001_jamanetworkopen_2024_18234
crossref_primary_10_1111_1475_6773_14222
crossref_primary_10_3961_jpmph_23_250
crossref_primary_10_1002_cpt_3314
crossref_primary_10_1007_s11357_024_01150_y
crossref_primary_10_1128_aac_00287_22
crossref_primary_10_1038_s41467_024_55273_z
crossref_primary_10_3389_fcvm_2023_1167212
crossref_primary_10_1007_s00701_024_06254_0
crossref_primary_10_1038_s41598_024_71134_7
crossref_primary_10_3390_antibiotics9110807
crossref_primary_10_52547_qums_14_12_22
crossref_primary_10_1177_10547738231194098
crossref_primary_10_1080_08959420_2024_2422659
crossref_primary_10_1186_s42836_024_00296_6
crossref_primary_10_1038_s41598_022_21052_3
crossref_primary_10_4054_DemRes_2024_50_37
crossref_primary_10_1001_jamanetworkopen_2023_16111
crossref_primary_10_1080_21645515_2023_2216625
crossref_primary_10_1016_j_jmii_2024_05_010
Cites_doi 10.1016/j.jclinepi.2011.01.005
10.1136/bmj.l5657
10.1093/aje/kwq439
10.1093/ofid/ofy139
10.1177/0272989X09341755
10.1002/sim.4780030207
10.1177/0193841X17749824
10.1001/jamainternmed.2018.6226
10.1002/sim.3697
10.1001/jama.2016.16435
10.1093/aje/kwj149
10.3390/ijerph111111879
10.1002/(SICI)1097-0258(19981015)17:19<2265::AID-SIM918>3.0.CO;2-B
10.1001/jama.2018.21554
10.1093/aje/kwq198
10.1371/journal.pone.0018174
10.1002/sim.2580
10.1093/eurheartj/ehr031
10.1097/EDE.0000000000000595
10.2307/2528036
10.1111/j.1742-7843.2006.pto_293.x
10.1080/00273171.2011.568786
10.1214/12-AOS1058
10.1055/s-0031-1298595
10.1016/j.jmpt.2015.10.005
10.1093/eurheartj/ehs114
10.1097/00001648-200009000-00011
10.1002/pds.4325
10.3389/fpsyg.2017.01413
10.1093/aje/kwj047
10.1093/biomet/70.1.41
10.7326/M16-2607
10.1214/09-STS313
10.1002/pds.2098
10.1016/j.jclinepi.2013.01.013
10.1093/cid/cix767
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. 2020
The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. 2020
– notice: The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/cid/ciaa169
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1537-6591
EndPage e505
ExternalDocumentID PMC7713675
32069360
10_1093_cid_ciaa169
10.1093/cid/ciaa169
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: UM1 AI104681
– fundername: NIAID NIH HHS
  grantid: K24 AI080942
– fundername: NIAID NIH HHS
  grantid: K24 AI079040
– fundername: NIAID NIH HHS
  grantid: K23 AI127935
– fundername: ; ;
  grantid: UM1AI104681; K23-AI127935; K24-AI079040; K24-AI080942
– fundername: ; ;
GroupedDBID ---
..I
.2P
.GJ
.I3
.ZR
08P
0R~
1KJ
1TH
29B
2AX
2WC
36B
3O-
4.4
48X
53G
5GY
5RE
5VS
5WD
6.Y
6J9
70D
AABZA
AACGO
AACZT
AAJKP
AAJQQ
AAMVS
AANCE
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAWDT
AAYOK
ABBHK
ABEUO
ABIXL
ABJNI
ABKDP
ABLJU
ABNHQ
ABNKS
ABOCM
ABPLY
ABPTD
ABQLI
ABQNK
ABSAR
ABSMQ
ABTLG
ABWST
ABXSQ
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACMRT
ACPQN
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ACZBC
ADACV
ADBBV
ADEYI
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AEXZC
AFFNX
AFFZL
AFIYH
AFOFC
AFRAH
AFSHK
AFXAL
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APJGH
APWMN
AQDSO
AQKUS
AQVQM
ASPBG
ATGXG
AVNTJ
AVWKF
AXUDD
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
BZKNY
C1A
C45
CDBKE
CS3
CZ4
DAKXR
DCCCD
DIK
DILTD
DOOOF
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
EMOBN
ENERS
ESX
F5P
F9B
FECEO
FEDTE
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HQ3
HTVGU
HVGLF
HW0
HZ~
IOX
IPSME
J21
J5H
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KAQDR
KBUDW
KOP
KSI
KSN
L7B
M49
MBLQV
MHKGH
MJL
ML0
N4W
N9A
NGC
NOMLY
NOYVH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OCZFY
ODMLO
ODZKP
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
P6G
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
RD5
ROX
ROZ
RUSNO
RW1
RXO
SA0
SJN
TCURE
TEORI
TJX
TMA
TR2
VH1
W8F
X7H
Y6R
YAYTL
YKOAZ
YXANX
ZGI
~91
~S-
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ADNBA
AEMQT
AGORE
AHGBF
AHMMS
AJBYB
AJNCP
ALXQX
CITATION
JXSIZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c412t-861c3106673cbbb3296ce0dd1976a57e3b57efd784c3aeb83124c4acb0857e5c3
ISSN 1058-4838
1537-6591
IngestDate Thu Aug 21 14:14:17 EDT 2025
Fri Jul 11 09:08:17 EDT 2025
Mon Jul 21 05:59:42 EDT 2025
Tue Jul 01 01:18:20 EDT 2025
Thu Apr 24 22:59:46 EDT 2025
Wed Aug 28 03:19:48 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords propensity score matching
propensity score weighting
causal inference
observational data
logistic regression
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-861c3106673cbbb3296ce0dd1976a57e3b57efd784c3aeb83124c4acb0857e5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7713675
PMID 32069360
PQID 2358579009
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7713675
proquest_miscellaneous_2358579009
pubmed_primary_32069360
crossref_primary_10_1093_cid_ciaa169
crossref_citationtrail_10_1093_cid_ciaa169
oup_primary_10_1093_cid_ciaa169
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-03
PublicationDateYYYYMMDD 2020-12-03
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-03
  day: 03
PublicationDecade 2020
PublicationPlace US
PublicationPlace_xml – name: US
– name: United States
PublicationTitle Clinical infectious diseases
PublicationTitleAlternate Clin Infect Dis
PublicationYear 2020
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Patrick (2024111411413040700_CIT0013) 2011; 20
D’Agostino (2024111411413040700_CIT0002) 1998; 17
Weeks (2024111411413040700_CIT0025) 2015; 38
Rosenbaum (2024111411413040700_CIT0012) 1983; 70
Stürmer (2024111411413040700_CIT0022) 2010; 172
Dong (2024111411413040700_CIT0030) 2018; 42
VanderWeele (2024111411413040700_CIT0010) 2013; 41
Stuart (2024111411413040700_CIT0016) 2013; 66
Dahabreh (2024111411413040700_CIT0029) 2012; 33
Austin (2024111411413040700_CIT0015) 2009; 28
Reeve (2024111411413040700_CIT0026) 2008; 29
Haneuse (2024111411413040700_CIT0036) 2019; 321
Desai (2024111411413040700_CIT0006) 2019; 367
Lee (2024111411413040700_CIT0021) 2011; 6
Kurth (2024111411413040700_CIT0027) 2006; 163
Austin (2024111411413040700_CIT0033) 2007; 26
Desai (2024111411413040700_CIT0024) 2017; 28
VanderWeele (2024111411413040700_CIT0037) 2017; 167
Austin (2024111411413040700_CIT0034) 2009; 29
Tamma (2024111411413040700_CIT0008) 2018; 5
Nguyen (2024111411413040700_CIT0018) 2017; 26
Skelly (2024111411413040700_CIT0009) 2012; 3
Brookhart (2024111411413040700_CIT0014) 2006; 163
Cochran (2024111411413040700_CIT0023) 1968; 24
Funk (2024111411413040700_CIT0017) 2011; 173
Kuss (2024111411413040700_CIT0028) 2011; 64
Tamma (2024111411413040700_CIT0003) 2019; 179
Adelson (2024111411413040700_CIT0031) 2017; 8
Stuart (2024111411413040700_CIT0005) 2010; 25
Austin (2024111411413040700_CIT0004) 2011; 46
Harrell (2024111411413040700_CIT0011) 1984; 3
Glynn (2024111411413040700_CIT0032) 2006; 98
Kyriacou (2024111411413040700_CIT0001) 2016; 316
Robins (2024111411413040700_CIT0019) 2000; 11
Han (2024111411413040700_CIT0035) 2014; 11
Chotiprasitsakul (2024111411413040700_CIT0007) 2018; 66
Heinze (2024111411413040700_CIT0020) 2011; 32
References_xml – volume: 64
  start-page: 1076
  year: 2011
  ident: 2024111411413040700_CIT0028
  article-title: Treatments effects from randomized trials and propensity score analyses were similar in similar populations in an example from cardiac surgery
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2011.01.005
– volume: 367
  start-page: l5657
  year: 2019
  ident: 2024111411413040700_CIT0006
  article-title: Alternative approaches for confounding adjustment in observational studies using weighting based on the propensity score: a primer for practitioners
  publication-title: BMJ
  doi: 10.1136/bmj.l5657
– volume: 173
  start-page: 761
  year: 2011
  ident: 2024111411413040700_CIT0017
  article-title: Doubly robust estimation of causal effects
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwq439
– volume: 5
  start-page: ofy139
  year: 2018
  ident: 2024111411413040700_CIT0008
  article-title: Can the ceftriaxone breakpoints be increased without compromising patient outcomes?
  publication-title: Open Forum Infect Dis
  doi: 10.1093/ofid/ofy139
– volume: 29
  start-page: 661
  year: 2009
  ident: 2024111411413040700_CIT0034
  article-title: The relative ability of different propensity score methods to balance measured covariates between treated and untreated subjects in observational studies
  publication-title: Med Decis Making
  doi: 10.1177/0272989X09341755
– volume: 3
  start-page: 143
  year: 1984
  ident: 2024111411413040700_CIT0011
  article-title: Regression modelling strategies for improved prognostic prediction
  publication-title: Stat Med
  doi: 10.1002/sim.4780030207
– volume: 42
  start-page: 34
  year: 2018
  ident: 2024111411413040700_CIT0030
  article-title: Can propensity score analysis approximate randomized experiments using pretest and demographic information in pre-K intervention research?
  publication-title: Eval Rev
  doi: 10.1177/0193841X17749824
– volume: 179
  start-page: 316
  year: 2019
  ident: 2024111411413040700_CIT0003
  article-title: Association of 30-day mortality with oral step-down vs continued intravenous therapy in patients hospitalized with Enterobacteriaceae bacteremia
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2018.6226
– volume: 28
  start-page: 3083
  year: 2009
  ident: 2024111411413040700_CIT0015
  article-title: Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples
  publication-title: Stat Med
  doi: 10.1002/sim.3697
– volume: 316
  start-page: 1818
  year: 2016
  ident: 2024111411413040700_CIT0001
  article-title: Confounding by indication in clinical research
  publication-title: JAMA
  doi: 10.1001/jama.2016.16435
– volume: 163
  start-page: 1149
  year: 2006
  ident: 2024111411413040700_CIT0014
  article-title: Variable selection for propensity score models
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwj149
– volume: 29
  start-page: 69
  year: 2008
  ident: 2024111411413040700_CIT0026
  article-title: Reducing bias in cancer research: application of propensity score matching
  publication-title: Health Care Financ Rev
– volume: 11
  start-page: 11879
  year: 2014
  ident: 2024111411413040700_CIT0035
  article-title: Estimating the heterogeneous relationship between peer drinking and youth alcohol consumption in Chile using propensity score stratification
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph111111879
– volume: 17
  start-page: 2265
  year: 1998
  ident: 2024111411413040700_CIT0002
  article-title: Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19981015)17:19<2265::AID-SIM918>3.0.CO;2-B
– volume: 321
  start-page: 602
  year: 2019
  ident: 2024111411413040700_CIT0036
  article-title: Using the E-value to assess the potential effect of unmeasured confounding in observational studies
  publication-title: JAMA
  doi: 10.1001/jama.2018.21554
– volume: 172
  start-page: 843
  year: 2010
  ident: 2024111411413040700_CIT0022
  article-title: Treatment effects in the presence of unmeasured confounding: dealing with observations in the tails of the propensity score distribution—a simulation study
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwq198
– volume: 6
  start-page: e18174
  year: 2011
  ident: 2024111411413040700_CIT0021
  article-title: Weight trimming and propensity score weighting
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018174
– volume: 26
  start-page: 734
  year: 2007
  ident: 2024111411413040700_CIT0033
  article-title: A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study
  publication-title: Stat Med
  doi: 10.1002/sim.2580
– volume: 32
  start-page: 1704
  year: 2011
  ident: 2024111411413040700_CIT0020
  article-title: An overview of the objectives of and the approaches to propensity score analyses
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehr031
– volume: 28
  start-page: 249
  year: 2017
  ident: 2024111411413040700_CIT0024
  article-title: A propensity-score-based fine stratification approach for confounding adjustment when exposure is infrequent
  publication-title: Epidemiology
  doi: 10.1097/EDE.0000000000000595
– volume: 24
  start-page: 295
  year: 1968
  ident: 2024111411413040700_CIT0023
  article-title: The effectiveness of adjustment by subclassification in removing bias in observational studies
  publication-title: Biometrics
  doi: 10.2307/2528036
– volume: 98
  start-page: 253
  year: 2006
  ident: 2024111411413040700_CIT0032
  article-title: Indications for propensity scores and review of their use in pharmacoepidemiology
  publication-title: Basic Clin Pharmacol Toxicol
  doi: 10.1111/j.1742-7843.2006.pto_293.x
– volume: 46
  start-page: 399
  year: 2011
  ident: 2024111411413040700_CIT0004
  article-title: An introduction to propensity score methods for reducing the effects of confounding in observational studies
  publication-title: Multivariate Behav Res
  doi: 10.1080/00273171.2011.568786
– volume: 41
  start-page: 196
  year: 2013
  ident: 2024111411413040700_CIT0010
  article-title: On the definition of a confounder
  publication-title: Ann Stat
  doi: 10.1214/12-AOS1058
– volume: 3
  start-page: 9
  year: 2012
  ident: 2024111411413040700_CIT0009
  article-title: Assessing bias: the importance of considering confounding
  publication-title: Evid Based Spine Care J
  doi: 10.1055/s-0031-1298595
– volume: 38
  start-page: 620
  year: 2015
  ident: 2024111411413040700_CIT0025
  article-title: Comparing propensity score methods for creating comparable cohorts of chiropractic users and nonusers in older, multiply comorbid medicare patients with chronic low back pain
  publication-title: J Manipulative Physiol Ther
  doi: 10.1016/j.jmpt.2015.10.005
– volume: 33
  start-page: 1893
  year: 2012
  ident: 2024111411413040700_CIT0029
  article-title: Do observational studies using propensity score methods agree with randomized trials? A systematic comparison of studies on acute coronary syndromes
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehs114
– volume: 11
  start-page: 550
  year: 2000
  ident: 2024111411413040700_CIT0019
  article-title: Marginal structural models and causal inference in epidemiology
  publication-title: Epidemiology
  doi: 10.1097/00001648-200009000-00011
– volume: 26
  start-page: 1513
  year: 2017
  ident: 2024111411413040700_CIT0018
  article-title: Comparison of the ability of double-robust estimators to correct bias in propensity score matching analysis: a Monte Carlo simulation study
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.4325
– volume: 8
  start-page: 1413
  year: 2017
  ident: 2024111411413040700_CIT0031
  article-title: Developing and applying the propensity score to make causal inferences: variable selection and stratification
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2017.01413
– volume: 163
  start-page: 262
  year: 2006
  ident: 2024111411413040700_CIT0027
  article-title: Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwj047
– volume: 70
  start-page: 41
  year: 1983
  ident: 2024111411413040700_CIT0012
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
  doi: 10.1093/biomet/70.1.41
– volume: 167
  start-page: 268
  year: 2017
  ident: 2024111411413040700_CIT0037
  article-title: Sensitivity analysis in observational research: introducing the E-value
  publication-title: Ann Intern Med
  doi: 10.7326/M16-2607
– volume: 25
  start-page: 1
  year: 2010
  ident: 2024111411413040700_CIT0005
  article-title: Matching methods for causal inference: a review and a look forward
  publication-title: Stat Sci
  doi: 10.1214/09-STS313
– volume: 20
  start-page: 551
  year: 2011
  ident: 2024111411413040700_CIT0013
  article-title: The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.2098
– volume: 66
  start-page: S84
  year: 2013
  ident: 2024111411413040700_CIT0016
  article-title: Prognostic score-based balance measures can be a useful diagnostic for propensity score methods in comparative effectiveness research
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2013.01.013
– volume: 66
  start-page: 172
  year: 2018
  ident: 2024111411413040700_CIT0007
  article-title: Comparing the outcomes of adults with enterobacteriaceae bacteremia receiving short-course versus prolonged-course antibiotic therapy in a multicenter, propensity score-matched cohort
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/cix767
SSID ssj0011805
Score 2.5595176
Snippet Abstract Background Propensity score methods are increasingly being used in the infectious diseases literature to estimate causal effects from observational...
Propensity score methods are increasingly being used in the infectious diseases literature to estimate causal effects from observational data. However, there...
This article assists clinicians with understanding the relative pros and cons, the general steps involved, and the appropriate interpretation of the results of...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e497
SubjectTerms Cohort Studies
Humans
Logistic Models
Online Only
Propensity Score
Regression Analysis
Sepsis
Title Comparing Propensity Score Methods Versus Traditional Regression Analysis for the Evaluation of Observational Data: A Case Study Evaluating the Treatment of Gram-Negative Bloodstream Infections
URI https://www.ncbi.nlm.nih.gov/pubmed/32069360
https://www.proquest.com/docview/2358579009
https://pubmed.ncbi.nlm.nih.gov/PMC7713675
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bbtNAEIZXoUhVbxBnwnGRekVlGnu9PnAXokIApSBopd5Fu5t1W4k4VZogwdvxCjwRM3uyXQoCbqwo3rUtzec9jP-ZIWS74pyLcsAjJYSIUqZYVGaViGBy0ICTjBXDaOTJfjY-TN8e8aNe70dLtbReyefq26VxJf9jVfgP7IpRsv9g2XBR-AN-g33hCBaG41_ZeGSLCMJm_wP61Gujr_iEiSl3JqYy9PkO-sPW55jDfHbq3H4f9bEVv9ZNShIvNtwLyb9xFfleBp8tjo5iJVwgO0x9RoH4NXRwQVcHQbcO3V8vxTza18c2t_hLlMhjaIqYw6hkJWDOVegzJfgoTa8Qgwd3H5DCyn84X4gT6_YPSMKTCBt5FERqjYt2tMDIlS_au7-b0IuxWC5dMWabQcGpn50PJLF6Ejsuaj9u51HGbeEvP7Db2i4O4LI1SuvUaoJ_mT5sai1lcIFXQ8S2jEwLpbO5OcmSQVYyWwnhQr5uf-oKuZrA1sVs89-8C1-24mLAXZwo3G0X7rXr7rRFNn3fziKpE3jZ2v9clPG21kUH18k1t6GhQ0vnDdLT9U2yOXGSjVvke4CUNpBSAyl1kFILKW1BShtIqYeUAqQUIKMNpHRR0Q6kFCF9QYcUEaUGUdoganoHRLFzB1HaQpQ2iN4mh6_2DkbjyNUNiVQaJ6uoyGCEiU1BWyWlZEmZKT2YzWJYegueaybhUM3yIlVMaFkwWOOqVCiJ1R40V-wO2agXtb5HaFUMlJBVxausSDUH48Qy0VkpYJWbpsWsT555Q02VS6qPtV0-T624g02xMrYzcJ9sh8ZnNpfM5c2egMX_3OKpp2EKswF-4hO1hpdyioHvPC9h49Qndy0d4UIerj7JO9yEBphpvnumPj0xGefzHDM78vu_veYDstW8lw_Jxmq51o9gtb6Sjw3-PwFRSvkB
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+Propensity+Score+Methods+Versus+Traditional+Regression+Analysis+for+the+Evaluation+of+Observational+Data%3A+A+Case+Study+Evaluating+the+Treatment+of+Gram-Negative+Bloodstream+Infections&rft.jtitle=Clinical+infectious+diseases&rft.au=Amoah%2C+Joe&rft.au=Stuart%2C+Elizabeth+A&rft.au=Cosgrove%2C+Sara+E&rft.au=Harris%2C+Anthony+D&rft.date=2020-12-03&rft.eissn=1537-6591&rft.volume=71&rft.issue=9&rft.spage=e497&rft_id=info:doi/10.1093%2Fcid%2Fciaa169&rft_id=info%3Apmid%2F32069360&rft.externalDocID=32069360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-4838&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-4838&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-4838&client=summon