A simple model to detect atrial fibrillation via visual imaging
Automatic detection of atrial fibrillation (AF) is a challenging issue. In this study we proposed and validated a model to identify AF by using facial video recordings. We analyzed photoplethysmographic imaging (PPGi) signals, extracted from video of a subject’s face. Sixty-eight patients were inclu...
Saved in:
Published in | Biomedizinische Technik Vol. 65; no. 6; pp. 721 - 728 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
De Gruyter
01.12.2020
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
ISSN | 0013-5585 1862-278X 1862-278X |
DOI | 10.1515/bmt-2019-0153 |
Cover
Loading…
Abstract | Automatic detection of atrial fibrillation (AF) is a challenging issue. In this study we proposed and validated a model to identify AF by using facial video recordings. We analyzed photoplethysmographic imaging (PPGi) signals, extracted from video of a subject’s face. Sixty-eight patients were included: 30 in sinus rhythm (SR), 25 in AF and 13 presenting with atrial flutter or frequent ectopic beats (ARR). Twenty-six indexes were computed. The dataset was divided in three subsets: the training, validation, and test set, containing, respectively, 58, 29, and 13% of the data. Mean of inter-systolic interval series (M), Local Maxima Similarity (LMS), and pulse harmonic strength (PHS) indexes were significantly different among all groups. Variability and irregularity parameters had the lowest values in SR, the highest in AF, with intermediate values in ARR. The PHS was higher in SR than in ARR, and higher in ARR than in AF. The LMS index was the highest in SR, intermediate in ARR and the lowest in AF. Similarity indexes were higher in SR than in AF and ARR. A model with three features, namely M, Similarity1 and LMS was chosen. With this model, the accuracy for the validation set was 0.947±0.007 for SR, 0.954±0.004 for AF and 0.919±0.006 for ARR; for the test set (never-seen data), accuracy was 0.876±0.021 for SR, 0.870±0.030 for AF and 0.863±0.029 for ARR. A contactless video-based monitoring can be used to detect AF, differentiating it from SR and from frequent ectopies. |
---|---|
AbstractList | Automatic detection of atrial fibrillation (AF) is a challenging issue. In this study we proposed and validated a model to identify AF by using facial video recordings. We analyzed photoplethysmographic imaging (PPGi) signals, extracted from video of a subject's face. Sixty-eight patients were included: 30 in sinus rhythm (SR), 25 in AF and 13 presenting with atrial flutter or frequent ectopic beats (ARR). Twenty-six indexes were computed. The dataset was divided in three subsets: the training, validation, and test set, containing, respectively, 58, 29, and 13% of the data. Mean of inter-systolic interval series (M), Local Maxima Similarity (LMS), and pulse harmonic strength (PHS) indexes were significantly different among all groups. Variability and irregularity parameters had the lowest values in SR, the highest in AF, with intermediate values in ARR. The PHS was higher in SR than in ARR, and higher in ARR than in AF. The LMS index was the highest in SR, intermediate in ARR and the lowest in AF. Similarity indexes were higher in SR than in AF and ARR. A model with three features, namely M, Similarity1 and LMS was chosen. With this model, the accuracy for the validation set was 0.947±0.007 for SR, 0.954±0.004 for AF and 0.919±0.006 for ARR; for the test set (never-seen data), accuracy was 0.876±0.021 for SR, 0.870±0.030 for AF and 0.863±0.029 for ARR. A contactless video-based monitoring can be used to detect AF, differentiating it from SR and from frequent ectopies. Automatic detection of atrial fibrillation (AF) is a challenging issue. In this study we proposed and validated a model to identify AF by using facial video recordings. We analyzed photoplethysmographic imaging (PPGi) signals, extracted from video of a subject's face. Sixty-eight patients were included: 30 in sinus rhythm (SR), 25 in AF and 13 presenting with atrial flutter or frequent ectopic beats (ARR). Twenty-six indexes were computed. The dataset was divided in three subsets: the training, validation, and test set, containing, respectively, 58, 29, and 13% of the data. Mean of inter-systolic interval series (M), Local Maxima Similarity (LMS), and pulse harmonic strength (PHS) indexes were significantly different among all groups. Variability and irregularity parameters had the lowest values in SR, the highest in AF, with intermediate values in ARR. The PHS was higher in SR than in ARR, and higher in ARR than in AF. The LMS index was the highest in SR, intermediate in ARR and the lowest in AF. Similarity indexes were higher in SR than in AF and ARR. A model with three features, namely M, Similarity1 and LMS was chosen. With this model, the accuracy for the validation set was 0.947±0.007 for SR, 0.954±0.004 for AF and 0.919±0.006 for ARR; for the test set (never-seen data), accuracy was 0.876±0.021 for SR, 0.870±0.030 for AF and 0.863±0.029 for ARR. A contactless video-based monitoring can be used to detect AF, differentiating it from SR and from frequent ectopies.Automatic detection of atrial fibrillation (AF) is a challenging issue. In this study we proposed and validated a model to identify AF by using facial video recordings. We analyzed photoplethysmographic imaging (PPGi) signals, extracted from video of a subject's face. Sixty-eight patients were included: 30 in sinus rhythm (SR), 25 in AF and 13 presenting with atrial flutter or frequent ectopic beats (ARR). Twenty-six indexes were computed. The dataset was divided in three subsets: the training, validation, and test set, containing, respectively, 58, 29, and 13% of the data. Mean of inter-systolic interval series (M), Local Maxima Similarity (LMS), and pulse harmonic strength (PHS) indexes were significantly different among all groups. Variability and irregularity parameters had the lowest values in SR, the highest in AF, with intermediate values in ARR. The PHS was higher in SR than in ARR, and higher in ARR than in AF. The LMS index was the highest in SR, intermediate in ARR and the lowest in AF. Similarity indexes were higher in SR than in AF and ARR. A model with three features, namely M, Similarity1 and LMS was chosen. With this model, the accuracy for the validation set was 0.947±0.007 for SR, 0.954±0.004 for AF and 0.919±0.006 for ARR; for the test set (never-seen data), accuracy was 0.876±0.021 for SR, 0.870±0.030 for AF and 0.863±0.029 for ARR. A contactless video-based monitoring can be used to detect AF, differentiating it from SR and from frequent ectopies. |
Author | Iozzia, Luca Corino, Valentina D. A. Lombardi, Federico Scarpini, Giorgio Mainardi, Luca T. |
Author_xml | – sequence: 1 givenname: Valentina D. A. surname: Corino fullname: Corino, Valentina D. A. email: valentina.corino@polimi.it organization: Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy – sequence: 2 givenname: Luca surname: Iozzia fullname: Iozzia, Luca organization: Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy – sequence: 3 givenname: Giorgio surname: Scarpini fullname: Scarpini, Giorgio organization: Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, U.O.C. di Malattie Cardiovascolari, Università degli Studi di Milano, Dipartimento di Scienze Cliniche e di Comunità, Milan, Italy – sequence: 4 givenname: Luca T. surname: Mainardi fullname: Mainardi, Luca T. organization: Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy – sequence: 5 givenname: Federico surname: Lombardi fullname: Lombardi, Federico organization: Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, U.O.C. di Malattie Cardiovascolari, Università degli Studi di Milano, Dipartimento di Scienze Cliniche e di Comunità, Milan, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32663168$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctLAzEQxoNUtK0evcqCFy-reW8WD1KKLyh4UfAWsrvTkrKPmmSV_vemtkUQPQwZwu8bvplvhAZt1wJCZwRfEUHEddGElGKSp5gIdoCGREma0ky9DdAQY8JSIZQ4RiPvlxhzIXJ8hI4ZlZIRqYbodpJ426xqSJqugjoJXVJBgDIkJjhr6mRuC2fr2gTbtcmHNbF8H_9tYxa2XZygw7mpPZzu3jF6vb97mT6ms-eHp-lklpac0JAqwoQUkJl5gXNV5pJlNOegpIyeFCcYCBSS0gwMJhlwWhXKgCwryignmWRjdLmdu3Ldew8-6Mb6EqKxFrrea8opx3muaB7Ri1_osutdG91FSnIVSbmhzndUXzRQ6ZWLG7m13p8mAmwLlK7z3sFclzZ8nyE4Y2tNsN4EoGMAehOA3gQQVekv1X7wf_zNlv80dQBXwcL169j8eP5TJ4XMKGFforKXxA |
CitedBy_id | crossref_primary_10_1109_JBHI_2021_3124967 crossref_primary_10_1109_JBHI_2022_3193117 |
Cites_doi | 10.1007/s10115-006-0040-8 10.1161/CIRCULATIONAHA.108.825380 10.1002/clc.22667 10.1088/1361-6579/aa5dd7 10.1016/j.hrthm.2014.08.035 10.3390/a5040588 10.1088/0967-3334/37/11/1934 10.1613/jair.953 10.1093/europace/euw125 10.1109/10.979357 10.1016/j.hrthm.2014.09.058 10.1016/S0735-1097(98)00297-6 10.1111/jce.12842 10.1109/10.959330 10.1016/j.revmed.2017.08.006 10.1016/0167-8655(94)90127-9 10.1161/JAHA.118.008585 10.1136/heart.89.8.939 10.1117/12.407646 10.1109/TBME.2002.805472 10.22489/CinC.2017.052-220 10.1109/CVPR.2001.990517 |
ContentType | Journal Article |
Copyright | 2020 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2020 Walter de Gruyter GmbH, Berlin/Boston |
DBID | AAYXX CITATION NPM 7QO 7TB 7U5 8FD FR3 L7M P64 7X8 |
DOI | 10.1515/bmt-2019-0153 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Biotechnology Research Abstracts MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1862-278X |
EndPage | 728 |
ExternalDocumentID | 32663168 10_1515_bmt_2019_0153 10_1515_bmt_2019_0153656721 |
Genre | Journal Article |
GroupedDBID | 0R~ 0~D 23N 4.4 5GY AAAEU AAAVF AABBZ AACIX AAGVJ AALGR AAOQK AAOWA AAPJK AAQCX AARRE AASQH AAWFC AAXCG ABDRH ABFKT ABFQV ABJNI ABMIY ABPLS ABRDF ABUVI ABWLS ABXMZ ABYBW ACDEB ACEFL ACGFS ACPMA ACUND ACYCL ACZBO ADDWE ADEQT ADGQD ADGYE ADNPR AECWL AEGVQ AEICA AEJTT AERZL AEXIE AFBAA AFBDD AFCXV AFGDO AFYRI AGBEV AGQYU AHGSO AHOVO AHVWV AHXUK AIERV AIWOI AJHHK AKXKS ALMA_UNASSIGNED_HOLDINGS ASYPN BAKPI BCIFA CGQUA CS3 DSRVY DU5 EBS EMOBN F5P HZ~ IY9 KDIRW O9- P2P QD8 RDG SA. SLJYH UK5 WTRAM AAYXX ALYBR CITATION ABVMU DBYYV NPM 7QO 7TB 7U5 8FD FR3 L7M P64 7X8 |
ID | FETCH-LOGICAL-c412t-813565e7afb098c9637294e8660458410e1eb6227ea017e42db8ae6cd23241763 |
ISSN | 0013-5585 1862-278X |
IngestDate | Thu Sep 04 15:58:50 EDT 2025 Sat Jul 26 02:24:57 EDT 2025 Wed Feb 19 02:04:22 EST 2025 Tue Jul 01 03:36:35 EDT 2025 Thu Apr 24 23:00:05 EDT 2025 Sat Sep 06 17:01:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | atrial fibrillation screening photoplethysmographic signal camera monitoring |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c412t-813565e7afb098c9637294e8660458410e1eb6227ea017e42db8ae6cd23241763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://hdl.handle.net/2434/752158 |
PMID | 32663168 |
PQID | 2464842469 |
PQPubID | 2045214 |
PageCount | 08 |
ParticipantIDs | proquest_miscellaneous_2424099829 proquest_journals_2464842469 pubmed_primary_32663168 crossref_citationtrail_10_1515_bmt_2019_0153 crossref_primary_10_1515_bmt_2019_0153 walterdegruyter_journals_10_1515_bmt_2019_0153656721 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin |
PublicationTitle | Biomedizinische Technik |
PublicationTitleAlternate | Biomed Tech (Berl) |
PublicationYear | 2020 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | (j_bmt-2019-0153_ref_021) 2015; 12 (j_bmt-2019-0153_ref_005) 2016 (j_bmt-2019-0153_ref_017) 2002; 49 (j_bmt-2019-0153_ref_001) 2017; 40 (j_bmt-2019-0153_ref_020) 2007; 12 (j_bmt-2019-0153_ref_007) 2017; 38 (j_bmt-2019-0153_ref_014) 2002; 49 (j_bmt-2019-0153_ref_022) 2018; 39 (j_bmt-2019-0153_ref_018) 2002; 16 (j_bmt-2019-0153_ref_009) 2016; 37 (j_bmt-2019-0153_ref_016) 2001; 48 (j_bmt-2019-0153_ref_004) 2009; 119 (j_bmt-2019-0153_ref_003) 2003; 89 (j_bmt-2019-0153_ref_015) 2012; 5 (j_bmt-2019-0153_ref_019) 1994; 15 (j_bmt-2019-0153_ref_010) 2015; 12 (j_bmt-2019-0153_ref_023) 2018; 7 (j_bmt-2019-0153_ref_002) 1998; 32 (j_bmt-2019-0153_ref_006) 2016; 27 2023033113553604222_j_bmt-2019-0153_ref_020 2023033113553604222_j_bmt-2019-0153_ref_010 2023033113553604222_j_bmt-2019-0153_ref_021 2023033113553604222_j_bmt-2019-0153_ref_002 2023033113553604222_j_bmt-2019-0153_ref_013 2023033113553604222_j_bmt-2019-0153_ref_003 2023033113553604222_j_bmt-2019-0153_ref_014 2023033113553604222_j_bmt-2019-0153_ref_011 2023033113553604222_j_bmt-2019-0153_ref_022 2023033113553604222_j_bmt-2019-0153_ref_001 2023033113553604222_j_bmt-2019-0153_ref_012 2023033113553604222_j_bmt-2019-0153_ref_023 2023033113553604222_j_bmt-2019-0153_ref_006 2023033113553604222_j_bmt-2019-0153_ref_017 2023033113553604222_j_bmt-2019-0153_ref_007 2023033113553604222_j_bmt-2019-0153_ref_018 2023033113553604222_j_bmt-2019-0153_ref_004 2023033113553604222_j_bmt-2019-0153_ref_015 2023033113553604222_j_bmt-2019-0153_ref_005 2023033113553604222_j_bmt-2019-0153_ref_016 2023033113553604222_j_bmt-2019-0153_ref_008 2023033113553604222_j_bmt-2019-0153_ref_019 2023033113553604222_j_bmt-2019-0153_ref_009 |
References_xml | – volume: 32 start-page: 695 year: 1998 end-page: 703 ident: j_bmt-2019-0153_ref_002 article-title: Atrial fibrillation is associated with an increased risk for mortality and heart failure progression in patients with asymptomatic and symptomatic left ventricular systolic dysfunction: a retrospective analysis of the SOLVD trials publication-title: J Am Coll Cardiol – volume: 39 start-page: 574 year: 2018 end-page: 9 ident: j_bmt-2019-0153_ref_022 article-title: Dépistage et implications cliniques de la fibrillation atriale silencieuse publication-title: La Rev Médecine Interne – volume: 12 start-page: 234 year: 2015 end-page: 41 ident: j_bmt-2019-0153_ref_021 article-title: Cryptogenic stroke: Is silent atrial fibrillation the culprit? publication-title: Hear Rhythm – volume: 16 start-page: 321 year: 2002 end-page: 57 ident: j_bmt-2019-0153_ref_018 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J Artif Intell Res – volume: 49 start-page: 1504 year: 2002 end-page: 13 ident: j_bmt-2019-0153_ref_017 article-title: A method for quantifying atrial fibrillation organization based on wave-morphology similarity publication-title: IEEE Trans Biomed Eng – volume: 12 start-page: 95 year: 2007 end-page: 116 ident: j_bmt-2019-0153_ref_020 article-title: Stability of feature selection algorithms: a study on high-dimensional spaces publication-title: Knowl Inf Syst – volume: 7 start-page: e008585 year: 2018 ident: j_bmt-2019-0153_ref_023 article-title: Contact-free screening of atrial fibrillation by a smartphone using facial pulsatile photoplethysmographic signals publication-title: J Am Heart Assoc – volume: 15 start-page: 1119 year: 1994 end-page: 25 ident: j_bmt-2019-0153_ref_019 article-title: Floating search methods in feature selection publication-title: Pattern Recognit Lett – volume: 40 start-page: 413 year: 2017 end-page: 8 ident: j_bmt-2019-0153_ref_001 article-title: Silent atrial fibrillation: epidemiology, diagnosis, and clinical impact publication-title: Clin Cardiol – volume: 27 start-page: 51 year: 2016 end-page: 7 ident: j_bmt-2019-0153_ref_006 article-title: PULSE-SMART: Pulse-based arrhythmia discrimination using a novel smartphone application publication-title: J Ca vrdiovasc Electrophysiol – volume: 89 start-page: 939 year: 2003 end-page: 43 ident: j_bmt-2019-0153_ref_003 article-title: Atrial fibrillation: classification, pathophysiology, mechanisms and drug treatment publication-title: Heart – volume: 12 start-page: 195 year: 2015 end-page: 201 ident: j_bmt-2019-0153_ref_010 article-title: Detection of atrial fibrillation using contactless facial video monitoring publication-title: Hear Rhythm – volume: 37 start-page: 1934 year: 2016 end-page: 44 ident: j_bmt-2019-0153_ref_009 article-title: Relationships between heart-rate variability and pulse-rate variability obtained from video-PPG signal using ZCA publication-title: Physiol Meas – volume: 49 start-page: 172 year: 2002 end-page: 5 ident: j_bmt-2019-0153_ref_014 article-title: An advanced detrending method with application to HRV analysis publication-title: IEEE Trans Biomed Eng – start-page: euw125 year: 2016 ident: j_bmt-2019-0153_ref_005 article-title: Smart detection of atrial fibrillation publication-title: Europace – volume: 119 start-page: 606 year: 2009 end-page: 18 ident: j_bmt-2019-0153_ref_004 article-title: Prevention of atrial fibrillation: report from an NHLBI Workshop publication-title: Circulation – volume: 48 start-page: 1342 year: 2001 end-page: 7 ident: j_bmt-2019-0153_ref_016 article-title: Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability? publication-title: IEEE Trans Biomed Eng – volume: 38 start-page: 787 year: 2017 end-page: 99 ident: j_bmt-2019-0153_ref_007 article-title: Detection of atrial fibrillation episodes using a wristband device publication-title: Physiol Meas – volume: 5 start-page: 588 year: 2012 end-page: 603 ident: j_bmt-2019-0153_ref_015 article-title: An efficient algorithm for automatic peak detection in noisy periodic and quasi-periodic signals publication-title: Algorithms – ident: 2023033113553604222_j_bmt-2019-0153_ref_020 doi: 10.1007/s10115-006-0040-8 – ident: 2023033113553604222_j_bmt-2019-0153_ref_004 doi: 10.1161/CIRCULATIONAHA.108.825380 – ident: 2023033113553604222_j_bmt-2019-0153_ref_001 doi: 10.1002/clc.22667 – ident: 2023033113553604222_j_bmt-2019-0153_ref_007 doi: 10.1088/1361-6579/aa5dd7 – ident: 2023033113553604222_j_bmt-2019-0153_ref_010 doi: 10.1016/j.hrthm.2014.08.035 – ident: 2023033113553604222_j_bmt-2019-0153_ref_015 doi: 10.3390/a5040588 – ident: 2023033113553604222_j_bmt-2019-0153_ref_009 doi: 10.1088/0967-3334/37/11/1934 – ident: 2023033113553604222_j_bmt-2019-0153_ref_018 doi: 10.1613/jair.953 – ident: 2023033113553604222_j_bmt-2019-0153_ref_005 doi: 10.1093/europace/euw125 – ident: 2023033113553604222_j_bmt-2019-0153_ref_013 – ident: 2023033113553604222_j_bmt-2019-0153_ref_014 doi: 10.1109/10.979357 – ident: 2023033113553604222_j_bmt-2019-0153_ref_021 doi: 10.1016/j.hrthm.2014.09.058 – ident: 2023033113553604222_j_bmt-2019-0153_ref_002 doi: 10.1016/S0735-1097(98)00297-6 – ident: 2023033113553604222_j_bmt-2019-0153_ref_006 doi: 10.1111/jce.12842 – ident: 2023033113553604222_j_bmt-2019-0153_ref_016 doi: 10.1109/10.959330 – ident: 2023033113553604222_j_bmt-2019-0153_ref_022 doi: 10.1016/j.revmed.2017.08.006 – ident: 2023033113553604222_j_bmt-2019-0153_ref_019 doi: 10.1016/0167-8655(94)90127-9 – ident: 2023033113553604222_j_bmt-2019-0153_ref_023 doi: 10.1161/JAHA.118.008585 – ident: 2023033113553604222_j_bmt-2019-0153_ref_003 doi: 10.1136/heart.89.8.939 – ident: 2023033113553604222_j_bmt-2019-0153_ref_008 doi: 10.1117/12.407646 – ident: 2023033113553604222_j_bmt-2019-0153_ref_017 doi: 10.1109/TBME.2002.805472 – ident: 2023033113553604222_j_bmt-2019-0153_ref_011 doi: 10.22489/CinC.2017.052-220 – ident: 2023033113553604222_j_bmt-2019-0153_ref_012 doi: 10.1109/CVPR.2001.990517 |
SSID | ssj0045590 |
Score | 2.2262342 |
Snippet | Automatic detection of atrial fibrillation (AF) is a challenging issue. In this study we proposed and validated a model to identify AF by using facial video... |
SourceID | proquest pubmed crossref walterdegruyter |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 721 |
SubjectTerms | atrial fibrillation camera Cardiac arrhythmia Fibrillation Flutter Model accuracy monitoring photoplethysmographic signal screening Similarity |
Title | A simple model to detect atrial fibrillation via visual imaging |
URI | https://www.degruyter.com/doi/10.1515/bmt-2019-0153 https://www.ncbi.nlm.nih.gov/pubmed/32663168 https://www.proquest.com/docview/2464842469 https://www.proquest.com/docview/2424099829 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdmGHiW8KAxkJcQkpjePEyQmFMTYh4NRNu0WJ406RtgS1yRD963nPdtJ0K9Lg0KhK7STN-_l9-H0R8lYEksso910phe_ykOUuiBHsmprBygqB5Hq_4_uP8OSUfz0Pzkej60HUUtvkE7namlfyP1SFc0BXzJL9B8r2F4UT8B3oC0egMBzvROPEWZZY3df0s0E1slDoFHAy04xjjvH8lybazbkuM_gsMV2kvNK9iTYcujoNv1xhpRGJ_X50bdc-jecQ4_T0rupZhnKqrDLn88RJJj206tXKxN1-a9fRP9q9U-quUc5xWS8uTNSX2QLHTOCi7KY4s8lwB4INozksV_V8NwhM652JMowULCWXCd02uOe0piuERdSQbQqTJW0lsDDp4reYe6DrYORXDYAAU688U2Z4s4j2DeHWhxyisQMXSGF6itNTnH6P7DIh0L2_mxx_OjrrZDgHO2va9b7Af2ars8IFPmzcf1ObuWWi7JH9XzrqoVAXi_Z303nZtfIye0D2rdVBEwOhh2Skqkdkb1CL8jH5mFADJqrBRJuaGjBRAyY6BBMFMFEDJmrB9IScfjmaHZ64truGK7nHGliSPijzSmTzfBpHElYl2FlcRWGofefeVHkqDxkTKgOurTgr8ihToSxQB_dALD0lO1VdqeeEqkIpDpJzLpTHCykyrPqmvDif-wzd4GPyvntLqbSl57EDymW6lSpj8q4f_tPUXPnbwIPulad2WS5TxkMecTjGY_Km_xmYJnrCskrVLY4BRTaOIwZjnhlS9XcCeybEbm5jwm_Qbn2PrU8DlhHg-MVdH_4lub9eTAdkp1m06hUouE3-2qLxDw0Vobs |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LU9swEN6h4dBy4NmW0FDETIcTJrGiyM6JCQw0tMAJGG4eS960GfJgiA0Dv767fhFel3KwD7ZsPVYrfdKuvgX44bWssr5pOtZ6TUdpaRyaRjhqakiapUnk6X7Hyanunqtfl63Cm3CSu1VG-OcmuY8zhtR6NLYJb5SVXAM0A9fNMCb58vkb0tj633g4-ACzbEFTFZjt_Nw7uCiGY0WQuVGEMWgROM6JNl_85enE9AJtzsH8XWrALks3NQ8dLoApapC5n1ztJLHZsQ_PyB3fVcVFmM9Rquhk3WoJZnC0DHNT3IUrsNsRkz5TC4s0mI6IxyJCtkiIMI0EInp8mGCQudqJ235I1ySh5_1hGhjpM5wfHpztd508GoNjlStjEmGTwB96Yc802r4lKRIuV-hrndpa3Qa6aLSUHoak5ahkZPwQtY0Ys7k0jH2Bymg8wlUQGCEqGml7Hroqsl7ILGHotk2vKdlsWoXtQhSBzanKOWLGIOAlCzVOQI0TcOME3DhV2CqTX2ccHW8lrBVyDXJVnQRSaeUrurersFm-JiVjy0k4wnHCaQj40MJUUpqvWX8ocyL8qzn6VxXUsw7ymMerpSEkTcvvtf_7bAM-ds9OjoPjo9Pf3-CT5F2A1MmmBpX4JsF1gkqx-Z4rwz_GrQv_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61IFXlQF88lgI1EuJEdjder5M9VVtgy6NFHAriFtnOBK2AXcQmoPbXdyavLo9e2kNySJz4MR77G4_9DcBm0HXKhbbjORd0PKWl9Wga4aiphjRLk8jz9Y7vx3r_VB2ed8-nTvHztsoYL26zn2nBkNqKxy7jhbKaa4Bm4Ja9Tkm-fP6GNLZ1EycvYZZMlZDMr9n-1y97Z9VorAgxt6soBl3CxiXP5pOfPJyXnoDNOZi_z_3XdeGmpqHBGzBVBYrdJ5fNLLVN9-sRt-P_1PAtzJcYVfSLTvUOXuDoPcxNMRd-gM99MRkysbDIQ-mIdCxiZH-EMHkcEJHwUYKrYqOduBsauiYZPR9e52GRFuB0sPdjZ98rYzF4TvkyJQF2CPphYBLb7oWOZEioXGGode5p9dvoo9VSBmhIx1HJ2IYGtYsZsfk0iC3CzGg8wmUQGCMqGmeTAH0Vu8AwRxj6PZt0JDtNG7BdSSJyJVE5x8u4ithgobaJqG0ibpuI26YBW3Xym4Kh428JVyuxRqWiTiKptAoV3XsN2Khfk4qx38SMcJxxGoI9ZJZKSrNUdIc6J0K_mmN_NUA96h9_8ni2NISjyfhe-bfPPsGrk91B9O3g-OgjvJa8BJDvsFmFmfQ2wzXCSaldL1XhN6pBCq8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+model+to+detect+atrial+fibrillation+via+visual+imaging&rft.jtitle=Biomedizinische+Technik&rft.au=Corino%2C+Valentina+D.+A.&rft.au=Iozzia%2C+Luca&rft.au=Scarpini%2C+Giorgio&rft.au=Mainardi%2C+Luca+T.&rft.date=2020-12-01&rft.issn=0013-5585&rft.eissn=1862-278X&rft.volume=65&rft.issue=6&rft.spage=721&rft.epage=728&rft_id=info:doi/10.1515%2Fbmt-2019-0153&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_bmt_2019_0153 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5585&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5585&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5585&client=summon |