A simple model to detect atrial fibrillation via visual imaging

Automatic detection of atrial fibrillation (AF) is a challenging issue. In this study we proposed and validated a model to identify AF by using facial video recordings. We analyzed photoplethysmographic imaging (PPGi) signals, extracted from video of a subject’s face. Sixty-eight patients were inclu...

Full description

Saved in:
Bibliographic Details
Published inBiomedizinische Technik Vol. 65; no. 6; pp. 721 - 728
Main Authors Corino, Valentina D. A., Iozzia, Luca, Scarpini, Giorgio, Mainardi, Luca T., Lombardi, Federico
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 01.12.2020
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN0013-5585
1862-278X
1862-278X
DOI10.1515/bmt-2019-0153

Cover

Loading…
Abstract Automatic detection of atrial fibrillation (AF) is a challenging issue. In this study we proposed and validated a model to identify AF by using facial video recordings. We analyzed photoplethysmographic imaging (PPGi) signals, extracted from video of a subject’s face. Sixty-eight patients were included: 30 in sinus rhythm (SR), 25 in AF and 13 presenting with atrial flutter or frequent ectopic beats (ARR). Twenty-six indexes were computed. The dataset was divided in three subsets: the training, validation, and test set, containing, respectively, 58, 29, and 13% of the data. Mean of inter-systolic interval series (M), Local Maxima Similarity (LMS), and pulse harmonic strength (PHS) indexes were significantly different among all groups. Variability and irregularity parameters had the lowest values in SR, the highest in AF, with intermediate values in ARR. The PHS was higher in SR than in ARR, and higher in ARR than in AF. The LMS index was the highest in SR, intermediate in ARR and the lowest in AF. Similarity indexes were higher in SR than in AF and ARR. A model with three features, namely M, Similarity1 and LMS was chosen. With this model, the accuracy for the validation set was 0.947±0.007 for SR, 0.954±0.004 for AF and 0.919±0.006 for ARR; for the test set (never-seen data), accuracy was 0.876±0.021 for SR, 0.870±0.030 for AF and 0.863±0.029 for ARR. A contactless video-based monitoring can be used to detect AF, differentiating it from SR and from frequent ectopies.
AbstractList Automatic detection of atrial fibrillation (AF) is a challenging issue. In this study we proposed and validated a model to identify AF by using facial video recordings. We analyzed photoplethysmographic imaging (PPGi) signals, extracted from video of a subject's face. Sixty-eight patients were included: 30 in sinus rhythm (SR), 25 in AF and 13 presenting with atrial flutter or frequent ectopic beats (ARR). Twenty-six indexes were computed. The dataset was divided in three subsets: the training, validation, and test set, containing, respectively, 58, 29, and 13% of the data. Mean of inter-systolic interval series (M), Local Maxima Similarity (LMS), and pulse harmonic strength (PHS) indexes were significantly different among all groups. Variability and irregularity parameters had the lowest values in SR, the highest in AF, with intermediate values in ARR. The PHS was higher in SR than in ARR, and higher in ARR than in AF. The LMS index was the highest in SR, intermediate in ARR and the lowest in AF. Similarity indexes were higher in SR than in AF and ARR. A model with three features, namely M, Similarity1 and LMS was chosen. With this model, the accuracy for the validation set was 0.947±0.007 for SR, 0.954±0.004 for AF and 0.919±0.006 for ARR; for the test set (never-seen data), accuracy was 0.876±0.021 for SR, 0.870±0.030 for AF and 0.863±0.029 for ARR. A contactless video-based monitoring can be used to detect AF, differentiating it from SR and from frequent ectopies.
Automatic detection of atrial fibrillation (AF) is a challenging issue. In this study we proposed and validated a model to identify AF by using facial video recordings. We analyzed photoplethysmographic imaging (PPGi) signals, extracted from video of a subject's face. Sixty-eight patients were included: 30 in sinus rhythm (SR), 25 in AF and 13 presenting with atrial flutter or frequent ectopic beats (ARR). Twenty-six indexes were computed. The dataset was divided in three subsets: the training, validation, and test set, containing, respectively, 58, 29, and 13% of the data. Mean of inter-systolic interval series (M), Local Maxima Similarity (LMS), and pulse harmonic strength (PHS) indexes were significantly different among all groups. Variability and irregularity parameters had the lowest values in SR, the highest in AF, with intermediate values in ARR. The PHS was higher in SR than in ARR, and higher in ARR than in AF. The LMS index was the highest in SR, intermediate in ARR and the lowest in AF. Similarity indexes were higher in SR than in AF and ARR. A model with three features, namely M, Similarity1 and LMS was chosen. With this model, the accuracy for the validation set was 0.947±0.007 for SR, 0.954±0.004 for AF and 0.919±0.006 for ARR; for the test set (never-seen data), accuracy was 0.876±0.021 for SR, 0.870±0.030 for AF and 0.863±0.029 for ARR. A contactless video-based monitoring can be used to detect AF, differentiating it from SR and from frequent ectopies.Automatic detection of atrial fibrillation (AF) is a challenging issue. In this study we proposed and validated a model to identify AF by using facial video recordings. We analyzed photoplethysmographic imaging (PPGi) signals, extracted from video of a subject's face. Sixty-eight patients were included: 30 in sinus rhythm (SR), 25 in AF and 13 presenting with atrial flutter or frequent ectopic beats (ARR). Twenty-six indexes were computed. The dataset was divided in three subsets: the training, validation, and test set, containing, respectively, 58, 29, and 13% of the data. Mean of inter-systolic interval series (M), Local Maxima Similarity (LMS), and pulse harmonic strength (PHS) indexes were significantly different among all groups. Variability and irregularity parameters had the lowest values in SR, the highest in AF, with intermediate values in ARR. The PHS was higher in SR than in ARR, and higher in ARR than in AF. The LMS index was the highest in SR, intermediate in ARR and the lowest in AF. Similarity indexes were higher in SR than in AF and ARR. A model with three features, namely M, Similarity1 and LMS was chosen. With this model, the accuracy for the validation set was 0.947±0.007 for SR, 0.954±0.004 for AF and 0.919±0.006 for ARR; for the test set (never-seen data), accuracy was 0.876±0.021 for SR, 0.870±0.030 for AF and 0.863±0.029 for ARR. A contactless video-based monitoring can be used to detect AF, differentiating it from SR and from frequent ectopies.
Author Iozzia, Luca
Corino, Valentina D. A.
Lombardi, Federico
Scarpini, Giorgio
Mainardi, Luca T.
Author_xml – sequence: 1
  givenname: Valentina D. A.
  surname: Corino
  fullname: Corino, Valentina D. A.
  email: valentina.corino@polimi.it
  organization: Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
– sequence: 2
  givenname: Luca
  surname: Iozzia
  fullname: Iozzia, Luca
  organization: Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
– sequence: 3
  givenname: Giorgio
  surname: Scarpini
  fullname: Scarpini, Giorgio
  organization: Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, U.O.C. di Malattie Cardiovascolari, Università degli Studi di Milano, Dipartimento di Scienze Cliniche e di Comunità, Milan, Italy
– sequence: 4
  givenname: Luca T.
  surname: Mainardi
  fullname: Mainardi, Luca T.
  organization: Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
– sequence: 5
  givenname: Federico
  surname: Lombardi
  fullname: Lombardi, Federico
  organization: Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, U.O.C. di Malattie Cardiovascolari, Università degli Studi di Milano, Dipartimento di Scienze Cliniche e di Comunità, Milan, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32663168$$D View this record in MEDLINE/PubMed
BookMark eNp1kctLAzEQxoNUtK0evcqCFy-reW8WD1KKLyh4UfAWsrvTkrKPmmSV_vemtkUQPQwZwu8bvplvhAZt1wJCZwRfEUHEddGElGKSp5gIdoCGREma0ky9DdAQY8JSIZQ4RiPvlxhzIXJ8hI4ZlZIRqYbodpJ426xqSJqugjoJXVJBgDIkJjhr6mRuC2fr2gTbtcmHNbF8H_9tYxa2XZygw7mpPZzu3jF6vb97mT6ms-eHp-lklpac0JAqwoQUkJl5gXNV5pJlNOegpIyeFCcYCBSS0gwMJhlwWhXKgCwryignmWRjdLmdu3Ldew8-6Mb6EqKxFrrea8opx3muaB7Ri1_osutdG91FSnIVSbmhzndUXzRQ6ZWLG7m13p8mAmwLlK7z3sFclzZ8nyE4Y2tNsN4EoGMAehOA3gQQVekv1X7wf_zNlv80dQBXwcL169j8eP5TJ4XMKGFforKXxA
CitedBy_id crossref_primary_10_1109_JBHI_2021_3124967
crossref_primary_10_1109_JBHI_2022_3193117
Cites_doi 10.1007/s10115-006-0040-8
10.1161/CIRCULATIONAHA.108.825380
10.1002/clc.22667
10.1088/1361-6579/aa5dd7
10.1016/j.hrthm.2014.08.035
10.3390/a5040588
10.1088/0967-3334/37/11/1934
10.1613/jair.953
10.1093/europace/euw125
10.1109/10.979357
10.1016/j.hrthm.2014.09.058
10.1016/S0735-1097(98)00297-6
10.1111/jce.12842
10.1109/10.959330
10.1016/j.revmed.2017.08.006
10.1016/0167-8655(94)90127-9
10.1161/JAHA.118.008585
10.1136/heart.89.8.939
10.1117/12.407646
10.1109/TBME.2002.805472
10.22489/CinC.2017.052-220
10.1109/CVPR.2001.990517
ContentType Journal Article
Copyright 2020 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2020 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
NPM
7QO
7TB
7U5
8FD
FR3
L7M
P64
7X8
DOI 10.1515/bmt-2019-0153
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Biotechnology Research Abstracts

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1862-278X
EndPage 728
ExternalDocumentID 32663168
10_1515_bmt_2019_0153
10_1515_bmt_2019_0153656721
Genre Journal Article
GroupedDBID 0R~
0~D
23N
4.4
5GY
AAAEU
AAAVF
AABBZ
AACIX
AAGVJ
AALGR
AAOQK
AAOWA
AAPJK
AAQCX
AARRE
AASQH
AAWFC
AAXCG
ABDRH
ABFKT
ABFQV
ABJNI
ABMIY
ABPLS
ABRDF
ABUVI
ABWLS
ABXMZ
ABYBW
ACDEB
ACEFL
ACGFS
ACPMA
ACUND
ACYCL
ACZBO
ADDWE
ADEQT
ADGQD
ADGYE
ADNPR
AECWL
AEGVQ
AEICA
AEJTT
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFGDO
AFYRI
AGBEV
AGQYU
AHGSO
AHOVO
AHVWV
AHXUK
AIERV
AIWOI
AJHHK
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ASYPN
BAKPI
BCIFA
CGQUA
CS3
DSRVY
DU5
EBS
EMOBN
F5P
HZ~
IY9
KDIRW
O9-
P2P
QD8
RDG
SA.
SLJYH
UK5
WTRAM
AAYXX
ALYBR
CITATION
ABVMU
DBYYV
NPM
7QO
7TB
7U5
8FD
FR3
L7M
P64
7X8
ID FETCH-LOGICAL-c412t-813565e7afb098c9637294e8660458410e1eb6227ea017e42db8ae6cd23241763
ISSN 0013-5585
1862-278X
IngestDate Thu Sep 04 15:58:50 EDT 2025
Sat Jul 26 02:24:57 EDT 2025
Wed Feb 19 02:04:22 EST 2025
Tue Jul 01 03:36:35 EDT 2025
Thu Apr 24 23:00:05 EDT 2025
Sat Sep 06 17:01:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords atrial fibrillation
screening
photoplethysmographic signal
camera
monitoring
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-813565e7afb098c9637294e8660458410e1eb6227ea017e42db8ae6cd23241763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://hdl.handle.net/2434/752158
PMID 32663168
PQID 2464842469
PQPubID 2045214
PageCount 08
ParticipantIDs proquest_miscellaneous_2424099829
proquest_journals_2464842469
pubmed_primary_32663168
crossref_citationtrail_10_1515_bmt_2019_0153
crossref_primary_10_1515_bmt_2019_0153
walterdegruyter_journals_10_1515_bmt_2019_0153656721
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle Biomedizinische Technik
PublicationTitleAlternate Biomed Tech (Berl)
PublicationYear 2020
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References (j_bmt-2019-0153_ref_021) 2015; 12
(j_bmt-2019-0153_ref_005) 2016
(j_bmt-2019-0153_ref_017) 2002; 49
(j_bmt-2019-0153_ref_001) 2017; 40
(j_bmt-2019-0153_ref_020) 2007; 12
(j_bmt-2019-0153_ref_007) 2017; 38
(j_bmt-2019-0153_ref_014) 2002; 49
(j_bmt-2019-0153_ref_022) 2018; 39
(j_bmt-2019-0153_ref_018) 2002; 16
(j_bmt-2019-0153_ref_009) 2016; 37
(j_bmt-2019-0153_ref_016) 2001; 48
(j_bmt-2019-0153_ref_004) 2009; 119
(j_bmt-2019-0153_ref_003) 2003; 89
(j_bmt-2019-0153_ref_015) 2012; 5
(j_bmt-2019-0153_ref_019) 1994; 15
(j_bmt-2019-0153_ref_010) 2015; 12
(j_bmt-2019-0153_ref_023) 2018; 7
(j_bmt-2019-0153_ref_002) 1998; 32
(j_bmt-2019-0153_ref_006) 2016; 27
2023033113553604222_j_bmt-2019-0153_ref_020
2023033113553604222_j_bmt-2019-0153_ref_010
2023033113553604222_j_bmt-2019-0153_ref_021
2023033113553604222_j_bmt-2019-0153_ref_002
2023033113553604222_j_bmt-2019-0153_ref_013
2023033113553604222_j_bmt-2019-0153_ref_003
2023033113553604222_j_bmt-2019-0153_ref_014
2023033113553604222_j_bmt-2019-0153_ref_011
2023033113553604222_j_bmt-2019-0153_ref_022
2023033113553604222_j_bmt-2019-0153_ref_001
2023033113553604222_j_bmt-2019-0153_ref_012
2023033113553604222_j_bmt-2019-0153_ref_023
2023033113553604222_j_bmt-2019-0153_ref_006
2023033113553604222_j_bmt-2019-0153_ref_017
2023033113553604222_j_bmt-2019-0153_ref_007
2023033113553604222_j_bmt-2019-0153_ref_018
2023033113553604222_j_bmt-2019-0153_ref_004
2023033113553604222_j_bmt-2019-0153_ref_015
2023033113553604222_j_bmt-2019-0153_ref_005
2023033113553604222_j_bmt-2019-0153_ref_016
2023033113553604222_j_bmt-2019-0153_ref_008
2023033113553604222_j_bmt-2019-0153_ref_019
2023033113553604222_j_bmt-2019-0153_ref_009
References_xml – volume: 32
  start-page: 695
  year: 1998
  end-page: 703
  ident: j_bmt-2019-0153_ref_002
  article-title: Atrial fibrillation is associated with an increased risk for mortality and heart failure progression in patients with asymptomatic and symptomatic left ventricular systolic dysfunction: a retrospective analysis of the SOLVD trials
  publication-title: J Am Coll Cardiol
– volume: 39
  start-page: 574
  year: 2018
  end-page: 9
  ident: j_bmt-2019-0153_ref_022
  article-title: Dépistage et implications cliniques de la fibrillation atriale silencieuse
  publication-title: La Rev Médecine Interne
– volume: 12
  start-page: 234
  year: 2015
  end-page: 41
  ident: j_bmt-2019-0153_ref_021
  article-title: Cryptogenic stroke: Is silent atrial fibrillation the culprit?
  publication-title: Hear Rhythm
– volume: 16
  start-page: 321
  year: 2002
  end-page: 57
  ident: j_bmt-2019-0153_ref_018
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J Artif Intell Res
– volume: 49
  start-page: 1504
  year: 2002
  end-page: 13
  ident: j_bmt-2019-0153_ref_017
  article-title: A method for quantifying atrial fibrillation organization based on wave-morphology similarity
  publication-title: IEEE Trans Biomed Eng
– volume: 12
  start-page: 95
  year: 2007
  end-page: 116
  ident: j_bmt-2019-0153_ref_020
  article-title: Stability of feature selection algorithms: a study on high-dimensional spaces
  publication-title: Knowl Inf Syst
– volume: 7
  start-page: e008585
  year: 2018
  ident: j_bmt-2019-0153_ref_023
  article-title: Contact-free screening of atrial fibrillation by a smartphone using facial pulsatile photoplethysmographic signals
  publication-title: J Am Heart Assoc
– volume: 15
  start-page: 1119
  year: 1994
  end-page: 25
  ident: j_bmt-2019-0153_ref_019
  article-title: Floating search methods in feature selection
  publication-title: Pattern Recognit Lett
– volume: 40
  start-page: 413
  year: 2017
  end-page: 8
  ident: j_bmt-2019-0153_ref_001
  article-title: Silent atrial fibrillation: epidemiology, diagnosis, and clinical impact
  publication-title: Clin Cardiol
– volume: 27
  start-page: 51
  year: 2016
  end-page: 7
  ident: j_bmt-2019-0153_ref_006
  article-title: PULSE-SMART: Pulse-based arrhythmia discrimination using a novel smartphone application
  publication-title: J Ca vrdiovasc Electrophysiol
– volume: 89
  start-page: 939
  year: 2003
  end-page: 43
  ident: j_bmt-2019-0153_ref_003
  article-title: Atrial fibrillation: classification, pathophysiology, mechanisms and drug treatment
  publication-title: Heart
– volume: 12
  start-page: 195
  year: 2015
  end-page: 201
  ident: j_bmt-2019-0153_ref_010
  article-title: Detection of atrial fibrillation using contactless facial video monitoring
  publication-title: Hear Rhythm
– volume: 37
  start-page: 1934
  year: 2016
  end-page: 44
  ident: j_bmt-2019-0153_ref_009
  article-title: Relationships between heart-rate variability and pulse-rate variability obtained from video-PPG signal using ZCA
  publication-title: Physiol Meas
– volume: 49
  start-page: 172
  year: 2002
  end-page: 5
  ident: j_bmt-2019-0153_ref_014
  article-title: An advanced detrending method with application to HRV analysis
  publication-title: IEEE Trans Biomed Eng
– start-page: euw125
  year: 2016
  ident: j_bmt-2019-0153_ref_005
  article-title: Smart detection of atrial fibrillation
  publication-title: Europace
– volume: 119
  start-page: 606
  year: 2009
  end-page: 18
  ident: j_bmt-2019-0153_ref_004
  article-title: Prevention of atrial fibrillation: report from an NHLBI Workshop
  publication-title: Circulation
– volume: 48
  start-page: 1342
  year: 2001
  end-page: 7
  ident: j_bmt-2019-0153_ref_016
  article-title: Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability?
  publication-title: IEEE Trans Biomed Eng
– volume: 38
  start-page: 787
  year: 2017
  end-page: 99
  ident: j_bmt-2019-0153_ref_007
  article-title: Detection of atrial fibrillation episodes using a wristband device
  publication-title: Physiol Meas
– volume: 5
  start-page: 588
  year: 2012
  end-page: 603
  ident: j_bmt-2019-0153_ref_015
  article-title: An efficient algorithm for automatic peak detection in noisy periodic and quasi-periodic signals
  publication-title: Algorithms
– ident: 2023033113553604222_j_bmt-2019-0153_ref_020
  doi: 10.1007/s10115-006-0040-8
– ident: 2023033113553604222_j_bmt-2019-0153_ref_004
  doi: 10.1161/CIRCULATIONAHA.108.825380
– ident: 2023033113553604222_j_bmt-2019-0153_ref_001
  doi: 10.1002/clc.22667
– ident: 2023033113553604222_j_bmt-2019-0153_ref_007
  doi: 10.1088/1361-6579/aa5dd7
– ident: 2023033113553604222_j_bmt-2019-0153_ref_010
  doi: 10.1016/j.hrthm.2014.08.035
– ident: 2023033113553604222_j_bmt-2019-0153_ref_015
  doi: 10.3390/a5040588
– ident: 2023033113553604222_j_bmt-2019-0153_ref_009
  doi: 10.1088/0967-3334/37/11/1934
– ident: 2023033113553604222_j_bmt-2019-0153_ref_018
  doi: 10.1613/jair.953
– ident: 2023033113553604222_j_bmt-2019-0153_ref_005
  doi: 10.1093/europace/euw125
– ident: 2023033113553604222_j_bmt-2019-0153_ref_013
– ident: 2023033113553604222_j_bmt-2019-0153_ref_014
  doi: 10.1109/10.979357
– ident: 2023033113553604222_j_bmt-2019-0153_ref_021
  doi: 10.1016/j.hrthm.2014.09.058
– ident: 2023033113553604222_j_bmt-2019-0153_ref_002
  doi: 10.1016/S0735-1097(98)00297-6
– ident: 2023033113553604222_j_bmt-2019-0153_ref_006
  doi: 10.1111/jce.12842
– ident: 2023033113553604222_j_bmt-2019-0153_ref_016
  doi: 10.1109/10.959330
– ident: 2023033113553604222_j_bmt-2019-0153_ref_022
  doi: 10.1016/j.revmed.2017.08.006
– ident: 2023033113553604222_j_bmt-2019-0153_ref_019
  doi: 10.1016/0167-8655(94)90127-9
– ident: 2023033113553604222_j_bmt-2019-0153_ref_023
  doi: 10.1161/JAHA.118.008585
– ident: 2023033113553604222_j_bmt-2019-0153_ref_003
  doi: 10.1136/heart.89.8.939
– ident: 2023033113553604222_j_bmt-2019-0153_ref_008
  doi: 10.1117/12.407646
– ident: 2023033113553604222_j_bmt-2019-0153_ref_017
  doi: 10.1109/TBME.2002.805472
– ident: 2023033113553604222_j_bmt-2019-0153_ref_011
  doi: 10.22489/CinC.2017.052-220
– ident: 2023033113553604222_j_bmt-2019-0153_ref_012
  doi: 10.1109/CVPR.2001.990517
SSID ssj0045590
Score 2.2262342
Snippet Automatic detection of atrial fibrillation (AF) is a challenging issue. In this study we proposed and validated a model to identify AF by using facial video...
SourceID proquest
pubmed
crossref
walterdegruyter
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 721
SubjectTerms atrial fibrillation
camera
Cardiac arrhythmia
Fibrillation
Flutter
Model accuracy
monitoring
photoplethysmographic signal
screening
Similarity
Title A simple model to detect atrial fibrillation via visual imaging
URI https://www.degruyter.com/doi/10.1515/bmt-2019-0153
https://www.ncbi.nlm.nih.gov/pubmed/32663168
https://www.proquest.com/docview/2464842469
https://www.proquest.com/docview/2424099829
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdmGHiW8KAxkJcQkpjePEyQmFMTYh4NRNu0WJ406RtgS1yRD963nPdtJ0K9Lg0KhK7STN-_l9-H0R8lYEksso910phe_ykOUuiBHsmprBygqB5Hq_4_uP8OSUfz0Pzkej60HUUtvkE7namlfyP1SFc0BXzJL9B8r2F4UT8B3oC0egMBzvROPEWZZY3df0s0E1slDoFHAy04xjjvH8lybazbkuM_gsMV2kvNK9iTYcujoNv1xhpRGJ_X50bdc-jecQ4_T0rupZhnKqrDLn88RJJj206tXKxN1-a9fRP9q9U-quUc5xWS8uTNSX2QLHTOCi7KY4s8lwB4INozksV_V8NwhM652JMowULCWXCd02uOe0piuERdSQbQqTJW0lsDDp4reYe6DrYORXDYAAU688U2Z4s4j2DeHWhxyisQMXSGF6itNTnH6P7DIh0L2_mxx_OjrrZDgHO2va9b7Af2ars8IFPmzcf1ObuWWi7JH9XzrqoVAXi_Z303nZtfIye0D2rdVBEwOhh2Skqkdkb1CL8jH5mFADJqrBRJuaGjBRAyY6BBMFMFEDJmrB9IScfjmaHZ64truGK7nHGliSPijzSmTzfBpHElYl2FlcRWGofefeVHkqDxkTKgOurTgr8ihToSxQB_dALD0lO1VdqeeEqkIpDpJzLpTHCykyrPqmvDif-wzd4GPyvntLqbSl57EDymW6lSpj8q4f_tPUXPnbwIPulad2WS5TxkMecTjGY_Km_xmYJnrCskrVLY4BRTaOIwZjnhlS9XcCeybEbm5jwm_Qbn2PrU8DlhHg-MVdH_4lub9eTAdkp1m06hUouE3-2qLxDw0Vobs
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LU9swEN6h4dBy4NmW0FDETIcTJrGiyM6JCQw0tMAJGG4eS960GfJgiA0Dv767fhFel3KwD7ZsPVYrfdKuvgX44bWssr5pOtZ6TUdpaRyaRjhqakiapUnk6X7Hyanunqtfl63Cm3CSu1VG-OcmuY8zhtR6NLYJb5SVXAM0A9fNMCb58vkb0tj633g4-ACzbEFTFZjt_Nw7uCiGY0WQuVGEMWgROM6JNl_85enE9AJtzsH8XWrALks3NQ8dLoApapC5n1ztJLHZsQ_PyB3fVcVFmM9Rquhk3WoJZnC0DHNT3IUrsNsRkz5TC4s0mI6IxyJCtkiIMI0EInp8mGCQudqJ235I1ySh5_1hGhjpM5wfHpztd508GoNjlStjEmGTwB96Yc802r4lKRIuV-hrndpa3Qa6aLSUHoak5ahkZPwQtY0Ys7k0jH2Bymg8wlUQGCEqGml7Hroqsl7ILGHotk2vKdlsWoXtQhSBzanKOWLGIOAlCzVOQI0TcOME3DhV2CqTX2ccHW8lrBVyDXJVnQRSaeUrurersFm-JiVjy0k4wnHCaQj40MJUUpqvWX8ocyL8qzn6VxXUsw7ymMerpSEkTcvvtf_7bAM-ds9OjoPjo9Pf3-CT5F2A1MmmBpX4JsF1gkqx-Z4rwz_GrQv_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61IFXlQF88lgI1EuJEdjder5M9VVtgy6NFHAriFtnOBK2AXcQmoPbXdyavLo9e2kNySJz4MR77G4_9DcBm0HXKhbbjORd0PKWl9Wga4aiphjRLk8jz9Y7vx3r_VB2ed8-nTvHztsoYL26zn2nBkNqKxy7jhbKaa4Bm4Ja9Tkm-fP6GNLZ1EycvYZZMlZDMr9n-1y97Z9VorAgxt6soBl3CxiXP5pOfPJyXnoDNOZi_z_3XdeGmpqHBGzBVBYrdJ5fNLLVN9-sRt-P_1PAtzJcYVfSLTvUOXuDoPcxNMRd-gM99MRkysbDIQ-mIdCxiZH-EMHkcEJHwUYKrYqOduBsauiYZPR9e52GRFuB0sPdjZ98rYzF4TvkyJQF2CPphYBLb7oWOZEioXGGode5p9dvoo9VSBmhIx1HJ2IYGtYsZsfk0iC3CzGg8wmUQGCMqGmeTAH0Vu8AwRxj6PZt0JDtNG7BdSSJyJVE5x8u4ithgobaJqG0ibpuI26YBW3Xym4Kh428JVyuxRqWiTiKptAoV3XsN2Khfk4qx38SMcJxxGoI9ZJZKSrNUdIc6J0K_mmN_NUA96h9_8ni2NISjyfhe-bfPPsGrk91B9O3g-OgjvJa8BJDvsFmFmfQ2wzXCSaldL1XhN6pBCq8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+model+to+detect+atrial+fibrillation+via+visual+imaging&rft.jtitle=Biomedizinische+Technik&rft.au=Corino%2C+Valentina+D.+A.&rft.au=Iozzia%2C+Luca&rft.au=Scarpini%2C+Giorgio&rft.au=Mainardi%2C+Luca+T.&rft.date=2020-12-01&rft.issn=0013-5585&rft.eissn=1862-278X&rft.volume=65&rft.issue=6&rft.spage=721&rft.epage=728&rft_id=info:doi/10.1515%2Fbmt-2019-0153&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_bmt_2019_0153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5585&client=summon