ATF4/ATG5 Signaling in Hypothalamic Proopiomelanocortin Neurons Regulates Fat Mass via Affecting Energy Expenditure

Although many biological functions of activating transcription factor 4 (ATF4) have been identified, a role of hypothalamic ATF4 in the regulation of energy homeostasis is poorly understood. In this study, we showed that hypothalamic proopiomelanocortin (POMC) neuron–specific ATF4 knockout (PAKO) mi...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 66; no. 5; pp. 1146 - 1158
Main Authors Xiao, Yuzhong, Deng, Yalan, Yuan, Feixiang, Xia, Tingting, Liu, Hao, Li, Zhigang, Liu, Zhixue, Ying, Hao, Liu, Yi, Zhai, Qiwei, Chen, Shanghai, Guo, Feifan
Format Journal Article
LanguageEnglish
Published United States American Diabetes Association 01.05.2017
Subjects
Online AccessGet full text
ISSN0012-1797
1939-327X
1939-327X
DOI10.2337/db16-1546

Cover

Loading…
Abstract Although many biological functions of activating transcription factor 4 (ATF4) have been identified, a role of hypothalamic ATF4 in the regulation of energy homeostasis is poorly understood. In this study, we showed that hypothalamic proopiomelanocortin (POMC) neuron–specific ATF4 knockout (PAKO) mice are lean and have higher energy expenditure. Furthermore, PAKO mice were resistant to high-fat diet–induced obesity, glucose intolerance, and leptin resistance. Moreover, the expression of autophagy protein 5 (ATG5) was increased or decreased by ATF4 knockdown or overexpression, respectively, and ATF4 inhibited the transcription of ATG5 by binding to the basic zipper-containing protein sites on its promoter. Importantly, mice with double knockout of ATF4 and ATG5 in POMC neurons gained more fat mass and reduced energy expenditure compared with PAKO mice under a high-fat diet. Finally, the effect of ATF4 deletion in POMC neurons was possibly mediated via enhanced ATG5-dependent autophagy and α-melanocyte–stimulating hormone production in the hypothalamus. Taken together, these results identify the beneficial role of hypothalamic ATF4/ATG5 axis in the regulation of energy expenditure, obesity, and obesity-related metabolic disorders, which suggests that ATF4/ATG5 axis in the hypothalamus may be a new potential therapeutic target for treating obesity and obesity-related metabolic diseases.
AbstractList Although many biological functions of activating transcription factor 4 (ATF4) have been identified, a role of hypothalamic ATF4 in the regulation of energy homeostasis is poorly understood. In this study, we showed that hypothalamic proopiomelanocortin (POMC) neuron-specific ATF4 knockout (PAKO) mice are lean and have higher energy expenditure. Furthermore, PAKO mice were resistant to high-fat diet-induced obesity, glucose intolerance, and leptin resistance. Moreover, the expression of autophagy protein 5 (ATG5) was increased or decreased by ATF4 knockdown or overexpression, respectively, and ATF4 inhibited the transcription of ATG5 by binding to the basic zipper-containing protein sites on its promoter. Importantly, mice with double knockout of ATF4 and ATG5 in POMC neurons gained more fat mass and reduced energy expenditure compared with PAKO mice under a high-fat diet. Finally, the effect of ATF4 deletion in POMC neurons was possibly mediated via enhanced ATG5-dependent autophagy and alpha -melanocyte-stimulating hormone production in the hypothalamus. Taken together, these results identify the beneficial role of hypothalamic ATF4/ATG5 axis in the regulation of energy expenditure, obesity, and obesity-related metabolic disorders, which suggests that ATF4/ATG5 axis in the hypothalamus may be a new potential therapeutic target for treating obesity and obesity-related metabolic diseases.
Although many biological functions of activating transcription factor 4 (ATF4) have been identified, a role of hypothalamic ATF4 in the regulation of energy homeostasis is poorly understood. In this study, we showed that hypothalamic proopiomelanocortin (POMC) neuron–specific ATF4 knockout (PAKO) mice are lean and have higher energy expenditure. Furthermore, PAKO mice were resistant to high-fat diet–induced obesity, glucose intolerance, and leptin resistance. Moreover, the expression of autophagy protein 5 (ATG5) was increased or decreased by ATF4 knockdown or overexpression, respectively, and ATF4 inhibited the transcription of ATG5 by binding to the basic zipper-containing protein sites on its promoter. Importantly, mice with double knockout of ATF4 and ATG5 in POMC neurons gained more fat mass and reduced energy expenditure compared with PAKO mice under a high-fat diet. Finally, the effect of ATF4 deletion in POMC neurons was possibly mediated via enhanced ATG5-dependent autophagy and α-melanocyte–stimulating hormone production in the hypothalamus. Taken together, these results identify the beneficial role of hypothalamic ATF4/ATG5 axis in the regulation of energy expenditure, obesity, and obesity-related metabolic disorders, which suggests that ATF4/ATG5 axis in the hypothalamus may be a new potential therapeutic target for treating obesity and obesity-related metabolic diseases.
Although many biological functions of activating transcription factor 4 (ATF4) have been identified, a role of hypothalamic ATF4 in the regulation of energy homeostasis is poorly understood. In this study, we showed that hypothalamic proopiomelanocortin (POMC) neuron-specific ATF4 knockout (PAKO) mice are lean and have higher energy expenditure. Furthermore, PAKO mice were resistant to high-fat diet-induced obesity, glucose intolerance, and leptin resistance. Moreover, the expression of autophagy protein 5 (ATG5) was increased or decreased by ATF4 knockdown or overexpression, respectively, and ATF4 inhibited the transcription of ATG5 by binding to the basic zipper-containing protein sites on its promoter. Importantly, mice with double knockout of ATF4 and ATG5 in POMC neurons gained more fat mass and reduced energy expenditure compared with PAKO mice under a high-fat diet. Finally, the effect of ATF4 deletion in POMC neurons was possibly mediated via enhanced ATG5-dependent autophagy and α-melanocyte-stimulating hormone production in the hypothalamus. Taken together, these results identify the beneficial role of hypothalamic ATF4/ATG5 axis in the regulation of energy expenditure, obesity, and obesity-related metabolic disorders, which suggests that ATF4/ATG5 axis in the hypothalamus may be a new potential therapeutic target for treating obesity and obesity-related metabolic diseases.Although many biological functions of activating transcription factor 4 (ATF4) have been identified, a role of hypothalamic ATF4 in the regulation of energy homeostasis is poorly understood. In this study, we showed that hypothalamic proopiomelanocortin (POMC) neuron-specific ATF4 knockout (PAKO) mice are lean and have higher energy expenditure. Furthermore, PAKO mice were resistant to high-fat diet-induced obesity, glucose intolerance, and leptin resistance. Moreover, the expression of autophagy protein 5 (ATG5) was increased or decreased by ATF4 knockdown or overexpression, respectively, and ATF4 inhibited the transcription of ATG5 by binding to the basic zipper-containing protein sites on its promoter. Importantly, mice with double knockout of ATF4 and ATG5 in POMC neurons gained more fat mass and reduced energy expenditure compared with PAKO mice under a high-fat diet. Finally, the effect of ATF4 deletion in POMC neurons was possibly mediated via enhanced ATG5-dependent autophagy and α-melanocyte-stimulating hormone production in the hypothalamus. Taken together, these results identify the beneficial role of hypothalamic ATF4/ATG5 axis in the regulation of energy expenditure, obesity, and obesity-related metabolic disorders, which suggests that ATF4/ATG5 axis in the hypothalamus may be a new potential therapeutic target for treating obesity and obesity-related metabolic diseases.
Author Liu, Hao
Li, Zhigang
Chen, Shanghai
Xiao, Yuzhong
Yuan, Feixiang
Xia, Tingting
Zhai, Qiwei
Liu, Yi
Guo, Feifan
Deng, Yalan
Ying, Hao
Liu, Zhixue
Author_xml – sequence: 1
  givenname: Yuzhong
  surname: Xiao
  fullname: Xiao, Yuzhong
  organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
– sequence: 2
  givenname: Yalan
  surname: Deng
  fullname: Deng, Yalan
  organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
– sequence: 3
  givenname: Feixiang
  surname: Yuan
  fullname: Yuan, Feixiang
  organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
– sequence: 4
  givenname: Tingting
  surname: Xia
  fullname: Xia, Tingting
  organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
– sequence: 5
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
  organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
– sequence: 6
  givenname: Zhigang
  surname: Li
  fullname: Li, Zhigang
  organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
– sequence: 7
  givenname: Zhixue
  surname: Liu
  fullname: Liu, Zhixue
  organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
– sequence: 8
  givenname: Hao
  surname: Ying
  fullname: Ying, Hao
  organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
– sequence: 9
  givenname: Yi
  surname: Liu
  fullname: Liu, Yi
  organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
– sequence: 10
  givenname: Qiwei
  surname: Zhai
  fullname: Zhai, Qiwei
  organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
– sequence: 11
  givenname: Shanghai
  surname: Chen
  fullname: Chen, Shanghai
  organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
– sequence: 12
  givenname: Feifan
  surname: Guo
  fullname: Guo, Feifan
  organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28213613$$D View this record in MEDLINE/PubMed
BookMark eNqF0ctu1DAUBmALFdFpYcELIEts6CKML4kTL0fVTItULoJBYmc59sngKrGD7SDm7ZvQdlMWyAtL1nd-yec_Qyc-eEDoNSXvGef12rZUFLQqxTO0opLLgrP6xwlaEUJZQWtZn6KzlG4JIWI-L9ApaxjlgvIVSpv9rlxv9lcV_uYOXvfOH7Dz-Po4hvxT93pwBn-JIYwuDNBrH0yIeQafYIrBJ_wVDlOvMyS80xl_1Cnh307jTdeByUvY1kM8HPH2zwjeujxFeImed7pP8OrhPkffd9v95XVx8_nqw-XmpjAlZbmoW8lMBVZW1mgpDKV1SyXrDLe8ZU3bCGCMMmMla01jCRNlWdnOlPMLEC34OXp3nzvG8GuClNXgkoF-_gWEKSkqiSgrUQn5f9oIKYWoOJ_p2yf0Nkxx3twSyBmpePNXvXlQUzuAVWN0g45H9bj5GazvgYkhpQidMi7r7ILPUbteUaKWbtXSrVq6nScunkw8hv5r7wBlIqL4
CitedBy_id crossref_primary_10_1096_fj_202300265RR
crossref_primary_10_1016_j_jep_2019_111953
crossref_primary_10_1038_s41467_020_15624_y
crossref_primary_10_3390_antiox11081597
crossref_primary_10_1053_j_gastro_2018_11_033
crossref_primary_10_1016_j_molmet_2021_101338
crossref_primary_10_1111_jne_12598
crossref_primary_10_1016_j_ijbiomac_2023_124316
crossref_primary_10_3389_fnins_2022_947295
crossref_primary_10_1111_acel_13077
crossref_primary_10_1155_2017_4367019
crossref_primary_10_1210_endrev_bnaa026
crossref_primary_10_1016_j_jlr_2023_100368
crossref_primary_10_1007_s11596_023_2781_y
crossref_primary_10_1016_j_apsb_2019_11_017
crossref_primary_10_1016_j_molmet_2020_100994
crossref_primary_10_1038_s41401_021_00672_x
crossref_primary_10_1016_j_bbadis_2025_167682
crossref_primary_10_1021_acsnano_8b09375
crossref_primary_10_1096_fj_202002607
crossref_primary_10_1016_j_tem_2019_01_002
crossref_primary_10_1515_mr_2022_0017
crossref_primary_10_1016_j_molmet_2021_101186
crossref_primary_10_1016_j_molmet_2023_101840
crossref_primary_10_1016_j_cmet_2020_01_002
crossref_primary_10_1002_advs_202102568
crossref_primary_10_1089_ars_2018_7626
crossref_primary_10_1134_S000629792004001X
crossref_primary_10_3390_cells11060920
Cites_doi 10.2337/db11-1278
10.1038/nm.2724
10.1172/JCI39366
10.1038/ncomms3300
10.2337/db12-1050
10.1172/JCI76220
10.1007/s001250051472
10.1038/emboj.2010.81
10.1042/BJ20110263
10.1126/scisignal.2005485
10.1074/jbc.M114.633990
10.1093/nar/gkt563
10.1016/j.abb.2008.05.006
10.1038/cr.2010.4
10.1038/nature03029
10.1038/nature11705
10.1016/j.cell.2014.09.010
10.1016/j.ejphar.2010.10.107
10.1016/j.cmet.2011.12.016
10.1172/JCI40027
10.1172/JCI31743
10.1038/nm.4137
10.1016/j.cmet.2011.12.013
10.1038/35007527
10.1371/journal.pone.0029043
10.1093/bioinformatics/bti473
10.1210/me.2015-1232
10.2337/db15-1024
10.1038/nn.3861
10.1038/sj.emboj.7600596
10.1016/j.cell.2013.09.003
10.15252/embj.201592864
10.4161/cc.20046
10.1098/rsob.160131
10.1126/science.1104344
10.1093/nar/19.22.6332
10.1038/embor.2011.260
10.1016/j.cmet.2015.10.008
10.1083/jcb.201403009
10.1016/j.cmet.2014.06.002
10.2337/db09-0335
10.1146/annurev-cellbio-092910-154005
10.1172/JCI68585
10.1016/j.cmet.2011.06.008
10.1210/en.2011-1882
10.1016/j.neuron.2004.06.004
ContentType Journal Article
Copyright 2017 by the American Diabetes Association.
Copyright American Diabetes Association May 1, 2017
Copyright_xml – notice: 2017 by the American Diabetes Association.
– notice: Copyright American Diabetes Association May 1, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
7T5
7TK
H94
DOI 10.2337/db16-1546
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Neurosciences Abstracts
Immunology Abstracts
DatabaseTitleList AIDS and Cancer Research Abstracts
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
EndPage 1158
ExternalDocumentID 28213613
10_2337_db16_1546
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.55
.XZ
08P
0R~
18M
29F
2WC
354
4.4
53G
5GY
5RE
5RS
5VS
6PF
8R4
8R5
AAFWJ
AAQQT
AAWTL
AAYEP
AAYOK
AAYXX
ABOCM
ACGFO
ACGOD
ACPRK
ADBBV
AEGXH
AENEX
AERZD
AHMBA
AIAGR
AIZAD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BES
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EDB
EJD
EMOBN
EX3
F5P
FRP
GX1
H13
HZ~
IAO
IEA
IHR
INH
INR
IOF
IPO
K2M
KQ8
L7B
M5~
O5R
O5S
O9-
OHH
OK1
OVD
P2P
PCD
Q2X
RHI
RPM
SJN
SV3
TDI
TEORI
TR2
VVN
W8F
WH7
WOQ
WOW
X7M
YFH
YHG
YOC
ZY1
~KM
.GJ
1CY
3V.
7RV
7X7
88E
88I
8AF
8AO
8C1
8F7
8FE
8FH
8FI
8FJ
8G5
8GL
AAKAS
AAYJJ
ABUWG
ADZCM
AFFNX
AFHIN
AFKRA
AI.
AZQEC
BBNVY
BCR
BCU
BEC
BENPR
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BVXVI
C1A
CCPQU
CGR
CUY
CVF
DWQXO
ECM
EIF
FYUFA
GICCO
GNUQQ
GUQSH
HCIFZ
HMCUK
H~9
IAG
ITC
J5H
K-O
K9-
LK8
M0R
M1P
M2O
M2P
M2Q
M7P
MVM
N4W
NAPCQ
NPM
OB3
PEA
PKN
PQQKQ
PROAC
PSQYO
RHF
S0X
SJFOW
UKHRP
VH1
XOL
YQJ
ZGI
ZXP
K9.
7X8
7T5
7TK
H94
ID FETCH-LOGICAL-c412t-7b92c5ed95dca96c117b192fc3d3b28b86e2212cd92bc8d026445dfc4cd9e0a63
ISSN 0012-1797
1939-327X
IngestDate Fri Jul 11 00:02:05 EDT 2025
Thu Jul 10 19:34:06 EDT 2025
Fri Jul 25 19:35:36 EDT 2025
Wed Feb 19 02:42:50 EST 2025
Thu Apr 24 23:11:50 EDT 2025
Tue Jul 01 03:11:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2017 by the American Diabetes Association.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-7b92c5ed95dca96c117b192fc3d3b28b86e2212cd92bc8d026445dfc4cd9e0a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28213613
PQID 1932053833
PQPubID 34443
PageCount 13
ParticipantIDs proquest_miscellaneous_1906456569
proquest_miscellaneous_1869966533
proquest_journals_1932053833
pubmed_primary_28213613
crossref_citationtrail_10_2337_db16_1546
crossref_primary_10_2337_db16_1546
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2017
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References Xia (2022031303344285100_B31) 2012; 61
Chiappini (2022031303344285100_B30) 2014; 124
Pyo (2022031303344285100_B19) 2013; 4
Schneeberger (2022031303344285100_B6) 2013; 155
Xiao (2022031303344285100_B37) 2016; 65
Wu (2022031303344285100_B35) 2011; 6
Mielnicki (2022031303344285100_B7) 1991; 19
Ristic (2022031303344285100_B44) 2016; 17
Lowell (2022031303344285100_B45) 2000; 404
Flak (2022031303344285100_B40) 2014; 17
Ueda (2022031303344285100_B33) 2000; 43
Leshan (2022031303344285100_B2) 2012; 18
Martinez-Lopez (2022031303344285100_B20) 2016; 23
Nogueiras (2022031303344285100_B49) 2007; 117
Rouschop (2022031303344285100_B27) 2010; 120
Ruan (2022031303344285100_B5) 2014; 159
Quan (2022031303344285100_B21) 2012; 153
Myers (2022031303344285100_B4) 2012; 491
Seeley (2022031303344285100_B39) 2016; 22
Williams (2022031303344285100_B47) 2014; 20
Balthasar (2022031303344285100_B28) 2004; 42
Kuma (2022031303344285100_B29) 2004; 432
Mizushima (2022031303344285100_B23) 2011; 27
Li (2022031303344285100_B11) 2011; 438
Perino (2022031303344285100_B50) 2014; 7
Coupé (2022031303344285100_B15) 2012; 11
Yoshizawa (2022031303344285100_B12) 2009; 119
Ye (2022031303344285100_B24) 2010; 29
Malhotra (2022031303344285100_B41) 2015; 11
Kaushik (2022031303344285100_B18) 2011; 14
Ryan (2022031303344285100_B3) 2012; 15
Zhang (2022031303344285100_B36) 2013; 62
B’chir (2022031303344285100_B26) 2013; 41
Xiao (2022031303344285100_B34) 2016; 6
Flak (2022031303344285100_B46) 2016; 30
Li (2022031303344285100_B13) 2015; 290
Mizushima (2022031303344285100_B14) 2009; 335
Seo (2022031303344285100_B10) 2009; 58
Long (2022031303344285100_B32) 2014; 124
Wang (2022031303344285100_B8) 2010; 20
Xu (2022031303344285100_B38) 2016; 35
Coupé (2022031303344285100_B16) 2012; 15
Schwartz (2022031303344285100_B1) 2005; 307
Morselli (2022031303344285100_B22) 2014
Kaushik (2022031303344285100_B17) 2012; 13
Ohoka (2022031303344285100_B42) 2005; 24
Wardlaw (2022031303344285100_B48) 2011; 660
Mamady (2022031303344285100_B9) 2008; 477
Cartharius (2022031303344285100_B43) 2005; 21
Chen (2022031303344285100_B25) 2014; 206
References_xml – volume: 61
  start-page: 2461
  year: 2012
  ident: 2022031303344285100_B31
  article-title: S6K1 in the central nervous system regulates energy expenditure via MC4R/CRH pathways in response to deprivation of an essential amino acid
  publication-title: Diabetes
  doi: 10.2337/db11-1278
– volume: 18
  start-page: 820
  year: 2012
  ident: 2022031303344285100_B2
  article-title: Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance
  publication-title: Nat Med
  doi: 10.1038/nm.2724
– volume: 119
  start-page: 2807
  year: 2009
  ident: 2022031303344285100_B12
  article-title: The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts
  publication-title: J Clin Invest
  doi: 10.1172/JCI39366
– volume: 4
  start-page: 2300
  year: 2013
  ident: 2022031303344285100_B19
  article-title: Overexpression of Atg5 in mice activates autophagy and extends lifespan
  publication-title: Nat Commun
  doi: 10.1038/ncomms3300
– volume: 62
  start-page: 2230
  year: 2013
  ident: 2022031303344285100_B36
  article-title: Central activating transcription factor 4 (ATF4) regulates hepatic insulin resistance in mice via S6K1 signaling and the vagus nerve
  publication-title: Diabetes
  doi: 10.2337/db12-1050
– volume: 124
  start-page: 4017
  year: 2014
  ident: 2022031303344285100_B32
  article-title: PPARγ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding
  publication-title: J Clin Invest
  doi: 10.1172/JCI76220
– volume: 43
  start-page: 932
  year: 2000
  ident: 2022031303344285100_B33
  article-title: Age-dependent changes in phenotypes and candidate gene analysis in a polygenic animal model of Type II diabetes mellitus; NSY mouse
  publication-title: Diabetologia
  doi: 10.1007/s001250051472
– volume: 29
  start-page: 2082
  year: 2010
  ident: 2022031303344285100_B24
  article-title: The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation
  publication-title: EMBO J
  doi: 10.1038/emboj.2010.81
– volume: 438
  start-page: 283
  year: 2011
  ident: 2022031303344285100_B11
  article-title: ATF4 deficiency protects mice from high-carbohydrate-diet-induced liver steatosis
  publication-title: Biochem J
  doi: 10.1042/BJ20110263
– volume: 7
  start-page: ra110
  year: 2014
  ident: 2022031303344285100_B50
  article-title: Combined inhibition of PI3Kβ and PI3Kγ reduces fat mass by enhancing α-MSH-dependent sympathetic drive
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2005485
– volume: 290
  start-page: 8185
  year: 2015
  ident: 2022031303344285100_B13
  article-title: MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.633990
– volume: 41
  start-page: 7683
  year: 2013
  ident: 2022031303344285100_B26
  article-title: The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt563
– volume: 477
  start-page: 77
  year: 2008
  ident: 2022031303344285100_B9
  article-title: Coping with the stress: expression of ATF4, ATF6, and downstream targets in organs of hibernating ground squirrels
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2008.05.006
– volume: 20
  start-page: 174
  year: 2010
  ident: 2022031303344285100_B8
  article-title: ATF4 regulates lipid metabolism and thermogenesis
  publication-title: Cell Res
  doi: 10.1038/cr.2010.4
– volume: 432
  start-page: 1032
  year: 2004
  ident: 2022031303344285100_B29
  article-title: The role of autophagy during the early neonatal starvation period
  publication-title: Nature
  doi: 10.1038/nature03029
– volume: 491
  start-page: 357
  year: 2012
  ident: 2022031303344285100_B4
  article-title: Central nervous system control of metabolism
  publication-title: Nature
  doi: 10.1038/nature11705
– volume: 159
  start-page: 306
  year: 2014
  ident: 2022031303344285100_B5
  article-title: O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.010
– volume: 660
  start-page: 213
  year: 2011
  ident: 2022031303344285100_B48
  article-title: Hypothalamic proopiomelanocortin processing and the regulation of energy balance
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2010.10.107
– volume: 15
  start-page: 247
  year: 2012
  ident: 2022031303344285100_B16
  article-title: Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.12.016
– volume: 120
  start-page: 127
  year: 2010
  ident: 2022031303344285100_B27
  article-title: The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5
  publication-title: J Clin Invest
  doi: 10.1172/JCI40027
– volume: 117
  start-page: 3475
  year: 2007
  ident: 2022031303344285100_B49
  article-title: The central melanocortin system directly controls peripheral lipid metabolism
  publication-title: J Clin Invest
  doi: 10.1172/JCI31743
– volume: 22
  start-page: 709
  year: 2016
  ident: 2022031303344285100_B39
  article-title: Targeting the brain as a cure for type 2 diabetes
  publication-title: Nat Med
  doi: 10.1038/nm.4137
– volume: 15
  start-page: 137
  year: 2012
  ident: 2022031303344285100_B3
  article-title: Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.12.013
– volume: 404
  start-page: 652
  year: 2000
  ident: 2022031303344285100_B45
  article-title: Towards a molecular understanding of adaptive thermogenesis
  publication-title: Nature
  doi: 10.1038/35007527
– volume: 6
  start-page: e29043
  year: 2011
  ident: 2022031303344285100_B35
  article-title: A miR-200b/200c/429-binding site polymorphism in the 3′ untranslated region of the AP-2α gene is associated with cisplatin resistance
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0029043
– volume: 21
  start-page: 2933
  year: 2005
  ident: 2022031303344285100_B43
  article-title: MatInspector and beyond: promoter analysis based on transcription factor binding sites
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti473
– volume: 30
  start-page: 3
  year: 2016
  ident: 2022031303344285100_B46
  article-title: Minireview: CNS mechanisms of leptin action
  publication-title: Mol Endocrinol
  doi: 10.1210/me.2015-1232
– volume: 335
  start-page: 71
  year: 2009
  ident: 2022031303344285100_B14
  article-title: Physiological functions of autophagy
  publication-title: Curr Top Microbiol Immunol
– volume: 65
  start-page: 393
  year: 2016
  ident: 2022031303344285100_B37
  article-title: Activation of ERK1/2 ameliorates liver steatosis in leptin receptor-deficient (db/db) mice via stimulating ATG7-dependent autophagy
  publication-title: Diabetes
  doi: 10.2337/db15-1024
– volume: 17
  start-page: 1744
  year: 2014
  ident: 2022031303344285100_B40
  article-title: Leptin-inhibited PBN neurons enhance responses to hypoglycemia in negative energy balance
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3861
– volume: 24
  start-page: 1243
  year: 2005
  ident: 2022031303344285100_B42
  article-title: TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600596
– volume: 155
  start-page: 172
  year: 2013
  ident: 2022031303344285100_B6
  article-title: Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance
  publication-title: Cell
  doi: 10.1016/j.cell.2013.09.003
– volume: 35
  start-page: 496
  year: 2016
  ident: 2022031303344285100_B38
  article-title: PAQR3 controls autophagy by integrating AMPK signaling to enhance ATG14L-associated PI3K activity
  publication-title: EMBO J
  doi: 10.15252/embj.201592864
– volume: 11
  start-page: 1477
  year: 2012
  ident: 2022031303344285100_B15
  article-title: Weighing on autophagy: a novel mechanism for the CNS regulation of energy balance
  publication-title: Cell Cycle
  doi: 10.4161/cc.20046
– volume: 6
  start-page: 160131
  year: 2016
  ident: 2022031303344285100_B34
  article-title: Knockout of inositol-requiring enzyme 1α in pro-opiomelanocortin neurons decreases fat mass via increasing energy expenditure
  publication-title: Open Biol
  doi: 10.1098/rsob.160131
– volume: 307
  start-page: 375
  year: 2005
  ident: 2022031303344285100_B1
  article-title: Diabetes, obesity, and the brain
  publication-title: Science
  doi: 10.1126/science.1104344
– volume: 19
  start-page: 6332
  year: 1991
  ident: 2022031303344285100_B7
  article-title: Isolation and nucleotide sequence of a murine cDNA homologous to human activating transcription factor 4
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/19.22.6332
– volume: 13
  start-page: 258
  year: 2012
  ident: 2022031303344285100_B17
  article-title: Loss of autophagy in hypothalamic POMC neurons impairs lipolysis
  publication-title: EMBO Rep
  doi: 10.1038/embor.2011.260
– volume: 23
  start-page: 113
  year: 2016
  ident: 2022031303344285100_B20
  article-title: Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2015.10.008
– volume: 206
  start-page: 173
  year: 2014
  ident: 2022031303344285100_B25
  article-title: The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201403009
– volume: 17
  start-page: 711
  year: 2016
  ident: 2022031303344285100_B44
  article-title: Diet-induced obesity and ghrelin effects on pituitary gonadotrophs: immunohistomorphometric study in male rats
  publication-title: Cell J
– volume: 20
  start-page: 471
  year: 2014
  ident: 2022031303344285100_B47
  article-title: Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2014.06.002
– volume: 58
  start-page: 2565
  year: 2009
  ident: 2022031303344285100_B10
  article-title: Atf4 regulates obesity, glucose homeostasis, and energy expenditure
  publication-title: Diabetes
  doi: 10.2337/db09-0335
– start-page: e561
  volume-title: Inflamm Cell Signal
  year: 2014
  ident: 2022031303344285100_B22
  article-title: Chronic high fat diet consumption impairs metabolic health of male mice
– volume: 27
  start-page: 107
  year: 2011
  ident: 2022031303344285100_B23
  article-title: The role of Atg proteins in autophagosome formation
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev-cellbio-092910-154005
– volume: 124
  start-page: 3781
  year: 2014
  ident: 2022031303344285100_B30
  article-title: Ventromedial hypothalamus-specific Ptpn1 deletion exacerbates diet-induced obesity in female mice
  publication-title: J Clin Invest
  doi: 10.1172/JCI68585
– volume: 11
  start-page: 145
  year: 2015
  ident: 2022031303344285100_B41
  article-title: Loss of Atg12, but not Atg5, in pro-opiomelanocortin neurons exacerbates diet-induced obesity
  publication-title: Autophagy
– volume: 14
  start-page: 173
  year: 2011
  ident: 2022031303344285100_B18
  article-title: Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.06.008
– volume: 153
  start-page: 1817
  year: 2012
  ident: 2022031303344285100_B21
  article-title: Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response
  publication-title: Endocrinology
  doi: 10.1210/en.2011-1882
– volume: 42
  start-page: 983
  year: 2004
  ident: 2022031303344285100_B28
  article-title: Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.06.004
SSID ssj0006060
Score 2.3880806
Snippet Although many biological functions of activating transcription factor 4 (ATF4) have been identified, a role of hypothalamic ATF4 in the regulation of energy...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1146
SubjectTerms Activating transcription factor 4
Activating Transcription Factor 4 - genetics
Activating Transcription Factor 4 - metabolism
Adipose Tissue - metabolism
Adipose Tissue - pathology
Adipose Tissue, Brown - metabolism
Adipose Tissue, Brown - pathology
Adipose Tissue, White - metabolism
Adipose Tissue, White - pathology
Animals
Autophagy-Related Protein 5 - genetics
Autophagy-Related Protein 5 - metabolism
Blood Glucose - metabolism
Blotting, Western
Body fat
Corticosterone - metabolism
Energy
Energy balance
Energy expenditure
Energy Metabolism - genetics
Fluorescent Antibody Technique
Glucose tolerance
Glucose Tolerance Test
Growth Hormone - metabolism
High fat diet
Homeostasis
Hypothalamus
Hypothalamus - cytology
Hypothalamus - metabolism
Insulin - metabolism
Insulin Resistance
Intolerance
Leptin
Leptin - metabolism
Melanocyte-stimulating hormone
Metabolic disorders
Mice
Mice, Knockout
Neurons
Neurons - metabolism
Norepinephrine - metabolism
Obesity
Oils & fats
Organ Size
Phagocytosis
Pro-Opiomelanocortin - metabolism
Proopiomelanocortin
Real-Time Polymerase Chain Reaction
Signal Transduction
Transcription factors
Title ATF4/ATG5 Signaling in Hypothalamic Proopiomelanocortin Neurons Regulates Fat Mass via Affecting Energy Expenditure
URI https://www.ncbi.nlm.nih.gov/pubmed/28213613
https://www.proquest.com/docview/1932053833
https://www.proquest.com/docview/1869966533
https://www.proquest.com/docview/1906456569
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKkBAviG86BjKIB6QqbHG-Hyu60DE6Ia2TuqfIdpwSqUormkywH8Lv5d7YNaEqE_ASVallWb4n1-de-x4T8kYUqOENzE0oP3R8zoQjPJk4Is5d6UfC563s4uQsHF_4H2fBrNf70Tm11NTinbzeWVfyP1aFd2BXrJL9B8vaTuEF_Ab7whMsDM-_svFwmvooiDD9EAzOyzlyal2hMv6-AgvwBW9PvgM5XmGV_YJXSwg2a2jQanJUWCPSXkWv1oOU14MJMOnBVclxnwcdIXR2rGsDUREZN7eN_siGzo46mdvtO306OYZZyduM7GVz_WVplkokz0o7mks8XmndT6NTsqkqvwF0550-NLaqeb1Zbk22AlZAezawUyAAnsuObxuFxk-7DIVT9VKstGtOvMTxWDTr-m59Y4vBaNBxxK7JbG6vEMxrNQZy4YYOsMcdKtzj4Xn2eZRmn07OTm-R2wzCD3T4o5NTu8JD0KdLm8wotWIVdn1oO_6d5_wheGlJzPQ-uWeiDzrUUHpAeqp6SO5MzPmKR2SNiDpEPFGLJ1pWtIsnugNP1OCJWjxRwBNFPFHAE7V4ohpPtIOnx-QiPZ6-HzvmWg5H-i6rnUgkTAYqT4Jc8iSUrhsJiBMK6eWeYLGIQ8WAEMk8YULG-RFS7iAvpA9v1BEPvSdkr1pW6hmhQvBCRUFUSNQcYkXCQwkBsCuZymPl8j55u5nETBrNerw6ZZFB7IrzneF8ZzjfffLaNl1poZZdjQ42lsjMd7zOMISBpSj2vD55Zf8GL4tbZ7xSywbaxCEmBoIb2ySo_QjxUdInT7WV7UhYzFwPmPP-zQN4Tu7--mgOyF79tVEvgPTW4mWLwJ-Zuq9h
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ATF4%2FATG5+Signaling+in+Hypothalamic+Proopiomelanocortin+Neurons+Regulates+Fat+Mass+via+Affecting+Energy+Expenditure&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Xiao%2C+Yuzhong&rft.au=Deng%2C+Yalan&rft.au=Yuan%2C+Feixiang&rft.au=Xia%2C+Tingting&rft.date=2017-05-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.eissn=1939-327X&rft.volume=66&rft.issue=5&rft.spage=1146&rft_id=info:doi/10.2337%2Fdb16-1546&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon