ATF4/ATG5 Signaling in Hypothalamic Proopiomelanocortin Neurons Regulates Fat Mass via Affecting Energy Expenditure
Although many biological functions of activating transcription factor 4 (ATF4) have been identified, a role of hypothalamic ATF4 in the regulation of energy homeostasis is poorly understood. In this study, we showed that hypothalamic proopiomelanocortin (POMC) neuron–specific ATF4 knockout (PAKO) mi...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 66; no. 5; pp. 1146 - 1158 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Diabetes Association
01.05.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0012-1797 1939-327X 1939-327X |
DOI | 10.2337/db16-1546 |
Cover
Loading…
Abstract | Although many biological functions of activating transcription factor 4 (ATF4) have been identified, a role of hypothalamic ATF4 in the regulation of energy homeostasis is poorly understood. In this study, we showed that hypothalamic proopiomelanocortin (POMC) neuron–specific ATF4 knockout (PAKO) mice are lean and have higher energy expenditure. Furthermore, PAKO mice were resistant to high-fat diet–induced obesity, glucose intolerance, and leptin resistance. Moreover, the expression of autophagy protein 5 (ATG5) was increased or decreased by ATF4 knockdown or overexpression, respectively, and ATF4 inhibited the transcription of ATG5 by binding to the basic zipper-containing protein sites on its promoter. Importantly, mice with double knockout of ATF4 and ATG5 in POMC neurons gained more fat mass and reduced energy expenditure compared with PAKO mice under a high-fat diet. Finally, the effect of ATF4 deletion in POMC neurons was possibly mediated via enhanced ATG5-dependent autophagy and α-melanocyte–stimulating hormone production in the hypothalamus. Taken together, these results identify the beneficial role of hypothalamic ATF4/ATG5 axis in the regulation of energy expenditure, obesity, and obesity-related metabolic disorders, which suggests that ATF4/ATG5 axis in the hypothalamus may be a new potential therapeutic target for treating obesity and obesity-related metabolic diseases. |
---|---|
AbstractList | Although many biological functions of activating transcription factor 4 (ATF4) have been identified, a role of hypothalamic ATF4 in the regulation of energy homeostasis is poorly understood. In this study, we showed that hypothalamic proopiomelanocortin (POMC) neuron-specific ATF4 knockout (PAKO) mice are lean and have higher energy expenditure. Furthermore, PAKO mice were resistant to high-fat diet-induced obesity, glucose intolerance, and leptin resistance. Moreover, the expression of autophagy protein 5 (ATG5) was increased or decreased by ATF4 knockdown or overexpression, respectively, and ATF4 inhibited the transcription of ATG5 by binding to the basic zipper-containing protein sites on its promoter. Importantly, mice with double knockout of ATF4 and ATG5 in POMC neurons gained more fat mass and reduced energy expenditure compared with PAKO mice under a high-fat diet. Finally, the effect of ATF4 deletion in POMC neurons was possibly mediated via enhanced ATG5-dependent autophagy and alpha -melanocyte-stimulating hormone production in the hypothalamus. Taken together, these results identify the beneficial role of hypothalamic ATF4/ATG5 axis in the regulation of energy expenditure, obesity, and obesity-related metabolic disorders, which suggests that ATF4/ATG5 axis in the hypothalamus may be a new potential therapeutic target for treating obesity and obesity-related metabolic diseases. Although many biological functions of activating transcription factor 4 (ATF4) have been identified, a role of hypothalamic ATF4 in the regulation of energy homeostasis is poorly understood. In this study, we showed that hypothalamic proopiomelanocortin (POMC) neuron–specific ATF4 knockout (PAKO) mice are lean and have higher energy expenditure. Furthermore, PAKO mice were resistant to high-fat diet–induced obesity, glucose intolerance, and leptin resistance. Moreover, the expression of autophagy protein 5 (ATG5) was increased or decreased by ATF4 knockdown or overexpression, respectively, and ATF4 inhibited the transcription of ATG5 by binding to the basic zipper-containing protein sites on its promoter. Importantly, mice with double knockout of ATF4 and ATG5 in POMC neurons gained more fat mass and reduced energy expenditure compared with PAKO mice under a high-fat diet. Finally, the effect of ATF4 deletion in POMC neurons was possibly mediated via enhanced ATG5-dependent autophagy and α-melanocyte–stimulating hormone production in the hypothalamus. Taken together, these results identify the beneficial role of hypothalamic ATF4/ATG5 axis in the regulation of energy expenditure, obesity, and obesity-related metabolic disorders, which suggests that ATF4/ATG5 axis in the hypothalamus may be a new potential therapeutic target for treating obesity and obesity-related metabolic diseases. Although many biological functions of activating transcription factor 4 (ATF4) have been identified, a role of hypothalamic ATF4 in the regulation of energy homeostasis is poorly understood. In this study, we showed that hypothalamic proopiomelanocortin (POMC) neuron-specific ATF4 knockout (PAKO) mice are lean and have higher energy expenditure. Furthermore, PAKO mice were resistant to high-fat diet-induced obesity, glucose intolerance, and leptin resistance. Moreover, the expression of autophagy protein 5 (ATG5) was increased or decreased by ATF4 knockdown or overexpression, respectively, and ATF4 inhibited the transcription of ATG5 by binding to the basic zipper-containing protein sites on its promoter. Importantly, mice with double knockout of ATF4 and ATG5 in POMC neurons gained more fat mass and reduced energy expenditure compared with PAKO mice under a high-fat diet. Finally, the effect of ATF4 deletion in POMC neurons was possibly mediated via enhanced ATG5-dependent autophagy and α-melanocyte-stimulating hormone production in the hypothalamus. Taken together, these results identify the beneficial role of hypothalamic ATF4/ATG5 axis in the regulation of energy expenditure, obesity, and obesity-related metabolic disorders, which suggests that ATF4/ATG5 axis in the hypothalamus may be a new potential therapeutic target for treating obesity and obesity-related metabolic diseases.Although many biological functions of activating transcription factor 4 (ATF4) have been identified, a role of hypothalamic ATF4 in the regulation of energy homeostasis is poorly understood. In this study, we showed that hypothalamic proopiomelanocortin (POMC) neuron-specific ATF4 knockout (PAKO) mice are lean and have higher energy expenditure. Furthermore, PAKO mice were resistant to high-fat diet-induced obesity, glucose intolerance, and leptin resistance. Moreover, the expression of autophagy protein 5 (ATG5) was increased or decreased by ATF4 knockdown or overexpression, respectively, and ATF4 inhibited the transcription of ATG5 by binding to the basic zipper-containing protein sites on its promoter. Importantly, mice with double knockout of ATF4 and ATG5 in POMC neurons gained more fat mass and reduced energy expenditure compared with PAKO mice under a high-fat diet. Finally, the effect of ATF4 deletion in POMC neurons was possibly mediated via enhanced ATG5-dependent autophagy and α-melanocyte-stimulating hormone production in the hypothalamus. Taken together, these results identify the beneficial role of hypothalamic ATF4/ATG5 axis in the regulation of energy expenditure, obesity, and obesity-related metabolic disorders, which suggests that ATF4/ATG5 axis in the hypothalamus may be a new potential therapeutic target for treating obesity and obesity-related metabolic diseases. |
Author | Liu, Hao Li, Zhigang Chen, Shanghai Xiao, Yuzhong Yuan, Feixiang Xia, Tingting Zhai, Qiwei Liu, Yi Guo, Feifan Deng, Yalan Ying, Hao Liu, Zhixue |
Author_xml | – sequence: 1 givenname: Yuzhong surname: Xiao fullname: Xiao, Yuzhong organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China – sequence: 2 givenname: Yalan surname: Deng fullname: Deng, Yalan organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China – sequence: 3 givenname: Feixiang surname: Yuan fullname: Yuan, Feixiang organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China – sequence: 4 givenname: Tingting surname: Xia fullname: Xia, Tingting organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China – sequence: 5 givenname: Hao surname: Liu fullname: Liu, Hao organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China – sequence: 6 givenname: Zhigang surname: Li fullname: Li, Zhigang organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China – sequence: 7 givenname: Zhixue surname: Liu fullname: Liu, Zhixue organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China – sequence: 8 givenname: Hao surname: Ying fullname: Ying, Hao organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China – sequence: 9 givenname: Yi surname: Liu fullname: Liu, Yi organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China – sequence: 10 givenname: Qiwei surname: Zhai fullname: Zhai, Qiwei organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China – sequence: 11 givenname: Shanghai surname: Chen fullname: Chen, Shanghai organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China – sequence: 12 givenname: Feifan surname: Guo fullname: Guo, Feifan organization: Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28213613$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ctu1DAUBmALFdFpYcELIEts6CKML4kTL0fVTItULoJBYmc59sngKrGD7SDm7ZvQdlMWyAtL1nd-yec_Qyc-eEDoNSXvGef12rZUFLQqxTO0opLLgrP6xwlaEUJZQWtZn6KzlG4JIWI-L9ApaxjlgvIVSpv9rlxv9lcV_uYOXvfOH7Dz-Po4hvxT93pwBn-JIYwuDNBrH0yIeQafYIrBJ_wVDlOvMyS80xl_1Cnh307jTdeByUvY1kM8HPH2zwjeujxFeImed7pP8OrhPkffd9v95XVx8_nqw-XmpjAlZbmoW8lMBVZW1mgpDKV1SyXrDLe8ZU3bCGCMMmMla01jCRNlWdnOlPMLEC34OXp3nzvG8GuClNXgkoF-_gWEKSkqiSgrUQn5f9oIKYWoOJ_p2yf0Nkxx3twSyBmpePNXvXlQUzuAVWN0g45H9bj5GazvgYkhpQidMi7r7ILPUbteUaKWbtXSrVq6nScunkw8hv5r7wBlIqL4 |
CitedBy_id | crossref_primary_10_1096_fj_202300265RR crossref_primary_10_1016_j_jep_2019_111953 crossref_primary_10_1038_s41467_020_15624_y crossref_primary_10_3390_antiox11081597 crossref_primary_10_1053_j_gastro_2018_11_033 crossref_primary_10_1016_j_molmet_2021_101338 crossref_primary_10_1111_jne_12598 crossref_primary_10_1016_j_ijbiomac_2023_124316 crossref_primary_10_3389_fnins_2022_947295 crossref_primary_10_1111_acel_13077 crossref_primary_10_1155_2017_4367019 crossref_primary_10_1210_endrev_bnaa026 crossref_primary_10_1016_j_jlr_2023_100368 crossref_primary_10_1007_s11596_023_2781_y crossref_primary_10_1016_j_apsb_2019_11_017 crossref_primary_10_1016_j_molmet_2020_100994 crossref_primary_10_1038_s41401_021_00672_x crossref_primary_10_1016_j_bbadis_2025_167682 crossref_primary_10_1021_acsnano_8b09375 crossref_primary_10_1096_fj_202002607 crossref_primary_10_1016_j_tem_2019_01_002 crossref_primary_10_1515_mr_2022_0017 crossref_primary_10_1016_j_molmet_2021_101186 crossref_primary_10_1016_j_molmet_2023_101840 crossref_primary_10_1016_j_cmet_2020_01_002 crossref_primary_10_1002_advs_202102568 crossref_primary_10_1089_ars_2018_7626 crossref_primary_10_1134_S000629792004001X crossref_primary_10_3390_cells11060920 |
Cites_doi | 10.2337/db11-1278 10.1038/nm.2724 10.1172/JCI39366 10.1038/ncomms3300 10.2337/db12-1050 10.1172/JCI76220 10.1007/s001250051472 10.1038/emboj.2010.81 10.1042/BJ20110263 10.1126/scisignal.2005485 10.1074/jbc.M114.633990 10.1093/nar/gkt563 10.1016/j.abb.2008.05.006 10.1038/cr.2010.4 10.1038/nature03029 10.1038/nature11705 10.1016/j.cell.2014.09.010 10.1016/j.ejphar.2010.10.107 10.1016/j.cmet.2011.12.016 10.1172/JCI40027 10.1172/JCI31743 10.1038/nm.4137 10.1016/j.cmet.2011.12.013 10.1038/35007527 10.1371/journal.pone.0029043 10.1093/bioinformatics/bti473 10.1210/me.2015-1232 10.2337/db15-1024 10.1038/nn.3861 10.1038/sj.emboj.7600596 10.1016/j.cell.2013.09.003 10.15252/embj.201592864 10.4161/cc.20046 10.1098/rsob.160131 10.1126/science.1104344 10.1093/nar/19.22.6332 10.1038/embor.2011.260 10.1016/j.cmet.2015.10.008 10.1083/jcb.201403009 10.1016/j.cmet.2014.06.002 10.2337/db09-0335 10.1146/annurev-cellbio-092910-154005 10.1172/JCI68585 10.1016/j.cmet.2011.06.008 10.1210/en.2011-1882 10.1016/j.neuron.2004.06.004 |
ContentType | Journal Article |
Copyright | 2017 by the American Diabetes Association. Copyright American Diabetes Association May 1, 2017 |
Copyright_xml | – notice: 2017 by the American Diabetes Association. – notice: Copyright American Diabetes Association May 1, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 7T5 7TK H94 |
DOI | 10.2337/db16-1546 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic AIDS and Cancer Research Abstracts Neurosciences Abstracts Immunology Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1939-327X |
EndPage | 1158 |
ExternalDocumentID | 28213613 10_2337_db16_1546 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .55 .XZ 08P 0R~ 18M 29F 2WC 354 4.4 53G 5GY 5RE 5RS 5VS 6PF 8R4 8R5 AAFWJ AAQQT AAWTL AAYEP AAYOK AAYXX ABOCM ACGFO ACGOD ACPRK ADBBV AEGXH AENEX AERZD AHMBA AIAGR AIZAD ALIPV ALMA_UNASSIGNED_HOLDINGS BAWUL BES BTFSW CITATION CS3 DIK DU5 E3Z EBS EDB EJD EMOBN EX3 F5P FRP GX1 H13 HZ~ IAO IEA IHR INH INR IOF IPO K2M KQ8 L7B M5~ O5R O5S O9- OHH OK1 OVD P2P PCD Q2X RHI RPM SJN SV3 TDI TEORI TR2 VVN W8F WH7 WOQ WOW X7M YFH YHG YOC ZY1 ~KM .GJ 1CY 3V. 7RV 7X7 88E 88I 8AF 8AO 8C1 8F7 8FE 8FH 8FI 8FJ 8G5 8GL AAKAS AAYJJ ABUWG ADZCM AFFNX AFHIN AFKRA AI. AZQEC BBNVY BCR BCU BEC BENPR BHPHI BKEYQ BKNYI BLC BPHCQ BVXVI C1A CCPQU CGR CUY CVF DWQXO ECM EIF FYUFA GICCO GNUQQ GUQSH HCIFZ HMCUK H~9 IAG ITC J5H K-O K9- LK8 M0R M1P M2O M2P M2Q M7P MVM N4W NAPCQ NPM OB3 PEA PKN PQQKQ PROAC PSQYO RHF S0X SJFOW UKHRP VH1 XOL YQJ ZGI ZXP K9. 7X8 7T5 7TK H94 |
ID | FETCH-LOGICAL-c412t-7b92c5ed95dca96c117b192fc3d3b28b86e2212cd92bc8d026445dfc4cd9e0a63 |
ISSN | 0012-1797 1939-327X |
IngestDate | Fri Jul 11 00:02:05 EDT 2025 Thu Jul 10 19:34:06 EDT 2025 Fri Jul 25 19:35:36 EDT 2025 Wed Feb 19 02:42:50 EST 2025 Thu Apr 24 23:11:50 EDT 2025 Tue Jul 01 03:11:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2017 by the American Diabetes Association. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c412t-7b92c5ed95dca96c117b192fc3d3b28b86e2212cd92bc8d026445dfc4cd9e0a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28213613 |
PQID | 1932053833 |
PQPubID | 34443 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1906456569 proquest_miscellaneous_1869966533 proquest_journals_1932053833 pubmed_primary_28213613 crossref_citationtrail_10_2337_db16_1546 crossref_primary_10_2337_db16_1546 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Diabetes (New York, N.Y.) |
PublicationTitleAlternate | Diabetes |
PublicationYear | 2017 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | Xia (2022031303344285100_B31) 2012; 61 Chiappini (2022031303344285100_B30) 2014; 124 Pyo (2022031303344285100_B19) 2013; 4 Schneeberger (2022031303344285100_B6) 2013; 155 Xiao (2022031303344285100_B37) 2016; 65 Wu (2022031303344285100_B35) 2011; 6 Mielnicki (2022031303344285100_B7) 1991; 19 Ristic (2022031303344285100_B44) 2016; 17 Lowell (2022031303344285100_B45) 2000; 404 Flak (2022031303344285100_B40) 2014; 17 Ueda (2022031303344285100_B33) 2000; 43 Leshan (2022031303344285100_B2) 2012; 18 Martinez-Lopez (2022031303344285100_B20) 2016; 23 Nogueiras (2022031303344285100_B49) 2007; 117 Rouschop (2022031303344285100_B27) 2010; 120 Ruan (2022031303344285100_B5) 2014; 159 Quan (2022031303344285100_B21) 2012; 153 Myers (2022031303344285100_B4) 2012; 491 Seeley (2022031303344285100_B39) 2016; 22 Williams (2022031303344285100_B47) 2014; 20 Balthasar (2022031303344285100_B28) 2004; 42 Kuma (2022031303344285100_B29) 2004; 432 Mizushima (2022031303344285100_B23) 2011; 27 Li (2022031303344285100_B11) 2011; 438 Perino (2022031303344285100_B50) 2014; 7 Coupé (2022031303344285100_B15) 2012; 11 Yoshizawa (2022031303344285100_B12) 2009; 119 Ye (2022031303344285100_B24) 2010; 29 Malhotra (2022031303344285100_B41) 2015; 11 Kaushik (2022031303344285100_B18) 2011; 14 Ryan (2022031303344285100_B3) 2012; 15 Zhang (2022031303344285100_B36) 2013; 62 B’chir (2022031303344285100_B26) 2013; 41 Xiao (2022031303344285100_B34) 2016; 6 Flak (2022031303344285100_B46) 2016; 30 Li (2022031303344285100_B13) 2015; 290 Mizushima (2022031303344285100_B14) 2009; 335 Seo (2022031303344285100_B10) 2009; 58 Long (2022031303344285100_B32) 2014; 124 Wang (2022031303344285100_B8) 2010; 20 Xu (2022031303344285100_B38) 2016; 35 Coupé (2022031303344285100_B16) 2012; 15 Schwartz (2022031303344285100_B1) 2005; 307 Morselli (2022031303344285100_B22) 2014 Kaushik (2022031303344285100_B17) 2012; 13 Ohoka (2022031303344285100_B42) 2005; 24 Wardlaw (2022031303344285100_B48) 2011; 660 Mamady (2022031303344285100_B9) 2008; 477 Cartharius (2022031303344285100_B43) 2005; 21 Chen (2022031303344285100_B25) 2014; 206 |
References_xml | – volume: 61 start-page: 2461 year: 2012 ident: 2022031303344285100_B31 article-title: S6K1 in the central nervous system regulates energy expenditure via MC4R/CRH pathways in response to deprivation of an essential amino acid publication-title: Diabetes doi: 10.2337/db11-1278 – volume: 18 start-page: 820 year: 2012 ident: 2022031303344285100_B2 article-title: Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance publication-title: Nat Med doi: 10.1038/nm.2724 – volume: 119 start-page: 2807 year: 2009 ident: 2022031303344285100_B12 article-title: The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts publication-title: J Clin Invest doi: 10.1172/JCI39366 – volume: 4 start-page: 2300 year: 2013 ident: 2022031303344285100_B19 article-title: Overexpression of Atg5 in mice activates autophagy and extends lifespan publication-title: Nat Commun doi: 10.1038/ncomms3300 – volume: 62 start-page: 2230 year: 2013 ident: 2022031303344285100_B36 article-title: Central activating transcription factor 4 (ATF4) regulates hepatic insulin resistance in mice via S6K1 signaling and the vagus nerve publication-title: Diabetes doi: 10.2337/db12-1050 – volume: 124 start-page: 4017 year: 2014 ident: 2022031303344285100_B32 article-title: PPARγ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding publication-title: J Clin Invest doi: 10.1172/JCI76220 – volume: 43 start-page: 932 year: 2000 ident: 2022031303344285100_B33 article-title: Age-dependent changes in phenotypes and candidate gene analysis in a polygenic animal model of Type II diabetes mellitus; NSY mouse publication-title: Diabetologia doi: 10.1007/s001250051472 – volume: 29 start-page: 2082 year: 2010 ident: 2022031303344285100_B24 article-title: The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation publication-title: EMBO J doi: 10.1038/emboj.2010.81 – volume: 438 start-page: 283 year: 2011 ident: 2022031303344285100_B11 article-title: ATF4 deficiency protects mice from high-carbohydrate-diet-induced liver steatosis publication-title: Biochem J doi: 10.1042/BJ20110263 – volume: 7 start-page: ra110 year: 2014 ident: 2022031303344285100_B50 article-title: Combined inhibition of PI3Kβ and PI3Kγ reduces fat mass by enhancing α-MSH-dependent sympathetic drive publication-title: Sci Signal doi: 10.1126/scisignal.2005485 – volume: 290 start-page: 8185 year: 2015 ident: 2022031303344285100_B13 article-title: MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4 publication-title: J Biol Chem doi: 10.1074/jbc.M114.633990 – volume: 41 start-page: 7683 year: 2013 ident: 2022031303344285100_B26 article-title: The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt563 – volume: 477 start-page: 77 year: 2008 ident: 2022031303344285100_B9 article-title: Coping with the stress: expression of ATF4, ATF6, and downstream targets in organs of hibernating ground squirrels publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2008.05.006 – volume: 20 start-page: 174 year: 2010 ident: 2022031303344285100_B8 article-title: ATF4 regulates lipid metabolism and thermogenesis publication-title: Cell Res doi: 10.1038/cr.2010.4 – volume: 432 start-page: 1032 year: 2004 ident: 2022031303344285100_B29 article-title: The role of autophagy during the early neonatal starvation period publication-title: Nature doi: 10.1038/nature03029 – volume: 491 start-page: 357 year: 2012 ident: 2022031303344285100_B4 article-title: Central nervous system control of metabolism publication-title: Nature doi: 10.1038/nature11705 – volume: 159 start-page: 306 year: 2014 ident: 2022031303344285100_B5 article-title: O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat publication-title: Cell doi: 10.1016/j.cell.2014.09.010 – volume: 660 start-page: 213 year: 2011 ident: 2022031303344285100_B48 article-title: Hypothalamic proopiomelanocortin processing and the regulation of energy balance publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2010.10.107 – volume: 15 start-page: 247 year: 2012 ident: 2022031303344285100_B16 article-title: Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation publication-title: Cell Metab doi: 10.1016/j.cmet.2011.12.016 – volume: 120 start-page: 127 year: 2010 ident: 2022031303344285100_B27 article-title: The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5 publication-title: J Clin Invest doi: 10.1172/JCI40027 – volume: 117 start-page: 3475 year: 2007 ident: 2022031303344285100_B49 article-title: The central melanocortin system directly controls peripheral lipid metabolism publication-title: J Clin Invest doi: 10.1172/JCI31743 – volume: 22 start-page: 709 year: 2016 ident: 2022031303344285100_B39 article-title: Targeting the brain as a cure for type 2 diabetes publication-title: Nat Med doi: 10.1038/nm.4137 – volume: 15 start-page: 137 year: 2012 ident: 2022031303344285100_B3 article-title: Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity publication-title: Cell Metab doi: 10.1016/j.cmet.2011.12.013 – volume: 404 start-page: 652 year: 2000 ident: 2022031303344285100_B45 article-title: Towards a molecular understanding of adaptive thermogenesis publication-title: Nature doi: 10.1038/35007527 – volume: 6 start-page: e29043 year: 2011 ident: 2022031303344285100_B35 article-title: A miR-200b/200c/429-binding site polymorphism in the 3′ untranslated region of the AP-2α gene is associated with cisplatin resistance publication-title: PLoS One doi: 10.1371/journal.pone.0029043 – volume: 21 start-page: 2933 year: 2005 ident: 2022031303344285100_B43 article-title: MatInspector and beyond: promoter analysis based on transcription factor binding sites publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti473 – volume: 30 start-page: 3 year: 2016 ident: 2022031303344285100_B46 article-title: Minireview: CNS mechanisms of leptin action publication-title: Mol Endocrinol doi: 10.1210/me.2015-1232 – volume: 335 start-page: 71 year: 2009 ident: 2022031303344285100_B14 article-title: Physiological functions of autophagy publication-title: Curr Top Microbiol Immunol – volume: 65 start-page: 393 year: 2016 ident: 2022031303344285100_B37 article-title: Activation of ERK1/2 ameliorates liver steatosis in leptin receptor-deficient (db/db) mice via stimulating ATG7-dependent autophagy publication-title: Diabetes doi: 10.2337/db15-1024 – volume: 17 start-page: 1744 year: 2014 ident: 2022031303344285100_B40 article-title: Leptin-inhibited PBN neurons enhance responses to hypoglycemia in negative energy balance publication-title: Nat Neurosci doi: 10.1038/nn.3861 – volume: 24 start-page: 1243 year: 2005 ident: 2022031303344285100_B42 article-title: TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death publication-title: EMBO J doi: 10.1038/sj.emboj.7600596 – volume: 155 start-page: 172 year: 2013 ident: 2022031303344285100_B6 article-title: Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance publication-title: Cell doi: 10.1016/j.cell.2013.09.003 – volume: 35 start-page: 496 year: 2016 ident: 2022031303344285100_B38 article-title: PAQR3 controls autophagy by integrating AMPK signaling to enhance ATG14L-associated PI3K activity publication-title: EMBO J doi: 10.15252/embj.201592864 – volume: 11 start-page: 1477 year: 2012 ident: 2022031303344285100_B15 article-title: Weighing on autophagy: a novel mechanism for the CNS regulation of energy balance publication-title: Cell Cycle doi: 10.4161/cc.20046 – volume: 6 start-page: 160131 year: 2016 ident: 2022031303344285100_B34 article-title: Knockout of inositol-requiring enzyme 1α in pro-opiomelanocortin neurons decreases fat mass via increasing energy expenditure publication-title: Open Biol doi: 10.1098/rsob.160131 – volume: 307 start-page: 375 year: 2005 ident: 2022031303344285100_B1 article-title: Diabetes, obesity, and the brain publication-title: Science doi: 10.1126/science.1104344 – volume: 19 start-page: 6332 year: 1991 ident: 2022031303344285100_B7 article-title: Isolation and nucleotide sequence of a murine cDNA homologous to human activating transcription factor 4 publication-title: Nucleic Acids Res doi: 10.1093/nar/19.22.6332 – volume: 13 start-page: 258 year: 2012 ident: 2022031303344285100_B17 article-title: Loss of autophagy in hypothalamic POMC neurons impairs lipolysis publication-title: EMBO Rep doi: 10.1038/embor.2011.260 – volume: 23 start-page: 113 year: 2016 ident: 2022031303344285100_B20 article-title: Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver publication-title: Cell Metab doi: 10.1016/j.cmet.2015.10.008 – volume: 206 start-page: 173 year: 2014 ident: 2022031303344285100_B25 article-title: The general amino acid control pathway regulates mTOR and autophagy during serum/glutamine starvation publication-title: J Cell Biol doi: 10.1083/jcb.201403009 – volume: 17 start-page: 711 year: 2016 ident: 2022031303344285100_B44 article-title: Diet-induced obesity and ghrelin effects on pituitary gonadotrophs: immunohistomorphometric study in male rats publication-title: Cell J – volume: 20 start-page: 471 year: 2014 ident: 2022031303344285100_B47 article-title: Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis publication-title: Cell Metab doi: 10.1016/j.cmet.2014.06.002 – volume: 58 start-page: 2565 year: 2009 ident: 2022031303344285100_B10 article-title: Atf4 regulates obesity, glucose homeostasis, and energy expenditure publication-title: Diabetes doi: 10.2337/db09-0335 – start-page: e561 volume-title: Inflamm Cell Signal year: 2014 ident: 2022031303344285100_B22 article-title: Chronic high fat diet consumption impairs metabolic health of male mice – volume: 27 start-page: 107 year: 2011 ident: 2022031303344285100_B23 article-title: The role of Atg proteins in autophagosome formation publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-092910-154005 – volume: 124 start-page: 3781 year: 2014 ident: 2022031303344285100_B30 article-title: Ventromedial hypothalamus-specific Ptpn1 deletion exacerbates diet-induced obesity in female mice publication-title: J Clin Invest doi: 10.1172/JCI68585 – volume: 11 start-page: 145 year: 2015 ident: 2022031303344285100_B41 article-title: Loss of Atg12, but not Atg5, in pro-opiomelanocortin neurons exacerbates diet-induced obesity publication-title: Autophagy – volume: 14 start-page: 173 year: 2011 ident: 2022031303344285100_B18 article-title: Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance publication-title: Cell Metab doi: 10.1016/j.cmet.2011.06.008 – volume: 153 start-page: 1817 year: 2012 ident: 2022031303344285100_B21 article-title: Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response publication-title: Endocrinology doi: 10.1210/en.2011-1882 – volume: 42 start-page: 983 year: 2004 ident: 2022031303344285100_B28 article-title: Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis publication-title: Neuron doi: 10.1016/j.neuron.2004.06.004 |
SSID | ssj0006060 |
Score | 2.3880806 |
Snippet | Although many biological functions of activating transcription factor 4 (ATF4) have been identified, a role of hypothalamic ATF4 in the regulation of energy... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1146 |
SubjectTerms | Activating transcription factor 4 Activating Transcription Factor 4 - genetics Activating Transcription Factor 4 - metabolism Adipose Tissue - metabolism Adipose Tissue - pathology Adipose Tissue, Brown - metabolism Adipose Tissue, Brown - pathology Adipose Tissue, White - metabolism Adipose Tissue, White - pathology Animals Autophagy-Related Protein 5 - genetics Autophagy-Related Protein 5 - metabolism Blood Glucose - metabolism Blotting, Western Body fat Corticosterone - metabolism Energy Energy balance Energy expenditure Energy Metabolism - genetics Fluorescent Antibody Technique Glucose tolerance Glucose Tolerance Test Growth Hormone - metabolism High fat diet Homeostasis Hypothalamus Hypothalamus - cytology Hypothalamus - metabolism Insulin - metabolism Insulin Resistance Intolerance Leptin Leptin - metabolism Melanocyte-stimulating hormone Metabolic disorders Mice Mice, Knockout Neurons Neurons - metabolism Norepinephrine - metabolism Obesity Oils & fats Organ Size Phagocytosis Pro-Opiomelanocortin - metabolism Proopiomelanocortin Real-Time Polymerase Chain Reaction Signal Transduction Transcription factors |
Title | ATF4/ATG5 Signaling in Hypothalamic Proopiomelanocortin Neurons Regulates Fat Mass via Affecting Energy Expenditure |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28213613 https://www.proquest.com/docview/1932053833 https://www.proquest.com/docview/1869966533 https://www.proquest.com/docview/1906456569 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKkBAviG86BjKIB6QqbHG-Hyu60DE6Ia2TuqfIdpwSqUormkywH8Lv5d7YNaEqE_ASVallWb4n1-de-x4T8kYUqOENzE0oP3R8zoQjPJk4Is5d6UfC563s4uQsHF_4H2fBrNf70Tm11NTinbzeWVfyP1aFd2BXrJL9B8vaTuEF_Ab7whMsDM-_svFwmvooiDD9EAzOyzlyal2hMv6-AgvwBW9PvgM5XmGV_YJXSwg2a2jQanJUWCPSXkWv1oOU14MJMOnBVclxnwcdIXR2rGsDUREZN7eN_siGzo46mdvtO306OYZZyduM7GVz_WVplkokz0o7mks8XmndT6NTsqkqvwF0550-NLaqeb1Zbk22AlZAezawUyAAnsuObxuFxk-7DIVT9VKstGtOvMTxWDTr-m59Y4vBaNBxxK7JbG6vEMxrNQZy4YYOsMcdKtzj4Xn2eZRmn07OTm-R2wzCD3T4o5NTu8JD0KdLm8wotWIVdn1oO_6d5_wheGlJzPQ-uWeiDzrUUHpAeqp6SO5MzPmKR2SNiDpEPFGLJ1pWtIsnugNP1OCJWjxRwBNFPFHAE7V4ohpPtIOnx-QiPZ6-HzvmWg5H-i6rnUgkTAYqT4Jc8iSUrhsJiBMK6eWeYLGIQ8WAEMk8YULG-RFS7iAvpA9v1BEPvSdkr1pW6hmhQvBCRUFUSNQcYkXCQwkBsCuZymPl8j55u5nETBrNerw6ZZFB7IrzneF8ZzjfffLaNl1poZZdjQ42lsjMd7zOMISBpSj2vD55Zf8GL4tbZ7xSywbaxCEmBoIb2ySo_QjxUdInT7WV7UhYzFwPmPP-zQN4Tu7--mgOyF79tVEvgPTW4mWLwJ-Zuq9h |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ATF4%2FATG5+Signaling+in+Hypothalamic+Proopiomelanocortin+Neurons+Regulates+Fat+Mass+via+Affecting+Energy+Expenditure&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Xiao%2C+Yuzhong&rft.au=Deng%2C+Yalan&rft.au=Yuan%2C+Feixiang&rft.au=Xia%2C+Tingting&rft.date=2017-05-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.eissn=1939-327X&rft.volume=66&rft.issue=5&rft.spage=1146&rft_id=info:doi/10.2337%2Fdb16-1546&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |