Mechanisms of Action of Autophagy Modulators Dissected by Quantitative Systems Pharmacology Analysis
Autophagy plays an essential role in cell survival/death and functioning. Modulation of autophagy has been recognized as a promising therapeutic strategy against diseases/disorders associated with uncontrolled growth or accumulation of biomolecular aggregates, organelles, or cells including those ca...
Saved in:
Published in | International journal of molecular sciences Vol. 21; no. 8; p. 2855 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
19.04.2020
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1422-0067 1661-6596 1422-0067 |
DOI | 10.3390/ijms21082855 |
Cover
Abstract | Autophagy plays an essential role in cell survival/death and functioning. Modulation of autophagy has been recognized as a promising therapeutic strategy against diseases/disorders associated with uncontrolled growth or accumulation of biomolecular aggregates, organelles, or cells including those caused by cancer, aging, neurodegeneration, and liver diseases such as α1-antitrypsin deficiency. Numerous pharmacological agents that enhance or suppress autophagy have been discovered. However, their molecular mechanisms of action are far from clear. Here, we collected a set of 225 autophagy modulators and carried out a comprehensive quantitative systems pharmacology (QSP) analysis of their targets using both existing databases and predictions made by our machine learning algorithm. Autophagy modulators include several highly promiscuous drugs (e.g., artenimol and olanzapine acting as activators, fostamatinib as an inhibitor, or melatonin as a dual-modulator) as well as selected drugs that uniquely target specific proteins (~30% of modulators). They are mediated by three layers of regulation: (i) pathways involving core autophagy-related (ATG) proteins such as mTOR, AKT, and AMPK; (ii) upstream signaling events that regulate the activity of ATG pathways such as calcium-, cAMP-, and MAPK-signaling pathways; and (iii) transcription factors regulating the expression of ATG proteins such as TFEB, TFE3, HIF-1, FoxO, and NF-κB. Our results suggest that PKA serves as a linker, bridging various signal transduction events and autophagy. These new insights contribute to a better assessment of the mechanism of action of autophagy modulators as well as their side effects, development of novel polypharmacological strategies, and identification of drug repurposing opportunities. |
---|---|
AbstractList | Autophagy plays an essential role in cell survival/death and functioning. Modulation of autophagy has been recognized as a promising therapeutic strategy against diseases/disorders associated with uncontrolled growth or accumulation of biomolecular aggregates, organelles, or cells including those caused by cancer, aging, neurodegeneration, and liver diseases such as α1-antitrypsin deficiency. Numerous pharmacological agents that enhance or suppress autophagy have been discovered. However, their molecular mechanisms of action are far from clear. Here, we collected a set of 225 autophagy modulators and carried out a comprehensive quantitative systems pharmacology (QSP) analysis of their targets using both existing databases and predictions made by our machine learning algorithm. Autophagy modulators include several highly promiscuous drugs (e.g., artenimol and olanzapine acting as activators, fostamatinib as an inhibitor, or melatonin as a dual-modulator) as well as selected drugs that uniquely target specific proteins (~30% of modulators). They are mediated by three layers of regulation: (i) pathways involving core autophagy-related (ATG) proteins such as mTOR, AKT, and AMPK; (ii) upstream signaling events that regulate the activity of ATG pathways such as calcium-, cAMP-, and MAPK-signaling pathways; and (iii) transcription factors regulating the expression of ATG proteins such as TFEB, TFE3, HIF-1, FoxO, and NF-κB. Our results suggest that PKA serves as a linker, bridging various signal transduction events and autophagy. These new insights contribute to a better assessment of the mechanism of action of autophagy modulators as well as their side effects, development of novel polypharmacological strategies, and identification of drug repurposing opportunities. Autophagy plays an essential role in cell survival/death and functioning. Modulation of autophagy has been recognized as a promising therapeutic strategy against diseases/disorders associated with uncontrolled growth or accumulation of biomolecular aggregates, organelles, or cells including those caused by cancer, aging, neurodegeneration, and liver diseases such as α1-antitrypsin deficiency. Numerous pharmacological agents that enhance or suppress autophagy have been discovered. However, their molecular mechanisms of action are far from clear. Here, we collected a set of 225 autophagy modulators and carried out a comprehensive quantitative systems pharmacology (QSP) analysis of their targets using both existing databases and predictions made by our machine learning algorithm. Autophagy modulators include several highly promiscuous drugs (e.g., artenimol and olanzapine acting as activators, fostamatinib as an inhibitor, or melatonin as a dual-modulator) as well as selected drugs that uniquely target specific proteins (~30% of modulators). They are mediated by three layers of regulation: (i) pathways involving core autophagy-related (ATG) proteins such as mTOR, AKT, and AMPK; (ii) upstream signaling events that regulate the activity of ATG pathways such as calcium-, cAMP-, and MAPK-signaling pathways; and (iii) transcription factors regulating the expression of ATG proteins such as TFEB, TFE3, HIF-1, FoxO, and NF-κB. Our results suggest that PKA serves as a linker, bridging various signal transduction events and autophagy. These new insights contribute to a better assessment of the mechanism of action of autophagy modulators as well as their side effects, development of novel polypharmacological strategies, and identification of drug repurposing opportunities.Autophagy plays an essential role in cell survival/death and functioning. Modulation of autophagy has been recognized as a promising therapeutic strategy against diseases/disorders associated with uncontrolled growth or accumulation of biomolecular aggregates, organelles, or cells including those caused by cancer, aging, neurodegeneration, and liver diseases such as α1-antitrypsin deficiency. Numerous pharmacological agents that enhance or suppress autophagy have been discovered. However, their molecular mechanisms of action are far from clear. Here, we collected a set of 225 autophagy modulators and carried out a comprehensive quantitative systems pharmacology (QSP) analysis of their targets using both existing databases and predictions made by our machine learning algorithm. Autophagy modulators include several highly promiscuous drugs (e.g., artenimol and olanzapine acting as activators, fostamatinib as an inhibitor, or melatonin as a dual-modulator) as well as selected drugs that uniquely target specific proteins (~30% of modulators). They are mediated by three layers of regulation: (i) pathways involving core autophagy-related (ATG) proteins such as mTOR, AKT, and AMPK; (ii) upstream signaling events that regulate the activity of ATG pathways such as calcium-, cAMP-, and MAPK-signaling pathways; and (iii) transcription factors regulating the expression of ATG proteins such as TFEB, TFE3, HIF-1, FoxO, and NF-κB. Our results suggest that PKA serves as a linker, bridging various signal transduction events and autophagy. These new insights contribute to a better assessment of the mechanism of action of autophagy modulators as well as their side effects, development of novel polypharmacological strategies, and identification of drug repurposing opportunities. |
Author | Bahar, Ivet Liu, Bing Silverman, Gary A. Pei, Fen Perlmutter, David H. Shi, Qingya Pak, Stephen C. |
AuthorAffiliation | 3 Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; gsilverman@wustl.edu (G.A.S.); stephen.pak@wustl.edu (S.C.P.); perlmutterd@wustl.edu (D.H.P.) 1 Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; qingya@pitt.edu (Q.S.); fep7@pitt.edu (F.P.) 2 School of Medicine, Tsinghua University, Beijing 100084, China |
AuthorAffiliation_xml | – name: 1 Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; qingya@pitt.edu (Q.S.); fep7@pitt.edu (F.P.) – name: 2 School of Medicine, Tsinghua University, Beijing 100084, China – name: 3 Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; gsilverman@wustl.edu (G.A.S.); stephen.pak@wustl.edu (S.C.P.); perlmutterd@wustl.edu (D.H.P.) |
Author_xml | – sequence: 1 givenname: Qingya surname: Shi fullname: Shi, Qingya – sequence: 2 givenname: Fen surname: Pei fullname: Pei, Fen – sequence: 3 givenname: Gary A. surname: Silverman fullname: Silverman, Gary A. – sequence: 4 givenname: Stephen C. surname: Pak fullname: Pak, Stephen C. – sequence: 5 givenname: David H. surname: Perlmutter fullname: Perlmutter, David H. – sequence: 6 givenname: Bing orcidid: 0000-0002-7257-2441 surname: Liu fullname: Liu, Bing – sequence: 7 givenname: Ivet orcidid: 0000-0001-9959-4176 surname: Bahar fullname: Bahar, Ivet |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32325894$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1r3DAQxUVJaD7aW8_F0EsP2VSSJcu6FJYk_YCEtrQ9i7EkZ7XY0laSA_7vo82mYRt6mgfzm8c83gk68MFbhN4QfF7XEn9w6zFRglvacv4CHRNG6QLjRhzs6SN0ktIaY1pTLl-io3orWsmOkbmxegXepTFVoa-WOrvgH9SUw2YFt3N1E8w0QA4xVZcuJauzNVU3Vz8m8NllyO7OVj_nlG3x-L6COIIOQyiXSw_DnFx6hQ57GJJ9_ThP0e9PV78uviyuv33-erG8XmhGaF4IINp0um7A4K7tOWubXmurO0mZEBYTohkYjg0GAKqFZgIzyUkjKSWmEfUp-rjz3UzdaI22PkcY1Ca6EeKsAjj178a7lboNd0pQwnnLisH7R4MY_kw2ZTW6pO0wgLdhSorWkrWCYykL-u4Zug5TLIF3FGO0ZCrU2_2Pnl75W0ABznaAjiGlaPsnhGC17Vft91tw-gzXDw2EbR43_P_oHgQKqvM |
CitedBy_id | crossref_primary_10_1016_j_genrep_2023_101876 crossref_primary_10_1080_17512433_2023_2294005 crossref_primary_10_1016_j_bcp_2020_114403 crossref_primary_10_1186_s43042_022_00250_8 crossref_primary_10_1080_15548627_2024_2383145 crossref_primary_10_1016_j_bbadis_2024_167263 crossref_primary_10_1016_j_jare_2023_05_002 crossref_primary_10_1038_s41418_021_00761_8 crossref_primary_10_1093_bib_bbaa286 crossref_primary_10_1038_s41598_021_98980_z crossref_primary_10_4236_jbm_2022_102008 crossref_primary_10_3889_oamjms_2022_10125 crossref_primary_10_1016_j_jddst_2023_104945 crossref_primary_10_1016_j_xcrm_2024_101917 crossref_primary_10_1007_s10928_021_09790_9 crossref_primary_10_1007_s00894_023_05530_7 |
Cites_doi | 10.1007/978-3-319-49969-7_5 10.1093/nar/gkw1092 10.1038/nature11691 10.1186/s13321-018-0289-4 10.1002/cmdc.200800074 10.1002/hep.23441 10.1186/s12964-018-0282-6 10.1101/gad.1599207 10.1038/nrc2254 10.1016/j.bbrc.2014.10.152 10.3390/medsci6010019 10.1080/15548627.2016.1268300 10.1080/15548627.2019.1571717 10.3389/fncel.2019.00228 10.1093/hmg/ddu236 10.1038/nrd.2017.22 10.3390/ijms19051540 10.1038/nature09782 10.1016/j.ceb.2008.12.011 10.1007/978-1-4939-8955-3_1 10.1038/446745a 10.1074/jbc.M804543200 10.3390/cancers3022630 10.1016/j.cellsig.2010.03.004 10.4161/15548627.2014.994346 10.1093/bioinformatics/bts360 10.1007/s12551-018-0461-0 10.1038/nrm3735 10.1016/j.cell.2017.09.044 10.3389/fnmol.2016.00046 10.1101/816587 10.1186/1471-2407-12-156 10.1038/nbt.1990 10.1016/S0166-4328(01)00297-2 10.3390/cancers11101465 10.1038/cdd.2014.177 10.4161/auto.24893 10.1016/j.semcancer.2013.06.007 10.1016/j.canlet.2018.07.028 10.1080/15548627.2017.1402990 10.1016/j.ceb.2009.12.004 10.1016/S0955-0674(00)00172-1 10.3892/ijo.2013.1870 10.1002/minf.201800082 10.1007/978-3-030-17297-8_3 10.1186/s13046-018-0731-5 10.1016/j.pharmthera.2013.01.016 10.1158/2159-8290.CD-19-0292 10.1016/j.ceca.2011.04.001 10.3390/ijms20092081 10.1074/jbc.R112.356485 10.1016/j.cell.2013.08.015 10.1093/nar/gkt1076 10.1126/scisignal.aac9340 10.1371/journal.pone.0087260 10.1007/978-1-4939-6783-4_13 10.1038/s41580-018-0033-y 10.1007/s10534-014-9773-0 10.3389/fncel.2015.00343 10.4161/auto.25063 10.1042/EBC20170091 10.4161/15548627.2014.984270 10.1038/nrgastro.2016.185 10.1667/RR15486.1 10.1038/nrd.2016.230 10.1038/nrd1346 10.1038/nchembio.2238 10.1093/nar/gkx1037 10.1016/j.ccell.2016.05.002 10.1242/jcs.064576 10.1124/jpet.113.207621 10.4161/15548627.2014.991665 10.1038/s41598-017-18001-w 10.1371/journal.pone.0209748 10.1021/ci400219z 10.1038/sj.bjc.6601605 10.1080/15548627.2018.1520549 10.1126/science.1193497 10.1002/prp2.175 10.1038/ncomms10111 10.1007/978-1-4939-6783-4_2 10.1038/ncb1482 10.1016/j.bbadis.2017.10.032 10.1038/srep06245 10.4161/auto.7.10.16508 10.1038/cgt.2014.16 10.1016/j.neuron.2017.01.022 10.2174/1568026616666160608084834 10.1016/j.bcp.2014.12.018 10.1186/s40169-017-0181-2 10.1172/JCI73939 10.1093/nar/gkq995 10.1016/j.cell.2018.09.048 10.1093/bioinformatics/btaa210 10.1016/j.yjmcc.2015.11.019 10.1038/nm.3232 10.1126/science.1190354 10.1038/s41589-019-0462-8 10.1016/j.cub.2017.02.061 10.1093/bioinformatics/btv297 10.1038/s41467-018-06487-5 10.1016/j.ebiom.2016.10.034 10.1016/S1471-4922(00)01838-9 10.1158/0008-5472.CAN-18-2636 10.1016/j.chembiol.2020.02.005 10.1371/journal.pone.0202458 10.1080/15548627.2015.1055440 10.15252/msb.20177651 10.1093/bioinformatics/btu599 10.1016/j.tem.2014.03.006 10.1080/15548627.2019.1658436 10.1142/S0219720012310014 10.18632/oncotarget.17520 10.1016/j.ejphar.2013.08.006 10.1016/j.cell.2014.11.047 10.1080/15548627.2016.1183843 10.1016/j.celrep.2018.05.032 10.1126/science.1260419 10.1021/jm400856t 10.1667/RR14787.1 10.1016/j.tem.2012.03.004 10.1016/j.neuroscience.2009.08.014 10.1038/s41467-018-03751-6 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms21082855 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC7215584 32325894 10_3390_ijms21082855 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P41 GM103712 – fundername: NIDDK NIH HHS grantid: P01 DK096990 – fundername: NIH HHS grantid: P01DK096990, P30DA035778, and P41GM103712 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 ESTFP PUEGO 5PM |
ID | FETCH-LOGICAL-c412t-7a1cdbc36ad0b8f5486fccecb92477e011c4ad50d0aaa2c7c470495169221d673 |
IEDL.DBID | 8FG |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 14:01:55 EDT 2025 Mon Sep 08 14:35:33 EDT 2025 Fri Jul 25 20:33:51 EDT 2025 Mon Jul 21 06:03:50 EDT 2025 Tue Jul 01 04:15:15 EDT 2025 Thu Apr 24 22:55:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | autophagy PI3K quantitative systems pharmacology signal transduction PKA mTOR mechanism of action machine learning drug-target interactions |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-7a1cdbc36ad0b8f5486fccecb92477e011c4ad50d0aaa2c7c470495169221d673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9959-4176 0000-0002-7257-2441 |
OpenAccessLink | https://www.proquest.com/docview/2394442412?pq-origsite=%requestingapplication% |
PMID | 32325894 |
PQID | 2394442412 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7215584 proquest_miscellaneous_2394875099 proquest_journals_2394442412 pubmed_primary_32325894 crossref_primary_10_3390_ijms21082855 crossref_citationtrail_10_3390_ijms21082855 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200419 |
PublicationDateYYYYMMDD | 2020-04-19 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200419 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Decuypere (ref_12) 2011; 50 Liu (ref_108) 2016; 9 Besnard (ref_52) 2012; 492 Mathew (ref_7) 2007; 7 Ber (ref_48) 2015; 22 Peters (ref_98) 2013; 56 Chen (ref_106) 2011; 124 Ozdemir (ref_90) 2019; 1903 Ueno (ref_111) 2017; 14 Radogna (ref_72) 2015; 94 Marino (ref_71) 2014; 15 Garcia (ref_116) 2001; 13 Lachmann (ref_68) 2018; 9 ref_24 Kim (ref_41) 2018; 9 ref_23 ref_22 ref_122 Pundir (ref_53) 2017; 1558 Yan (ref_57) 2014; 21 Dyczynski (ref_81) 2018; 435 Liu (ref_110) 2012; 10 Kapralov (ref_120) 2020; 16 ref_29 ref_28 Soll (ref_63) 2010; 51 Li (ref_51) 2016; 16 Ma (ref_77) 2012; 23 Shinde (ref_45) 2019; 79 Wei (ref_65) 2013; 154 Niture (ref_40) 2018; 16 ref_79 Homma (ref_84) 2011; 39 Ramsay (ref_97) 2018; 7 Cobanoglu (ref_26) 2013; 53 Moriya (ref_31) 2013; 42 ref_73 Wauson (ref_58) 2014; 25 Levine (ref_82) 2011; 469 Brachmann (ref_30) 2009; 21 Xiang (ref_55) 2019; 15 Santos (ref_54) 2017; 16 Huang (ref_104) 2016; 12 Dolma (ref_62) 2016; 29 Singh (ref_47) 2016; 9 Steinman (ref_121) 2018; 189 Gyori (ref_93) 2017; 13 ref_83 Benjamini (ref_125) 2001; 125 Lorin (ref_6) 2013; 23 Olliaro (ref_36) 2001; 17 Cai (ref_20) 2013; 1 Manzoni (ref_49) 2017; 14 Vucicevic (ref_44) 2014; 10 Lizaso (ref_59) 2013; 9 Deng (ref_86) 2018; 14 Mizushima (ref_9) 2010; 22 Nussinov (ref_103) 2018; 10 Yousefi (ref_14) 2006; 8 Kanehisa (ref_124) 2017; 45 Galluzzi (ref_18) 2017; 16 Rolf (ref_99) 2015; 3 Liu (ref_11) 2017; 7 Hidvegi (ref_21) 2010; 329 Kast (ref_74) 2017; 27 Wishart (ref_25) 2018; 46 Liuzzi (ref_34) 2014; 27 Wang (ref_112) 2019; 13 Nanduri (ref_87) 2019; 15 Duan (ref_46) 2019; 11 Yamamoto (ref_76) 2018; 23 Racioppi (ref_13) 2012; 287 Sridharan (ref_101) 2011; 3 Amaravadi (ref_80) 2019; 9 Takeuchi (ref_67) 2004; 90 Li (ref_16) 2014; 455 Graef (ref_10) 2011; 7 Nussinov (ref_102) 2018; 1864 Lovric (ref_123) 2019; 38 Levine (ref_5) 2007; 446 Long (ref_17) 2014; 23 Blessing (ref_56) 2017; 13 Dubey (ref_117) 2015; 9 Towers (ref_19) 2016; 14 Liu (ref_107) 2014; 4 Wang (ref_37) 2015; 6 Wenzel (ref_119) 2017; 171 Ikegami (ref_42) 2013; 718 Fraser (ref_64) 2017; 61 Filteau (ref_105) 2015; 11 Schiattarella (ref_114) 2016; 95 Hansen (ref_78) 2018; 19 Yan (ref_61) 2015; 160 Wang (ref_1) 2018; 37 Cobanoglu (ref_27) 2015; 31 Wang (ref_88) 2018; 10 ref_35 Gonen (ref_91) 2012; 28 Pillich (ref_94) 2017; 1558 Kagan (ref_118) 2017; 13 ref_33 ref_32 Yogalingam (ref_66) 2008; 283 Roth (ref_96) 2004; 3 Merlin (ref_60) 2010; 22 ref_39 Gundersen (ref_92) 2015; 31 Gatliff (ref_95) 2014; 10 Mizushima (ref_4) 2007; 21 Shi (ref_38) 2017; 8 Schmidt (ref_43) 2013; 347 Levine (ref_2) 2019; 176 Rabinowitz (ref_3) 2010; 330 Selent (ref_100) 2008; 3 Nixon (ref_115) 2013; 19 Csermely (ref_89) 2013; 138 ref_109 Davis (ref_50) 2011; 29 Czaja (ref_113) 2013; 9 Menzies (ref_75) 2017; 93 Kanehisa (ref_70) 2014; 42 Turei (ref_85) 2015; 11 Kim (ref_8) 2015; 125 Pan (ref_15) 2009; 164 Uhlen (ref_69) 2015; 347 |
References_xml | – volume: 14 start-page: 89 year: 2017 ident: ref_49 article-title: LRRK2 and Autophagy publication-title: Adv. Neurobiol. doi: 10.1007/978-3-319-49969-7_5 – volume: 45 start-page: D353 year: 2017 ident: ref_124 article-title: KEGG: New perspectives on genomes, pathways, diseases and drugs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1092 – volume: 492 start-page: 215 year: 2012 ident: ref_52 article-title: Automated design of ligands to polypharmacological profiles publication-title: Nature doi: 10.1038/nature11691 – volume: 10 start-page: 34 year: 2018 ident: ref_88 article-title: HAMdb: A database of human autophagy modulators with specific pathway and disease information publication-title: J. Cheminform. doi: 10.1186/s13321-018-0289-4 – volume: 3 start-page: 1194 year: 2008 ident: ref_100 article-title: Multi-receptor binding profile of clozapine and olanzapine: A structural study based on the new beta2 adrenergic receptor template publication-title: ChemMedChem doi: 10.1002/cmdc.200800074 – volume: 51 start-page: 1244 year: 2010 ident: ref_63 article-title: Serotonin promotes tumor growth in human hepatocellular cancer publication-title: Hepatology doi: 10.1002/hep.23441 – volume: 16 start-page: 78 year: 2018 ident: ref_40 article-title: Serotonin induced hepatic steatosis is associated with modulation of autophagy and notch signaling pathway publication-title: Cell Commun. Signal. doi: 10.1186/s12964-018-0282-6 – volume: 21 start-page: 2861 year: 2007 ident: ref_4 article-title: Autophagy: Process and function publication-title: Genes Dev. doi: 10.1101/gad.1599207 – volume: 7 start-page: 961 year: 2007 ident: ref_7 article-title: Role of autophagy in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2254 – volume: 455 start-page: 234 year: 2014 ident: ref_16 article-title: Pretreatment with wortmannin alleviates lipopolysaccharide/d-galactosamine-induced acute liver injury publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.10.152 – ident: ref_39 doi: 10.3390/medsci6010019 – volume: 13 start-page: 506 year: 2017 ident: ref_56 article-title: Transcriptional regulation of core autophagy and lysosomal genes by the androgen receptor promotes prostate cancer progression publication-title: Autophagy doi: 10.1080/15548627.2016.1268300 – volume: 15 start-page: 1280 year: 2019 ident: ref_87 article-title: AutophagySMDB: A curated database of small molecules that modulate protein targets regulating autophagy publication-title: Autophagy doi: 10.1080/15548627.2019.1571717 – volume: 13 start-page: 228 year: 2019 ident: ref_112 article-title: The relationship between autophagy and brain plasticity in neurological diseases publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2019.00228 – volume: 23 start-page: 5123 year: 2014 ident: ref_17 article-title: A genome-wide RNAi screen identifies potential drug targets in a C. elegans model of alpha1-antitrypsin deficiency publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddu236 – volume: 16 start-page: 487 year: 2017 ident: ref_18 article-title: Pharmacological modulation of autophagy: Therapeutic potential and persisting obstacles publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2017.22 – ident: ref_32 doi: 10.3390/ijms19051540 – volume: 469 start-page: 323 year: 2011 ident: ref_82 article-title: Autophagy in immunity and inflammation publication-title: Nature doi: 10.1038/nature09782 – volume: 21 start-page: 194 year: 2009 ident: ref_30 article-title: PI3K and mTOR inhibitors: A new generation of targeted anticancer agents publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2008.12.011 – volume: 1903 start-page: 1 year: 2019 ident: ref_90 article-title: Methods for Discovering and Targeting Druggable Protein-Protein Interfaces and Their Application to Repurposing publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-8955-3_1 – volume: 446 start-page: 745 year: 2007 ident: ref_5 article-title: Cell biology: Autophagy and cancer publication-title: Nature doi: 10.1038/446745a – volume: 283 start-page: 35941 year: 2008 ident: ref_66 article-title: Abl kinases regulate autophagy by promoting the trafficking and function of lysosomal components publication-title: J. Biol. Chem. doi: 10.1074/jbc.M804543200 – volume: 3 start-page: 2630 year: 2011 ident: ref_101 article-title: Regulation of autophagy by kinases publication-title: Cancers (Basel) doi: 10.3390/cancers3022630 – volume: 22 start-page: 1104 year: 2010 ident: ref_60 article-title: The M3-muscarinic acetylcholine receptor stimulates glucose uptake in L6 skeletal muscle cells by a CaMKK-AMPK-dependent mechanism publication-title: Cell Signal. doi: 10.1016/j.cellsig.2010.03.004 – volume: 11 start-page: 155 year: 2015 ident: ref_85 article-title: Autophagy Regulatory Network—A systems-level bioinformatics resource for studying the mechanism and regulation of autophagy publication-title: Autophagy doi: 10.4161/15548627.2014.994346 – volume: 28 start-page: 2304 year: 2012 ident: ref_91 article-title: Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts360 – volume: 10 start-page: 1263 year: 2018 ident: ref_103 article-title: Autoinhibition in Ras effectors Raf, PI3Kalpha, and RASSF5: A comprehensive review underscoring the challenges in pharmacological intervention publication-title: Biophys. Rev. doi: 10.1007/s12551-018-0461-0 – volume: 15 start-page: 81 year: 2014 ident: ref_71 article-title: Self-consumption: The interplay of autophagy and apoptosis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3735 – volume: 171 start-page: 628 year: 2017 ident: ref_119 article-title: PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals publication-title: Cell doi: 10.1016/j.cell.2017.09.044 – volume: 9 start-page: 46 year: 2016 ident: ref_47 article-title: Death associated protein kinase 1 (DAPK1): A regulator of apoptosis and autophagy publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2016.00046 – ident: ref_35 doi: 10.1101/816587 – ident: ref_33 doi: 10.1186/1471-2407-12-156 – volume: 29 start-page: 1046 year: 2011 ident: ref_50 article-title: Comprehensive analysis of kinase inhibitor selectivity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1990 – volume: 125 start-page: 279 year: 2001 ident: ref_125 article-title: Controlling the false discovery rate in behavior genetics research publication-title: Behav Brain Res. doi: 10.1016/S0166-4328(01)00297-2 – ident: ref_24 doi: 10.3390/cancers11101465 – volume: 22 start-page: 465 year: 2015 ident: ref_48 article-title: DAPK2 is a novel regulator of mTORC1 activity and autophagy publication-title: Cell Death Differ. doi: 10.1038/cdd.2014.177 – volume: 9 start-page: 1228 year: 2013 ident: ref_59 article-title: beta-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation publication-title: Autophagy doi: 10.4161/auto.24893 – volume: 23 start-page: 361 year: 2013 ident: ref_6 article-title: Autophagy regulation and its role in cancer publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2013.06.007 – volume: 435 start-page: 32 year: 2018 ident: ref_81 article-title: Targeting autophagy by small molecule inhibitors of vacuolar protein sorting 34 (Vps34) improves the sensitivity of breast cancer cells to Sunitinib publication-title: Cancer Lett. doi: 10.1016/j.canlet.2018.07.028 – volume: 14 start-page: 296 year: 2018 ident: ref_86 article-title: THANATOS: An integrative data resource of proteins and post-translational modifications in the regulation of autophagy publication-title: Autophagy doi: 10.1080/15548627.2017.1402990 – volume: 22 start-page: 132 year: 2010 ident: ref_9 article-title: The role of the Atg1/ULK1 complex in autophagy regulation publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2009.12.004 – volume: 13 start-page: 41 year: 2001 ident: ref_116 article-title: Going new places using an old MAP: Tau, microtubules and human neurodegenerative disease publication-title: Curr. Opin. Cell Biol. doi: 10.1016/S0955-0674(00)00172-1 – volume: 42 start-page: 1541 year: 2013 ident: ref_31 article-title: Macrolide antibiotics block autophagy flux and sensitize to bortezomib via endoplasmic reticulum stress-mediated CHOP induction in myeloma cells publication-title: Int. J. Oncol. doi: 10.3892/ijo.2013.1870 – volume: 38 start-page: e1800082 year: 2019 ident: ref_123 article-title: PySpark and RDKit: Moving towards Big Data in Cheminformatics publication-title: Mol. Inform. doi: 10.1002/minf.201800082 – ident: ref_109 doi: 10.1007/978-3-030-17297-8_3 – volume: 37 start-page: 63 year: 2018 ident: ref_1 article-title: Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-018-0731-5 – volume: 138 start-page: 333 year: 2013 ident: ref_89 article-title: Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2013.01.016 – volume: 9 start-page: 1167 year: 2019 ident: ref_80 article-title: Targeting autophagy in cancer: Recent advances and future directions publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-19-0292 – volume: 50 start-page: 242 year: 2011 ident: ref_12 article-title: A dual role for Ca(2+) in autophagy regulation publication-title: Cell Calcium doi: 10.1016/j.ceca.2011.04.001 – ident: ref_79 doi: 10.3390/ijms20092081 – volume: 287 start-page: 31658 year: 2012 ident: ref_13 article-title: Calcium/calmodulin-dependent protein kinase kinase 2: Roles in signaling and pathophysiology publication-title: J. Biol. Chem. doi: 10.1074/jbc.R112.356485 – volume: 154 start-page: 1269 year: 2013 ident: ref_65 article-title: EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance publication-title: Cell doi: 10.1016/j.cell.2013.08.015 – volume: 42 start-page: D199 year: 2014 ident: ref_70 article-title: Data, information, knowledge and principle: Back to metabolism in KEGG publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1076 – volume: 9 start-page: ra70 year: 2016 ident: ref_108 article-title: Innate immune memory and homeostasis may be conferred through crosstalk between the TLR3 and TLR7 pathways publication-title: Sci. Signal. doi: 10.1126/scisignal.aac9340 – ident: ref_22 doi: 10.1371/journal.pone.0087260 – volume: 1558 start-page: 271 year: 2017 ident: ref_94 article-title: NDEx: A Community Resource for Sharing and Publishing of Biological Networks publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-6783-4_13 – volume: 19 start-page: 579 year: 2018 ident: ref_78 article-title: Autophagy as a promoter of longevity: Insights from model organisms publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0033-y – volume: 27 start-page: 1087 year: 2014 ident: ref_34 article-title: Zinc and autophagy publication-title: Biometals doi: 10.1007/s10534-014-9773-0 – volume: 9 start-page: 343 year: 2015 ident: ref_117 article-title: Neurodegeneration and microtubule dynamics: Death by a thousand cuts publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2015.00343 – volume: 9 start-page: 1131 year: 2013 ident: ref_113 article-title: Functions of autophagy in normal and diseased liver publication-title: Autophagy doi: 10.4161/auto.25063 – volume: 61 start-page: 597 year: 2017 ident: ref_64 article-title: Interplay of autophagy, receptor tyrosine kinase signalling and endocytic trafficking publication-title: Essays Biochem. doi: 10.1042/EBC20170091 – volume: 10 start-page: 2362 year: 2014 ident: ref_44 article-title: Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine publication-title: Autophagy doi: 10.4161/15548627.2014.984270 – volume: 14 start-page: 170 year: 2017 ident: ref_111 article-title: Autophagy in the liver: Functions in health and disease publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2016.185 – ident: ref_122 doi: 10.1667/RR15486.1 – volume: 16 start-page: 19 year: 2017 ident: ref_54 article-title: A comprehensive map of molecular drug targets publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2016.230 – volume: 3 start-page: 353 year: 2004 ident: ref_96 article-title: Magic shotguns versus magic bullets: Selectively non-selective drugs for mood disorders and schizophrenia publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1346 – volume: 13 start-page: 81 year: 2017 ident: ref_118 article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2238 – volume: 46 start-page: D1074 year: 2018 ident: ref_25 article-title: DrugBank 5.0: A major update to the DrugBank database for 2018 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1037 – volume: 29 start-page: 859 year: 2016 ident: ref_62 article-title: Inhibition of dopamine receptor D4 impedes autophagic flux, proliferation, and survival of glioblastoma stem cells publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.05.002 – volume: 124 start-page: 161 year: 2011 ident: ref_106 article-title: The regulation of autophagy—Unanswered questions publication-title: J. Cell Sci. doi: 10.1242/jcs.064576 – volume: 347 start-page: 126 year: 2013 ident: ref_43 article-title: Olanzapine activates hepatic mammalian target of rapamycin: New mechanistic insight into metabolic dysregulation with atypical antipsychotic drugs publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.113.207621 – volume: 10 start-page: 2279 year: 2014 ident: ref_95 article-title: TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control publication-title: Autophagy doi: 10.4161/15548627.2014.991665 – volume: 7 start-page: 17605 year: 2017 ident: ref_11 article-title: Quantitative assessment of cell fate decision between autophagy and apoptosis publication-title: Sci. Rep. doi: 10.1038/s41598-017-18001-w – ident: ref_23 doi: 10.1371/journal.pone.0209748 – volume: 53 start-page: 3399 year: 2013 ident: ref_26 article-title: Predicting drug-target interactions using probabilistic matrix factorization publication-title: J. Chem. Inf. Model. doi: 10.1021/ci400219z – volume: 90 start-page: 1069 year: 2004 ident: ref_67 article-title: Inhibition of platelet-derived growth factor signalling induces autophagy in malignant glioma cells publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6601605 – volume: 15 start-page: 197 year: 2019 ident: ref_55 article-title: How does estrogen work on autophagy? publication-title: Autophagy doi: 10.1080/15548627.2018.1520549 – volume: 330 start-page: 1344 year: 2010 ident: ref_3 article-title: Autophagy and metabolism publication-title: Science doi: 10.1126/science.1193497 – volume: 3 start-page: e00175 year: 2015 ident: ref_99 article-title: In vitro pharmacological profiling of R406 identifies molecular targets underlying the clinical effects of fostamatinib publication-title: Pharmacol. Res. Perspect. doi: 10.1002/prp2.175 – volume: 6 start-page: 10111 year: 2015 ident: ref_37 article-title: Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum publication-title: Nat. Commun. doi: 10.1038/ncomms10111 – volume: 1558 start-page: 41 year: 2017 ident: ref_53 article-title: UniProt Protein Knowledgebase publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-6783-4_2 – volume: 8 start-page: 1124 year: 2006 ident: ref_14 article-title: Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis publication-title: Nat. Cell Biol. doi: 10.1038/ncb1482 – volume: 1 start-page: 84 year: 2013 ident: ref_20 article-title: Rapamycin, autophagy, and alzheimer’s disease publication-title: J. Biochem. Pharmacol. Res. – volume: 1864 start-page: 2304 year: 2018 ident: ref_102 article-title: Calmodulin and IQGAP1 activation of PI3Kalpha and Akt in KRAS, HRAS and NRAS-driven cancers publication-title: Biochim. Biophys. Acta Mol. Basis Dis. doi: 10.1016/j.bbadis.2017.10.032 – volume: 4 start-page: 6245 year: 2014 ident: ref_107 article-title: Significance of p53 dynamics in regulating apoptosis in response to ionizing radiation, and polypharmacological strategies publication-title: Sci. Rep. doi: 10.1038/srep06245 – volume: 11 start-page: 2457 year: 2019 ident: ref_46 article-title: Deletion of Tbk1 disrupts autophagy and reproduces behavioral and locomotor symptoms of FTD-ALS in mice publication-title: Aging (Albany N.Y.) – volume: 7 start-page: 1245 year: 2011 ident: ref_10 article-title: A role for mitochondria in autophagy regulation publication-title: Autophagy doi: 10.4161/auto.7.10.16508 – volume: 21 start-page: 188 year: 2014 ident: ref_57 article-title: The PPARgamma agonist Troglitazone induces autophagy, apoptosis and necroptosis in bladder cancer cells publication-title: Cancer Gene Ther. doi: 10.1038/cgt.2014.16 – volume: 93 start-page: 1015 year: 2017 ident: ref_75 article-title: Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities publication-title: Neuron doi: 10.1016/j.neuron.2017.01.022 – volume: 16 start-page: 3385 year: 2016 ident: ref_51 article-title: Dopamine targeting drugs for the treatment of schizophrenia: Past, present and future publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026616666160608084834 – volume: 94 start-page: 1 year: 2015 ident: ref_72 article-title: Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2014.12.018 – volume: 7 start-page: 3 year: 2018 ident: ref_97 article-title: A perspective on multi-target drug discovery and design for complex diseases publication-title: Clin. Transl. Med. doi: 10.1186/s40169-017-0181-2 – volume: 125 start-page: 25 year: 2015 ident: ref_8 article-title: mTOR: A pharmacologic target for autophagy regulation publication-title: J. Clin. Investig. doi: 10.1172/JCI73939 – volume: 39 start-page: D986 year: 2011 ident: ref_84 article-title: The Autophagy Database: An all-inclusive information resource on autophagy that provides nourishment for research publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq995 – volume: 176 start-page: 11 year: 2019 ident: ref_2 article-title: Biological functions of autophagy genes: A disease perspective publication-title: Cell doi: 10.1016/j.cell.2018.09.048 – ident: ref_28 doi: 10.1093/bioinformatics/btaa210 – volume: 95 start-page: 86 year: 2016 ident: ref_114 article-title: Therapeutic targeting of autophagy in cardiovascular disease publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2015.11.019 – volume: 19 start-page: 983 year: 2013 ident: ref_115 article-title: The role of autophagy in neurodegenerative disease publication-title: Nat. Med. doi: 10.1038/nm.3232 – volume: 329 start-page: 229 year: 2010 ident: ref_21 article-title: An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis publication-title: Science doi: 10.1126/science.1190354 – volume: 16 start-page: 278 year: 2020 ident: ref_120 article-title: Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-019-0462-8 – volume: 27 start-page: R318 year: 2017 ident: ref_74 article-title: The cytoskeleton-autophagy connection publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.02.061 – volume: 31 start-page: 3060 year: 2015 ident: ref_92 article-title: GEO2Enrichr: Browser extension and server app to extract gene sets from GEO and analyze them for biological functions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv297 – volume: 9 start-page: 4184 year: 2018 ident: ref_41 article-title: GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections publication-title: Nat. Commun. doi: 10.1038/s41467-018-06487-5 – volume: 14 start-page: 15 year: 2016 ident: ref_19 article-title: Therapeutic targeting of autophagy publication-title: EBioMedicine doi: 10.1016/j.ebiom.2016.10.034 – volume: 17 start-page: 122 year: 2001 ident: ref_36 article-title: Possible modes of action of the artemisinin-type compounds publication-title: Trends Parasitol. doi: 10.1016/S1471-4922(00)01838-9 – volume: 79 start-page: 1831 year: 2019 ident: ref_45 article-title: Spleen tyrosine kinase-mediated autophagy is required for epithelial-mesenchymal plasticity and metastasis in breast cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-2636 – ident: ref_73 doi: 10.1016/j.chembiol.2020.02.005 – ident: ref_29 doi: 10.1371/journal.pone.0202458 – volume: 11 start-page: 1181 year: 2015 ident: ref_105 article-title: Feedback regulation between autophagy and PKA publication-title: Autophagy doi: 10.1080/15548627.2015.1055440 – volume: 13 start-page: 954 year: 2017 ident: ref_93 article-title: From word models to executable models of signaling networks using automated assembly publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20177651 – volume: 31 start-page: 131 year: 2015 ident: ref_27 article-title: BalestraWeb: Efficient online evaluation of drug-target interactions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu599 – volume: 25 start-page: 274 year: 2014 ident: ref_58 article-title: G protein-coupled receptors and the regulation of autophagy publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2014.03.006 – ident: ref_83 doi: 10.1080/15548627.2019.1658436 – volume: 10 start-page: 1231001 year: 2012 ident: ref_110 article-title: Modeling and analysis of biopathways dynamics publication-title: J. Bioinform. Comput. Biol. doi: 10.1142/S0219720012310014 – volume: 8 start-page: 45981 year: 2017 ident: ref_38 article-title: Dihydroartemisinin induces autophagy-dependent death in human tongue squamous cell carcinoma cells through DNA double-strand break-mediated oxidative stress publication-title: Oncotarget doi: 10.18632/oncotarget.17520 – volume: 718 start-page: 376 year: 2013 ident: ref_42 article-title: Olanzapine induces glucose intolerance through the activation of AMPK in the mouse hypothalamus publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2013.08.006 – volume: 160 start-page: 62 year: 2015 ident: ref_61 article-title: Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome publication-title: Cell doi: 10.1016/j.cell.2014.11.047 – volume: 12 start-page: 1292 year: 2016 ident: ref_104 article-title: The circadian clock regulates autophagy directly through the nuclear hormone receptor Nr1d1/Rev-erbalpha and indirectly via Cebpb/(C/ebpbeta) in zebrafish publication-title: Autophagy doi: 10.1080/15548627.2016.1183843 – volume: 23 start-page: 3286 year: 2018 ident: ref_76 article-title: Autophagy differentially regulates insulin production and insulin sensitivity publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.05.032 – volume: 347 start-page: 1260419 year: 2015 ident: ref_69 article-title: Tissue-based map of the human proteome publication-title: Science doi: 10.1126/science.1260419 – volume: 56 start-page: 8955 year: 2013 ident: ref_98 article-title: Polypharmacology—Foe or friend? publication-title: J. Med. Chem. doi: 10.1021/jm400856t – volume: 189 start-page: 68 year: 2018 ident: ref_121 article-title: Improved total-body irradiation survival by delivery of two radiation mitigators that target distinct cell death pathways publication-title: Radiat. Res. doi: 10.1667/RR14787.1 – volume: 23 start-page: 319 year: 2012 ident: ref_77 article-title: Circadian autophagy rhythm: A link between clock and metabolism? publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2012.03.004 – volume: 164 start-page: 541 year: 2009 ident: ref_15 article-title: Rapamycin protects against rotenone-induced apoptosis through autophagy induction publication-title: Neuroscience doi: 10.1016/j.neuroscience.2009.08.014 – volume: 9 start-page: 1366 year: 2018 ident: ref_68 article-title: Massive mining of publicly available RNA-seq data from human and mouse publication-title: Nat. Commun. doi: 10.1038/s41467-018-03751-6 |
SSID | ssj0023259 |
Score | 2.3951428 |
Snippet | Autophagy plays an essential role in cell survival/death and functioning. Modulation of autophagy has been recognized as a promising therapeutic strategy... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2855 |
SubjectTerms | Antipsychotics Application programming interface Autophagy Autophagy - drug effects Autophagy - genetics Biomarkers Brain - drug effects Brain - metabolism Computational Biology - methods Cyclic AMP-Dependent Protein Kinases - metabolism Drug Discovery - methods Drugs Gene expression Gene Expression Regulation - drug effects Humans Kinases Liver - drug effects Liver - metabolism Pharmacology - methods Phosphatidylinositol 3-Kinases - metabolism Proteins Signal Transduction - drug effects Structure-Activity Relationship TOR Serine-Threonine Kinases - metabolism |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS9xAEB5Oi-CLaFs11ZYV2ieJ3m12N8mDlMNWpHDSgge-hc3uxl7RpL3cQfPfO5Nf9artWyCzJMzsZubL7nwfwHturbAIZv2MhMIwBUg_jSU15zhcWU6JoaP_kJMrdTkVX27kzQA6tdHWgeWz0I70pKbzu5Pfv6qPuODPCHEiZD-d_bgvEbkQF5tcgxeYkxTBsIno9xOwbKhl00aYjXwlY9UcgX8yejU5Pak4_z44-SgTXWzDVltCsnET8x0YuPwlbDSiktUrsBNH3byz8r5kRcbGdeNCfbUkEgF9W7FJYUm1q5iX7BPtxxssO1lasW9LnddNZ_gJZC2XOfv6h9y6Yh2HyWuYXny-Pr_0Wy0F34gRX_ihHhmbmkBpO0yjDHGKyoxxJkX8FYYOV7kR2sqhHWqtuQmNCBE70CYa5yOrwmAX1vMid_vAsKDE0SrWIYldRUEkjc245nGWBU5k0oPjzomJaYnGSe_iLkHAQS5PHrvcgw-99c-GYOMfdoddPJJuliSk6y4EBpx7cNTfxgVCux46d8WysYmoLoo92GvC1z8ooIkRxcKDcCWwvQGRb6_eyWffaxJuRM4Si7c3_3-tA9jkBNCJHDI-hPXFfOneYhWzSN_VE_QB0wDx6Q priority: 102 providerName: Scholars Portal |
Title | Mechanisms of Action of Autophagy Modulators Dissected by Quantitative Systems Pharmacology Analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32325894 https://www.proquest.com/docview/2394442412 https://www.proquest.com/docview/2394875099 https://pubmed.ncbi.nlm.nih.gov/PMC7215584 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED4N0KS9TOPHRlipPGk8oYjWsePkCXWDgiYVAQKpb5FjO1vRSIC0D_3vuUvSQEHwEkWKo0S-O999_vF9AD-5tcIimPUzEgrDFCD9NJZ0OMdhZLlQ9BzNQ47OwtNr8Wcsx82EW9lsq1yMidVAbQtDc-QHJOEtBOYbfnh375NqFK2uNhIaK7DWx0xDfh4NT1rAFfBKLK2POcgPZRzWG98DhPkHk5vbEtEO8bfJ5ZT0qs58uV3yWf4ZfoHPTeHIBrWl1-GDyzfgYy0lOd8EO3J0hndS3pasyNigOq5Q3c2IOkD_nbNRYUmrq3go2RGtwhssNlk6ZxcznVdHzXDgYw2DOTt_orSeswVzyRZcD4-vfp_6jYKCb7Cjpr7SfWNTE4Ta9tIoQ3QSZsY4kyLqUsphbBuhrezZntaaG2WEQsRAS2ec922ogq-wmhe52waGZSS-HcZakcRVFETS2IxrHmdZ4EQmPdhfdGJiGnpxUrn4nyDMoC5Pnne5B3tt67uaVuONdp2FPZImuMrkyRU8-NE-xrCgtQ6du2JWt4moGoo9-Fabr_1QQI4RxcIDtWTYtgFRbi8_ySf_KuptxMsSS7ad93_rO3ziBMuJEjLuwOr0YeZ2sXaZpl1YUWPVrdy0C2u_js_OL7uUTSReRyJ6BEAp82s |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB21RahcEBQKgQKuRE8oatax4-RQoYpSbWm3AqmV9pY6tgOLaFKaXaH8qf5GZvKx2wXBrbdIcT5kz3je2J73AN5ya4XFZNbPSSgMQ4D0s0RScY5Dz3KRCBytQ45Oo-G5-DSW4xW46Wth6FhlPyc2E7UtDa2R75KEtxAYb_j7q58-qUbR7movodGaxbGrf2HKVu0dHeD47nB--PHsw9DvVAV8gw9PfaUHxmYmjLQNsjhHxB7lxjiTYSailEN7N0JbGdhAa82NMkIhiqbtJM4HNlIhvncV7glaGUf_UeNFghfyRpxtgDHPj2QStQftwzAJdiffLyvMrogvTi6HwL9w7Z_HM2_Fu8NH8LADqmy_tazHsOKKDbjfSlfWT8COHNUMT6rLipU522_KI5qrGVEV6K81G5WWtMHK64od0K6_QXDLspp9memiKW3DiZZ1jOns84JCu2Y9U8pTOL-Tvt2EtaIs3HNgCFvx6SjRiiS14jCWxuZc8yTPQydy6cG7vhNT09GZk6rGjxTTGury9HaXe7Azb33V0nj8o91WPx5p58xVujA9D7bnt9ENaW9FF66ctW1iQl-JB8_a4Zt_KCTDiBPhgVoa2HkDovhevlNMvjVU35ifS4SIL_7_W29gfXg2OklPjk6PX8IDTksCREeZbMHa9HrmXiFummavG2NlcHHX3vEbzlQsYg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhAXVF7FtMAi0ROy4qy9XvuAqooQtZRURaJSbma9DwiidqkTIf-1_jpm_EgaENx6i-SNE-3O7HyzO_N9AK-5MZHBZNZ3JBSGIUD4eSqoOceiZ9k4CiydQ05O4sOz6MNUTDfgqu-FobLKfk9sNmpTajojH5CEdxRhvOED15VFnI7G-xc_fVKQopvWXk6jNZFjW__C9K16ezTCtd7jfPz-87tDv1MY8DW-aO5LNdQm12GsTJAnDtF77LS2OsesREqLtq8jZURgAqUU11JHEhE1XS1xPjSxDPG9t-C2DBFVoS_J6SrZC3kj1DbE-OfHIo3bovswTIPB7Pt5hZkWcceJ9XD4F8b9s1TzWuwbb8H9DrSyg9bKHsCGLR7CnVbGsn4EZmKpf3hWnVesdOygaZVoPi2ItkB9rdmkNKQTVl5WbEQVABqBLstr9mmhiqbNDTdd1rGns9MVnXbNetaUx3B2I3P7BDaLsrBPgSGExW_HqZIkr5WEidDGccVT50IbOeHBm34SM91Rm5PCxo8MUxya8uz6lHuwtxx90VJ6_GPcbr8eWefYVbYyQw9eLR-jS9I9iypsuWjHJITEUg-22-Vb_lBIhpGkkQdybWGXA4jue_1JMfvW0H5jri4QLj77_996CXfRL7KPRyfHO3CP0-kAMVOmu7A5v1zY5wih5vmLxlYZfLlp5_gNorAwoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+Action+of+Autophagy+Modulators+Dissected+by+Quantitative+Systems+Pharmacology+Analysis&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Shi%2C+Qingya&rft.au=Pei%2C+Fen&rft.au=Silverman%2C+Gary+A&rft.au=Pak%2C+Stephen+C&rft.date=2020-04-19&rft.pub=MDPI+AG&rft.issn=1661-6596&rft.eissn=1422-0067&rft.volume=21&rft.issue=8&rft.spage=2855&rft_id=info:doi/10.3390%2Fijms21082855&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |