Mechanisms of Action of Autophagy Modulators Dissected by Quantitative Systems Pharmacology Analysis

Autophagy plays an essential role in cell survival/death and functioning. Modulation of autophagy has been recognized as a promising therapeutic strategy against diseases/disorders associated with uncontrolled growth or accumulation of biomolecular aggregates, organelles, or cells including those ca...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 21; no. 8; p. 2855
Main Authors Shi, Qingya, Pei, Fen, Silverman, Gary A., Pak, Stephen C., Perlmutter, David H., Liu, Bing, Bahar, Ivet
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.04.2020
MDPI
Subjects
Online AccessGet full text
ISSN1422-0067
1661-6596
1422-0067
DOI10.3390/ijms21082855

Cover

Abstract Autophagy plays an essential role in cell survival/death and functioning. Modulation of autophagy has been recognized as a promising therapeutic strategy against diseases/disorders associated with uncontrolled growth or accumulation of biomolecular aggregates, organelles, or cells including those caused by cancer, aging, neurodegeneration, and liver diseases such as α1-antitrypsin deficiency. Numerous pharmacological agents that enhance or suppress autophagy have been discovered. However, their molecular mechanisms of action are far from clear. Here, we collected a set of 225 autophagy modulators and carried out a comprehensive quantitative systems pharmacology (QSP) analysis of their targets using both existing databases and predictions made by our machine learning algorithm. Autophagy modulators include several highly promiscuous drugs (e.g., artenimol and olanzapine acting as activators, fostamatinib as an inhibitor, or melatonin as a dual-modulator) as well as selected drugs that uniquely target specific proteins (~30% of modulators). They are mediated by three layers of regulation: (i) pathways involving core autophagy-related (ATG) proteins such as mTOR, AKT, and AMPK; (ii) upstream signaling events that regulate the activity of ATG pathways such as calcium-, cAMP-, and MAPK-signaling pathways; and (iii) transcription factors regulating the expression of ATG proteins such as TFEB, TFE3, HIF-1, FoxO, and NF-κB. Our results suggest that PKA serves as a linker, bridging various signal transduction events and autophagy. These new insights contribute to a better assessment of the mechanism of action of autophagy modulators as well as their side effects, development of novel polypharmacological strategies, and identification of drug repurposing opportunities.
AbstractList Autophagy plays an essential role in cell survival/death and functioning. Modulation of autophagy has been recognized as a promising therapeutic strategy against diseases/disorders associated with uncontrolled growth or accumulation of biomolecular aggregates, organelles, or cells including those caused by cancer, aging, neurodegeneration, and liver diseases such as α1-antitrypsin deficiency. Numerous pharmacological agents that enhance or suppress autophagy have been discovered. However, their molecular mechanisms of action are far from clear. Here, we collected a set of 225 autophagy modulators and carried out a comprehensive quantitative systems pharmacology (QSP) analysis of their targets using both existing databases and predictions made by our machine learning algorithm. Autophagy modulators include several highly promiscuous drugs (e.g., artenimol and olanzapine acting as activators, fostamatinib as an inhibitor, or melatonin as a dual-modulator) as well as selected drugs that uniquely target specific proteins (~30% of modulators). They are mediated by three layers of regulation: (i) pathways involving core autophagy-related (ATG) proteins such as mTOR, AKT, and AMPK; (ii) upstream signaling events that regulate the activity of ATG pathways such as calcium-, cAMP-, and MAPK-signaling pathways; and (iii) transcription factors regulating the expression of ATG proteins such as TFEB, TFE3, HIF-1, FoxO, and NF-κB. Our results suggest that PKA serves as a linker, bridging various signal transduction events and autophagy. These new insights contribute to a better assessment of the mechanism of action of autophagy modulators as well as their side effects, development of novel polypharmacological strategies, and identification of drug repurposing opportunities.
Autophagy plays an essential role in cell survival/death and functioning. Modulation of autophagy has been recognized as a promising therapeutic strategy against diseases/disorders associated with uncontrolled growth or accumulation of biomolecular aggregates, organelles, or cells including those caused by cancer, aging, neurodegeneration, and liver diseases such as α1-antitrypsin deficiency. Numerous pharmacological agents that enhance or suppress autophagy have been discovered. However, their molecular mechanisms of action are far from clear. Here, we collected a set of 225 autophagy modulators and carried out a comprehensive quantitative systems pharmacology (QSP) analysis of their targets using both existing databases and predictions made by our machine learning algorithm. Autophagy modulators include several highly promiscuous drugs (e.g., artenimol and olanzapine acting as activators, fostamatinib as an inhibitor, or melatonin as a dual-modulator) as well as selected drugs that uniquely target specific proteins (~30% of modulators). They are mediated by three layers of regulation: (i) pathways involving core autophagy-related (ATG) proteins such as mTOR, AKT, and AMPK; (ii) upstream signaling events that regulate the activity of ATG pathways such as calcium-, cAMP-, and MAPK-signaling pathways; and (iii) transcription factors regulating the expression of ATG proteins such as TFEB, TFE3, HIF-1, FoxO, and NF-κB. Our results suggest that PKA serves as a linker, bridging various signal transduction events and autophagy. These new insights contribute to a better assessment of the mechanism of action of autophagy modulators as well as their side effects, development of novel polypharmacological strategies, and identification of drug repurposing opportunities.Autophagy plays an essential role in cell survival/death and functioning. Modulation of autophagy has been recognized as a promising therapeutic strategy against diseases/disorders associated with uncontrolled growth or accumulation of biomolecular aggregates, organelles, or cells including those caused by cancer, aging, neurodegeneration, and liver diseases such as α1-antitrypsin deficiency. Numerous pharmacological agents that enhance or suppress autophagy have been discovered. However, their molecular mechanisms of action are far from clear. Here, we collected a set of 225 autophagy modulators and carried out a comprehensive quantitative systems pharmacology (QSP) analysis of their targets using both existing databases and predictions made by our machine learning algorithm. Autophagy modulators include several highly promiscuous drugs (e.g., artenimol and olanzapine acting as activators, fostamatinib as an inhibitor, or melatonin as a dual-modulator) as well as selected drugs that uniquely target specific proteins (~30% of modulators). They are mediated by three layers of regulation: (i) pathways involving core autophagy-related (ATG) proteins such as mTOR, AKT, and AMPK; (ii) upstream signaling events that regulate the activity of ATG pathways such as calcium-, cAMP-, and MAPK-signaling pathways; and (iii) transcription factors regulating the expression of ATG proteins such as TFEB, TFE3, HIF-1, FoxO, and NF-κB. Our results suggest that PKA serves as a linker, bridging various signal transduction events and autophagy. These new insights contribute to a better assessment of the mechanism of action of autophagy modulators as well as their side effects, development of novel polypharmacological strategies, and identification of drug repurposing opportunities.
Author Bahar, Ivet
Liu, Bing
Silverman, Gary A.
Pei, Fen
Perlmutter, David H.
Shi, Qingya
Pak, Stephen C.
AuthorAffiliation 3 Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; gsilverman@wustl.edu (G.A.S.); stephen.pak@wustl.edu (S.C.P.); perlmutterd@wustl.edu (D.H.P.)
1 Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; qingya@pitt.edu (Q.S.); fep7@pitt.edu (F.P.)
2 School of Medicine, Tsinghua University, Beijing 100084, China
AuthorAffiliation_xml – name: 1 Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; qingya@pitt.edu (Q.S.); fep7@pitt.edu (F.P.)
– name: 2 School of Medicine, Tsinghua University, Beijing 100084, China
– name: 3 Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; gsilverman@wustl.edu (G.A.S.); stephen.pak@wustl.edu (S.C.P.); perlmutterd@wustl.edu (D.H.P.)
Author_xml – sequence: 1
  givenname: Qingya
  surname: Shi
  fullname: Shi, Qingya
– sequence: 2
  givenname: Fen
  surname: Pei
  fullname: Pei, Fen
– sequence: 3
  givenname: Gary A.
  surname: Silverman
  fullname: Silverman, Gary A.
– sequence: 4
  givenname: Stephen C.
  surname: Pak
  fullname: Pak, Stephen C.
– sequence: 5
  givenname: David H.
  surname: Perlmutter
  fullname: Perlmutter, David H.
– sequence: 6
  givenname: Bing
  orcidid: 0000-0002-7257-2441
  surname: Liu
  fullname: Liu, Bing
– sequence: 7
  givenname: Ivet
  orcidid: 0000-0001-9959-4176
  surname: Bahar
  fullname: Bahar, Ivet
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32325894$$D View this record in MEDLINE/PubMed
BookMark eNptkc1r3DAQxUVJaD7aW8_F0EsP2VSSJcu6FJYk_YCEtrQ9i7EkZ7XY0laSA_7vo82mYRt6mgfzm8c83gk68MFbhN4QfF7XEn9w6zFRglvacv4CHRNG6QLjRhzs6SN0ktIaY1pTLl-io3orWsmOkbmxegXepTFVoa-WOrvgH9SUw2YFt3N1E8w0QA4xVZcuJauzNVU3Vz8m8NllyO7OVj_nlG3x-L6COIIOQyiXSw_DnFx6hQ57GJJ9_ThP0e9PV78uviyuv33-erG8XmhGaF4IINp0um7A4K7tOWubXmurO0mZEBYTohkYjg0GAKqFZgIzyUkjKSWmEfUp-rjz3UzdaI22PkcY1Ca6EeKsAjj178a7lboNd0pQwnnLisH7R4MY_kw2ZTW6pO0wgLdhSorWkrWCYykL-u4Zug5TLIF3FGO0ZCrU2_2Pnl75W0ABznaAjiGlaPsnhGC17Vft91tw-gzXDw2EbR43_P_oHgQKqvM
CitedBy_id crossref_primary_10_1016_j_genrep_2023_101876
crossref_primary_10_1080_17512433_2023_2294005
crossref_primary_10_1016_j_bcp_2020_114403
crossref_primary_10_1186_s43042_022_00250_8
crossref_primary_10_1080_15548627_2024_2383145
crossref_primary_10_1016_j_bbadis_2024_167263
crossref_primary_10_1016_j_jare_2023_05_002
crossref_primary_10_1038_s41418_021_00761_8
crossref_primary_10_1093_bib_bbaa286
crossref_primary_10_1038_s41598_021_98980_z
crossref_primary_10_4236_jbm_2022_102008
crossref_primary_10_3889_oamjms_2022_10125
crossref_primary_10_1016_j_jddst_2023_104945
crossref_primary_10_1016_j_xcrm_2024_101917
crossref_primary_10_1007_s10928_021_09790_9
crossref_primary_10_1007_s00894_023_05530_7
Cites_doi 10.1007/978-3-319-49969-7_5
10.1093/nar/gkw1092
10.1038/nature11691
10.1186/s13321-018-0289-4
10.1002/cmdc.200800074
10.1002/hep.23441
10.1186/s12964-018-0282-6
10.1101/gad.1599207
10.1038/nrc2254
10.1016/j.bbrc.2014.10.152
10.3390/medsci6010019
10.1080/15548627.2016.1268300
10.1080/15548627.2019.1571717
10.3389/fncel.2019.00228
10.1093/hmg/ddu236
10.1038/nrd.2017.22
10.3390/ijms19051540
10.1038/nature09782
10.1016/j.ceb.2008.12.011
10.1007/978-1-4939-8955-3_1
10.1038/446745a
10.1074/jbc.M804543200
10.3390/cancers3022630
10.1016/j.cellsig.2010.03.004
10.4161/15548627.2014.994346
10.1093/bioinformatics/bts360
10.1007/s12551-018-0461-0
10.1038/nrm3735
10.1016/j.cell.2017.09.044
10.3389/fnmol.2016.00046
10.1101/816587
10.1186/1471-2407-12-156
10.1038/nbt.1990
10.1016/S0166-4328(01)00297-2
10.3390/cancers11101465
10.1038/cdd.2014.177
10.4161/auto.24893
10.1016/j.semcancer.2013.06.007
10.1016/j.canlet.2018.07.028
10.1080/15548627.2017.1402990
10.1016/j.ceb.2009.12.004
10.1016/S0955-0674(00)00172-1
10.3892/ijo.2013.1870
10.1002/minf.201800082
10.1007/978-3-030-17297-8_3
10.1186/s13046-018-0731-5
10.1016/j.pharmthera.2013.01.016
10.1158/2159-8290.CD-19-0292
10.1016/j.ceca.2011.04.001
10.3390/ijms20092081
10.1074/jbc.R112.356485
10.1016/j.cell.2013.08.015
10.1093/nar/gkt1076
10.1126/scisignal.aac9340
10.1371/journal.pone.0087260
10.1007/978-1-4939-6783-4_13
10.1038/s41580-018-0033-y
10.1007/s10534-014-9773-0
10.3389/fncel.2015.00343
10.4161/auto.25063
10.1042/EBC20170091
10.4161/15548627.2014.984270
10.1038/nrgastro.2016.185
10.1667/RR15486.1
10.1038/nrd.2016.230
10.1038/nrd1346
10.1038/nchembio.2238
10.1093/nar/gkx1037
10.1016/j.ccell.2016.05.002
10.1242/jcs.064576
10.1124/jpet.113.207621
10.4161/15548627.2014.991665
10.1038/s41598-017-18001-w
10.1371/journal.pone.0209748
10.1021/ci400219z
10.1038/sj.bjc.6601605
10.1080/15548627.2018.1520549
10.1126/science.1193497
10.1002/prp2.175
10.1038/ncomms10111
10.1007/978-1-4939-6783-4_2
10.1038/ncb1482
10.1016/j.bbadis.2017.10.032
10.1038/srep06245
10.4161/auto.7.10.16508
10.1038/cgt.2014.16
10.1016/j.neuron.2017.01.022
10.2174/1568026616666160608084834
10.1016/j.bcp.2014.12.018
10.1186/s40169-017-0181-2
10.1172/JCI73939
10.1093/nar/gkq995
10.1016/j.cell.2018.09.048
10.1093/bioinformatics/btaa210
10.1016/j.yjmcc.2015.11.019
10.1038/nm.3232
10.1126/science.1190354
10.1038/s41589-019-0462-8
10.1016/j.cub.2017.02.061
10.1093/bioinformatics/btv297
10.1038/s41467-018-06487-5
10.1016/j.ebiom.2016.10.034
10.1016/S1471-4922(00)01838-9
10.1158/0008-5472.CAN-18-2636
10.1016/j.chembiol.2020.02.005
10.1371/journal.pone.0202458
10.1080/15548627.2015.1055440
10.15252/msb.20177651
10.1093/bioinformatics/btu599
10.1016/j.tem.2014.03.006
10.1080/15548627.2019.1658436
10.1142/S0219720012310014
10.18632/oncotarget.17520
10.1016/j.ejphar.2013.08.006
10.1016/j.cell.2014.11.047
10.1080/15548627.2016.1183843
10.1016/j.celrep.2018.05.032
10.1126/science.1260419
10.1021/jm400856t
10.1667/RR14787.1
10.1016/j.tem.2012.03.004
10.1016/j.neuroscience.2009.08.014
10.1038/s41467-018-03751-6
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms21082855
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC7215584
32325894
10_3390_ijms21082855
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P41 GM103712
– fundername: NIDDK NIH HHS
  grantid: P01 DK096990
– fundername: NIH HHS
  grantid: P01DK096990, P30DA035778, and P41GM103712
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c412t-7a1cdbc36ad0b8f5486fccecb92477e011c4ad50d0aaa2c7c470495169221d673
IEDL.DBID 8FG
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 14:01:55 EDT 2025
Mon Sep 08 14:35:33 EDT 2025
Fri Jul 25 20:33:51 EDT 2025
Mon Jul 21 06:03:50 EDT 2025
Tue Jul 01 04:15:15 EDT 2025
Thu Apr 24 22:55:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords autophagy
PI3K
quantitative systems pharmacology
signal transduction
PKA
mTOR
mechanism of action
machine learning
drug-target interactions
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-7a1cdbc36ad0b8f5486fccecb92477e011c4ad50d0aaa2c7c470495169221d673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9959-4176
0000-0002-7257-2441
OpenAccessLink https://www.proquest.com/docview/2394442412?pq-origsite=%requestingapplication%
PMID 32325894
PQID 2394442412
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7215584
proquest_miscellaneous_2394875099
proquest_journals_2394442412
pubmed_primary_32325894
crossref_primary_10_3390_ijms21082855
crossref_citationtrail_10_3390_ijms21082855
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200419
PublicationDateYYYYMMDD 2020-04-19
PublicationDate_xml – month: 4
  year: 2020
  text: 20200419
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Decuypere (ref_12) 2011; 50
Liu (ref_108) 2016; 9
Besnard (ref_52) 2012; 492
Mathew (ref_7) 2007; 7
Ber (ref_48) 2015; 22
Peters (ref_98) 2013; 56
Chen (ref_106) 2011; 124
Ozdemir (ref_90) 2019; 1903
Ueno (ref_111) 2017; 14
Radogna (ref_72) 2015; 94
Marino (ref_71) 2014; 15
Garcia (ref_116) 2001; 13
Lachmann (ref_68) 2018; 9
ref_24
Kim (ref_41) 2018; 9
ref_23
ref_22
ref_122
Pundir (ref_53) 2017; 1558
Yan (ref_57) 2014; 21
Dyczynski (ref_81) 2018; 435
Liu (ref_110) 2012; 10
Kapralov (ref_120) 2020; 16
ref_29
ref_28
Soll (ref_63) 2010; 51
Li (ref_51) 2016; 16
Ma (ref_77) 2012; 23
Shinde (ref_45) 2019; 79
Wei (ref_65) 2013; 154
Niture (ref_40) 2018; 16
ref_79
Homma (ref_84) 2011; 39
Ramsay (ref_97) 2018; 7
Cobanoglu (ref_26) 2013; 53
Moriya (ref_31) 2013; 42
ref_73
Wauson (ref_58) 2014; 25
Levine (ref_82) 2011; 469
Brachmann (ref_30) 2009; 21
Xiang (ref_55) 2019; 15
Santos (ref_54) 2017; 16
Huang (ref_104) 2016; 12
Dolma (ref_62) 2016; 29
Singh (ref_47) 2016; 9
Steinman (ref_121) 2018; 189
Gyori (ref_93) 2017; 13
ref_83
Benjamini (ref_125) 2001; 125
Lorin (ref_6) 2013; 23
Olliaro (ref_36) 2001; 17
Cai (ref_20) 2013; 1
Manzoni (ref_49) 2017; 14
Vucicevic (ref_44) 2014; 10
Lizaso (ref_59) 2013; 9
Deng (ref_86) 2018; 14
Mizushima (ref_9) 2010; 22
Nussinov (ref_103) 2018; 10
Yousefi (ref_14) 2006; 8
Kanehisa (ref_124) 2017; 45
Galluzzi (ref_18) 2017; 16
Rolf (ref_99) 2015; 3
Liu (ref_11) 2017; 7
Hidvegi (ref_21) 2010; 329
Kast (ref_74) 2017; 27
Wishart (ref_25) 2018; 46
Liuzzi (ref_34) 2014; 27
Wang (ref_112) 2019; 13
Nanduri (ref_87) 2019; 15
Duan (ref_46) 2019; 11
Yamamoto (ref_76) 2018; 23
Racioppi (ref_13) 2012; 287
Sridharan (ref_101) 2011; 3
Amaravadi (ref_80) 2019; 9
Takeuchi (ref_67) 2004; 90
Li (ref_16) 2014; 455
Graef (ref_10) 2011; 7
Nussinov (ref_102) 2018; 1864
Lovric (ref_123) 2019; 38
Levine (ref_5) 2007; 446
Long (ref_17) 2014; 23
Blessing (ref_56) 2017; 13
Dubey (ref_117) 2015; 9
Towers (ref_19) 2016; 14
Liu (ref_107) 2014; 4
Wang (ref_37) 2015; 6
Wenzel (ref_119) 2017; 171
Ikegami (ref_42) 2013; 718
Fraser (ref_64) 2017; 61
Filteau (ref_105) 2015; 11
Schiattarella (ref_114) 2016; 95
Hansen (ref_78) 2018; 19
Yan (ref_61) 2015; 160
Wang (ref_1) 2018; 37
Cobanoglu (ref_27) 2015; 31
Wang (ref_88) 2018; 10
ref_35
Gonen (ref_91) 2012; 28
Pillich (ref_94) 2017; 1558
Kagan (ref_118) 2017; 13
ref_33
ref_32
Yogalingam (ref_66) 2008; 283
Roth (ref_96) 2004; 3
Merlin (ref_60) 2010; 22
ref_39
Gundersen (ref_92) 2015; 31
Gatliff (ref_95) 2014; 10
Mizushima (ref_4) 2007; 21
Shi (ref_38) 2017; 8
Schmidt (ref_43) 2013; 347
Levine (ref_2) 2019; 176
Rabinowitz (ref_3) 2010; 330
Selent (ref_100) 2008; 3
Nixon (ref_115) 2013; 19
Csermely (ref_89) 2013; 138
ref_109
Davis (ref_50) 2011; 29
Czaja (ref_113) 2013; 9
Menzies (ref_75) 2017; 93
Kanehisa (ref_70) 2014; 42
Turei (ref_85) 2015; 11
Kim (ref_8) 2015; 125
Pan (ref_15) 2009; 164
Uhlen (ref_69) 2015; 347
References_xml – volume: 14
  start-page: 89
  year: 2017
  ident: ref_49
  article-title: LRRK2 and Autophagy
  publication-title: Adv. Neurobiol.
  doi: 10.1007/978-3-319-49969-7_5
– volume: 45
  start-page: D353
  year: 2017
  ident: ref_124
  article-title: KEGG: New perspectives on genomes, pathways, diseases and drugs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1092
– volume: 492
  start-page: 215
  year: 2012
  ident: ref_52
  article-title: Automated design of ligands to polypharmacological profiles
  publication-title: Nature
  doi: 10.1038/nature11691
– volume: 10
  start-page: 34
  year: 2018
  ident: ref_88
  article-title: HAMdb: A database of human autophagy modulators with specific pathway and disease information
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-018-0289-4
– volume: 3
  start-page: 1194
  year: 2008
  ident: ref_100
  article-title: Multi-receptor binding profile of clozapine and olanzapine: A structural study based on the new beta2 adrenergic receptor template
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.200800074
– volume: 51
  start-page: 1244
  year: 2010
  ident: ref_63
  article-title: Serotonin promotes tumor growth in human hepatocellular cancer
  publication-title: Hepatology
  doi: 10.1002/hep.23441
– volume: 16
  start-page: 78
  year: 2018
  ident: ref_40
  article-title: Serotonin induced hepatic steatosis is associated with modulation of autophagy and notch signaling pathway
  publication-title: Cell Commun. Signal.
  doi: 10.1186/s12964-018-0282-6
– volume: 21
  start-page: 2861
  year: 2007
  ident: ref_4
  article-title: Autophagy: Process and function
  publication-title: Genes Dev.
  doi: 10.1101/gad.1599207
– volume: 7
  start-page: 961
  year: 2007
  ident: ref_7
  article-title: Role of autophagy in cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2254
– volume: 455
  start-page: 234
  year: 2014
  ident: ref_16
  article-title: Pretreatment with wortmannin alleviates lipopolysaccharide/d-galactosamine-induced acute liver injury
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.10.152
– ident: ref_39
  doi: 10.3390/medsci6010019
– volume: 13
  start-page: 506
  year: 2017
  ident: ref_56
  article-title: Transcriptional regulation of core autophagy and lysosomal genes by the androgen receptor promotes prostate cancer progression
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1268300
– volume: 15
  start-page: 1280
  year: 2019
  ident: ref_87
  article-title: AutophagySMDB: A curated database of small molecules that modulate protein targets regulating autophagy
  publication-title: Autophagy
  doi: 10.1080/15548627.2019.1571717
– volume: 13
  start-page: 228
  year: 2019
  ident: ref_112
  article-title: The relationship between autophagy and brain plasticity in neurological diseases
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2019.00228
– volume: 23
  start-page: 5123
  year: 2014
  ident: ref_17
  article-title: A genome-wide RNAi screen identifies potential drug targets in a C. elegans model of alpha1-antitrypsin deficiency
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddu236
– volume: 16
  start-page: 487
  year: 2017
  ident: ref_18
  article-title: Pharmacological modulation of autophagy: Therapeutic potential and persisting obstacles
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2017.22
– ident: ref_32
  doi: 10.3390/ijms19051540
– volume: 469
  start-page: 323
  year: 2011
  ident: ref_82
  article-title: Autophagy in immunity and inflammation
  publication-title: Nature
  doi: 10.1038/nature09782
– volume: 21
  start-page: 194
  year: 2009
  ident: ref_30
  article-title: PI3K and mTOR inhibitors: A new generation of targeted anticancer agents
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2008.12.011
– volume: 1903
  start-page: 1
  year: 2019
  ident: ref_90
  article-title: Methods for Discovering and Targeting Druggable Protein-Protein Interfaces and Their Application to Repurposing
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-8955-3_1
– volume: 446
  start-page: 745
  year: 2007
  ident: ref_5
  article-title: Cell biology: Autophagy and cancer
  publication-title: Nature
  doi: 10.1038/446745a
– volume: 283
  start-page: 35941
  year: 2008
  ident: ref_66
  article-title: Abl kinases regulate autophagy by promoting the trafficking and function of lysosomal components
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M804543200
– volume: 3
  start-page: 2630
  year: 2011
  ident: ref_101
  article-title: Regulation of autophagy by kinases
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers3022630
– volume: 22
  start-page: 1104
  year: 2010
  ident: ref_60
  article-title: The M3-muscarinic acetylcholine receptor stimulates glucose uptake in L6 skeletal muscle cells by a CaMKK-AMPK-dependent mechanism
  publication-title: Cell Signal.
  doi: 10.1016/j.cellsig.2010.03.004
– volume: 11
  start-page: 155
  year: 2015
  ident: ref_85
  article-title: Autophagy Regulatory Network—A systems-level bioinformatics resource for studying the mechanism and regulation of autophagy
  publication-title: Autophagy
  doi: 10.4161/15548627.2014.994346
– volume: 28
  start-page: 2304
  year: 2012
  ident: ref_91
  article-title: Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts360
– volume: 10
  start-page: 1263
  year: 2018
  ident: ref_103
  article-title: Autoinhibition in Ras effectors Raf, PI3Kalpha, and RASSF5: A comprehensive review underscoring the challenges in pharmacological intervention
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-018-0461-0
– volume: 15
  start-page: 81
  year: 2014
  ident: ref_71
  article-title: Self-consumption: The interplay of autophagy and apoptosis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3735
– volume: 171
  start-page: 628
  year: 2017
  ident: ref_119
  article-title: PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.044
– volume: 9
  start-page: 46
  year: 2016
  ident: ref_47
  article-title: Death associated protein kinase 1 (DAPK1): A regulator of apoptosis and autophagy
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2016.00046
– ident: ref_35
  doi: 10.1101/816587
– ident: ref_33
  doi: 10.1186/1471-2407-12-156
– volume: 29
  start-page: 1046
  year: 2011
  ident: ref_50
  article-title: Comprehensive analysis of kinase inhibitor selectivity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1990
– volume: 125
  start-page: 279
  year: 2001
  ident: ref_125
  article-title: Controlling the false discovery rate in behavior genetics research
  publication-title: Behav Brain Res.
  doi: 10.1016/S0166-4328(01)00297-2
– ident: ref_24
  doi: 10.3390/cancers11101465
– volume: 22
  start-page: 465
  year: 2015
  ident: ref_48
  article-title: DAPK2 is a novel regulator of mTORC1 activity and autophagy
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2014.177
– volume: 9
  start-page: 1228
  year: 2013
  ident: ref_59
  article-title: beta-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation
  publication-title: Autophagy
  doi: 10.4161/auto.24893
– volume: 23
  start-page: 361
  year: 2013
  ident: ref_6
  article-title: Autophagy regulation and its role in cancer
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2013.06.007
– volume: 435
  start-page: 32
  year: 2018
  ident: ref_81
  article-title: Targeting autophagy by small molecule inhibitors of vacuolar protein sorting 34 (Vps34) improves the sensitivity of breast cancer cells to Sunitinib
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2018.07.028
– volume: 14
  start-page: 296
  year: 2018
  ident: ref_86
  article-title: THANATOS: An integrative data resource of proteins and post-translational modifications in the regulation of autophagy
  publication-title: Autophagy
  doi: 10.1080/15548627.2017.1402990
– volume: 22
  start-page: 132
  year: 2010
  ident: ref_9
  article-title: The role of the Atg1/ULK1 complex in autophagy regulation
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2009.12.004
– volume: 13
  start-page: 41
  year: 2001
  ident: ref_116
  article-title: Going new places using an old MAP: Tau, microtubules and human neurodegenerative disease
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(00)00172-1
– volume: 42
  start-page: 1541
  year: 2013
  ident: ref_31
  article-title: Macrolide antibiotics block autophagy flux and sensitize to bortezomib via endoplasmic reticulum stress-mediated CHOP induction in myeloma cells
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2013.1870
– volume: 38
  start-page: e1800082
  year: 2019
  ident: ref_123
  article-title: PySpark and RDKit: Moving towards Big Data in Cheminformatics
  publication-title: Mol. Inform.
  doi: 10.1002/minf.201800082
– ident: ref_109
  doi: 10.1007/978-3-030-17297-8_3
– volume: 37
  start-page: 63
  year: 2018
  ident: ref_1
  article-title: Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-018-0731-5
– volume: 138
  start-page: 333
  year: 2013
  ident: ref_89
  article-title: Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2013.01.016
– volume: 9
  start-page: 1167
  year: 2019
  ident: ref_80
  article-title: Targeting autophagy in cancer: Recent advances and future directions
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-19-0292
– volume: 50
  start-page: 242
  year: 2011
  ident: ref_12
  article-title: A dual role for Ca(2+) in autophagy regulation
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2011.04.001
– ident: ref_79
  doi: 10.3390/ijms20092081
– volume: 287
  start-page: 31658
  year: 2012
  ident: ref_13
  article-title: Calcium/calmodulin-dependent protein kinase kinase 2: Roles in signaling and pathophysiology
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R112.356485
– volume: 154
  start-page: 1269
  year: 2013
  ident: ref_65
  article-title: EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.015
– volume: 42
  start-page: D199
  year: 2014
  ident: ref_70
  article-title: Data, information, knowledge and principle: Back to metabolism in KEGG
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1076
– volume: 9
  start-page: ra70
  year: 2016
  ident: ref_108
  article-title: Innate immune memory and homeostasis may be conferred through crosstalk between the TLR3 and TLR7 pathways
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aac9340
– ident: ref_22
  doi: 10.1371/journal.pone.0087260
– volume: 1558
  start-page: 271
  year: 2017
  ident: ref_94
  article-title: NDEx: A Community Resource for Sharing and Publishing of Biological Networks
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6783-4_13
– volume: 19
  start-page: 579
  year: 2018
  ident: ref_78
  article-title: Autophagy as a promoter of longevity: Insights from model organisms
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0033-y
– volume: 27
  start-page: 1087
  year: 2014
  ident: ref_34
  article-title: Zinc and autophagy
  publication-title: Biometals
  doi: 10.1007/s10534-014-9773-0
– volume: 9
  start-page: 343
  year: 2015
  ident: ref_117
  article-title: Neurodegeneration and microtubule dynamics: Death by a thousand cuts
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2015.00343
– volume: 9
  start-page: 1131
  year: 2013
  ident: ref_113
  article-title: Functions of autophagy in normal and diseased liver
  publication-title: Autophagy
  doi: 10.4161/auto.25063
– volume: 61
  start-page: 597
  year: 2017
  ident: ref_64
  article-title: Interplay of autophagy, receptor tyrosine kinase signalling and endocytic trafficking
  publication-title: Essays Biochem.
  doi: 10.1042/EBC20170091
– volume: 10
  start-page: 2362
  year: 2014
  ident: ref_44
  article-title: Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine
  publication-title: Autophagy
  doi: 10.4161/15548627.2014.984270
– volume: 14
  start-page: 170
  year: 2017
  ident: ref_111
  article-title: Autophagy in the liver: Functions in health and disease
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2016.185
– ident: ref_122
  doi: 10.1667/RR15486.1
– volume: 16
  start-page: 19
  year: 2017
  ident: ref_54
  article-title: A comprehensive map of molecular drug targets
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2016.230
– volume: 3
  start-page: 353
  year: 2004
  ident: ref_96
  article-title: Magic shotguns versus magic bullets: Selectively non-selective drugs for mood disorders and schizophrenia
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1346
– volume: 13
  start-page: 81
  year: 2017
  ident: ref_118
  article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2238
– volume: 46
  start-page: D1074
  year: 2018
  ident: ref_25
  article-title: DrugBank 5.0: A major update to the DrugBank database for 2018
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1037
– volume: 29
  start-page: 859
  year: 2016
  ident: ref_62
  article-title: Inhibition of dopamine receptor D4 impedes autophagic flux, proliferation, and survival of glioblastoma stem cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.05.002
– volume: 124
  start-page: 161
  year: 2011
  ident: ref_106
  article-title: The regulation of autophagy—Unanswered questions
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.064576
– volume: 347
  start-page: 126
  year: 2013
  ident: ref_43
  article-title: Olanzapine activates hepatic mammalian target of rapamycin: New mechanistic insight into metabolic dysregulation with atypical antipsychotic drugs
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.113.207621
– volume: 10
  start-page: 2279
  year: 2014
  ident: ref_95
  article-title: TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control
  publication-title: Autophagy
  doi: 10.4161/15548627.2014.991665
– volume: 7
  start-page: 17605
  year: 2017
  ident: ref_11
  article-title: Quantitative assessment of cell fate decision between autophagy and apoptosis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-18001-w
– ident: ref_23
  doi: 10.1371/journal.pone.0209748
– volume: 53
  start-page: 3399
  year: 2013
  ident: ref_26
  article-title: Predicting drug-target interactions using probabilistic matrix factorization
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci400219z
– volume: 90
  start-page: 1069
  year: 2004
  ident: ref_67
  article-title: Inhibition of platelet-derived growth factor signalling induces autophagy in malignant glioma cells
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6601605
– volume: 15
  start-page: 197
  year: 2019
  ident: ref_55
  article-title: How does estrogen work on autophagy?
  publication-title: Autophagy
  doi: 10.1080/15548627.2018.1520549
– volume: 330
  start-page: 1344
  year: 2010
  ident: ref_3
  article-title: Autophagy and metabolism
  publication-title: Science
  doi: 10.1126/science.1193497
– volume: 3
  start-page: e00175
  year: 2015
  ident: ref_99
  article-title: In vitro pharmacological profiling of R406 identifies molecular targets underlying the clinical effects of fostamatinib
  publication-title: Pharmacol. Res. Perspect.
  doi: 10.1002/prp2.175
– volume: 6
  start-page: 10111
  year: 2015
  ident: ref_37
  article-title: Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10111
– volume: 1558
  start-page: 41
  year: 2017
  ident: ref_53
  article-title: UniProt Protein Knowledgebase
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6783-4_2
– volume: 8
  start-page: 1124
  year: 2006
  ident: ref_14
  article-title: Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1482
– volume: 1
  start-page: 84
  year: 2013
  ident: ref_20
  article-title: Rapamycin, autophagy, and alzheimer’s disease
  publication-title: J. Biochem. Pharmacol. Res.
– volume: 1864
  start-page: 2304
  year: 2018
  ident: ref_102
  article-title: Calmodulin and IQGAP1 activation of PI3Kalpha and Akt in KRAS, HRAS and NRAS-driven cancers
  publication-title: Biochim. Biophys. Acta Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2017.10.032
– volume: 4
  start-page: 6245
  year: 2014
  ident: ref_107
  article-title: Significance of p53 dynamics in regulating apoptosis in response to ionizing radiation, and polypharmacological strategies
  publication-title: Sci. Rep.
  doi: 10.1038/srep06245
– volume: 11
  start-page: 2457
  year: 2019
  ident: ref_46
  article-title: Deletion of Tbk1 disrupts autophagy and reproduces behavioral and locomotor symptoms of FTD-ALS in mice
  publication-title: Aging (Albany N.Y.)
– volume: 7
  start-page: 1245
  year: 2011
  ident: ref_10
  article-title: A role for mitochondria in autophagy regulation
  publication-title: Autophagy
  doi: 10.4161/auto.7.10.16508
– volume: 21
  start-page: 188
  year: 2014
  ident: ref_57
  article-title: The PPARgamma agonist Troglitazone induces autophagy, apoptosis and necroptosis in bladder cancer cells
  publication-title: Cancer Gene Ther.
  doi: 10.1038/cgt.2014.16
– volume: 93
  start-page: 1015
  year: 2017
  ident: ref_75
  article-title: Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.01.022
– volume: 16
  start-page: 3385
  year: 2016
  ident: ref_51
  article-title: Dopamine targeting drugs for the treatment of schizophrenia: Past, present and future
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026616666160608084834
– volume: 94
  start-page: 1
  year: 2015
  ident: ref_72
  article-title: Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2014.12.018
– volume: 7
  start-page: 3
  year: 2018
  ident: ref_97
  article-title: A perspective on multi-target drug discovery and design for complex diseases
  publication-title: Clin. Transl. Med.
  doi: 10.1186/s40169-017-0181-2
– volume: 125
  start-page: 25
  year: 2015
  ident: ref_8
  article-title: mTOR: A pharmacologic target for autophagy regulation
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI73939
– volume: 39
  start-page: D986
  year: 2011
  ident: ref_84
  article-title: The Autophagy Database: An all-inclusive information resource on autophagy that provides nourishment for research
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq995
– volume: 176
  start-page: 11
  year: 2019
  ident: ref_2
  article-title: Biological functions of autophagy genes: A disease perspective
  publication-title: Cell
  doi: 10.1016/j.cell.2018.09.048
– ident: ref_28
  doi: 10.1093/bioinformatics/btaa210
– volume: 95
  start-page: 86
  year: 2016
  ident: ref_114
  article-title: Therapeutic targeting of autophagy in cardiovascular disease
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2015.11.019
– volume: 19
  start-page: 983
  year: 2013
  ident: ref_115
  article-title: The role of autophagy in neurodegenerative disease
  publication-title: Nat. Med.
  doi: 10.1038/nm.3232
– volume: 329
  start-page: 229
  year: 2010
  ident: ref_21
  article-title: An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis
  publication-title: Science
  doi: 10.1126/science.1190354
– volume: 16
  start-page: 278
  year: 2020
  ident: ref_120
  article-title: Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-019-0462-8
– volume: 27
  start-page: R318
  year: 2017
  ident: ref_74
  article-title: The cytoskeleton-autophagy connection
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.02.061
– volume: 31
  start-page: 3060
  year: 2015
  ident: ref_92
  article-title: GEO2Enrichr: Browser extension and server app to extract gene sets from GEO and analyze them for biological functions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv297
– volume: 9
  start-page: 4184
  year: 2018
  ident: ref_41
  article-title: GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06487-5
– volume: 14
  start-page: 15
  year: 2016
  ident: ref_19
  article-title: Therapeutic targeting of autophagy
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2016.10.034
– volume: 17
  start-page: 122
  year: 2001
  ident: ref_36
  article-title: Possible modes of action of the artemisinin-type compounds
  publication-title: Trends Parasitol.
  doi: 10.1016/S1471-4922(00)01838-9
– volume: 79
  start-page: 1831
  year: 2019
  ident: ref_45
  article-title: Spleen tyrosine kinase-mediated autophagy is required for epithelial-mesenchymal plasticity and metastasis in breast cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-18-2636
– ident: ref_73
  doi: 10.1016/j.chembiol.2020.02.005
– ident: ref_29
  doi: 10.1371/journal.pone.0202458
– volume: 11
  start-page: 1181
  year: 2015
  ident: ref_105
  article-title: Feedback regulation between autophagy and PKA
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1055440
– volume: 13
  start-page: 954
  year: 2017
  ident: ref_93
  article-title: From word models to executable models of signaling networks using automated assembly
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20177651
– volume: 31
  start-page: 131
  year: 2015
  ident: ref_27
  article-title: BalestraWeb: Efficient online evaluation of drug-target interactions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu599
– volume: 25
  start-page: 274
  year: 2014
  ident: ref_58
  article-title: G protein-coupled receptors and the regulation of autophagy
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2014.03.006
– ident: ref_83
  doi: 10.1080/15548627.2019.1658436
– volume: 10
  start-page: 1231001
  year: 2012
  ident: ref_110
  article-title: Modeling and analysis of biopathways dynamics
  publication-title: J. Bioinform. Comput. Biol.
  doi: 10.1142/S0219720012310014
– volume: 8
  start-page: 45981
  year: 2017
  ident: ref_38
  article-title: Dihydroartemisinin induces autophagy-dependent death in human tongue squamous cell carcinoma cells through DNA double-strand break-mediated oxidative stress
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17520
– volume: 718
  start-page: 376
  year: 2013
  ident: ref_42
  article-title: Olanzapine induces glucose intolerance through the activation of AMPK in the mouse hypothalamus
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2013.08.006
– volume: 160
  start-page: 62
  year: 2015
  ident: ref_61
  article-title: Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.047
– volume: 12
  start-page: 1292
  year: 2016
  ident: ref_104
  article-title: The circadian clock regulates autophagy directly through the nuclear hormone receptor Nr1d1/Rev-erbalpha and indirectly via Cebpb/(C/ebpbeta) in zebrafish
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1183843
– volume: 23
  start-page: 3286
  year: 2018
  ident: ref_76
  article-title: Autophagy differentially regulates insulin production and insulin sensitivity
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.05.032
– volume: 347
  start-page: 1260419
  year: 2015
  ident: ref_69
  article-title: Tissue-based map of the human proteome
  publication-title: Science
  doi: 10.1126/science.1260419
– volume: 56
  start-page: 8955
  year: 2013
  ident: ref_98
  article-title: Polypharmacology—Foe or friend?
  publication-title: J. Med. Chem.
  doi: 10.1021/jm400856t
– volume: 189
  start-page: 68
  year: 2018
  ident: ref_121
  article-title: Improved total-body irradiation survival by delivery of two radiation mitigators that target distinct cell death pathways
  publication-title: Radiat. Res.
  doi: 10.1667/RR14787.1
– volume: 23
  start-page: 319
  year: 2012
  ident: ref_77
  article-title: Circadian autophagy rhythm: A link between clock and metabolism?
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2012.03.004
– volume: 164
  start-page: 541
  year: 2009
  ident: ref_15
  article-title: Rapamycin protects against rotenone-induced apoptosis through autophagy induction
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2009.08.014
– volume: 9
  start-page: 1366
  year: 2018
  ident: ref_68
  article-title: Massive mining of publicly available RNA-seq data from human and mouse
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03751-6
SSID ssj0023259
Score 2.3951428
Snippet Autophagy plays an essential role in cell survival/death and functioning. Modulation of autophagy has been recognized as a promising therapeutic strategy...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2855
SubjectTerms Antipsychotics
Application programming interface
Autophagy
Autophagy - drug effects
Autophagy - genetics
Biomarkers
Brain - drug effects
Brain - metabolism
Computational Biology - methods
Cyclic AMP-Dependent Protein Kinases - metabolism
Drug Discovery - methods
Drugs
Gene expression
Gene Expression Regulation - drug effects
Humans
Kinases
Liver - drug effects
Liver - metabolism
Pharmacology - methods
Phosphatidylinositol 3-Kinases - metabolism
Proteins
Signal Transduction - drug effects
Structure-Activity Relationship
TOR Serine-Threonine Kinases - metabolism
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS9xAEB5Oi-CLaFs11ZYV2ieJ3m12N8mDlMNWpHDSgge-hc3uxl7RpL3cQfPfO5Nf9artWyCzJMzsZubL7nwfwHturbAIZv2MhMIwBUg_jSU15zhcWU6JoaP_kJMrdTkVX27kzQA6tdHWgeWz0I70pKbzu5Pfv6qPuODPCHEiZD-d_bgvEbkQF5tcgxeYkxTBsIno9xOwbKhl00aYjXwlY9UcgX8yejU5Pak4_z44-SgTXWzDVltCsnET8x0YuPwlbDSiktUrsBNH3byz8r5kRcbGdeNCfbUkEgF9W7FJYUm1q5iX7BPtxxssO1lasW9LnddNZ_gJZC2XOfv6h9y6Yh2HyWuYXny-Pr_0Wy0F34gRX_ihHhmbmkBpO0yjDHGKyoxxJkX8FYYOV7kR2sqhHWqtuQmNCBE70CYa5yOrwmAX1vMid_vAsKDE0SrWIYldRUEkjc245nGWBU5k0oPjzomJaYnGSe_iLkHAQS5PHrvcgw-99c-GYOMfdoddPJJuliSk6y4EBpx7cNTfxgVCux46d8WysYmoLoo92GvC1z8ooIkRxcKDcCWwvQGRb6_eyWffaxJuRM4Si7c3_3-tA9jkBNCJHDI-hPXFfOneYhWzSN_VE_QB0wDx6Q
  priority: 102
  providerName: Scholars Portal
Title Mechanisms of Action of Autophagy Modulators Dissected by Quantitative Systems Pharmacology Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/32325894
https://www.proquest.com/docview/2394442412
https://www.proquest.com/docview/2394875099
https://pubmed.ncbi.nlm.nih.gov/PMC7215584
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED4N0KS9TOPHRlipPGk8oYjWsePkCXWDgiYVAQKpb5FjO1vRSIC0D_3vuUvSQEHwEkWKo0S-O999_vF9AD-5tcIimPUzEgrDFCD9NJZ0OMdhZLlQ9BzNQ47OwtNr8Wcsx82EW9lsq1yMidVAbQtDc-QHJOEtBOYbfnh375NqFK2uNhIaK7DWx0xDfh4NT1rAFfBKLK2POcgPZRzWG98DhPkHk5vbEtEO8bfJ5ZT0qs58uV3yWf4ZfoHPTeHIBrWl1-GDyzfgYy0lOd8EO3J0hndS3pasyNigOq5Q3c2IOkD_nbNRYUmrq3go2RGtwhssNlk6ZxcznVdHzXDgYw2DOTt_orSeswVzyRZcD4-vfp_6jYKCb7Cjpr7SfWNTE4Ta9tIoQ3QSZsY4kyLqUsphbBuhrezZntaaG2WEQsRAS2ec922ogq-wmhe52waGZSS-HcZakcRVFETS2IxrHmdZ4EQmPdhfdGJiGnpxUrn4nyDMoC5Pnne5B3tt67uaVuONdp2FPZImuMrkyRU8-NE-xrCgtQ6du2JWt4moGoo9-Fabr_1QQI4RxcIDtWTYtgFRbi8_ySf_KuptxMsSS7ad93_rO3ziBMuJEjLuwOr0YeZ2sXaZpl1YUWPVrdy0C2u_js_OL7uUTSReRyJ6BEAp82s
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB21RahcEBQKgQKuRE8oatax4-RQoYpSbWm3AqmV9pY6tgOLaFKaXaH8qf5GZvKx2wXBrbdIcT5kz3je2J73AN5ya4XFZNbPSSgMQ4D0s0RScY5Dz3KRCBytQ45Oo-G5-DSW4xW46Wth6FhlPyc2E7UtDa2R75KEtxAYb_j7q58-qUbR7movodGaxbGrf2HKVu0dHeD47nB--PHsw9DvVAV8gw9PfaUHxmYmjLQNsjhHxB7lxjiTYSailEN7N0JbGdhAa82NMkIhiqbtJM4HNlIhvncV7glaGUf_UeNFghfyRpxtgDHPj2QStQftwzAJdiffLyvMrogvTi6HwL9w7Z_HM2_Fu8NH8LADqmy_tazHsOKKDbjfSlfWT8COHNUMT6rLipU522_KI5qrGVEV6K81G5WWtMHK64od0K6_QXDLspp9memiKW3DiZZ1jOns84JCu2Y9U8pTOL-Tvt2EtaIs3HNgCFvx6SjRiiS14jCWxuZc8yTPQydy6cG7vhNT09GZk6rGjxTTGury9HaXe7Azb33V0nj8o91WPx5p58xVujA9D7bnt9ENaW9FF66ctW1iQl-JB8_a4Zt_KCTDiBPhgVoa2HkDovhevlNMvjVU35ifS4SIL_7_W29gfXg2OklPjk6PX8IDTksCREeZbMHa9HrmXiFummavG2NlcHHX3vEbzlQsYg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhAXVF7FtMAi0ROy4qy9XvuAqooQtZRURaJSbma9DwiidqkTIf-1_jpm_EgaENx6i-SNE-3O7HyzO_N9AK-5MZHBZNZ3JBSGIUD4eSqoOceiZ9k4CiydQ05O4sOz6MNUTDfgqu-FobLKfk9sNmpTajojH5CEdxRhvOED15VFnI7G-xc_fVKQopvWXk6jNZFjW__C9K16ezTCtd7jfPz-87tDv1MY8DW-aO5LNdQm12GsTJAnDtF77LS2OsesREqLtq8jZURgAqUU11JHEhE1XS1xPjSxDPG9t-C2DBFVoS_J6SrZC3kj1DbE-OfHIo3bovswTIPB7Pt5hZkWcceJ9XD4F8b9s1TzWuwbb8H9DrSyg9bKHsCGLR7CnVbGsn4EZmKpf3hWnVesdOygaZVoPi2ItkB9rdmkNKQTVl5WbEQVABqBLstr9mmhiqbNDTdd1rGns9MVnXbNetaUx3B2I3P7BDaLsrBPgSGExW_HqZIkr5WEidDGccVT50IbOeHBm34SM91Rm5PCxo8MUxya8uz6lHuwtxx90VJ6_GPcbr8eWefYVbYyQw9eLR-jS9I9iypsuWjHJITEUg-22-Vb_lBIhpGkkQdybWGXA4jue_1JMfvW0H5jri4QLj77_996CXfRL7KPRyfHO3CP0-kAMVOmu7A5v1zY5wih5vmLxlYZfLlp5_gNorAwoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+Action+of+Autophagy+Modulators+Dissected+by+Quantitative+Systems+Pharmacology+Analysis&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Shi%2C+Qingya&rft.au=Pei%2C+Fen&rft.au=Silverman%2C+Gary+A&rft.au=Pak%2C+Stephen+C&rft.date=2020-04-19&rft.pub=MDPI+AG&rft.issn=1661-6596&rft.eissn=1422-0067&rft.volume=21&rft.issue=8&rft.spage=2855&rft_id=info:doi/10.3390%2Fijms21082855&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon