The Application of Multiple Linear Regression and Artificial Neural Network Models for Yield Prediction of Very Early Potato Cultivars before Harvest
Yield forecasting is a rational and scientific way of predicting future occurrences in agriculture—the level of production effects. Its main purpose is reducing the risk in the decision-making process affecting the yield in terms of quantity and quality. The aim of the following study was to generat...
Saved in:
Published in | Agronomy (Basel) Vol. 11; no. 5; p. 885 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
30.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Yield forecasting is a rational and scientific way of predicting future occurrences in agriculture—the level of production effects. Its main purpose is reducing the risk in the decision-making process affecting the yield in terms of quantity and quality. The aim of the following study was to generate a linear and non-linear model to forecast the tuber yield of three very early potato cultivars: Arielle, Riviera, and Viviana. In order to achieve the set goal of the study, data from the period 2010–2017 were collected, coming from official varietal experiments carried out in northern and northwestern Poland. The linear model has been created based on multiple linear regression analysis (MLR), while the non-linear model has been built using artificial neural networks (ANN). The created models can predict the yield of very early potato varieties on 20th June. Agronomic, phytophenological, and meteorological data were used to prepare the models, and the correctness of their operation was verified on the basis of separate sets of data not participating in the construction of the models. For the proper validation of the model, six forecast error metrics were used: i.e., global relative approximation error (RAE), root mean square error (RMS), mean absolute error (MAE), and mean absolute percentage error (MAPE). As a result of the conducted analyses, the forecast error results for most models did not exceed 15% of MAPE. The predictive neural model NY1 was characterized by better values of quality measures and ex post forecast errors than the regression model RY1. |
---|---|
AbstractList | Yield forecasting is a rational and scientific way of predicting future occurrences in agriculture—the level of production effects. Its main purpose is reducing the risk in the decision-making process affecting the yield in terms of quantity and quality. The aim of the following study was to generate a linear and non-linear model to forecast the tuber yield of three very early potato cultivars: Arielle, Riviera, and Viviana. In order to achieve the set goal of the study, data from the period 2010–2017 were collected, coming from official varietal experiments carried out in northern and northwestern Poland. The linear model has been created based on multiple linear regression analysis (MLR), while the non-linear model has been built using artificial neural networks (ANN). The created models can predict the yield of very early potato varieties on 20th June. Agronomic, phytophenological, and meteorological data were used to prepare the models, and the correctness of their operation was verified on the basis of separate sets of data not participating in the construction of the models. For the proper validation of the model, six forecast error metrics were used: i.e., global relative approximation error (RAE), root mean square error (RMS), mean absolute error (MAE), and mean absolute percentage error (MAPE). As a result of the conducted analyses, the forecast error results for most models did not exceed 15% of MAPE. The predictive neural model NY1 was characterized by better values of quality measures and ex post forecast errors than the regression model RY1. |
Author | Niedbała, Gniewko Wojciechowski, Tomasz Lenartowicz, Tomasz Piekutowska, Magdalena Pilarski, Krzysztof Piskier, Tomasz Czechowska-Kosacka, Aneta Pilarska, Agnieszka A. |
Author_xml | – sequence: 1 givenname: Magdalena orcidid: 0000-0002-5301-4719 surname: Piekutowska fullname: Piekutowska, Magdalena – sequence: 2 givenname: Gniewko orcidid: 0000-0003-3721-6473 surname: Niedbała fullname: Niedbała, Gniewko – sequence: 3 givenname: Tomasz surname: Piskier fullname: Piskier, Tomasz – sequence: 4 givenname: Tomasz orcidid: 0000-0003-4866-436X surname: Lenartowicz fullname: Lenartowicz, Tomasz – sequence: 5 givenname: Krzysztof surname: Pilarski fullname: Pilarski, Krzysztof – sequence: 6 givenname: Tomasz orcidid: 0000-0002-2222-6866 surname: Wojciechowski fullname: Wojciechowski, Tomasz – sequence: 7 givenname: Agnieszka A. orcidid: 0000-0001-6128-0315 surname: Pilarska fullname: Pilarska, Agnieszka A. – sequence: 8 givenname: Aneta surname: Czechowska-Kosacka fullname: Czechowska-Kosacka, Aneta |
BookMark | eNp1UU1vEzEQXaEiUUrvHC1x4RLwx9peH6Oo0EopVChC4rSa9c4GB2cdbG9Rfgj_FycBhCIxlxnZ772Zp_e8uhjDiFX1ktE3Qhj6FtYxjGG7Z4xK2jTySXXJqRazWhh58c_8rLpOaUNLGSYaqi-rn6uvSOa7nXcWsgsjCQO5n3x2O49k6UaESD7hOmJKh18YezKP2Q3OOvDkA07x2PKPEL-R-9CjT2QIkXxx6HvyELF39o_uZ4x7cgPR78lDyJADWRw2PUJMpMPCQnIL8RFTflE9HcAnvP7dr6rVu5vV4na2_Pj-bjFfzmzNeJ5pzQxVxgwD1FbXwJtGNFKw2qpOK0kZQseHnlMpi1mmGwtD34GkvBfGanFV3Z1k-wCbdhfdFuK-DeDa40OI6xaKWeuxRaUldmCt6YZaqb5hsua9VQ23DJSEovX6pLWL4ftUPLRblyx6DyOGKbVcKia5KvcW6Ksz6CZMcSxGC0owoY3UpqDoCWVjSCni8PdARttD6u156oWizijW5WOsOYLz_yf-Ar2btxQ |
CitedBy_id | crossref_primary_10_3390_agronomy12010022 crossref_primary_10_1007_s12145_022_00882_9 crossref_primary_10_1016_j_jag_2024_103965 crossref_primary_10_3390_agriculture12020200 crossref_primary_10_1186_s13059_023_03155_w crossref_primary_10_1111_jfpe_13944 crossref_primary_10_1016_j_heliyon_2022_e12659 crossref_primary_10_1111_jfpe_14677 crossref_primary_10_21511_imfi_18_4__2021_24 crossref_primary_10_3390_plants13060773 crossref_primary_10_2478_environ_2023_0013 crossref_primary_10_4236_as_2024_154029 crossref_primary_10_1080_10920277_2023_2182792 crossref_primary_10_3389_fpls_2023_1240196 crossref_primary_10_4995_raet_2023_18705 crossref_primary_10_3390_land10060609 crossref_primary_10_1371_journal_pone_0319331 crossref_primary_10_3390_agronomy11112317 crossref_primary_10_3390_agriculture13010041 crossref_primary_10_1007_s10586_024_04758_z crossref_primary_10_3390_agronomy11102068 crossref_primary_10_5604_01_3001_0016_1066 crossref_primary_10_1016_j_measurement_2021_110609 crossref_primary_10_1007_s10668_024_05331_9 crossref_primary_10_3390_rs17030491 crossref_primary_10_7717_peerj_cs_687 crossref_primary_10_1590_1807_1929_agriambi_v28n11e282010 crossref_primary_10_3389_fenrg_2022_929606 crossref_primary_10_1111_jph_13183 crossref_primary_10_3390_app12178791 crossref_primary_10_3390_agronomy12102460 crossref_primary_10_3390_stats5040068 crossref_primary_10_3390_agronomy12051133 crossref_primary_10_24326_as_2023_4995 crossref_primary_10_3390_horticulturae9050549 crossref_primary_10_1520_JTE20220594 crossref_primary_10_3390_agriculture13040762 crossref_primary_10_3390_agriculture12091345 crossref_primary_10_3390_s23125432 crossref_primary_10_1007_s12040_024_02323_1 crossref_primary_10_3390_agriengineering6040246 crossref_primary_10_1016_j_asoc_2024_112046 crossref_primary_10_1007_s11540_024_09803_3 crossref_primary_10_1111_jen_13223 crossref_primary_10_3390_agriculture12060754 crossref_primary_10_3390_agriculture13010029 crossref_primary_10_3390_agronomy12020325 crossref_primary_10_1016_j_postharvbio_2024_113203 crossref_primary_10_3390_agriculture12122089 crossref_primary_10_1016_j_fcr_2023_109145 crossref_primary_10_3389_fpls_2023_1214006 crossref_primary_10_3390_agronomy13082136 crossref_primary_10_1111_coin_12629 crossref_primary_10_3390_agriculture13122259 crossref_primary_10_1007_s11540_024_09745_w crossref_primary_10_1007_s42979_023_02375_y crossref_primary_10_15201_hungeobull_72_4_4 crossref_primary_10_3389_fpls_2024_1417912 crossref_primary_10_1016_j_aiia_2022_09_003 crossref_primary_10_3390_en17061394 crossref_primary_10_1007_s12161_023_02497_2 crossref_primary_10_1063_5_0177703 crossref_primary_10_3390_app13158841 crossref_primary_10_3390_agronomy14123010 crossref_primary_10_3390_plants11233327 crossref_primary_10_1007_s42979_023_02572_9 crossref_primary_10_3390_agriculture13030661 |
Cites_doi | 10.1007/BF02357639 10.1016/j.compag.2016.06.010 10.1016/j.agrformet.2015.03.007 10.2134/agronj1985.00021962007700040024x 10.1007/BF02852956 10.3390/agronomy9070405 10.1626/pps.8.74 10.3390/agronomy9120781 10.1016/j.still.2019.01.011 10.1117/12.2243989 10.1007/978-3-319-20562-5_3 10.1017/S0021859614000392 10.2134/agronj1981.00021962007300050013x 10.3103/S1068367417030028 10.1016/j.indcrop.2018.10.050 10.1016/j.agwat.2013.03.021 10.1007/978-94-011-0051-9_3 10.17221/7565-PSE 10.17485/ijst/2016/v9i38/91714 10.2478/v10032-008-0020-5 10.1007/s13593-017-0445-7 10.1080/15427520903581239 10.3390/rs61010193 10.1007/s00521-020-04797-8 10.3390/su10124601 10.1016/j.still.2018.06.001 10.17221/754/2018-PSE 10.1002/jsfa.10696 10.1016/j.compag.2020.105709 10.1016/S2095-3119(18)62110-0 10.1016/B978-044451018-1/50077-4 10.3354/cr021173 10.1007/s11627-017-9877-7 10.1117/1.JRS.9.097095 10.1080/0143116031000150068 10.1016/j.eja.2004.09.007 10.1007/s11540-016-9321-0 10.1016/j.measurement.2013.09.020 10.1016/bs.agron.2018.11.002 10.1016/j.ejor.2003.08.037 10.1109/OPTIP.2016.7528517 10.1016/j.compag.2019.104859 10.3390/app9142773 10.1080/01431160802552744 10.1016/j.fcr.2016.04.012 10.1016/S0098-1354(01)00680-9 10.1080/014311600750037516 10.3389/fpls.2020.01120 10.1007/BF02360922 10.1016/j.agwat.2009.09.015 10.1017/S0021859600087220 10.1016/j.agrformet.2011.06.018 10.1155/2014/857865 10.3390/agriculture10100436 10.1111/grs.12163 10.17660/ActaHortic.2009.830.87 10.3920/978-90-8686-527-7 10.2134/agronj2005.0108 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI 7S9 L.6 DOA |
DOI | 10.3390/agronomy11050885 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2073-4395 |
ExternalDocumentID | oai_doaj_org_article_e675ebacc9bf466d81542dc682c1a65a 10_3390_agronomy11050885 |
GeographicLocations | Poland Europe |
GeographicLocations_xml | – name: Poland – name: Europe |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO KQ8 M0K MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PROAC PYCSY 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c412t-77190699ffa4c74a288385314c6b76501eab2fd2055807178cafdba502d39c73 |
IEDL.DBID | BENPR |
ISSN | 2073-4395 |
IngestDate | Wed Aug 27 01:30:57 EDT 2025 Fri Jul 11 07:13:05 EDT 2025 Mon Jun 30 11:30:45 EDT 2025 Tue Jul 01 03:20:05 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-77190699ffa4c74a288385314c6b76501eab2fd2055807178cafdba502d39c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6128-0315 0000-0002-5301-4719 0000-0003-4866-436X 0000-0003-3721-6473 0000-0002-2222-6866 |
OpenAccessLink | https://www.proquest.com/docview/2531379579?pq-origsite=%requestingapplication% |
PQID | 2531379579 |
PQPubID | 2032440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e675ebacc9bf466d81542dc682c1a65a proquest_miscellaneous_2561526906 proquest_journals_2531379579 crossref_primary_10_3390_agronomy11050885 crossref_citationtrail_10_3390_agronomy11050885 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-30 |
PublicationDateYYYYMMDD | 2021-04-30 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agronomy (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Daccache (ref_21) 2011; 151 Sharifi (ref_45) 2021; 101 Bala (ref_16) 2009; 30 ref_14 ref_12 ref_56 ref_11 Chipanshi (ref_13) 2015; 206 Pandey (ref_36) 2017; 43 Niazian (ref_52) 2018; 54 ref_15 Arora (ref_24) 2013; 124 (ref_31) 2016; 127 Travasso (ref_47) 1996; 39 Muleta (ref_63) 2019; 7 Garde (ref_2) 2015; 7 ref_23 Raymundo (ref_25) 2017; 202 Wolf (ref_28) 2002; 21 ref_20 Zhang (ref_58) 2005; 160 Toman (ref_46) 2010; 97 Hassaballa (ref_54) 2016; 11 ref_27 ref_26 (ref_22) 1984; 27 Bhojani (ref_51) 2020; 32 Kouadio (ref_60) 2014; 6 Yari (ref_66) 2010; 4 Abdipour (ref_53) 2019; 127 Westermann (ref_70) 1988; 65 Westermann (ref_68) 1985; 77 ref_35 Cillis (ref_55) 2018; 183 ref_34 Abrougui (ref_17) 2019; 190 ref_33 Alva (ref_29) 2010; 24 ref_32 Peng (ref_59) 2017; 63 ref_30 (ref_64) 2014; 60 Jiang (ref_10) 2004; 25 Olivier (ref_65) 2006; 98 Boozarjomehry (ref_43) 2001; 25 Kawakami (ref_62) 2005; 8 Khoshnevisan (ref_61) 2014; 47 ref_39 ref_37 Kleinkopf (ref_67) 1981; 73 Struik (ref_4) 2017; 37 Matsumura (ref_19) 2015; 153 Qi (ref_44) 2005; 23 Reynolds (ref_18) 2000; 21 Machakaire (ref_48) 2016; 59 Babyak (ref_49) 2004; 66 ref_42 (ref_38) 2019; 18 ref_41 ref_40 ref_1 ref_3 Oleksy (ref_6) 2019; 65 ref_9 ref_8 Millard (ref_69) 1986; 107 ref_5 (ref_57) 2019; 21 ref_7 |
References_xml | – volume: 27 start-page: 305 year: 1984 ident: ref_22 article-title: Simulation of growth and yield of the potato crop publication-title: Potato Res. doi: 10.1007/BF02357639 – volume: 127 start-page: 141 year: 2016 ident: ref_31 article-title: The methods of extracting the contribution of variables in artificial neural network models—Comparison of inherent instability publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.06.010 – ident: ref_5 – ident: ref_26 – volume: 206 start-page: 137 year: 2015 ident: ref_13 article-title: Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) model for in-season prediction of crop yield across the Canadian agricultural landscape publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.03.007 – volume: 77 start-page: 616 year: 1985 ident: ref_68 article-title: Nitrogen Requirements of Potatoes publication-title: Agron. J. doi: 10.2134/agronj1985.00021962007700040024x – volume: 65 start-page: 377 year: 1988 ident: ref_70 article-title: Nitrogen fertilizer efficiencies on potatoes publication-title: Am. Potato J. doi: 10.1007/BF02852956 – ident: ref_40 doi: 10.3390/agronomy9070405 – volume: 8 start-page: 74 year: 2005 ident: ref_62 article-title: Effects of Planting Date on the Growth and Yield of Two Potato Cultivars Grown from Microtubersand Conventional Seed Tubers publication-title: Plant Prod. Sci. doi: 10.1626/pps.8.74 – ident: ref_3 doi: 10.3390/agronomy9120781 – volume: 190 start-page: 202 year: 2019 ident: ref_17 article-title: Prediction of organic potato yield using tillage systems and soil properties by artificial neural network (ANN) and multiple linear regressions (MLR) publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.01.011 – ident: ref_34 doi: 10.1117/12.2243989 – ident: ref_39 – ident: ref_14 doi: 10.1007/978-3-319-20562-5_3 – volume: 153 start-page: 399 year: 2015 ident: ref_19 article-title: Maize yield forecasting by linear regression and artificial neural networks in Jilin, China publication-title: J. Agric. Sci. doi: 10.1017/S0021859614000392 – volume: 66 start-page: 411 year: 2004 ident: ref_49 article-title: What You See May Not Be What You Get: A Brief, Nontechnical Introduction to Overfitting in Regression-Type Models publication-title: Psychosom. Med. – ident: ref_42 – volume: 73 start-page: 799 year: 1981 ident: ref_67 article-title: Dry Matter Production and Nitrogen Utilization by Six Potato Cultivars publication-title: Agron. J. doi: 10.2134/agronj1981.00021962007300050013x – volume: 43 start-page: 266 year: 2017 ident: ref_36 article-title: Application of artificial neural networks in yield prediction of potato crop publication-title: Russ. Agric. Sci. doi: 10.3103/S1068367417030028 – ident: ref_23 – volume: 127 start-page: 185 year: 2019 ident: ref_53 article-title: Artificial neural networks and multiple linear regression as potential methods for modeling seed yield of safflower (Carthamus tinctorius L.) publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2018.10.050 – volume: 124 start-page: 69 year: 2013 ident: ref_24 article-title: Analyzing potato response to irrigation and nitrogen regimes in a sub-tropical environment using SUBSTOR-Potato model publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2013.03.021 – ident: ref_27 doi: 10.1007/978-94-011-0051-9_3 – volume: 60 start-page: 379 year: 2014 ident: ref_64 article-title: Effect of nitrogen fertilization and microbial preparations on potato yielding publication-title: Plant Soil Environ. doi: 10.17221/7565-PSE – ident: ref_41 doi: 10.17485/ijst/2016/v9i38/91714 – ident: ref_9 doi: 10.2478/v10032-008-0020-5 – volume: 37 start-page: 39 year: 2017 ident: ref_4 article-title: Sustainable intensification in agriculture: The richer shade of green. A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-017-0445-7 – volume: 24 start-page: 142 year: 2010 ident: ref_29 article-title: A Crop Simulation Model for Predicting Yield and Fate of Nitrogen in Irrigated Potato Rotation Cropping System publication-title: J. Crop Improv. doi: 10.1080/15427520903581239 – volume: 7 start-page: 839 year: 2015 ident: ref_2 article-title: Different approaches on pre harvest forecasting of wheat yield publication-title: J. Appl. Nat. Sci. – volume: 6 start-page: 10193 year: 2014 ident: ref_60 article-title: Assessing the Performance of MODIS NDVI and EVI for Seasonal Crop Yield Forecasting at the Ecodistrict Scale publication-title: Remote Sens. doi: 10.3390/rs61010193 – volume: 11 start-page: 1 year: 2016 ident: ref_54 article-title: Prediction of potato crop yield using precision agriculture techniques publication-title: PLoS ONE – volume: 32 start-page: 13941 year: 2020 ident: ref_51 article-title: Wheat crop yield prediction using new activation functions in neural network publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04797-8 – ident: ref_37 doi: 10.3390/su10124601 – volume: 183 start-page: 51 year: 2018 ident: ref_55 article-title: Modeling soil organic carbon and carbon dioxide emissions in different tillage systems supported by precision agriculture technologies under current climatic conditions publication-title: Soil Tillage Res. doi: 10.1016/j.still.2018.06.001 – volume: 65 start-page: 97 year: 2019 ident: ref_6 article-title: Early potato cultivation using synthetic and biodegradable covers publication-title: Plant Soil Environ. doi: 10.17221/754/2018-PSE – ident: ref_7 – volume: 101 start-page: 891 year: 2021 ident: ref_45 article-title: Yield prediction with machine learning algorithms and satellite images publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.10696 – ident: ref_33 doi: 10.1016/j.compag.2020.105709 – volume: 18 start-page: 54 year: 2019 ident: ref_38 article-title: Simple model based on artificial neural network for early prediction and simulation winter rapeseed yield publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(18)62110-0 – ident: ref_20 doi: 10.1016/B978-044451018-1/50077-4 – volume: 21 start-page: 173 year: 2002 ident: ref_28 article-title: Comparison of two potato simulation models under climate change. I. Model calibration and sensitivity analyses publication-title: Clim. Res. doi: 10.3354/cr021173 – volume: 54 start-page: 54 year: 2018 ident: ref_52 article-title: Image Processing and Artificial Neural Network-Based Models to Measure and Predict Physical Properties of Embryogenic Callus and Number of Somatic Embryos in Ajowan (Trachyspermum ammi (L.) Sprague) publication-title: Vitr. Cell. Dev. Biol. Plant doi: 10.1007/s11627-017-9877-7 – volume: 7 start-page: 36 year: 2019 ident: ref_63 article-title: Role of nitrogen on potato production: A review publication-title: J. Plant Sci. – ident: ref_11 doi: 10.1117/1.JRS.9.097095 – volume: 25 start-page: 1723 year: 2004 ident: ref_10 article-title: An artificial neural network model for estimating crop yields using remotely sensed information publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000150068 – volume: 23 start-page: 108 year: 2005 ident: ref_44 article-title: The Broom’s Barn sugar beet growth model and its adaptation to soils with varied available water content publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2004.09.007 – volume: 59 start-page: 195 year: 2016 ident: ref_48 article-title: Forecasting Yield and Tuber Size of Processing Potatoes in South Africa Using the LINTUL-Potato-DSS Model publication-title: Potato Res. doi: 10.1007/s11540-016-9321-0 – volume: 47 start-page: 521 year: 2014 ident: ref_61 article-title: Prediction of potato yield based on energy inputs using multi-layer adaptive neuro-fuzzy inference system publication-title: Measurement doi: 10.1016/j.measurement.2013.09.020 – ident: ref_1 doi: 10.1016/bs.agron.2018.11.002 – volume: 160 start-page: 501 year: 2005 ident: ref_58 article-title: Neural network forecasting for seasonal and trend time series publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2003.08.037 – volume: 4 start-page: 3128 year: 2010 ident: ref_66 article-title: Yield and yield components of potato (Solanum Tuberosum L.) tuber as affected by nitrogen fertilizer and plant density publication-title: Aust. J. Basic Appl. Sci. – volume: 21 start-page: 51 year: 2019 ident: ref_57 article-title: Application of Artificial Neural Networks for Multi-Criteria Yield Prediction of Winter Wheat publication-title: J. Agric. Sci. Technol. – ident: ref_35 doi: 10.1109/OPTIP.2016.7528517 – ident: ref_56 doi: 10.1016/j.compag.2019.104859 – ident: ref_12 doi: 10.3390/app9142773 – volume: 30 start-page: 2491 year: 2009 ident: ref_16 article-title: Correlation between potato yield and MODIS-derived vegetation indices publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802552744 – volume: 202 start-page: 57 year: 2017 ident: ref_25 article-title: Performance of the SUBSTOR-potato model across contrasting growing conditions publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2016.04.012 – volume: 25 start-page: 1075 year: 2001 ident: ref_43 article-title: Automatic design of neural network structures publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(01)00680-9 – volume: 21 start-page: 3487 year: 2000 ident: ref_18 article-title: Estimating crop yields and production by integrating the FAO Crop Specific Water Balance model with real-time satellite data and ground-based ancillary data publication-title: Int. J. Remote Sens. doi: 10.1080/014311600750037516 – ident: ref_15 doi: 10.3389/fpls.2020.01120 – volume: 39 start-page: 305 year: 1996 ident: ref_47 article-title: Yield prediction using the SUBSTOR-potato model under Argentinian conditions publication-title: Potato Res. doi: 10.1007/BF02360922 – volume: 97 start-page: 286 year: 2010 ident: ref_46 article-title: Usage of SUBSTOR model in potato yield prediction publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2009.09.015 – volume: 107 start-page: 421 year: 1986 ident: ref_69 article-title: Growth, nitrogen uptake and partitioning within the potato (Solatium tuberosum L.) crop, in relation to nitrogen application publication-title: J. Agric. Sci. doi: 10.1017/S0021859600087220 – volume: 151 start-page: 1641 year: 2011 ident: ref_21 article-title: Impacts of climate change on irrigated potato production in a humid climate publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2011.06.018 – ident: ref_50 doi: 10.1155/2014/857865 – ident: ref_32 doi: 10.3390/agriculture10100436 – volume: 63 start-page: 184 year: 2017 ident: ref_59 article-title: Constructing Italian ryegrass yield prediction model based on climatic data by locations in South Korea publication-title: Grassl. Sci. doi: 10.1111/grs.12163 – ident: ref_8 doi: 10.17660/ActaHortic.2009.830.87 – ident: ref_30 doi: 10.3920/978-90-8686-527-7 – volume: 98 start-page: 496 year: 2006 ident: ref_65 article-title: Threshold Value for Chlorophyll Meter as Decision Tool for Nitrogen Management of Potato publication-title: Agron. J. doi: 10.2134/agronj2005.0108 |
SSID | ssj0000913807 |
Score | 2.4365253 |
Snippet | Yield forecasting is a rational and scientific way of predicting future occurrences in agriculture—the level of production effects. Its main purpose is... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 885 |
SubjectTerms | Agricultural production agronomy Artificial neural networks Atmospheric models Crop diseases Crop yield crop yield prediction Cultivars Decision making Error analysis Flowers & plants Harvest linear models Meteorological data model validation multiple linear regression Neural networks Poland Potatoes Regression analysis Regression models Risk reduction Variables Vegetation very early potato yield forecasting |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXI3jxULZNH2mPqygiKIuorKeSVxdhaaW7K_hD_L_OpN11VdCLp0KbhCQzyXzDTL9h7AQvxkIJhSdNydSLEPJ7qQ0KL5WJtoHvK2VdtsVtcvUQXQ_iwUKpL8oJa-iBm43rWkS0VkmtM1VESWJStPnc6CTlOpBJ7KAR2rwFZ8rdwVlATOpNXDJEv74rh7X7SwDNHWGS-IsdcnT9P25jZ2Iu19laiw2h18xpgy3ZcpOt9oZ1y49ht9g7ihV6n0FnqAq4aXMCAf1K1Fu4s8MmubUEWRo3XEMTAcTE4R4u9RuoDtpoDAhb4YkS2aBfU9hmNu6jrd_AESBDv0JMWgHxbz6_oisMymIvC1RZCBeyze4vL-7Pr7y2soKno4BPEFIjDkiyrChkpEUkqeQw2u0g0okSiNkCKxUvDPfjOCWHL9WyMErGPjdhpkW4w5bLqrS7DJRvlAklFwg7Iq5Cif6LMkKkQSi41KLDurNtznXLOk7FL0Y5eh8kmPy7YDrsdN7jpWHc-KXtGUlu3o64st0L1KC81aD8Lw3qsIOZ3PP2AI9zjrsRCophdtjx_DMePYqnyNJWU2qDcJAT0_Pef8xjn61wSphxoaoDtjypp_YQEc9EHTnl_gBRcgKz priority: 102 providerName: Directory of Open Access Journals |
Title | The Application of Multiple Linear Regression and Artificial Neural Network Models for Yield Prediction of Very Early Potato Cultivars before Harvest |
URI | https://www.proquest.com/docview/2531379579 https://www.proquest.com/docview/2561526906 https://doaj.org/article/e675ebacc9bf466d81542dc682c1a65a |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-RAEG58XNaD-Fp21gclePEQJuk8uuckoygiKIOo6Cn0K8OCJG5mFPwh_l-rOj0jKngKJN0NSXVVfdVV-YqxAzSMlRYaNU0rGWUI-SPpkiqSqjAuiWOtna-2uCrOb7OL-_w-HLhNQlnlzCZ6Q20bQ2fkfY6bJRWUVDp6-h9R1yjKroYWGotsGU2wxOBr-fj0anQ9P2Uh1ksZiy4_mWJ831fj1v8tgG6PsEn-yR952v5vVtm7mrM1thowIgw7oa6zBVdvsJXhuA08GW6TvaF4YfiRfIamgstQGwgYX-L-hWs37opca1C19ct1dBFAjBz-4kvAgfqhPU4A4Ss8UEEbjFpK38zWvXPtK3giZBg1iE0bIB7Ofy8YEoN2OMsBdRjCF9liN2enNyfnUeiwEJks4VOE1ogHisGgqlRmRKao9TD67yQzhRaI3RKnNK8sj_NcUuAnjaqsVnnMbTowIv3Nluqmdn8Y6NhqmyouEH5kXKcK4xhthZAoNK6M6LH-7DOXJrCPUxOMxxKjEBJM-VUwPXY4n_HUMW_8MPaYJDcfR5zZ_kbTjsuggqXD2MhpZcxAV1lRWInokVtTSG4SVeSqx3Zmci-DIk_Kj23XY_vzx6iClFdRtWueaQzCQk6Mz39_XmKb_eJUEuOTUTtsado-u13ENFO9Fzbunj8TeAdgMPuw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEE81UGCQ4MDBir1-H1CVQquUtlFUBVRO1r4cIVV2cVJQfwg_o_-RmbWdCpB668mSvbuSd2Z3vtmZ_QbgLW2MpUoVrTQlMy8iyO9lNii9TCbaBr6vlHXZFtNk8iX6fBqfbsBVfxeG0yr7PdFt1KbWfEY-EqQsYcpBpZ3zHx5XjeLoal9Co1WLQ3v5i1y25YeDTyTfd0Ls780_TryuqoCno0CsCE6SDUzyvCxlpNNIcrldsllBpBOVEl4JrFSiNMKP44ydnUzL0igZ-8KEuU5DGvYObEYh_dYANnf3prOT9aEOk2xSpzYcGoa5P5KLxl1OICvLUCj-y_y5KgH_GQFn2fYfwoMOkuK41aFHsGGrx3B_vGg6Wg77BH6TNuH4OtaNdYnHXSoikjtL84IndtHm1FYoK-OGa9kpkAlA3MNlnCOXXztbIqFl_Mb5czhrOFrUj_vVNpfoeJdxVhMUrpFpP7__JA8claVeFrmgEf3IU5jfxtQ_g0FVV3YLUPlGmVCKlNBOJFQoyW1SJk0z0hEhdTqEUT_Nhe7IzrnmxllBTg8LpvhXMEN4v-5x3hJ93NB2lyW3bscU3e5F3SyKbsUXllwxq6TWuSqjJDEZgVVhdJIJHcgklkPY7uVedPvGsrjW8iG8WX-mFc9hHFnZ-oLbEAoVTDD9_OYhXsPdyfz4qDg6mB6-gHuCs3FcHGwbBqvmwr4kOLVSrzolRihuedn8AUiPNYk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFUQfxE88W3UEffAhXLL52NyDyNX2aK0eR6lSn8J-5RBK0uauSv8Q_xj_O2c2yRUV-tanQLK7kJ2Znd9kJr8BeE0HY6mlJkvTKg8SgvxB7qIyyFVmXBSGWjtfbTHL9r8kH0_Skw343f8Lw2WV_ZnoD2pbG_5GPhKkLLHkpNKo7Moi5rvT92fnAXeQ4kxr306jVZFDd_mTwrflu4NdkvUbIaZ7xx_2g67DQGCSSKwIWpI_zMbjslSJkYni1rvkv6LEZFoSdomc0qK0IkzTnAOf3KjSapWGwsZjI2Na9hZsSgqKwgFs7uzN5kfrDzxMuEmT2tRoHI_DkVo0_kcF8rgMi9K_XKHvGPCfQ_Bebnof7nXwFCetPj2ADVc9hLuTRdNRdLhH8Is0CydXeW-sS_zclSUihba0L3jkFm19bYWqsn65lqkCmQzEX3z1OXIrttMlEnLGb1xLh_OGM0f9ul9dc4megxnnNcHiGpkC9PsPisZRO5rlkJsb0Ys8huOb2PonMKjqyj0F1KHVNlZCEvJJhI4VhVDaSpmTvghl5BBG_TYXpiM-5_4bpwUFQCyY4l_BDOHtesZZS_pxzdgdltx6HNN1-xt1syg66y8chWVOK2PGukyyzOYEXIU1WS5MpLJUDWG7l3vRnSHL4krjh_Bq_Zisn1M6qnL1BY8hRCqYbPrZ9Uu8hNtkLsWng9nhFtwRXJjjU2LbMFg1F-45IauVftHpMEJxw1bzB2z5Ob4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Application+of+Multiple+Linear+Regression+and+Artificial+Neural+Network+Models+for+Yield+Prediction+of+Very+Early+Potato+Cultivars+before+Harvest&rft.jtitle=Agronomy+%28Basel%29&rft.au=Piekutowska%2C+Magdalena&rft.au=Niedba%C5%82a%2C+Gniewko&rft.au=Piskier%2C+Tomasz&rft.au=Lenartowicz%2C+Tomasz&rft.date=2021-04-30&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=11&rft.issue=5&rft.spage=885&rft_id=info:doi/10.3390%2Fagronomy11050885&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agronomy11050885 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |