The Application of Multiple Linear Regression and Artificial Neural Network Models for Yield Prediction of Very Early Potato Cultivars before Harvest

Yield forecasting is a rational and scientific way of predicting future occurrences in agriculture—the level of production effects. Its main purpose is reducing the risk in the decision-making process affecting the yield in terms of quantity and quality. The aim of the following study was to generat...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 11; no. 5; p. 885
Main Authors Piekutowska, Magdalena, Niedbała, Gniewko, Piskier, Tomasz, Lenartowicz, Tomasz, Pilarski, Krzysztof, Wojciechowski, Tomasz, Pilarska, Agnieszka A., Czechowska-Kosacka, Aneta
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 30.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Yield forecasting is a rational and scientific way of predicting future occurrences in agriculture—the level of production effects. Its main purpose is reducing the risk in the decision-making process affecting the yield in terms of quantity and quality. The aim of the following study was to generate a linear and non-linear model to forecast the tuber yield of three very early potato cultivars: Arielle, Riviera, and Viviana. In order to achieve the set goal of the study, data from the period 2010–2017 were collected, coming from official varietal experiments carried out in northern and northwestern Poland. The linear model has been created based on multiple linear regression analysis (MLR), while the non-linear model has been built using artificial neural networks (ANN). The created models can predict the yield of very early potato varieties on 20th June. Agronomic, phytophenological, and meteorological data were used to prepare the models, and the correctness of their operation was verified on the basis of separate sets of data not participating in the construction of the models. For the proper validation of the model, six forecast error metrics were used: i.e., global relative approximation error (RAE), root mean square error (RMS), mean absolute error (MAE), and mean absolute percentage error (MAPE). As a result of the conducted analyses, the forecast error results for most models did not exceed 15% of MAPE. The predictive neural model NY1 was characterized by better values of quality measures and ex post forecast errors than the regression model RY1.
AbstractList Yield forecasting is a rational and scientific way of predicting future occurrences in agriculture—the level of production effects. Its main purpose is reducing the risk in the decision-making process affecting the yield in terms of quantity and quality. The aim of the following study was to generate a linear and non-linear model to forecast the tuber yield of three very early potato cultivars: Arielle, Riviera, and Viviana. In order to achieve the set goal of the study, data from the period 2010–2017 were collected, coming from official varietal experiments carried out in northern and northwestern Poland. The linear model has been created based on multiple linear regression analysis (MLR), while the non-linear model has been built using artificial neural networks (ANN). The created models can predict the yield of very early potato varieties on 20th June. Agronomic, phytophenological, and meteorological data were used to prepare the models, and the correctness of their operation was verified on the basis of separate sets of data not participating in the construction of the models. For the proper validation of the model, six forecast error metrics were used: i.e., global relative approximation error (RAE), root mean square error (RMS), mean absolute error (MAE), and mean absolute percentage error (MAPE). As a result of the conducted analyses, the forecast error results for most models did not exceed 15% of MAPE. The predictive neural model NY1 was characterized by better values of quality measures and ex post forecast errors than the regression model RY1.
Author Niedbała, Gniewko
Wojciechowski, Tomasz
Lenartowicz, Tomasz
Piekutowska, Magdalena
Pilarski, Krzysztof
Piskier, Tomasz
Czechowska-Kosacka, Aneta
Pilarska, Agnieszka A.
Author_xml – sequence: 1
  givenname: Magdalena
  orcidid: 0000-0002-5301-4719
  surname: Piekutowska
  fullname: Piekutowska, Magdalena
– sequence: 2
  givenname: Gniewko
  orcidid: 0000-0003-3721-6473
  surname: Niedbała
  fullname: Niedbała, Gniewko
– sequence: 3
  givenname: Tomasz
  surname: Piskier
  fullname: Piskier, Tomasz
– sequence: 4
  givenname: Tomasz
  orcidid: 0000-0003-4866-436X
  surname: Lenartowicz
  fullname: Lenartowicz, Tomasz
– sequence: 5
  givenname: Krzysztof
  surname: Pilarski
  fullname: Pilarski, Krzysztof
– sequence: 6
  givenname: Tomasz
  orcidid: 0000-0002-2222-6866
  surname: Wojciechowski
  fullname: Wojciechowski, Tomasz
– sequence: 7
  givenname: Agnieszka A.
  orcidid: 0000-0001-6128-0315
  surname: Pilarska
  fullname: Pilarska, Agnieszka A.
– sequence: 8
  givenname: Aneta
  surname: Czechowska-Kosacka
  fullname: Czechowska-Kosacka, Aneta
BookMark eNp1UU1vEzEQXaEiUUrvHC1x4RLwx9peH6Oo0EopVChC4rSa9c4GB2cdbG9Rfgj_FycBhCIxlxnZ772Zp_e8uhjDiFX1ktE3Qhj6FtYxjGG7Z4xK2jTySXXJqRazWhh58c_8rLpOaUNLGSYaqi-rn6uvSOa7nXcWsgsjCQO5n3x2O49k6UaESD7hOmJKh18YezKP2Q3OOvDkA07x2PKPEL-R-9CjT2QIkXxx6HvyELF39o_uZ4x7cgPR78lDyJADWRw2PUJMpMPCQnIL8RFTflE9HcAnvP7dr6rVu5vV4na2_Pj-bjFfzmzNeJ5pzQxVxgwD1FbXwJtGNFKw2qpOK0kZQseHnlMpi1mmGwtD34GkvBfGanFV3Z1k-wCbdhfdFuK-DeDa40OI6xaKWeuxRaUldmCt6YZaqb5hsua9VQ23DJSEovX6pLWL4ftUPLRblyx6DyOGKbVcKia5KvcW6Ksz6CZMcSxGC0owoY3UpqDoCWVjSCni8PdARttD6u156oWizijW5WOsOYLz_yf-Ar2btxQ
CitedBy_id crossref_primary_10_3390_agronomy12010022
crossref_primary_10_1007_s12145_022_00882_9
crossref_primary_10_1016_j_jag_2024_103965
crossref_primary_10_3390_agriculture12020200
crossref_primary_10_1186_s13059_023_03155_w
crossref_primary_10_1111_jfpe_13944
crossref_primary_10_1016_j_heliyon_2022_e12659
crossref_primary_10_1111_jfpe_14677
crossref_primary_10_21511_imfi_18_4__2021_24
crossref_primary_10_3390_plants13060773
crossref_primary_10_2478_environ_2023_0013
crossref_primary_10_4236_as_2024_154029
crossref_primary_10_1080_10920277_2023_2182792
crossref_primary_10_3389_fpls_2023_1240196
crossref_primary_10_4995_raet_2023_18705
crossref_primary_10_3390_land10060609
crossref_primary_10_1371_journal_pone_0319331
crossref_primary_10_3390_agronomy11112317
crossref_primary_10_3390_agriculture13010041
crossref_primary_10_1007_s10586_024_04758_z
crossref_primary_10_3390_agronomy11102068
crossref_primary_10_5604_01_3001_0016_1066
crossref_primary_10_1016_j_measurement_2021_110609
crossref_primary_10_1007_s10668_024_05331_9
crossref_primary_10_3390_rs17030491
crossref_primary_10_7717_peerj_cs_687
crossref_primary_10_1590_1807_1929_agriambi_v28n11e282010
crossref_primary_10_3389_fenrg_2022_929606
crossref_primary_10_1111_jph_13183
crossref_primary_10_3390_app12178791
crossref_primary_10_3390_agronomy12102460
crossref_primary_10_3390_stats5040068
crossref_primary_10_3390_agronomy12051133
crossref_primary_10_24326_as_2023_4995
crossref_primary_10_3390_horticulturae9050549
crossref_primary_10_1520_JTE20220594
crossref_primary_10_3390_agriculture13040762
crossref_primary_10_3390_agriculture12091345
crossref_primary_10_3390_s23125432
crossref_primary_10_1007_s12040_024_02323_1
crossref_primary_10_3390_agriengineering6040246
crossref_primary_10_1016_j_asoc_2024_112046
crossref_primary_10_1007_s11540_024_09803_3
crossref_primary_10_1111_jen_13223
crossref_primary_10_3390_agriculture12060754
crossref_primary_10_3390_agriculture13010029
crossref_primary_10_3390_agronomy12020325
crossref_primary_10_1016_j_postharvbio_2024_113203
crossref_primary_10_3390_agriculture12122089
crossref_primary_10_1016_j_fcr_2023_109145
crossref_primary_10_3389_fpls_2023_1214006
crossref_primary_10_3390_agronomy13082136
crossref_primary_10_1111_coin_12629
crossref_primary_10_3390_agriculture13122259
crossref_primary_10_1007_s11540_024_09745_w
crossref_primary_10_1007_s42979_023_02375_y
crossref_primary_10_15201_hungeobull_72_4_4
crossref_primary_10_3389_fpls_2024_1417912
crossref_primary_10_1016_j_aiia_2022_09_003
crossref_primary_10_3390_en17061394
crossref_primary_10_1007_s12161_023_02497_2
crossref_primary_10_1063_5_0177703
crossref_primary_10_3390_app13158841
crossref_primary_10_3390_agronomy14123010
crossref_primary_10_3390_plants11233327
crossref_primary_10_1007_s42979_023_02572_9
crossref_primary_10_3390_agriculture13030661
Cites_doi 10.1007/BF02357639
10.1016/j.compag.2016.06.010
10.1016/j.agrformet.2015.03.007
10.2134/agronj1985.00021962007700040024x
10.1007/BF02852956
10.3390/agronomy9070405
10.1626/pps.8.74
10.3390/agronomy9120781
10.1016/j.still.2019.01.011
10.1117/12.2243989
10.1007/978-3-319-20562-5_3
10.1017/S0021859614000392
10.2134/agronj1981.00021962007300050013x
10.3103/S1068367417030028
10.1016/j.indcrop.2018.10.050
10.1016/j.agwat.2013.03.021
10.1007/978-94-011-0051-9_3
10.17221/7565-PSE
10.17485/ijst/2016/v9i38/91714
10.2478/v10032-008-0020-5
10.1007/s13593-017-0445-7
10.1080/15427520903581239
10.3390/rs61010193
10.1007/s00521-020-04797-8
10.3390/su10124601
10.1016/j.still.2018.06.001
10.17221/754/2018-PSE
10.1002/jsfa.10696
10.1016/j.compag.2020.105709
10.1016/S2095-3119(18)62110-0
10.1016/B978-044451018-1/50077-4
10.3354/cr021173
10.1007/s11627-017-9877-7
10.1117/1.JRS.9.097095
10.1080/0143116031000150068
10.1016/j.eja.2004.09.007
10.1007/s11540-016-9321-0
10.1016/j.measurement.2013.09.020
10.1016/bs.agron.2018.11.002
10.1016/j.ejor.2003.08.037
10.1109/OPTIP.2016.7528517
10.1016/j.compag.2019.104859
10.3390/app9142773
10.1080/01431160802552744
10.1016/j.fcr.2016.04.012
10.1016/S0098-1354(01)00680-9
10.1080/014311600750037516
10.3389/fpls.2020.01120
10.1007/BF02360922
10.1016/j.agwat.2009.09.015
10.1017/S0021859600087220
10.1016/j.agrformet.2011.06.018
10.1155/2014/857865
10.3390/agriculture10100436
10.1111/grs.12163
10.17660/ActaHortic.2009.830.87
10.3920/978-90-8686-527-7
10.2134/agronj2005.0108
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7S9
L.6
DOA
DOI 10.3390/agronomy11050885
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_e675ebacc9bf466d81542dc682c1a65a
10_3390_agronomy11050885
GeographicLocations Poland
Europe
GeographicLocations_xml – name: Poland
– name: Europe
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
KQ8
M0K
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c412t-77190699ffa4c74a288385314c6b76501eab2fd2055807178cafdba502d39c73
IEDL.DBID BENPR
ISSN 2073-4395
IngestDate Wed Aug 27 01:30:57 EDT 2025
Fri Jul 11 07:13:05 EDT 2025
Mon Jun 30 11:30:45 EDT 2025
Tue Jul 01 03:20:05 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-77190699ffa4c74a288385314c6b76501eab2fd2055807178cafdba502d39c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6128-0315
0000-0002-5301-4719
0000-0003-4866-436X
0000-0003-3721-6473
0000-0002-2222-6866
OpenAccessLink https://www.proquest.com/docview/2531379579?pq-origsite=%requestingapplication%
PQID 2531379579
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_e675ebacc9bf466d81542dc682c1a65a
proquest_miscellaneous_2561526906
proquest_journals_2531379579
crossref_primary_10_3390_agronomy11050885
crossref_citationtrail_10_3390_agronomy11050885
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-30
PublicationDateYYYYMMDD 2021-04-30
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-30
  day: 30
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Daccache (ref_21) 2011; 151
Sharifi (ref_45) 2021; 101
Bala (ref_16) 2009; 30
ref_14
ref_12
ref_56
ref_11
Chipanshi (ref_13) 2015; 206
Pandey (ref_36) 2017; 43
Niazian (ref_52) 2018; 54
ref_15
Arora (ref_24) 2013; 124
(ref_31) 2016; 127
Travasso (ref_47) 1996; 39
Muleta (ref_63) 2019; 7
Garde (ref_2) 2015; 7
ref_23
Raymundo (ref_25) 2017; 202
Wolf (ref_28) 2002; 21
ref_20
Zhang (ref_58) 2005; 160
Toman (ref_46) 2010; 97
Hassaballa (ref_54) 2016; 11
ref_27
ref_26
(ref_22) 1984; 27
Bhojani (ref_51) 2020; 32
Kouadio (ref_60) 2014; 6
Yari (ref_66) 2010; 4
Abdipour (ref_53) 2019; 127
Westermann (ref_70) 1988; 65
Westermann (ref_68) 1985; 77
ref_35
Cillis (ref_55) 2018; 183
ref_34
Abrougui (ref_17) 2019; 190
ref_33
Alva (ref_29) 2010; 24
ref_32
Peng (ref_59) 2017; 63
ref_30
(ref_64) 2014; 60
Jiang (ref_10) 2004; 25
Olivier (ref_65) 2006; 98
Boozarjomehry (ref_43) 2001; 25
Kawakami (ref_62) 2005; 8
Khoshnevisan (ref_61) 2014; 47
ref_39
ref_37
Kleinkopf (ref_67) 1981; 73
Struik (ref_4) 2017; 37
Matsumura (ref_19) 2015; 153
Qi (ref_44) 2005; 23
Reynolds (ref_18) 2000; 21
Machakaire (ref_48) 2016; 59
Babyak (ref_49) 2004; 66
ref_42
(ref_38) 2019; 18
ref_41
ref_40
ref_1
ref_3
Oleksy (ref_6) 2019; 65
ref_9
ref_8
Millard (ref_69) 1986; 107
ref_5
(ref_57) 2019; 21
ref_7
References_xml – volume: 27
  start-page: 305
  year: 1984
  ident: ref_22
  article-title: Simulation of growth and yield of the potato crop
  publication-title: Potato Res.
  doi: 10.1007/BF02357639
– volume: 127
  start-page: 141
  year: 2016
  ident: ref_31
  article-title: The methods of extracting the contribution of variables in artificial neural network models—Comparison of inherent instability
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.06.010
– ident: ref_5
– ident: ref_26
– volume: 206
  start-page: 137
  year: 2015
  ident: ref_13
  article-title: Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) model for in-season prediction of crop yield across the Canadian agricultural landscape
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.03.007
– volume: 77
  start-page: 616
  year: 1985
  ident: ref_68
  article-title: Nitrogen Requirements of Potatoes
  publication-title: Agron. J.
  doi: 10.2134/agronj1985.00021962007700040024x
– volume: 65
  start-page: 377
  year: 1988
  ident: ref_70
  article-title: Nitrogen fertilizer efficiencies on potatoes
  publication-title: Am. Potato J.
  doi: 10.1007/BF02852956
– ident: ref_40
  doi: 10.3390/agronomy9070405
– volume: 8
  start-page: 74
  year: 2005
  ident: ref_62
  article-title: Effects of Planting Date on the Growth and Yield of Two Potato Cultivars Grown from Microtubersand Conventional Seed Tubers
  publication-title: Plant Prod. Sci.
  doi: 10.1626/pps.8.74
– ident: ref_3
  doi: 10.3390/agronomy9120781
– volume: 190
  start-page: 202
  year: 2019
  ident: ref_17
  article-title: Prediction of organic potato yield using tillage systems and soil properties by artificial neural network (ANN) and multiple linear regressions (MLR)
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2019.01.011
– ident: ref_34
  doi: 10.1117/12.2243989
– ident: ref_39
– ident: ref_14
  doi: 10.1007/978-3-319-20562-5_3
– volume: 153
  start-page: 399
  year: 2015
  ident: ref_19
  article-title: Maize yield forecasting by linear regression and artificial neural networks in Jilin, China
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859614000392
– volume: 66
  start-page: 411
  year: 2004
  ident: ref_49
  article-title: What You See May Not Be What You Get: A Brief, Nontechnical Introduction to Overfitting in Regression-Type Models
  publication-title: Psychosom. Med.
– ident: ref_42
– volume: 73
  start-page: 799
  year: 1981
  ident: ref_67
  article-title: Dry Matter Production and Nitrogen Utilization by Six Potato Cultivars
  publication-title: Agron. J.
  doi: 10.2134/agronj1981.00021962007300050013x
– volume: 43
  start-page: 266
  year: 2017
  ident: ref_36
  article-title: Application of artificial neural networks in yield prediction of potato crop
  publication-title: Russ. Agric. Sci.
  doi: 10.3103/S1068367417030028
– ident: ref_23
– volume: 127
  start-page: 185
  year: 2019
  ident: ref_53
  article-title: Artificial neural networks and multiple linear regression as potential methods for modeling seed yield of safflower (Carthamus tinctorius L.)
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2018.10.050
– volume: 124
  start-page: 69
  year: 2013
  ident: ref_24
  article-title: Analyzing potato response to irrigation and nitrogen regimes in a sub-tropical environment using SUBSTOR-Potato model
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2013.03.021
– ident: ref_27
  doi: 10.1007/978-94-011-0051-9_3
– volume: 60
  start-page: 379
  year: 2014
  ident: ref_64
  article-title: Effect of nitrogen fertilization and microbial preparations on potato yielding
  publication-title: Plant Soil Environ.
  doi: 10.17221/7565-PSE
– ident: ref_41
  doi: 10.17485/ijst/2016/v9i38/91714
– ident: ref_9
  doi: 10.2478/v10032-008-0020-5
– volume: 37
  start-page: 39
  year: 2017
  ident: ref_4
  article-title: Sustainable intensification in agriculture: The richer shade of green. A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-017-0445-7
– volume: 24
  start-page: 142
  year: 2010
  ident: ref_29
  article-title: A Crop Simulation Model for Predicting Yield and Fate of Nitrogen in Irrigated Potato Rotation Cropping System
  publication-title: J. Crop Improv.
  doi: 10.1080/15427520903581239
– volume: 7
  start-page: 839
  year: 2015
  ident: ref_2
  article-title: Different approaches on pre harvest forecasting of wheat yield
  publication-title: J. Appl. Nat. Sci.
– volume: 6
  start-page: 10193
  year: 2014
  ident: ref_60
  article-title: Assessing the Performance of MODIS NDVI and EVI for Seasonal Crop Yield Forecasting at the Ecodistrict Scale
  publication-title: Remote Sens.
  doi: 10.3390/rs61010193
– volume: 11
  start-page: 1
  year: 2016
  ident: ref_54
  article-title: Prediction of potato crop yield using precision agriculture techniques
  publication-title: PLoS ONE
– volume: 32
  start-page: 13941
  year: 2020
  ident: ref_51
  article-title: Wheat crop yield prediction using new activation functions in neural network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04797-8
– ident: ref_37
  doi: 10.3390/su10124601
– volume: 183
  start-page: 51
  year: 2018
  ident: ref_55
  article-title: Modeling soil organic carbon and carbon dioxide emissions in different tillage systems supported by precision agriculture technologies under current climatic conditions
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2018.06.001
– volume: 65
  start-page: 97
  year: 2019
  ident: ref_6
  article-title: Early potato cultivation using synthetic and biodegradable covers
  publication-title: Plant Soil Environ.
  doi: 10.17221/754/2018-PSE
– ident: ref_7
– volume: 101
  start-page: 891
  year: 2021
  ident: ref_45
  article-title: Yield prediction with machine learning algorithms and satellite images
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.10696
– ident: ref_33
  doi: 10.1016/j.compag.2020.105709
– volume: 18
  start-page: 54
  year: 2019
  ident: ref_38
  article-title: Simple model based on artificial neural network for early prediction and simulation winter rapeseed yield
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(18)62110-0
– ident: ref_20
  doi: 10.1016/B978-044451018-1/50077-4
– volume: 21
  start-page: 173
  year: 2002
  ident: ref_28
  article-title: Comparison of two potato simulation models under climate change. I. Model calibration and sensitivity analyses
  publication-title: Clim. Res.
  doi: 10.3354/cr021173
– volume: 54
  start-page: 54
  year: 2018
  ident: ref_52
  article-title: Image Processing and Artificial Neural Network-Based Models to Measure and Predict Physical Properties of Embryogenic Callus and Number of Somatic Embryos in Ajowan (Trachyspermum ammi (L.) Sprague)
  publication-title: Vitr. Cell. Dev. Biol. Plant
  doi: 10.1007/s11627-017-9877-7
– volume: 7
  start-page: 36
  year: 2019
  ident: ref_63
  article-title: Role of nitrogen on potato production: A review
  publication-title: J. Plant Sci.
– ident: ref_11
  doi: 10.1117/1.JRS.9.097095
– volume: 25
  start-page: 1723
  year: 2004
  ident: ref_10
  article-title: An artificial neural network model for estimating crop yields using remotely sensed information
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000150068
– volume: 23
  start-page: 108
  year: 2005
  ident: ref_44
  article-title: The Broom’s Barn sugar beet growth model and its adaptation to soils with varied available water content
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2004.09.007
– volume: 59
  start-page: 195
  year: 2016
  ident: ref_48
  article-title: Forecasting Yield and Tuber Size of Processing Potatoes in South Africa Using the LINTUL-Potato-DSS Model
  publication-title: Potato Res.
  doi: 10.1007/s11540-016-9321-0
– volume: 47
  start-page: 521
  year: 2014
  ident: ref_61
  article-title: Prediction of potato yield based on energy inputs using multi-layer adaptive neuro-fuzzy inference system
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.09.020
– ident: ref_1
  doi: 10.1016/bs.agron.2018.11.002
– volume: 160
  start-page: 501
  year: 2005
  ident: ref_58
  article-title: Neural network forecasting for seasonal and trend time series
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2003.08.037
– volume: 4
  start-page: 3128
  year: 2010
  ident: ref_66
  article-title: Yield and yield components of potato (Solanum Tuberosum L.) tuber as affected by nitrogen fertilizer and plant density
  publication-title: Aust. J. Basic Appl. Sci.
– volume: 21
  start-page: 51
  year: 2019
  ident: ref_57
  article-title: Application of Artificial Neural Networks for Multi-Criteria Yield Prediction of Winter Wheat
  publication-title: J. Agric. Sci. Technol.
– ident: ref_35
  doi: 10.1109/OPTIP.2016.7528517
– ident: ref_56
  doi: 10.1016/j.compag.2019.104859
– ident: ref_12
  doi: 10.3390/app9142773
– volume: 30
  start-page: 2491
  year: 2009
  ident: ref_16
  article-title: Correlation between potato yield and MODIS-derived vegetation indices
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802552744
– volume: 202
  start-page: 57
  year: 2017
  ident: ref_25
  article-title: Performance of the SUBSTOR-potato model across contrasting growing conditions
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2016.04.012
– volume: 25
  start-page: 1075
  year: 2001
  ident: ref_43
  article-title: Automatic design of neural network structures
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(01)00680-9
– volume: 21
  start-page: 3487
  year: 2000
  ident: ref_18
  article-title: Estimating crop yields and production by integrating the FAO Crop Specific Water Balance model with real-time satellite data and ground-based ancillary data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600750037516
– ident: ref_15
  doi: 10.3389/fpls.2020.01120
– volume: 39
  start-page: 305
  year: 1996
  ident: ref_47
  article-title: Yield prediction using the SUBSTOR-potato model under Argentinian conditions
  publication-title: Potato Res.
  doi: 10.1007/BF02360922
– volume: 97
  start-page: 286
  year: 2010
  ident: ref_46
  article-title: Usage of SUBSTOR model in potato yield prediction
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2009.09.015
– volume: 107
  start-page: 421
  year: 1986
  ident: ref_69
  article-title: Growth, nitrogen uptake and partitioning within the potato (Solatium tuberosum L.) crop, in relation to nitrogen application
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859600087220
– volume: 151
  start-page: 1641
  year: 2011
  ident: ref_21
  article-title: Impacts of climate change on irrigated potato production in a humid climate
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2011.06.018
– ident: ref_50
  doi: 10.1155/2014/857865
– ident: ref_32
  doi: 10.3390/agriculture10100436
– volume: 63
  start-page: 184
  year: 2017
  ident: ref_59
  article-title: Constructing Italian ryegrass yield prediction model based on climatic data by locations in South Korea
  publication-title: Grassl. Sci.
  doi: 10.1111/grs.12163
– ident: ref_8
  doi: 10.17660/ActaHortic.2009.830.87
– ident: ref_30
  doi: 10.3920/978-90-8686-527-7
– volume: 98
  start-page: 496
  year: 2006
  ident: ref_65
  article-title: Threshold Value for Chlorophyll Meter as Decision Tool for Nitrogen Management of Potato
  publication-title: Agron. J.
  doi: 10.2134/agronj2005.0108
SSID ssj0000913807
Score 2.4365253
Snippet Yield forecasting is a rational and scientific way of predicting future occurrences in agriculture—the level of production effects. Its main purpose is...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 885
SubjectTerms Agricultural production
agronomy
Artificial neural networks
Atmospheric models
Crop diseases
Crop yield
crop yield prediction
Cultivars
Decision making
Error analysis
Flowers & plants
Harvest
linear models
Meteorological data
model validation
multiple linear regression
Neural networks
Poland
Potatoes
Regression analysis
Regression models
Risk reduction
Variables
Vegetation
very early potato
yield forecasting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXI3jxULZNH2mPqygiKIuorKeSVxdhaaW7K_hD_L_OpN11VdCLp0KbhCQzyXzDTL9h7AQvxkIJhSdNydSLEPJ7qQ0KL5WJtoHvK2VdtsVtcvUQXQ_iwUKpL8oJa-iBm43rWkS0VkmtM1VESWJStPnc6CTlOpBJ7KAR2rwFZ8rdwVlATOpNXDJEv74rh7X7SwDNHWGS-IsdcnT9P25jZ2Iu19laiw2h18xpgy3ZcpOt9oZ1y49ht9g7ihV6n0FnqAq4aXMCAf1K1Fu4s8MmubUEWRo3XEMTAcTE4R4u9RuoDtpoDAhb4YkS2aBfU9hmNu6jrd_AESBDv0JMWgHxbz6_oisMymIvC1RZCBeyze4vL-7Pr7y2soKno4BPEFIjDkiyrChkpEUkqeQw2u0g0okSiNkCKxUvDPfjOCWHL9WyMErGPjdhpkW4w5bLqrS7DJRvlAklFwg7Iq5Cif6LMkKkQSi41KLDurNtznXLOk7FL0Y5eh8kmPy7YDrsdN7jpWHc-KXtGUlu3o64st0L1KC81aD8Lw3qsIOZ3PP2AI9zjrsRCophdtjx_DMePYqnyNJWU2qDcJAT0_Pef8xjn61wSphxoaoDtjypp_YQEc9EHTnl_gBRcgKz
  priority: 102
  providerName: Directory of Open Access Journals
Title The Application of Multiple Linear Regression and Artificial Neural Network Models for Yield Prediction of Very Early Potato Cultivars before Harvest
URI https://www.proquest.com/docview/2531379579
https://www.proquest.com/docview/2561526906
https://doaj.org/article/e675ebacc9bf466d81542dc682c1a65a
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-RAEG58XNaD-Fp21gclePEQJuk8uuckoygiKIOo6Cn0K8OCJG5mFPwh_l-rOj0jKngKJN0NSXVVfdVV-YqxAzSMlRYaNU0rGWUI-SPpkiqSqjAuiWOtna-2uCrOb7OL-_w-HLhNQlnlzCZ6Q20bQ2fkfY6bJRWUVDp6-h9R1yjKroYWGotsGU2wxOBr-fj0anQ9P2Uh1ksZiy4_mWJ831fj1v8tgG6PsEn-yR952v5vVtm7mrM1thowIgw7oa6zBVdvsJXhuA08GW6TvaF4YfiRfIamgstQGwgYX-L-hWs37opca1C19ct1dBFAjBz-4kvAgfqhPU4A4Ss8UEEbjFpK38zWvXPtK3giZBg1iE0bIB7Ofy8YEoN2OMsBdRjCF9liN2enNyfnUeiwEJks4VOE1ogHisGgqlRmRKao9TD67yQzhRaI3RKnNK8sj_NcUuAnjaqsVnnMbTowIv3Nluqmdn8Y6NhqmyouEH5kXKcK4xhthZAoNK6M6LH-7DOXJrCPUxOMxxKjEBJM-VUwPXY4n_HUMW_8MPaYJDcfR5zZ_kbTjsuggqXD2MhpZcxAV1lRWInokVtTSG4SVeSqx3Zmci-DIk_Kj23XY_vzx6iClFdRtWueaQzCQk6Mz39_XmKb_eJUEuOTUTtsado-u13ENFO9Fzbunj8TeAdgMPuw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEE81UGCQ4MDBir1-H1CVQquUtlFUBVRO1r4cIVV2cVJQfwg_o_-RmbWdCpB668mSvbuSd2Z3vtmZ_QbgLW2MpUoVrTQlMy8iyO9lNii9TCbaBr6vlHXZFtNk8iX6fBqfbsBVfxeG0yr7PdFt1KbWfEY-EqQsYcpBpZ3zHx5XjeLoal9Co1WLQ3v5i1y25YeDTyTfd0Ls780_TryuqoCno0CsCE6SDUzyvCxlpNNIcrldsllBpBOVEl4JrFSiNMKP44ydnUzL0igZ-8KEuU5DGvYObEYh_dYANnf3prOT9aEOk2xSpzYcGoa5P5KLxl1OICvLUCj-y_y5KgH_GQFn2fYfwoMOkuK41aFHsGGrx3B_vGg6Wg77BH6TNuH4OtaNdYnHXSoikjtL84IndtHm1FYoK-OGa9kpkAlA3MNlnCOXXztbIqFl_Mb5czhrOFrUj_vVNpfoeJdxVhMUrpFpP7__JA8claVeFrmgEf3IU5jfxtQ_g0FVV3YLUPlGmVCKlNBOJFQoyW1SJk0z0hEhdTqEUT_Nhe7IzrnmxllBTg8LpvhXMEN4v-5x3hJ93NB2lyW3bscU3e5F3SyKbsUXllwxq6TWuSqjJDEZgVVhdJIJHcgklkPY7uVedPvGsrjW8iG8WX-mFc9hHFnZ-oLbEAoVTDD9_OYhXsPdyfz4qDg6mB6-gHuCs3FcHGwbBqvmwr4kOLVSrzolRihuedn8AUiPNYk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFUQfxE88W3UEffAhXLL52NyDyNX2aK0eR6lSn8J-5RBK0uauSv8Q_xj_O2c2yRUV-tanQLK7kJ2Znd9kJr8BeE0HY6mlJkvTKg8SgvxB7qIyyFVmXBSGWjtfbTHL9r8kH0_Skw343f8Lw2WV_ZnoD2pbG_5GPhKkLLHkpNKo7Moi5rvT92fnAXeQ4kxr306jVZFDd_mTwrflu4NdkvUbIaZ7xx_2g67DQGCSSKwIWpI_zMbjslSJkYni1rvkv6LEZFoSdomc0qK0IkzTnAOf3KjSapWGwsZjI2Na9hZsSgqKwgFs7uzN5kfrDzxMuEmT2tRoHI_DkVo0_kcF8rgMi9K_XKHvGPCfQ_Bebnof7nXwFCetPj2ADVc9hLuTRdNRdLhH8Is0CydXeW-sS_zclSUihba0L3jkFm19bYWqsn65lqkCmQzEX3z1OXIrttMlEnLGb1xLh_OGM0f9ul9dc4megxnnNcHiGpkC9PsPisZRO5rlkJsb0Ys8huOb2PonMKjqyj0F1KHVNlZCEvJJhI4VhVDaSpmTvghl5BBG_TYXpiM-5_4bpwUFQCyY4l_BDOHtesZZS_pxzdgdltx6HNN1-xt1syg66y8chWVOK2PGukyyzOYEXIU1WS5MpLJUDWG7l3vRnSHL4krjh_Bq_Zisn1M6qnL1BY8hRCqYbPrZ9Uu8hNtkLsWng9nhFtwRXJjjU2LbMFg1F-45IauVftHpMEJxw1bzB2z5Ob4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Application+of+Multiple+Linear+Regression+and+Artificial+Neural+Network+Models+for+Yield+Prediction+of+Very+Early+Potato+Cultivars+before+Harvest&rft.jtitle=Agronomy+%28Basel%29&rft.au=Piekutowska%2C+Magdalena&rft.au=Niedba%C5%82a%2C+Gniewko&rft.au=Piskier%2C+Tomasz&rft.au=Lenartowicz%2C+Tomasz&rft.date=2021-04-30&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=11&rft.issue=5&rft.spage=885&rft_id=info:doi/10.3390%2Fagronomy11050885&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agronomy11050885
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon