The Interplay between Angiopoietin-Like Proteins and Adipose Tissue: Another Piece of the Relationship between Adiposopathy and Cardiometabolic Diseases?
Angiopoietin-like proteins, namely ANGPTL3-4-8, are known as regulators of lipid metabolism. However, recent evidence points towards their involvement in the regulation of adipose tissue function. Alteration of adipose tissue functions (also called adiposopathy) is considered the main inducer of met...
Saved in:
Published in | International journal of molecular sciences Vol. 22; no. 2; p. 742 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
13.01.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Angiopoietin-like proteins, namely ANGPTL3-4-8, are known as regulators of lipid metabolism. However, recent evidence points towards their involvement in the regulation of adipose tissue function. Alteration of adipose tissue functions (also called adiposopathy) is considered the main inducer of metabolic syndrome (MS) and its related complications. In this review, we intended to analyze available evidence derived from experimental and human investigations highlighting the contribution of ANGPTLs in the regulation of adipocyte metabolism, as well as their potential role in common cardiometabolic alterations associated with adiposopathy. We finally propose a model of ANGPTLs-based adipose tissue dysfunction, possibly linking abnormalities in the angiopoietins to the induction of adiposopathy and its related disorders. |
---|---|
AbstractList | Angiopoietin-like proteins, namely ANGPTL3-4-8, are known as regulators of lipid metabolism. However, recent evidence points towards their involvement in the regulation of adipose tissue function. Alteration of adipose tissue functions (also called adiposopathy) is considered the main inducer of metabolic syndrome (MS) and its related complications. In this review, we intended to analyze available evidence derived from experimental and human investigations highlighting the contribution of ANGPTLs in the regulation of adipocyte metabolism, as well as their potential role in common cardiometabolic alterations associated with adiposopathy. We finally propose a model of ANGPTLs-based adipose tissue dysfunction, possibly linking abnormalities in the angiopoietins to the induction of adiposopathy and its related disorders. Angiopoietin-like proteins, namely ANGPTL3-4-8, are known as regulators of lipid metabolism. However, recent evidence points towards their involvement in the regulation of adipose tissue function. Alteration of adipose tissue functions (also called adiposopathy) is considered the main inducer of metabolic syndrome (MS) and its related complications. In this review, we intended to analyze available evidence derived from experimental and human investigations highlighting the contribution of ANGPTLs in the regulation of adipocyte metabolism, as well as their potential role in common cardiometabolic alterations associated with adiposopathy. We finally propose a model of ANGPTLs-based adipose tissue dysfunction, possibly linking abnormalities in the angiopoietins to the induction of adiposopathy and its related disorders.Angiopoietin-like proteins, namely ANGPTL3-4-8, are known as regulators of lipid metabolism. However, recent evidence points towards their involvement in the regulation of adipose tissue function. Alteration of adipose tissue functions (also called adiposopathy) is considered the main inducer of metabolic syndrome (MS) and its related complications. In this review, we intended to analyze available evidence derived from experimental and human investigations highlighting the contribution of ANGPTLs in the regulation of adipocyte metabolism, as well as their potential role in common cardiometabolic alterations associated with adiposopathy. We finally propose a model of ANGPTLs-based adipose tissue dysfunction, possibly linking abnormalities in the angiopoietins to the induction of adiposopathy and its related disorders. |
Author | Arca, Marcello Di Costanzo, Alessia D’Erasmo, Laura Minicocci, Ilenia Pecce, Valeria Bini, Simone |
AuthorAffiliation | Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy; alessia.dicostanzo@uniroma1.it (A.D.C.); ilenia.minicocci@uniroma1.it (I.M.); valeria.pecce@uniroma1.it (V.P.); marcello.arca@uniroma1.it (M.A.) |
AuthorAffiliation_xml | – name: Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy; alessia.dicostanzo@uniroma1.it (A.D.C.); ilenia.minicocci@uniroma1.it (I.M.); valeria.pecce@uniroma1.it (V.P.); marcello.arca@uniroma1.it (M.A.) |
Author_xml | – sequence: 1 givenname: Simone orcidid: 0000-0002-1006-4636 surname: Bini fullname: Bini, Simone – sequence: 2 givenname: Laura surname: D’Erasmo fullname: D’Erasmo, Laura – sequence: 3 givenname: Alessia surname: Di Costanzo fullname: Di Costanzo, Alessia – sequence: 4 givenname: Ilenia orcidid: 0000-0002-9801-4501 surname: Minicocci fullname: Minicocci, Ilenia – sequence: 5 givenname: Valeria surname: Pecce fullname: Pecce, Valeria – sequence: 6 givenname: Marcello surname: Arca fullname: Arca, Marcello |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33451033$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv1DAURi1URB-wY40ssWHRgGPHebAAjYZXpZGo0LC2bOemuUPGDrYDmp_Sf0uYtjBUrGzL5x59176n5Mh5B4Q8zdlLIRr2CjfbyDnjrCr4A3KSF5xnjJXV0cH-mJzGuGGMCy6bR-RYiELmTIgTcr3ugV64BGEc9I4aSD8BHF24K_SjR0joshV-A3oZfAJ0kWrX0kWLo49A1xjjBK9n3KceAr1EsEB9R-cT_QKDTuhd7HH8K95X-lGnfrdXLXVo0W8haeMHtPQdRtAR4tvH5GGnhwhPbtcz8vXD-_XyU7b6_PFiuVhltsh5ykoQRWVMJaUwtmk6qGxdQclF19nCdrkuJMhWGNaVTWFsWUOrTWuqrgbgMs_FGXlz4x0ns4XWgktBD2oMuNVhp7xG9e-Nw15d-R-qqnktJZ8FL24FwX-fICa1xWhhGLQDP0XFi6qWdclkOaPP76EbPwU3t7enyrJuCjlTzw4T_Yly92szwG8AG3yMATplMe3feg6Ig8qZ-j0a6nA05qLze0V33v_ivwBjJL7P |
CitedBy_id | crossref_primary_10_1038_s41569_022_00676_y crossref_primary_10_1007_s11883_021_00967_8 crossref_primary_10_1097_MOL_0000000000000764 crossref_primary_10_1007_s11883_022_01076_w crossref_primary_10_1016_j_physbeh_2024_114743 crossref_primary_10_1016_j_numecd_2024_05_002 crossref_primary_10_1016_j_atherosclerosis_2022_08_011 crossref_primary_10_1042_CS20230031 crossref_primary_10_14814_phy2_15530 crossref_primary_10_21518_ms2023_303 crossref_primary_10_3390_jcm11185477 crossref_primary_10_1186_s12944_022_01632_y crossref_primary_10_1016_j_ecl_2022_02_004 crossref_primary_10_1161_CIRCULATIONAHA_123_065866 crossref_primary_10_3390_biom12040585 crossref_primary_10_1016_j_apsb_2023_11_031 crossref_primary_10_1097_MOL_0000000000000798 crossref_primary_10_3390_metabo15030184 crossref_primary_10_1186_s12944_021_01547_0 crossref_primary_10_1186_s12944_021_01589_4 crossref_primary_10_3390_cimb46070399 crossref_primary_10_1093_cei_uxab033 crossref_primary_10_3390_ijms24076382 crossref_primary_10_1016_j_numecd_2022_08_019 crossref_primary_10_21638_spbu03_2024_103 crossref_primary_10_3390_biomedicines11030883 |
Cites_doi | 10.1016/j.molmed.2019.05.010 10.1210/en.2005-0476 10.1172/JCI141828 10.1038/srep24013 10.1038/s41598-017-06052-y 10.1002/jcla.22649 10.1210/er.2012-1053 10.1074/jbc.M109.025452 10.1038/ng814 10.1016/j.bbalip.2020.158679 10.1055/s-0032-1321864 10.2337/db15-0318 10.1186/gb-2014-15-4-r63 10.1016/S0092-8674(00)81410-5 10.1002/JLB.3HI1017-422R 10.1007/BF00369517 10.1016/j.gene.2020.144707 10.1016/j.ejphar.2019.02.044 10.1074/jbc.M900553200 10.1073/pnas.0604026103 10.1016/j.cmet.2019.10.001 10.1016/j.cell.2012.05.016 10.1016/j.jacl.2017.06.013 10.1172/JCI71643 10.1016/j.mce.2015.07.031 10.3390/nu11061340 10.3389/fendo.2016.00030 10.14348/molcells.2014.0074 10.1016/j.cmet.2015.06.022 10.1016/j.jacl.2017.12.011 10.1007/BF00280883 10.1111/apha.13298 10.1074/jbc.M110.217638 10.1097/MEG.0b013e32832b77ae 10.1097/MOL.0000000000000290 10.1002/oby.21153 10.1210/jc.2016-4043 10.1038/srep18502 10.1016/j.cmet.2013.12.017 10.1371/journal.pone.0193731 10.1073/pnas.1900983116 10.1016/j.jaci.2005.02.023 10.1042/BSR20140115 10.1172/JCI62308 10.1161/ATVBAHA.113.301397 10.1016/S0021-9258(17)36228-2 10.2337/db14-1651 10.1172/JCI88883 10.1016/j.cmet.2016.01.008 10.1038/s41598-018-32758-8 10.1016/j.chemphyslip.2017.05.002 10.3390/ijms19123995 10.1016/j.jacl.2017.02.002 10.1161/CIRCRESAHA.107.164988 10.1073/pnas.1515374112 10.1126/science.aal3321 10.1073/pnas.0601752103 10.1161/CIRCULATIONAHA.111.027813 10.1055/a-0725-7897 10.1161/CIRCULATIONAHA.117.031335 10.1210/jc.2018-01663 10.1016/j.cmet.2016.10.002 10.7554/eLife.08428 10.1021/bi00341a048 10.1093/eurheartj/ehaa689 10.1056/NEJMoa0808949 10.1155/2019/6578327 10.1002/cpim.86 10.1016/j.bbrc.2004.08.024 10.1038/s41387-018-0032-2 10.1073/pnas.1717420115 10.1016/j.bbrc.2004.08.145 10.1111/j.1742-1241.2007.01336.x 10.3390/jcm9020512 10.1152/ajpendo.00422.2013 10.1016/j.beem.2013.06.003 10.1038/nature07182 10.3389/fcvm.2020.00022 10.1194/jlr.P066183 10.1016/j.diabet.2019.05.005 10.1038/s41467-017-02355-w 10.1194/jlr.RA120000781 10.1074/jbc.RA118.006259 10.1016/j.cell.2014.05.012 10.1074/jbc.M302861200 10.1126/science.1260419 10.1194/jlr.M079665 10.1016/j.molmet.2017.06.018 10.1172/JCI105705 10.1194/jlr.P039875 10.1074/jbc.M004029200 10.1172/JCI109295 10.3390/nu10111699 10.1111/j.1742-1241.2008.01848.x 10.1007/s00109-003-0492-1 10.1161/01.RES.0000250758.63358.91 10.1172/JCI0215693 10.1016/j.atherosclerosis.2017.08.031 10.1097/MOL.0000000000000668 10.1074/jbc.RA118.002426 10.1038/nm.2297 10.4049/jimmunol.168.2.875 10.1038/nature01705 10.1186/s12263-018-0597-3 10.1381/0960892053723493 10.1098/rsob.150272 10.1161/ATVBAHA.118.312021 10.1210/jc.2015-4125 10.1210/jc.2015-1254 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms22020742 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Proquest Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC7828552 33451033 10_3390_ijms22020742 |
Genre | Journal Article Review |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c412t-6e347bb7553bc99fe7c87e623ffc4cf1a45e5d3b0f694bc68edabdb7f8ee25113 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:42:36 EDT 2025 Fri Jul 11 02:40:56 EDT 2025 Fri Jul 25 19:59:56 EDT 2025 Wed Feb 19 02:27:59 EST 2025 Thu Apr 24 23:02:17 EDT 2025 Tue Jul 01 03:07:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | ANGPTL3 adipose tissue ANGPTL4 brown adipose tissue adiposopathy ANGPTL8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-6e347bb7553bc99fe7c87e623ffc4cf1a45e5d3b0f694bc68edabdb7f8ee25113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-1006-4636 0000-0002-9801-4501 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms22020742 |
PMID | 33451033 |
PQID | 2478668945 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7828552 proquest_miscellaneous_2478586056 proquest_journals_2478668945 pubmed_primary_33451033 crossref_citationtrail_10_3390_ijms22020742 crossref_primary_10_3390_ijms22020742 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210113 |
PublicationDateYYYYMMDD | 2021-01-13 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210113 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Farooqi (ref_24) 2002; 110 Puigserver (ref_31) 1998; 92 Aryal (ref_81) 2019; 25 Knittle (ref_2) 1979; 63 ref_91 Oliveira (ref_6) 2005; 15 Crewe (ref_47) 2017; 127 ref_13 Dijk (ref_80) 2018; 293 ref_12 ref_98 Jacobsson (ref_29) 1985; 260 ref_17 Arca (ref_53) 2020; 31 Hess (ref_111) 2018; 13 Noto (ref_110) 2017; 11 Tikka (ref_58) 2014; 34 Dijk (ref_90) 2016; 27 Svensson (ref_32) 2016; 23 Bapat (ref_18) 2019; 126 Kersten (ref_93) 2000; 275 Wolf (ref_22) 2004; 323 Cohen (ref_28) 2015; 64 Yin (ref_76) 2009; 284 Deshmukh (ref_39) 2019; 30 Fantuzzi (ref_19) 2005; 115 Ono (ref_56) 2003; 278 Xu (ref_64) 2018; 268 ref_72 ref_71 ref_70 Tikkanen (ref_54) 2019; 39 Lee (ref_34) 2014; 19 Cazes (ref_75) 2006; 99 ref_74 ref_73 Moon (ref_113) 2013; 34 Smati (ref_96) 2020; 46 Choe (ref_1) 2016; 7 Lei (ref_97) 2011; 286 Gesta (ref_14) 2006; 103 ref_83 Minicocci (ref_109) 2013; 54 Sukonina (ref_11) 2006; 103 Chaurasia (ref_35) 2016; 24 Wang (ref_10) 2015; 112 Virtanen (ref_27) 2009; 360 Schlessinger (ref_37) 2015; 23 ref_88 ref_87 ref_86 Muir (ref_42) 2018; 103 ref_85 Chao (ref_8) 2005; 146 Lee (ref_48) 2014; 157 Minicocci (ref_63) 2016; 57 Bartelt (ref_36) 2011; 17 Koliwad (ref_94) 2009; 284 Chen (ref_89) 2019; 294 Osborne (ref_77) 1985; 24 Chadwick (ref_60) 2018; 137 Sidossis (ref_38) 2015; 22 Thompson (ref_84) 2011; 4 Mysore (ref_67) 2017; 207 Shimizu (ref_49) 2014; 124 Cherian (ref_99) 2016; 15 Blondin (ref_50) 2015; 64 Cifarelli (ref_44) 2020; 130 Gaudet (ref_101) 2020; 41 Beigneux (ref_78) 2019; 116 Okamoto (ref_23) 2008; 102 Haridas (ref_68) 2015; 100 Alviggi (ref_26) 2004; 82 Robciuc (ref_57) 2013; 33 ref_69 Salans (ref_3) 1968; 47 ref_66 Yamauchi (ref_21) 2003; 423 Koishi (ref_55) 2002; 30 Bays (ref_4) 2008; 62 Klingenspor (ref_52) 1994; 163 Uhlen (ref_65) 2015; 347 Fazio (ref_59) 2017; 102 Lee (ref_92) 2015; 414 Liu (ref_20) 2014; 28 Muniyappa (ref_115) 2017; 11 Kotzbeck (ref_51) 2018; 59 Matthews (ref_102) 1985; 28 Stanford (ref_33) 2013; 123 Banfi (ref_61) 2018; 115 Lawler (ref_43) 2016; 101 Bays (ref_5) 2007; 61 ref_112 Yilmaz (ref_108) 2009; 21 Shankar (ref_41) 2019; 854 Ruhanen (ref_62) 2020; 1865 Huh (ref_16) 2014; 37 Busso (ref_25) 2002; 168 ref_104 ref_103 Seale (ref_30) 2008; 454 Liu (ref_106) 2018; 12 Shimamura (ref_114) 2004; 322 ref_105 ref_107 ref_45 ref_100 Mysling (ref_79) 2016; 5 Goossens (ref_46) 2011; 124 Brands (ref_82) 2012; 120 ref_9 Wu (ref_40) 2012; 150 Ingerslev (ref_95) 2017; 6 ref_7 Wilms (ref_15) 2019; 104 |
References_xml | – volume: 25 start-page: 723 year: 2019 ident: ref_81 article-title: ANGPTL4 in Metabolic and Cardiovascular Disease publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2019.05.010 – ident: ref_74 – volume: 146 start-page: 4943 year: 2005 ident: ref_8 article-title: Transgenic Angiopoietin-Like (Angptl)4 Overexpression and Targeted Disruption of Angptl4 and Angptl3: Regulation of Triglyceride Metabolism publication-title: Endocrinology doi: 10.1210/en.2005-0476 – volume: 130 start-page: 6688 year: 2020 ident: ref_44 article-title: Decreased adipose tissue oxygenation associates with insulin resistance in individuals with obesity publication-title: J. Clin. Investig. doi: 10.1172/JCI141828 – ident: ref_112 doi: 10.1038/srep24013 – ident: ref_72 doi: 10.1038/s41598-017-06052-y – ident: ref_105 doi: 10.1002/jcla.22649 – volume: 34 start-page: 377 year: 2013 ident: ref_113 article-title: Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals publication-title: Endocr. Rev. doi: 10.1210/er.2012-1053 – volume: 284 start-page: 25593 year: 2009 ident: ref_94 article-title: Angiopoietin-like 4 (ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoid-regulated triglyceride metabolism publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.025452 – volume: 30 start-page: 151 year: 2002 ident: ref_55 article-title: Angptl3 regulates lipid metabolism in mice publication-title: Nat. Genet. doi: 10.1038/ng814 – volume: 1865 start-page: 158679 year: 2020 ident: ref_62 article-title: ANGPTL3 deficiency alters the lipid profile and metabolism of cultured hepatocytes and human lipoproteins publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids doi: 10.1016/j.bbalip.2020.158679 – volume: 120 start-page: 598 year: 2012 ident: ref_82 article-title: Angiopoietin-like protein 4 is differentially regulated by glucocorticoids and insulin in vitro and in vivo in healthy humans publication-title: Exp. Clin. Endocrinol. Diabetes doi: 10.1055/s-0032-1321864 – volume: 64 start-page: 2346 year: 2015 ident: ref_28 article-title: Brown and beige fat: Molecular parts of a thermogenic machine publication-title: Diabetes doi: 10.2337/db15-0318 – ident: ref_83 doi: 10.1186/gb-2014-15-4-r63 – volume: 92 start-page: 829 year: 1998 ident: ref_31 article-title: A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis publication-title: Cell doi: 10.1016/S0092-8674(00)81410-5 – volume: 103 start-page: 615 year: 2018 ident: ref_42 article-title: Rapid adipose tissue expansion triggers unique proliferation and lipid accumulation profiles in adipose tissue macrophages publication-title: J. Leukoc. Biol. doi: 10.1002/JLB.3HI1017-422R – volume: 163 start-page: 664 year: 1994 ident: ref_52 article-title: Effect of unilateral surgical denervation of brown adipose tissue on uncoupling protein mRNA level and cytochrom-c-oxidase activity in the Djungarian hamster publication-title: J. Comp. Physiol. B doi: 10.1007/BF00369517 – ident: ref_73 doi: 10.1016/j.gene.2020.144707 – volume: 854 start-page: 354 year: 2019 ident: ref_41 article-title: Role of brown adipose tissue in modulating adipose tissue inflammation and insulin resistance in high-fat diet fed mice publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2019.02.044 – volume: 284 start-page: 13213 year: 2009 ident: ref_76 article-title: Genetic variation in ANGPTL4 provides insights into protein processing and function publication-title: J. Biol. Chem. doi: 10.1074/jbc.M900553200 – volume: 103 start-page: 17450 year: 2006 ident: ref_11 article-title: Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0604026103 – volume: 30 start-page: 963 year: 2019 ident: ref_39 article-title: Proteomics-Based Comparative Mapping of the Secretomes of Human Brown and White Adipocytes Reveals EPDR1 as a Novel Batokine publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.10.001 – volume: 150 start-page: 366 year: 2012 ident: ref_40 article-title: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human publication-title: Cell doi: 10.1016/j.cell.2012.05.016 – volume: 11 start-page: 1234 year: 2017 ident: ref_110 article-title: Clinical and biochemical characteristics of individuals with low cholesterol syndromes: A comparison between familial hypobetalipoproteinemia and familial combined hypolipidemia publication-title: J. Clin. Lipidol. doi: 10.1016/j.jacl.2017.06.013 – volume: 124 start-page: 2099 year: 2014 ident: ref_49 article-title: Vascular rarefaction mediates whitening of brown fat in obesity publication-title: J. Clin. Investig. doi: 10.1172/JCI71643 – volume: 414 start-page: 148 year: 2015 ident: ref_92 article-title: AMP-activated protein kinase suppresses the expression of LXR/SREBP-1 signaling-induced ANGPTL8 in HepG2 cells publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2015.07.031 – ident: ref_104 doi: 10.3390/nu11061340 – volume: 7 start-page: 1 year: 2016 ident: ref_1 article-title: Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders publication-title: Front. Endocrinol. doi: 10.3389/fendo.2016.00030 – volume: 37 start-page: 365 year: 2014 ident: ref_16 article-title: Crosstalk between Adipocytes and Immune Cells in Adipose Tissue Inflammation and Metabolic Dysregulation in Obesity publication-title: Mol. Cells doi: 10.14348/molcells.2014.0074 – volume: 22 start-page: 219 year: 2015 ident: ref_38 article-title: Browning of Subcutaneous White Adipose Tissue in Humans after Severe Adrenergic Stress publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.06.022 – volume: 12 start-page: 331 year: 2018 ident: ref_106 article-title: High frequency of type 2 diabetes and impaired glucose tolerance in Japanese subjects with the angiopoietin-like protein 8 R59W variant publication-title: J. Clin. Lipidol. doi: 10.1016/j.jacl.2017.12.011 – volume: 28 start-page: 412 year: 1985 ident: ref_102 article-title: Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man publication-title: Diabetologia doi: 10.1007/BF00280883 – ident: ref_45 doi: 10.1111/apha.13298 – volume: 286 start-page: 15747 year: 2011 ident: ref_97 article-title: Proteolytic processing of angiopoietin-like protein 4 by proprotein convertases modulates its inhibitory effects on lipoprotein lipase activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.217638 – volume: 21 start-page: 1247 year: 2009 ident: ref_108 article-title: Serum concentrations of human angiopoietin-like protein 3 in patients with nonalcoholic fatty liver disease: Association with insulin resistance publication-title: Eur. J. Gastroenterol. Hepatol. doi: 10.1097/MEG.0b013e32832b77ae – volume: 27 start-page: 249 year: 2016 ident: ref_90 article-title: Regulation of lipid metabolism by angiopoietin-like proteins publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0000000000000290 – volume: 23 start-page: 1818 year: 2015 ident: ref_37 article-title: Gene expression in WAT from healthy humans and monkeys correlates with FGF21-induced browning of WAT in mice publication-title: Obesity doi: 10.1002/oby.21153 – volume: 102 start-page: 3340 year: 2017 ident: ref_59 article-title: Threshold effects of circulating angiopoietin-like 3 levels on plasma lipoproteins publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2016-4043 – ident: ref_9 doi: 10.1038/srep18502 – volume: 19 start-page: 302 year: 2014 ident: ref_34 article-title: Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.12.017 – ident: ref_100 doi: 10.1371/journal.pone.0193731 – volume: 116 start-page: 6319 year: 2019 ident: ref_78 article-title: Lipoprotein lipase is active as a monomer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1900983116 – volume: 115 start-page: 911 year: 2005 ident: ref_19 article-title: Adipose tissue, adipokines, and inflammation publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2005.02.023 – volume: 34 start-page: 811 year: 2014 ident: ref_58 article-title: Silencing of ANGPTL 3 (angiopoietin-like protein 3) in human hepatocytes results in decreased expression of gluconeogenic genes and reduced triacylglycerol-rich VLDL secretion upon insulin stimulation publication-title: Biosci. Rep. doi: 10.1042/BSR20140115 – volume: 123 start-page: 215 year: 2013 ident: ref_33 article-title: Brown adipose tissue regulates glucose homeostasis and insulin sensitivity publication-title: J. Clin. Investig. doi: 10.1172/JCI62308 – volume: 33 start-page: 1706 year: 2013 ident: ref_57 article-title: Angptl3 deficiency is associated with increased insulin sensitivity, lipoprotein lipase activity, and decreased serum free fatty acids publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.113.301397 – volume: 260 start-page: 16250 year: 1985 ident: ref_29 article-title: Mitochondrial uncoupling protein from mouse brown fat. Molecular cloning, genetic mapping, and mRNA expression publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)36228-2 – volume: 64 start-page: 2388 year: 2015 ident: ref_50 article-title: Selective Impairment of Glucose but Not Fatty Acid or Oxidative Metabolism in Brown Adipose Tissue of Subjects with Type 2 Diabetes publication-title: Diabetes doi: 10.2337/db14-1651 – volume: 127 start-page: 74 year: 2017 ident: ref_47 article-title: The ominous triad of adipose tissue dysfunction: Inflammation, fibrosis, and impaired angiogenesis publication-title: J. Clin. Investig. doi: 10.1172/JCI88883 – volume: 23 start-page: 454 year: 2016 ident: ref_32 article-title: A secreted slit2 fragment regulates adipose tissue thermogenesis and metabolic function publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.01.008 – ident: ref_87 doi: 10.1038/s41598-018-32758-8 – volume: 207 start-page: 246 year: 2017 ident: ref_67 article-title: Angiopoietin-like 8 (Angptl8) controls adipocyte lipolysis and phospholipid composition publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2017.05.002 – ident: ref_98 doi: 10.3390/ijms19123995 – volume: 15 start-page: 1 year: 2016 ident: ref_99 article-title: Increased ANGPTL3, 4 and ANGPTL8/betatrophin expression levels in obesity and T2D publication-title: Lipids Health Dis. – volume: 11 start-page: 543 year: 2017 ident: ref_115 article-title: Metreleptin therapy lowers plasma angiopoietin-like protein 3 in patients with generalized lipodystrophy publication-title: J. Clin. Lipidol. doi: 10.1016/j.jacl.2017.02.002 – volume: 102 start-page: 218 year: 2008 ident: ref_23 article-title: Adiponectin inhibits the production of CXC receptor 3 chemokine ligands in macrophages and reduces T-lymphocyte recruitment in atherogenesis publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.107.164988 – volume: 112 start-page: 11630 year: 2015 ident: ref_10 article-title: Hepatic ANGPTL3 regulates adipose tissue energy homeostasis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1515374112 – ident: ref_86 doi: 10.1126/science.aal3321 – volume: 103 start-page: 6676 year: 2006 ident: ref_14 article-title: Evidence for a role of developmental genes in the origin of obesity and body fat distribution publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0601752103 – volume: 124 start-page: 67 year: 2011 ident: ref_46 article-title: Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.111.027813 – ident: ref_71 doi: 10.1055/a-0725-7897 – volume: 137 start-page: 975 year: 2018 ident: ref_60 article-title: Reduced blood lipid levels with in vivo CRISPR-Cas9 base editing of ANGPTL3 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.117.031335 – volume: 104 start-page: 1687 year: 2019 ident: ref_15 article-title: Sleep loss disrupts morning-to-evening differences in human white adipose tissue transcriptome publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2018-01663 – volume: 24 start-page: 820 year: 2016 ident: ref_35 article-title: Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.10.002 – ident: ref_12 doi: 10.7554/eLife.08428 – volume: 24 start-page: 5606 year: 1985 ident: ref_77 article-title: Studies on Inactivation of Lipoprotein Lipase: Role of the Dimer to Monomer Dissociation publication-title: Biochemistry doi: 10.1021/bi00341a048 – volume: 41 start-page: 3936 year: 2020 ident: ref_101 article-title: Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia’ publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehaa689 – volume: 360 start-page: 1518 year: 2009 ident: ref_27 article-title: Functional Brown Adipose Tissue in Healthy Adults publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0808949 – ident: ref_107 doi: 10.1155/2019/6578327 – volume: 126 start-page: e86 year: 2019 ident: ref_18 article-title: Characterization of Immune Cells from Adipose Tissue publication-title: Curr. Protoc. Immunol. doi: 10.1002/cpim.86 – volume: 4 start-page: 146 year: 2011 ident: ref_84 article-title: Fatty acids and hypoxia stimulate the expression and secretion of the adipokine ANGPTL4 (angiopoietin-like protein 4/fasting-induced adipose factor) by human adipocytes publication-title: J. Nutrigenet. Nutrigenom. – volume: 322 start-page: 1080 year: 2004 ident: ref_114 article-title: Leptin and insulin down-regulate angiopoietin-like protein 3, a plasma triglyceride-increasing factor publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2004.08.024 – ident: ref_103 doi: 10.1038/s41387-018-0032-2 – volume: 115 start-page: E1249 year: 2018 ident: ref_61 article-title: Increased thermogenesis by a noncanonical pathway in ANGPTL3/8-deficient mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1717420115 – volume: 323 start-page: 630 year: 2004 ident: ref_22 article-title: Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2004.08.145 – volume: 61 start-page: 737 year: 2007 ident: ref_5 article-title: The relationship of body mass index to diabetes mellitus, hypertension and dyslipidaemia: Comparison of data from two national surveys publication-title: Int. J. Clin. Pract. doi: 10.1111/j.1742-1241.2007.01336.x – ident: ref_69 doi: 10.3390/jcm9020512 – ident: ref_17 doi: 10.1152/ajpendo.00422.2013 – volume: 28 start-page: 25 year: 2014 ident: ref_20 article-title: Regulation of adiponectin multimerization, signaling and function publication-title: Best Pract. Res. Clin. Endocrinol. Metab. doi: 10.1016/j.beem.2013.06.003 – volume: 454 start-page: 961 year: 2008 ident: ref_30 article-title: PRDM16 controls a brown fat/skeletal muscle switch publication-title: Nature doi: 10.1038/nature07182 – ident: ref_13 doi: 10.3389/fcvm.2020.00022 – ident: ref_66 – volume: 57 start-page: 1097 year: 2016 ident: ref_63 article-title: Effects of angiopoietin-like protein 3 deficiency on postprandial lipid and lipoprotein metabolism publication-title: J. Lipid Res. doi: 10.1194/jlr.P066183 – volume: 46 start-page: 129 year: 2020 ident: ref_96 article-title: Regulation of hepatokine gene expression in response to fasting and feeding: Influence of PPAR-α and insulin-dependent signalling in hepatocytes publication-title: Diabetes Metab. doi: 10.1016/j.diabet.2019.05.005 – ident: ref_88 doi: 10.1038/s41467-017-02355-w – ident: ref_70 doi: 10.1194/jlr.RA120000781 – volume: 294 start-page: 9213 year: 2019 ident: ref_89 article-title: An ANGPTL4—Ceramide–protein kinase C axis mediates chronic glucocorticoid exposure–induced hepatic steatosis and hypertriglyceridemia in mice publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.006259 – volume: 157 start-page: 1339 year: 2014 ident: ref_48 article-title: Increased Adipocyte O2 Consumption Triggers HIF-1α, Causing Inflammation and Insulin Resistance in Obesity publication-title: Cell doi: 10.1016/j.cell.2014.05.012 – volume: 278 start-page: 41804 year: 2003 ident: ref_56 article-title: Protein Region Important for Regulation of Lipid Metabolism in Angiopoietin-like 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo publication-title: J. Biol. Chem. doi: 10.1074/jbc.M302861200 – volume: 347 start-page: 1260419 year: 2015 ident: ref_65 article-title: Tissue-based map of the human proteome publication-title: Science doi: 10.1126/science.1260419 – volume: 59 start-page: 784 year: 2018 ident: ref_51 article-title: Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation publication-title: J. Lipid Res. doi: 10.1194/jlr.M079665 – volume: 6 start-page: 1286 year: 2017 ident: ref_95 article-title: Angiopoietin-like protein 4 is an exercise-induced hepatokine in humans, regulated by glucagon and cAMP publication-title: Mol. Metab. doi: 10.1016/j.molmet.2017.06.018 – volume: 47 start-page: 153 year: 1968 ident: ref_3 article-title: The role of adipose cell size and adipose tissue insulin sensitivity in the carbohydrate intolerance of human obesity publication-title: J. Clin. Investig. doi: 10.1172/JCI105705 – volume: 54 start-page: 3481 year: 2013 ident: ref_109 article-title: Clinical characteristics and plasma lipids in subjects with familial combined hypolipidemia: A pooled analysis publication-title: J. Lipid Res. doi: 10.1194/jlr.P039875 – volume: 275 start-page: 28488 year: 2000 ident: ref_93 article-title: Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene publication-title: J. Biol. Chem. doi: 10.1074/jbc.M004029200 – volume: 63 start-page: 239 year: 1979 ident: ref_2 article-title: The growth of adipose tissue in children and adolescents. Cross-sectional and longitudinal studies of adipose cell number and size publication-title: J. Clin. Investig. doi: 10.1172/JCI109295 – ident: ref_91 doi: 10.3390/nu10111699 – volume: 62 start-page: 1474 year: 2008 ident: ref_4 article-title: Is adiposopathy (sick fat) an endocrine disease? publication-title: Int. J. Clin. Pract. doi: 10.1111/j.1742-1241.2008.01848.x – volume: 5 start-page: 18 year: 2016 ident: ref_79 article-title: The angiopoietin-like protein angptl4 catalyzes unfolding of the hydrolase domain in lipoprotein lipase and the endothelial membrane protein gpihbp1 counteracts this unfolding publication-title: Elife – volume: 82 start-page: 4 year: 2004 ident: ref_26 article-title: Unraveling the multiple roles of leptin in inflammation and autoimmunity publication-title: J. Mol. Med. doi: 10.1007/s00109-003-0492-1 – volume: 99 start-page: 1207 year: 2006 ident: ref_75 article-title: Extracellular matrix-bound angiopoietin-like 4 inhibits endothelial cell adhesion, migration, and sprouting and alters actin cytoskeleton publication-title: Circ. Res. doi: 10.1161/01.RES.0000250758.63358.91 – volume: 110 start-page: 1093 year: 2002 ident: ref_24 article-title: Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency publication-title: J. Clin. Investig. doi: 10.1172/JCI0215693 – volume: 268 start-page: 196 year: 2018 ident: ref_64 article-title: Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2017.08.031 – volume: 31 start-page: 41 year: 2020 ident: ref_53 article-title: Familial combined hypolipidemia: ANGPTL3 deficiency publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0000000000000668 – volume: 293 start-page: 14134 year: 2018 ident: ref_80 article-title: Angiopoietin-like 4 promotes the intracellular cleavage of lipoprotein lipase by PCSK3/furin in adipocytes publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.002426 – ident: ref_85 – volume: 17 start-page: 200 year: 2011 ident: ref_36 article-title: Brown adipose tissue activity controls triglyceride clearance publication-title: Nat. Med. doi: 10.1038/nm.2297 – volume: 168 start-page: 875 year: 2002 ident: ref_25 article-title: Leptin Signaling Deficiency Impairs Humoral and Cellular Immune Responses and Attenuates Experimental Arthritis publication-title: J. Immunol. doi: 10.4049/jimmunol.168.2.875 – volume: 423 start-page: 762 year: 2003 ident: ref_21 article-title: Cloning of adiponectin receptors that mediate antidiabetic metabolic effects publication-title: Nature doi: 10.1038/nature01705 – volume: 13 start-page: 7 year: 2018 ident: ref_111 article-title: Analysis of circulating angiopoietin-like protein 3 and genetic variants in lipid metabolism and liver health: The DiOGenes study’ publication-title: Genes Nutr. doi: 10.1186/s12263-018-0597-3 – volume: 15 start-page: 502 year: 2005 ident: ref_6 article-title: Lipid peroxidation in bariatric candidates with nonalcoholic fatty liver disease (NAFLD)—Preliminary findings publication-title: Obes. Surg. doi: 10.1381/0960892053723493 – ident: ref_7 doi: 10.1098/rsob.150272 – volume: 39 start-page: 665 year: 2019 ident: ref_54 article-title: Metabolomic Signature of Angiopoietin-Like Protein 3 Deficiency in Fasting and Postprandial State publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.118.312021 – volume: 101 start-page: 1422 year: 2016 ident: ref_43 article-title: Adipose tissue hypoxia, inflammation, and fibrosis in obese insulin-sensitive and obese insulin-resistant subjects publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2015-4125 – volume: 100 start-page: E1299 year: 2015 ident: ref_68 article-title: Regulation of angiopoietin-like proteins (ANGPTLs) 3 and 8 by insulin publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2015-1254 |
SSID | ssj0023259 |
Score | 2.4366877 |
SecondaryResourceType | review_article |
Snippet | Angiopoietin-like proteins, namely ANGPTL3-4-8, are known as regulators of lipid metabolism. However, recent evidence points towards their involvement in the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 742 |
SubjectTerms | Adipocytes Adipose Tissue - metabolism Angiopoietin-like Proteins - metabolism Animals Body fat Cytokines Diabetes Mellitus, Type 2 - etiology Diabetes Mellitus, Type 2 - metabolism Diabetes Mellitus, Type 2 - pathology Disease Susceptibility Energy Energy Metabolism Fatty acids Gastrointestinal surgery Gene expression Genotype & phenotype Glucose Heart Diseases - etiology Heart Diseases - metabolism Humans Inflammation Insulin Resistance Kinases Lipids Lipodystrophy - etiology Lipodystrophy - metabolism Lipodystrophy - pathology Metabolic Diseases - etiology Metabolic Diseases - metabolism Metabolism Nutritional status Protein Binding Proteins Review Signal Transduction Thermogenesis Triglycerides |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLxbuBgowEJ2Q1iV8Jl2rVhyoEqIdW2lvkJzVsk0C2h_0p_Fs8STbbBcEx8uQhz8Sez_78DUJvQS-l9NYSKSQlzKcpUd5TYq120rgYIhpOI3_-Is4u2cc5n48Lbt1Iq1yPif1AbRsDa-QHOZOFEEXJ-GH7g0DVKNhdHUto3EX3QLoMKF1yvgFcNO-LpWVxDiKCl2IgvtMI8w_Ct-suj8AfoOH2lPRXnvknXfLW_HP6EO2OiSOeDZ5-hO64-jG6P5SSXD1Bv6K_8cAgXKgVHulXeFZ_DU3bBDjYTD6F7w6fgzBDqDusaotnNrRN5_BF3_0fonl_IAufB2ccbjyOV3jiy12FdvPg_s4GChqv-kcd9cTWa7eMUbUIBh8POz_d4VN0eXpycXRGxrILxLAsXxLhKIsekpxTbcrSR58V0sU0yXvDjM8U445bqlMvSqaNKJxV2mrpC-cAsNBnaKduareHcGnjeFpQZkREZdoJpXOvChVTGp-lyuoEvV_3fGVGTXIojbGoIjYBP1W3_ZSgd5N1O2hx_MNuf-3Eavwju2oTPwl6MzXHfwk2SFTtmpvBhhcR4IkEPR98Pr2IUgbigzRBcisaJgPQ6d5uqcNVr9ctQSWQ5y_-_1kv0YMc-DJpRjK6j3aWP2_cq5jwLPXrPqp_Ax5aBVc priority: 102 providerName: ProQuest |
Title | The Interplay between Angiopoietin-Like Proteins and Adipose Tissue: Another Piece of the Relationship between Adiposopathy and Cardiometabolic Diseases? |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33451033 https://www.proquest.com/docview/2478668945 https://www.proquest.com/docview/2478586056 https://pubmed.ncbi.nlm.nih.gov/PMC7828552 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ti9QwEA73guAX8d3quUTQTxLdNmnSCnKs562HeMcit7DfSl696F67XvfA_Sn-Wydtt956Cn4plE7SkmeSmaeZzCD0PORLyZ0xRHBBCXPDIZHOUWKMskJbUBEVTiMfn_CjKfs4S2dbaF1ttBvA-q_ULtSTml7MX_34vtqHCf82ME6g7K_91_M6ARIfaN422gWbJMIUPWb9fgK4DU3ZtPDDg4QFug2Bv9Z60zhd8zj_DJy8YonGt9GtzoXEoxbzO2jLlnfRjbao5Ooe-gnI4zaWcC5XuAvEwqPyi68WlQ9HnMkn_83iSUjR4Msay9LgkfGLqrb4tAHiDYg3R7PwxFttceUw3OE-cu7ML3533LSsQmnjVdPVQRPiem6XoF9zr_H7dg-o3r-PpuPD04Mj0hVgIJrFyZJwSxlgJdKUKp3nDtDLhAWHyTnNtIslS21qqBo6njOleWaNVEYJl1kbqAt9gHbKqrSPEM4NrKwZZZoDP1OWS5U4mUlwblw8lEZF6OV65AvdZScPRTLmBbCUgFNxFacIveilF21Wjn_I7a1BLNaqVSRMZJxnOUsj9Kx_DLMqbJXI0laXrUyaAdXjEXrYYt6_iFIW0hDSCIkNbegFQsbuzSelP2syd4uQLzBNHv_n5z9BN5MQQjOMSUz30M7y4tI-BR9oqQZoW8wEXLPxhwHafXd4Mvk8CFYpHTSK_wvQTw68 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKEYIL4p9AASPRE7Ka2I6dIKFq1VJt6bbqYSvtLcR_NLBNFrIV2kfhJXhGxkk22wXBrccoE8fKjMcz8TffIPTG86WkzhgihWSEuzAkuXOMGKOs1BZMRPlq5OMTMTzjHyfxZAP9WtbCeFjl0ic2jtpU2v8j36FcJkIkKY93Z9-I7xrlT1eXLTRasziyix-QstXvD_dBv9uUHnwY7w1J11WAaB7RORGWcZiAjGOmdJo6mFIiLUQBzmmuXZTz2MaGqdCJlCstEmtyZZR0ibU-Hmcw7g10Ezbe0K8oOVkleIw2zdki2POIiFPRAu0ZS8Od4stFTSnEZpLT9S3wr7j2T3jmlf3u4B662wWqeNBa1n20YcsH6FbbunLxEP0E-8ItYnGaL3AH98KD8nNRzarCF1KTUfHV4lNPBFGUNc5LgwemmFW1xeNG3e9AvCkAw6eF1RZXDsMV7vF558VsNXDzZOUbKC-aofYaIO2FnYMVTwuN99uTpnr3ETq7FoU8RptlVdqnCKcG_HfCuBaQBSorckVdnuQQQrkozI0K0Nvll890x4HuW3FMM8iFvJ6yq3oK0HYvPWu5P_4ht7VUYtZ5gDpb2WuAXve3Ye36A5m8tNVlKxMnkFCKAD1pdd6_iDHuyQ5ZgOSaNfQCnhd8_U5ZnDf84NKzEsb02f-n9QrdHo6PR9no8OToObpDPVYnjEjEttDm_PulfQHB1ly9bCwco0_XvaR-AyEnRFo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGEIgXxN8RGGAk9oSsJrZjJ0hoqlaqjY2pD5vUtxD_Y2Fd0pFOqB-Fr8Kn45yk7QqCtz1GuThW7s6-i3_3O4Teer6U1BlDpJCMcBeGJHeOEWOUldqCiShfjfz5WOyf8k_jeLyBfi1qYTyscrEmNgu1qbT_R96jXCZCJCmPe66DRYwGw93pJfEdpPxJ66KdRmsih3b-A9K3-sPBAHS9Q-nw48nePuk6DBDNIzojwjIOk5FxzJROUwfTS6SFiMA5zbWLch7b2DAVOpFypUViTa6Mki6x1sfmDMa9hW5LFkfex-R4lewx2jRqi2D_IyJORQu6ZywNe8W3i5pSiNMkp-vb4V8x7p9QzWt73_ABut8FrbjfWtlDtGHLR-hO28Zy_hj9BFvDLXpxks9xB_3C_fJrUU2rwhdVk6Pi3OKRJ4UoyhrnpcF9U0yr2uKTRvXvQbwpBsOjwmqLK4fhCi-xemfFdDVw82TlmynPm6H2GlDthZ2BRU8KjQftqVO9-wSd3ohCnqLNsirtM4RTA2t5wrgWkBEqK3JFXZ7kEE65KMyNCtC7xZfPdMeH7ttyTDLIi7yesut6CtDOUnra8oD8Q257ocSsWw3qbGW7AXqzvA1-7A9n8tJWV61MnEByKQK01ep8-SLGuCc-ZAGSa9awFPAc4et3yuKs4QqXnqEwps__P63X6C44U3Z0cHz4At2jHrYTRiRi22hz9v3KvoS4a6ZeNQaO0Zeb9qjfxtpIkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Interplay+between+Angiopoietin-Like+Proteins+and+Adipose+Tissue%3A+Another+Piece+of+the+Relationship+between+Adiposopathy+and+Cardiometabolic+Diseases%3F&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Bini%2C+Simone&rft.au=D%E2%80%99Erasmo%2C+Laura&rft.au=Di+Costanzo%2C+Alessia&rft.au=Minicocci%2C+Ilenia&rft.date=2021-01-13&rft.issn=1422-0067&rft.eissn=1422-0067&rft.volume=22&rft.issue=2&rft.spage=742&rft_id=info:doi/10.3390%2Fijms22020742&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijms22020742 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |