Computational logic with square rings of nanomagnets

Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been hindered so far by a lack of reliability. Here, we present a novel design with dipolar-coupled nanomagnets arranged on a square lattice to (i) sup...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 29; no. 26; p. 265205
Main Authors Arava, Hanu, Derlet, Peter M, Vijayakumar, Jaianth, Cui, Jizhai, Bingham, Nicholas S, Kleibert, Armin, Heyderman, Laura J
Format Journal Article
LanguageEnglish
Published England IOP Publishing 29.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been hindered so far by a lack of reliability. Here, we present a novel design with dipolar-coupled nanomagnets arranged on a square lattice to (i) support transfer of information and (ii) perform logic operations. We introduce a thermal protocol, using thermally active nanomagnets as a means to perform computation. Within this scheme, the nanomagnets are initialized by a global magnetic field and thermally relax on raising the temperature with a resistive heater. We demonstrate error-free transfer of information in chains of up to 19 square rings and we show a high level of reliability with successful gate operations of ∼94% across more than 2000 logic gates. Finally, we present a functionally complete prototype NAND/NOR logic gate that could be implemented for advanced logic operations. Here we support our experiments with simulations of the thermally averaged output and determine the optimal gate parameters. Our approach provides a new pathway to a long standing problem concerning reliability in the use of nanomagnets for computation.
AbstractList Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been hindered so far by a lack of reliability. Here, we present a novel design with dipolar-coupled nanomagnets arranged on a square lattice to (i) support transfer of information and (ii) perform logic operations. We introduce a thermal protocol, using thermally active nanomagnets as a means to perform computation. Within this scheme, the nanomagnets are initialized by a global magnetic field and thermally relax on raising the temperature with a resistive heater. We demonstrate error-free transfer of information in chains of up to 19 square rings and we show a high level of reliability with successful gate operations of ∼94% across more than 2000 logic gates. Finally, we present a functionally complete prototype NAND/NOR logic gate that could be implemented for advanced logic operations. Here we support our experiments with simulations of the thermally averaged output and determine the optimal gate parameters. Our approach provides a new pathway to a long standing problem concerning reliability in the use of nanomagnets for computation.
Author Kleibert, Armin
Heyderman, Laura J
Derlet, Peter M
Bingham, Nicholas S
Arava, Hanu
Vijayakumar, Jaianth
Cui, Jizhai
Author_xml – sequence: 1
  givenname: Hanu
  orcidid: 0000-0003-4866-7616
  surname: Arava
  fullname: Arava, Hanu
  email: hanu.arava@psi.ch
  organization: Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
– sequence: 2
  givenname: Peter M
  surname: Derlet
  fullname: Derlet, Peter M
  organization: Condensed Matter Theory Group, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
– sequence: 3
  givenname: Jaianth
  surname: Vijayakumar
  fullname: Vijayakumar, Jaianth
  organization: Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
– sequence: 4
  givenname: Jizhai
  surname: Cui
  fullname: Cui, Jizhai
  organization: Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
– sequence: 5
  givenname: Nicholas S
  surname: Bingham
  fullname: Bingham, Nicholas S
  organization: Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
– sequence: 6
  givenname: Armin
  orcidid: 0000-0003-3630-9360
  surname: Kleibert
  fullname: Kleibert, Armin
  organization: Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
– sequence: 7
  givenname: Laura J
  surname: Heyderman
  fullname: Heyderman, Laura J
  email: laura.heyderman@psi.ch
  organization: Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29620015$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoNUbK3ePckeFVybj02aHKX4BQUveg5JNlu37CbbZBfx35ultScRBoYZnnkZnnMwcd5ZAK4QvEeQ8wUiDOWMYr5QSmtDTsDsuJqAGRR0mRcFL6bgPMYthAhxjM7AFAuG00RnoFj5tht61dfeqSZr_KY22Vfdf2ZxN6hgs1C7Tcx8lTnlfKs2zvbxApxWqon28tDn4OPp8X31kq_fnl9XD-vcFAj3OSspw1wrKoTQgtuSVlVREcFZadNrlBBcQMyMxkZxVRKhqNGalmKJNVkyRObgZp_bBb8bbOxlW0djm0Y564coMcQYEYgwSSjcoyb4GIOtZBfqVoVviaAcXclRjBzFyL2rdHJ9SB90a8vjwa-cBNztgdp3cuuHkAzF__Ju_8BHbSlSYpaKYkhlV1bkB_7IgkI
CODEN NNOTER
CitedBy_id crossref_primary_10_1039_D1NH00043H
crossref_primary_10_1103_PhysRevLett_126_117201
crossref_primary_10_1209_0295_5075_130_48001
crossref_primary_10_1088_1361_6439_ab948e
crossref_primary_10_1109_MNANO_2019_2952232
crossref_primary_10_1109_ACCESS_2020_2989930
crossref_primary_10_1103_PhysRevB_104_024418
crossref_primary_10_1063_1_5083148
crossref_primary_10_1103_PhysRevApplied_11_054086
crossref_primary_10_1021_acsnano_9b05428
crossref_primary_10_1063_5_0166331
crossref_primary_10_1038_s41565_022_01088_2
crossref_primary_10_35848_1882_0786_abdcd8
crossref_primary_10_1039_C9NR01628G
crossref_primary_10_1103_PhysRevApplied_13_044047
crossref_primary_10_1088_1361_6528_ab704b
crossref_primary_10_1038_s41467_022_31309_0
crossref_primary_10_1073_pnas_2310777120
crossref_primary_10_1103_PhysRevApplied_18_014070
crossref_primary_10_1103_PhysRevLett_129_057202
crossref_primary_10_1088_1361_6528_ab295a
crossref_primary_10_1103_PhysRevLett_126_017203
crossref_primary_10_1088_1367_2630_ac4c0a
crossref_primary_10_1103_PhysRevLett_123_197202
crossref_primary_10_1103_PhysRevLett_129_067201
crossref_primary_10_1063_5_0010079
crossref_primary_10_1007_s11051_022_05450_2
crossref_primary_10_1088_1367_2630_abe3ad
crossref_primary_10_1038_s42254_019_0118_3
crossref_primary_10_1016_j_jmmm_2021_168535
crossref_primary_10_1088_1367_2630_abbf21
crossref_primary_10_1063_5_0101797
crossref_primary_10_1103_PhysRevB_100_024432
crossref_primary_10_1098_rspa_2021_0108
crossref_primary_10_1103_PhysRevB_102_144413
crossref_primary_10_1063_1_5142705
crossref_primary_10_1016_j_cjph_2021_01_005
crossref_primary_10_1016_j_physleta_2021_127364
crossref_primary_10_1002_adts_202100109
crossref_primary_10_1088_1361_648X_ab3e78
crossref_primary_10_1103_PhysRevB_106_184411
crossref_primary_10_1088_1361_6463_ac62a1
crossref_primary_10_1063_1_5144841
crossref_primary_10_1063_5_0118078
crossref_primary_10_1088_1361_6528_ab475c
crossref_primary_10_1103_PhysRevApplied_18_024014
crossref_primary_10_1103_PhysRevB_100_174410
crossref_primary_10_1063_9_0000175
crossref_primary_10_1103_PhysRevApplied_17_064057
crossref_primary_10_1002_smll_202003141
crossref_primary_10_1103_PhysRevB_102_180405
Cites_doi 10.1109/TNANO.2010.2056697
10.1063/1.4977721
10.1109/TNANO.2012.2196445
10.1038/nphys2613
10.1103/PhysRevB.65.012413
10.1103/PhysRevB.93.224413
10.1103/PhysRevLett.111.057204
10.1038/nnano.2013.241
10.1038/nnano.2015.245
10.1126/science.287.5457.1466
10.1038/ncomms7466
10.1103/PhysRevLett.107.010604
10.1109/TMAG.2017.2654969
10.1126/sciadv.1501492
10.1002/cvde.201407119
10.1126/science.1120506
10.1016/j.spmi.2004.03.051
10.1088/0957-4484/21/32/325301
10.1021/acs.nanolett.5b04205
10.1021/nn305079a
10.1038/ncomms1666
10.1016/j.elspec.2012.03.001
10.1002/cvde.201407118
10.3389/fphy.2014.00005
10.1063/1.4915353
10.1103/PhysRevB.83.174431
10.1007/s00339-013-7654-y
10.1088/0953-8984/23/49/493202
10.1038/ncomms9278
10.1109/TMAG.2012.2197184
10.1103/PhysRevB.65.092409
ContentType Journal Article
Copyright 2018 IOP Publishing Ltd
Copyright_xml – notice: 2018 IOP Publishing Ltd
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1088/1361-6528/aabbc3
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Computational logic with square rings of nanomagnets
EISSN 1361-6528
EndPage 265205
ExternalDocumentID 10_1088_1361_6528_aabbc3
29620015
nanoaabbc3
Genre Journal Article
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  grantid: 200020_172774; 200021_153540; 200021_155917
  funderid: https://doi.org/10.13039/501100001711
– fundername: H2020 Marie Sklodowska-Curie Actions
  grantid: 701647
  funderid: https://doi.org/10.13039/100010665
GroupedDBID ---
-~X
123
1JI
4.4
53G
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
NPM
RW3
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c412t-6d5628ba5999b98ed5ff4f3986de09553324026cb2ca8ad39a5cbb5d972b37613
IEDL.DBID IOP
ISSN 0957-4484
IngestDate Fri Jun 28 05:18:24 EDT 2024
Fri Aug 23 00:55:11 EDT 2024
Thu May 23 23:50:59 EDT 2024
Thu Jan 07 13:50:20 EST 2021
Wed Aug 21 03:41:45 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-6d5628ba5999b98ed5ff4f3986de09553324026cb2ca8ad39a5cbb5d972b37613
Notes NANO-116116.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3630-9360
0000-0003-4866-7616
OpenAccessLink https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A5214/datastream/PDF2/Arava-2018-Computational_logic_with_square_rings-%28accepted_version%29.pdf
PMID 29620015
PQID 2022130123
PQPubID 23479
PageCount 7
ParticipantIDs iop_journals_10_1088_1361_6528_aabbc3
proquest_miscellaneous_2022130123
crossref_primary_10_1088_1361_6528_aabbc3
pubmed_primary_29620015
PublicationCentury 2000
PublicationDate 2018-06-29
PublicationDateYYYYMMDD 2018-06-29
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-29
  day: 29
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanotechnology
PublicationTitleAbbrev NANO
PublicationTitleAlternate Nanotechnology
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
23
24
25
26
27
28
Teresa J M D (13) 2016; 49
30
31
10
32
11
33
12
14
15
Niemier M T (5) 2011; 23
17
18
19
Gross L (16) 2010; 21
1
2
3
4
6
7
8
9
20
21
Krishnaswamy I (29) 2006
References_xml – ident: 20
  doi: 10.1109/TNANO.2010.2056697
– ident: 10
  doi: 10.1063/1.4977721
– ident: 18
  doi: 10.1109/TNANO.2012.2196445
– ident: 24
  doi: 10.1038/nphys2613
– ident: 30
  doi: 10.1103/PhysRevB.65.012413
– ident: 26
  doi: 10.1103/PhysRevB.93.224413
– ident: 23
  doi: 10.1103/PhysRevLett.111.057204
– ident: 8
  doi: 10.1038/nnano.2013.241
– ident: 33
  doi: 10.1038/nnano.2015.245
– ident: 4
  doi: 10.1126/science.287.5457.1466
– ident: 7
  doi: 10.1038/ncomms7466
– ident: 3
  doi: 10.1103/PhysRevLett.107.010604
– ident: 11
  doi: 10.1109/TMAG.2017.2654969
– ident: 6
  doi: 10.1126/sciadv.1501492
– year: 2006
  ident: 29
  publication-title: Proc. 2nd Workshop SELSE-2
  contributor:
    fullname: Krishnaswamy I
– ident: 14
  doi: 10.1002/cvde.201407119
– ident: 2
  doi: 10.1126/science.1120506
– ident: 19
  doi: 10.1016/j.spmi.2004.03.051
– volume: 21
  issn: 0957-4484
  year: 2010
  ident: 16
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/32/325301
  contributor:
    fullname: Gross L
– ident: 9
  doi: 10.1021/acs.nanolett.5b04205
– ident: 17
  doi: 10.1021/nn305079a
– ident: 31
  doi: 10.1038/ncomms1666
– ident: 27
  doi: 10.1016/j.elspec.2012.03.001
– ident: 15
  doi: 10.1002/cvde.201407118
– ident: 32
  doi: 10.3389/fphy.2014.00005
– ident: 22
  doi: 10.1063/1.4915353
– ident: 28
  doi: 10.1103/PhysRevB.83.174431
– ident: 21
  doi: 10.1007/s00339-013-7654-y
– volume: 23
  issn: 0953-8984
  year: 2011
  ident: 5
  publication-title: J. Phys. Condens.: Matter
  doi: 10.1088/0953-8984/23/49/493202
  contributor:
    fullname: Niemier M T
– volume: 49
  issn: 0022-3727
  year: 2016
  ident: 13
  publication-title: J. Phys. D: Appl. Phys.
  contributor:
    fullname: Teresa J M D
– ident: 25
  doi: 10.1038/ncomms9278
– ident: 12
  doi: 10.1109/TMAG.2012.2197184
– ident: 1
  doi: 10.1103/PhysRevB.65.092409
SSID ssj0011821
Score 2.5451152
Snippet Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been...
SourceID proquest
crossref
pubmed
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 265205
SubjectTerms Boolean algebra
Boolean logic
computation
dipolar coupling
nanomagnetism
thermally active nanomagnets
Title Computational logic with square rings of nanomagnets
URI https://iopscience.iop.org/article/10.1088/1361-6528/aabbc3
https://www.ncbi.nlm.nih.gov/pubmed/29620015
https://search.proquest.com/docview/2022130123
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUCU4UEp5LLRVWpVDD9lN7Nix1VOFimilPg5F4oBk-RUOiGQh2Qu_nnGcXUEFVYWUQw4Txx7bM589488AH7WTvix4lnrHKS5QvEQ7KHyaVQz9FcsrxsNp5B8_-clp8f2MnS3B58VZmGY6mP4xvkai4KjCISFOTHLK85QzIiZaG2PpMqyi183CvQ3ffv1ehBAQOOeRaK9McQ1SDDHKx0p44JOW8b9Pw83e7Ry_hPN5hWO2yeV41pmxvf2Ly_GZLdqEjQGOJl-i6CtY8vUWrN8jKdyCF32SqG1fQxGvgBi2D5PeaiZhIzdpr3Gk-SR80CZNldS6bq70Re27dhtOj7_-OTpJh1sXUlvkpEu5Q0gkjGYIHY0U3rGqKioqBXc-8NXRQOFHuDXEaqEdlZpZY5iTJTForXK6Ayt1U_s9SISj1GIBRal9YbXURmeGl1RXIteIHEbwaa53NY3kGqoPiguhgk5U0ImKOhnBIapPDTOs_YfchwdyocGKSEU4PoxkTE1dNYL38_5VOJ1CjETXvpm1iiCmQbeO_nwEu7HjF1UjkocMNLb_n1U5gDWEVyIklhH5Bla6m5l_ixCmM-_6oXoHX9Loiw
link.rule.ids 315,786,790,27957,27958,38900,53877
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKhA9tGXpY_tMERx6yO7Gjh37WLVdQQtbDiBxM36lB9Rk22Qv_fUdx1lUECAkpBxycBx7bM984xl_BtjRTvoi55PUO07RQfES9aDw6aRkaK9YVjIeTiMfzvjeSf7tlJ3295x2Z2Hqea_6R_gaiYKjCPuEODHOKM9SzogYa22MpeO5K1fgIa7cInhf-z-OLsIICJ6zSLZXpOiH5H2c8rpaLtmlFfz3zZCzMz3TJ3C2bHTMODkfLVozsn-v8Dneo1dP4XEPS5NPsfgmPPDVAB79R1Y4gLUuWdQ2W5DHqyD6bcSk055J2NBNmt8443wSPmiSukwqXdW_9M_Kt80zOJl-Pf68l_a3L6Q2z0ibcofQSBjNEEIaKbxjZZmXVArufOCto4HKj3BriNVCOyo1s8YwJwtiUGtl9DmsVnXlX0IiHKUWK8gL7XOrpTZ6YnhBdSkyjQhiCB-XslfzSLKhuuC4ECrIRQW5qCiXIeyiCFW_0ppbym1fKhc6rIhUhOPDyIQpFPAQPizHWOGyCrESXfl60SiC2AbNO9r1IbyIg3_RNCJ5yERjr-7YlPewfvRlqg72Z99fwwYiLhFyzYh8A6vtn4V_i6imNe-6mfsPL3vt_Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+logic+with+square+rings+of+nanomagnets&rft.jtitle=Nanotechnology&rft.au=Arava%2C+Hanu&rft.au=Derlet%2C+Peter+M&rft.au=Vijayakumar%2C+Jaianth&rft.au=Cui%2C+Jizhai&rft.date=2018-06-29&rft.eissn=1361-6528&rft.volume=29&rft.issue=26&rft.spage=265205&rft.epage=265205&rft_id=info:doi/10.1088%2F1361-6528%2Faabbc3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon