Water Conservation and Plant Survival Strategies of Rhizobacteria under Drought Stress
Drylands are stressful environment for plants growth and production. Plant growth-promoting rhizobacteria (PGPR) acts as a rampart against the adverse impacts of drought stress in drylands and enhances plant growth and is helpful in agricultural sustainability. PGPR improves drought tolerance by imp...
Saved in:
Published in | Agronomy (Basel) Vol. 10; no. 11; p. 1683 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
30.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Drylands are stressful environment for plants growth and production. Plant growth-promoting rhizobacteria (PGPR) acts as a rampart against the adverse impacts of drought stress in drylands and enhances plant growth and is helpful in agricultural sustainability. PGPR improves drought tolerance by implicating physio-chemical modifications called rhizobacterial-induced drought endurance and resilience (RIDER). The RIDER response includes; alterations of phytohormonal levels, metabolic adjustments, production of bacterial exopolysaccharides (EPS), biofilm formation, and antioxidant resistance, including the accumulation of many suitable organic solutes such as carbohydrates, amino acids, and polyamines. Modulation of moisture status by these PGPRs is one of the primary mechanisms regulating plant growth, but studies on their effect on plant survival are scarce in sandy/desert soil. It was found that inoculated plants showed high tolerance to water-deficient conditions by delaying dehydration and maintaining the plant’s water status at an optimal level. PGPR inoculated plants had a high recovery rate after rewatering interms of similar biomass at flowering compared to non-stressed plants. These rhizobacteria enhance plant tolerance and also elicit induced systemic resistance of plants to water scarcity. PGPR also improves the root growth and root architecture, thereby improving nutrient and water uptake. PGPR promoted accumulation of stress-responsive plant metabolites such as amino acids, sugars, and sugar alcohols. These metabolites play a substantial role in regulating plant growth and development and strengthen the plant’s defensive system against various biotic and abiotic stresses, in particular drought stress. |
---|---|
AbstractList | Drylands are stressful environment for plants growth and production. Plant growth-promoting rhizobacteria (PGPR) acts as a rampart against the adverse impacts of drought stress in drylands and enhances plant growth and is helpful in agricultural sustainability. PGPR improves drought tolerance by implicating physio-chemical modifications called rhizobacterial-induced drought endurance and resilience (RIDER). The RIDER response includes; alterations of phytohormonal levels, metabolic adjustments, production of bacterial exopolysaccharides (EPS), biofilm formation, and antioxidant resistance, including the accumulation of many suitable organic solutes such as carbohydrates, amino acids, and polyamines. Modulation of moisture status by these PGPRs is one of the primary mechanisms regulating plant growth, but studies on their effect on plant survival are scarce in sandy/desert soil. It was found that inoculated plants showed high tolerance to water-deficient conditions by delaying dehydration and maintaining the plant’s water status at an optimal level. PGPR inoculated plants had a high recovery rate after rewatering interms of similar biomass at flowering compared to non-stressed plants. These rhizobacteria enhance plant tolerance and also elicit induced systemic resistance of plants to water scarcity. PGPR also improves the root growth and root architecture, thereby improving nutrient and water uptake. PGPR promoted accumulation of stress-responsive plant metabolites such as amino acids, sugars, and sugar alcohols. These metabolites play a substantial role in regulating plant growth and development and strengthen the plant’s defensive system against various biotic and abiotic stresses, in particular drought stress. |
Author | Tariq, Haleema Yasmin, Humaira Khan, Naeem Mehmood, Asif Ali, Shahid Shahid, Muhammad Adnan Latif, Sadia |
Author_xml | – sequence: 1 givenname: Naeem orcidid: 0000-0002-0379-4622 surname: Khan fullname: Khan, Naeem – sequence: 2 givenname: Shahid orcidid: 0000-0001-6517-320X surname: Ali fullname: Ali, Shahid – sequence: 3 givenname: Haleema surname: Tariq fullname: Tariq, Haleema – sequence: 4 givenname: Sadia surname: Latif fullname: Latif, Sadia – sequence: 5 givenname: Humaira orcidid: 0000-0002-4220-4808 surname: Yasmin fullname: Yasmin, Humaira – sequence: 6 givenname: Asif surname: Mehmood fullname: Mehmood, Asif – sequence: 7 givenname: Muhammad Adnan surname: Shahid fullname: Shahid, Muhammad Adnan |
BookMark | eNp1kEtLAzEURoMoWGv3LgNu3IzmNZPMUuoTCor1sRySmUybMk1qkinUX29qXUjBu7l3cb7LxzkBh9ZZDcAZRpeUluhKzryzbrnBCGNcCHoABgRxmjFa5od_7mMwCmGB0pSYCsQH4P1DRu3h2Nmg_VpG4yyUtoHPnbQRTnu_NmvZwWn0iZsZHaBr4cvcfDkl65Q0Eva2SR9uvOtn87gldQin4KiVXdCj3z0Eb3e3r-OHbPJ0_zi-nmQ1wyRmheRFo5RQAtcsz7HGhPJcc87Kom0wF7pBJWUKtajBtVCt0LkWQnFRFAyrlg7Bxe7vyrvPXodYLU2odZfaa9eHirBSkDJnpEzo-R66cL23qV1FcsJoKsRxotCOqr0Lweu2WnmzlH5TYVRtXVf7rlOk2IvUJv6YTNJM93_wG-HaiBQ |
CitedBy_id | crossref_primary_10_32604_biocell_2023_027485 crossref_primary_10_1007_s00438_024_02198_3 crossref_primary_10_2478_agri_2021_0005 crossref_primary_10_3390_agronomy14030414 crossref_primary_10_53471_bahce_1558628 crossref_primary_10_3389_fpls_2021_802737 crossref_primary_10_3390_cells10061551 crossref_primary_10_3390_gels11010008 crossref_primary_10_1016_j_scienta_2022_111394 crossref_primary_10_1016_j_micres_2023_127352 crossref_primary_10_3390_su131910986 crossref_primary_10_1016_j_agwat_2022_107831 crossref_primary_10_1016_j_stress_2024_100632 crossref_primary_10_1007_s42729_021_00724_5 crossref_primary_10_1007_s12892_025_00280_9 crossref_primary_10_1007_s00284_023_03606_4 crossref_primary_10_1007_s11104_023_06195_0 crossref_primary_10_1007_s00344_023_11132_7 crossref_primary_10_1080_00103624_2022_2028818 crossref_primary_10_1007_s11274_023_03781_3 crossref_primary_10_1038_s41598_024_71404_4 crossref_primary_10_3390_agriculture14122228 crossref_primary_10_1007_s11356_024_33229_6 crossref_primary_10_1186_s12870_024_04905_z crossref_primary_10_3390_jof7060472 crossref_primary_10_1002_fes3_502 crossref_primary_10_1007_s12298_021_01034_x crossref_primary_10_7717_peerj_13121 crossref_primary_10_3389_fgene_2023_1049608 crossref_primary_10_3389_fpls_2023_1218615 crossref_primary_10_1038_s41598_024_53012_4 crossref_primary_10_3390_agronomy15030573 crossref_primary_10_3390_plants12223854 crossref_primary_10_1007_s00344_022_10846_4 crossref_primary_10_1016_j_envpol_2024_125241 crossref_primary_10_3390_plants10040796 crossref_primary_10_1038_s41598_024_65720_y crossref_primary_10_1016_j_stress_2023_100255 crossref_primary_10_15421_022334 crossref_primary_10_1007_s11738_023_03562_3 crossref_primary_10_1111_ppl_13852 crossref_primary_10_7831_ras_10_0_344 crossref_primary_10_1371_journal_pone_0267819 crossref_primary_10_1016_j_jplph_2022_153658 crossref_primary_10_1016_j_rhisph_2025_101029 crossref_primary_10_1080_17429145_2022_2091802 crossref_primary_10_1016_j_plaphy_2024_108610 crossref_primary_10_1111_ppl_13497 crossref_primary_10_3389_fsufs_2022_1002797 crossref_primary_10_1016_j_envres_2023_116089 crossref_primary_10_1016_j_sjbs_2021_09_075 crossref_primary_10_1134_S0003683823010039 crossref_primary_10_31857_S0555109923010038 crossref_primary_10_1002_smll_202203899 crossref_primary_10_3390_microorganisms9112203 crossref_primary_10_1007_s10653_023_01823_1 crossref_primary_10_1016_j_micres_2021_126771 crossref_primary_10_3390_agronomy11030524 crossref_primary_10_3390_plants11223090 crossref_primary_10_1111_ppl_13304 crossref_primary_10_1080_03650340_2022_2099540 crossref_primary_10_3390_agronomy14091949 crossref_primary_10_3390_plants13091183 crossref_primary_10_3390_su16208845 |
Cites_doi | 10.1186/s12870-014-0290-7 10.1007/978-981-13-8383-0_11 10.22192/ijarbs.2017.04.05.014 10.1007/s11103-019-00951-6 10.2134/agronj2008.0090 10.1016/S1002-0160(08)60055-7 10.1016/j.plantsci.2003.10.025 10.1002/9781119246329.ch18 10.3389/fpls.2016.00327 10.1105/tpc.111.093104 10.1046/j.1469-8137.1998.00892.x 10.1016/j.colsurfb.2007.05.012 10.1016/j.cell.2016.08.029 10.1007/s00425-007-0513-3 10.3389/fmicb.2018.02507 10.1007/s00253-009-2116-3 10.3390/agronomy10081180 10.21475/poj.10.03.17.pne600 10.1016/0167-7799(89)90057-7 10.1007/s11104-017-3199-8 10.1007/978-3-319-52381-1_2 10.1007/s11274-019-2659-0 10.1146/annurev.pp.43.060192.000503 10.1016/j.jhazmat.2020.122661 10.1111/nph.12383 10.1007/978-981-10-5589-8_3 10.1007/s13213-018-1341-3 10.1007/s00425-011-1568-8 10.1002/9781119246329.ch16 10.1016/j.micres.2015.12.003 10.3390/ijms20071769 10.1007/978-3-030-18975-4_6 10.1007/978-3-642-23465-1_10 10.1007/978-3-030-30926-8_12 10.1029/2018WR022656 10.1007/978-3-319-29573-2_7 10.1111/j.1365-2672.2006.03179.x 10.3390/microorganisms8040541 10.1094/MPMI-18-0311 10.1371/journal.pone.0076559 10.3390/f11060652 10.1007/BF00011685 10.1016/j.soilbio.2008.10.008 10.1016/j.pbi.2018.10.006 10.1080/07352689.2014.875291 10.1016/j.sajb.2017.07.007 10.1007/978-94-007-5931-2_14 10.1111/plb.12505 10.1371/journal.pone.0035176 10.1016/j.jenvman.2020.111300 10.1007/978-3-319-54401-4_4 10.1093/bib/bbl012 10.1016/S0140-1963(18)31312-0 10.1111/1462-2920.14272 10.1016/j.plantsci.2017.06.009 10.1093/jxb/eru507 10.1051/agro/2009050 10.1007/s005720100097 10.1139/m95-015 10.1094/MPMI-09-13-0289-FI 10.1007/s00299-007-0362-3 10.1016/j.jmb.2019.02.005 10.1007/978-981-10-8402-7_2 10.1080/15226514.2015.1064352 10.1007/s11274-010-0572-7 10.1016/j.scienta.2019.108951 10.1111/1574-6968.12413 10.1007/978-3-319-24654-3_9 10.1007/978-3-319-13401-7_12 10.1016/j.rhisph.2020.100206 10.2135/cropsci2014.09.0654 10.1016/j.ecoenv.2019.109466 10.1093/jxb/erp194 10.4155/bfs.13.56 10.5897/AJB2015.14405 10.1094/CM-2004-0301-05-RV 10.1016/j.scienta.2015.09.002 10.3390/agronomy10091323 10.1093/jexbot/51.350.1595 10.3390/agronomy10060778 10.3389/fpls.2017.00172 10.1111/ppl.12614 10.1146/annurev-phyto-080508-081803 10.1016/S0929-1393(00)00070-6 10.1007/s11356-019-04998-2 10.1016/j.apsoil.2019.103367 10.1371/journal.pone.0163689 10.1016/j.micres.2017.04.007 10.1007/s00253-012-4159-0 10.1007/s11274-011-0979-9 10.1007/s00248-007-9237-y 10.1016/j.atmosres.2018.01.009 10.1007/978-3-319-99651-6_5 10.1016/j.pbi.2009.12.006 10.1007/s13199-018-00589-w 10.1007/s10482-013-0095-y 10.1074/jbc.M111.292748 10.1111/jam.13481 10.1016/j.scitotenv.2017.06.061 10.1080/17429145.2018.1471527 10.1007/s40995-019-00753-x 10.1002/9781119246329.ch2 10.1002/jobm.201800309 10.5897/AJMR2013.5918 10.1080/15226514.2016.1203287 10.2135/cropsci2006.03.0181 10.1071/FP07218 10.1016/B978-0-444-64279-0.00018-9 10.1016/j.plgene.2019.100175 10.1201/9781351070454-11 10.1128/AEM.66.8.3393-3398.2000 10.1016/j.envexpbot.2014.07.006 10.1007/978-3-319-06542-7_7 10.21273/HORTTECH.26.3.327 10.1016/S1474-7065(03)00010-X 10.1046/j.1365-3040.2003.01108.x 10.1016/j.plaphy.2013.05.009 10.1007/s11627-017-9874-x 10.1007/s13213-015-1112-3 10.1371/journal.pone.0222302 10.1007/978-3-642-39317-4_8 10.20546/ijcmas.2016.510.113 10.1080/19315260.2019.1632401 10.4236/aim.2018.83016 10.1007/978-981-13-6536-2_4 10.1007/s00248-011-9819-6 10.3844/ajabssp.2019.35.54 10.1007/s11274-015-1837-y 10.3389/fpls.2015.00084 10.1093/jxb/erl101 10.1093/jxb/ert031 10.1016/B978-0-12-815879-1.00006-9 10.1016/j.envexpbot.2016.06.015 10.3390/molecules14072535 10.1016/S1002-0160(11)60120-3 10.1186/1471-2164-12-149 10.1007/s00344-012-9283-7 10.1007/s00344-018-9846-3 10.1007/978-3-662-45795-5_11 10.3389/fpls.2018.00112 10.3390/microorganisms8071018 10.1111/j.1469-8137.2008.02657.x 10.3389/fpls.2016.01029 10.3389/fmicb.2017.02580 10.3390/agronomy10070938 10.3389/fmicb.2017.02516 10.1016/B978-0-12-818469-1.00019-5 10.1016/j.jare.2020.07.003 10.3389/fmicb.2018.01636 10.1139/w11-120 10.1007/s10584-006-9210-7 10.1023/A:1026037216893 10.1111/j.1365-2435.2012.01985.x 10.3923/jbs.2007.421.424 10.1104/pp.108.115733 10.1007/s00248-013-0326-9 10.1016/B978-0-444-64279-0.00016-5 10.1007/978-3-662-45795-5_12 10.1007/s00344-015-9490-0 10.1016/j.apsoil.2016.04.009 10.1007/s00253-013-5193-2 10.1016/j.rsci.2017.04.005 10.1007/978-3-642-18357-7_2 10.1146/annurev.micro.62.081307.162918 10.1002/jsfa.6545 10.1080/15226514.2017.1381940 10.59797/ija.v54i2.4785 10.1371/journal.pone.0079614 10.1016/j.bcab.2019.101271 10.1016/j.plaphy.2014.04.003 10.1016/j.tplants.2008.10.004 10.1111/j.1365-3040.2006.01588.x 10.1080/17429145.2014.894587 10.1094/MPMI-18-0385 10.1371/journal.ppat.1006811 10.1016/0016-7061(93)90106-U 10.1104/pp.108.129791 10.1111/j.1365-2672.2009.04355.x 10.1016/B978-0-12-815879-1.00007-0 10.1007/978-3-319-24654-3_7 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI 7S9 L.6 |
DOI | 10.3390/agronomy10111683 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Agriculture Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Architecture |
EISSN | 2073-4395 |
ExternalDocumentID | 10_3390_agronomy10111683 |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO KQ8 M0K MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PROAC PYCSY 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c412t-6a76dbb8b81c4551e12375e77496fd178ed0934b0f0d1c8bf8e5e88b786641bf3 |
IEDL.DBID | BENPR |
ISSN | 2073-4395 |
IngestDate | Fri Jul 11 02:53:43 EDT 2025 Mon Jun 30 11:25:35 EDT 2025 Tue Jul 01 03:19:57 EDT 2025 Thu Apr 24 23:07:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-6a76dbb8b81c4551e12375e77496fd178ed0934b0f0d1c8bf8e5e88b786641bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6517-320X 0000-0002-4220-4808 0000-0002-0379-4622 |
OpenAccessLink | https://www.proquest.com/docview/2524341271?pq-origsite=%requestingapplication% |
PQID | 2524341271 |
PQPubID | 2032440 |
ParticipantIDs | proquest_miscellaneous_2498295429 proquest_journals_2524341271 crossref_primary_10_3390_agronomy10111683 crossref_citationtrail_10_3390_agronomy10111683 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201030 |
PublicationDateYYYYMMDD | 2020-10-30 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201030 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agronomy (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_94 ref_137 ref_93 ref_90 ref_131 ref_130 ref_133 Ikram (ref_54) 2019; 10 Lamizadeh (ref_57) 2016; 5 ref_97 Yadav (ref_25) 2010; 30 Furlan (ref_125) 2017; 263 Duca (ref_86) 2014; 106 Gaffney (ref_16) 2015; 55 ref_127 Gauri (ref_139) 2012; 95 Bounedjah (ref_126) 2012; 287 Jaleel (ref_43) 2009; 11 Nair (ref_13) 2008; 46 Amirnia (ref_59) 2020; 261 Ghosh (ref_148) 2019; 35 Vessey (ref_4) 2003; 255 Sgroy (ref_104) 2009; 85 Marulanda (ref_175) 2007; 54 Armada (ref_193) 2016; 16 Armada (ref_34) 2013; 67 Khan (ref_187) 2015; 18 Bowler (ref_157) 1992; 43 ref_159 Panda (ref_39) 2020; 14 ref_158 Bresson (ref_23) 2013; 200 Takahashi (ref_197) 2019; 47 Yasmin (ref_22) 2007; 7 ref_150 Qureshi (ref_162) 2012; 31 Atouei (ref_10) 2019; 43 ref_76 ref_155 ref_75 ref_154 ref_160 Kang (ref_79) 2014; 9 Naseri (ref_100) 2013; 14 Rubin (ref_60) 2017; 416 Saakre (ref_123) 2017; 24 ref_80 ref_149 Singh (ref_186) 2015; 7 ref_140 Khan (ref_134) 2016; 18 SkZ (ref_117) 2018; 68 Kurepin (ref_82) 2014; 94 ref_88 Ali (ref_99) 2018; 54 Wu (ref_204) 2020; 395 Maroniche (ref_51) 2017; 202 Kasim (ref_47) 2012; 32 Manzanera (ref_119) 2016; 7 Arshad (ref_142) 2008; 18 Meena (ref_207) 2017; 8 Akram (ref_17) 2019; 26 Yoneyama (ref_84) 2012; 235 (ref_138) 2019; 431 Kasual (ref_202) 2019; 20 Ghosh (ref_95) 2018; 77 Cerezo (ref_89) 2014; 356 Less (ref_121) 2008; 147 ref_208 ref_201 Pallai (ref_46) 2012; 58 Urano (ref_110) 2003; 26 Joshi (ref_42) 2016; 7 Rampino (ref_6) 2006; 29 Eduardo (ref_96) 2020; 147 Fard (ref_81) 2011; 23 Grover (ref_152) 2011; 27 Broek (ref_91) 2005; 18 Blouin (ref_98) 2015; 114 Upadhyay (ref_153) 2011; 21 Kalam (ref_167) 2017; 337 Cloots (ref_92) 2011; 61 Abawi (ref_156) 2000; 15 Rouphael (ref_64) 2015; 196 Kaushal (ref_26) 2015; 66 Yang (ref_67) 2009; 14 Kloepper (ref_181) 1989; 7 Saravanakumar (ref_72) 2007; 102 Rezazadeh (ref_74) 2019; 10 Sapre (ref_135) 2016; 414 Zhu (ref_195) 2016; 167 Campbell (ref_1) 1986; 11 Kumar (ref_33) 2019; 20 ref_107 Zhao (ref_5) 2007; 26 ref_109 Kenneth (ref_65) 2019; 14 Belimov (ref_146) 2009; 181 ref_102 (ref_37) 2001; 11 Basra (ref_120) 2016; 26 Tsukanova (ref_78) 2017; 113 Vigani (ref_116) 2019; 21 Khan (ref_124) 2017; 10 Urano (ref_205) 2010; 13 Venuprasad (ref_15) 2007; 47 Gerhardt (ref_70) 2017; Volume 5 Rahdari (ref_111) 2012; 8 Su (ref_128) 2003; 28 Zheng (ref_32) 2018; 54 Vu (ref_176) 2009; 14 Vurukonda (ref_113) 2016; 184 Denef (ref_18) 2009; 41 Primo (ref_169) 2015; Volume 12 Atieno (ref_108) 2020; 275 Yin (ref_85) 2014; 27 Nasim (ref_19) 2018; 205 Din (ref_141) 2019; 183 Chenu (ref_191) 1993; 56 Venkateswarlu (ref_35) 2009; 54 Selvakumar (ref_173) 2015; 31 ref_24 Baxter (ref_101) 2013; 4 Glick (ref_180) 1995; 41 Ansari (ref_129) 2018; 8 Lynch (ref_73) 1990; 129 Chen (ref_178) 2017; 8 Guo (ref_14) 2009; 60 Niu (ref_36) 2018; 8 Ali (ref_106) 2014; 80 Uppalapati (ref_56) 2012; 24 Pagnani (ref_58) 2019; 56 Odoh (ref_62) 2017; 4 Bhattacharyya (ref_83) 2011; 28 Mhlongo (ref_206) 2018; 9 Kumar (ref_77) 2015; 9 Vaishnav (ref_30) 2018; 38 Khan (ref_171) 2018; 9 Schellenbaum (ref_52) 1998; 138 Chen (ref_144) 2013; 64 Rahdari (ref_182) 2012; 3 Agrawal (ref_71) 2015; Volume 44 Gusain (ref_112) 2015; 14 Sapre (ref_21) 2016; 18 Mayak (ref_161) 2004; 166 Wang (ref_203) 2005; 18 Kumari (ref_114) 2015; 34 Kamara (ref_9) 2009; 101 Barnawal (ref_28) 2017; 161 Szota (ref_49) 2017; 603 Shulaev (ref_55) 2006; 7 Nakashima (ref_194) 2009; 149 ref_53 Costa (ref_190) 2018; 9 Khan (ref_199) 2018; 1 Zahir (ref_145) 2008; 18 Jaleel (ref_122) 2007; 60 Dimkpa (ref_11) 2009; 107 Alami (ref_132) 2000; 66 Naseem (ref_41) 2018; 58 Gupta (ref_143) 2017; 27 Lugtenberg (ref_118) 2009; 63 ref_69 Todaka (ref_48) 2015; 6 ref_164 ref_66 ref_166 ref_165 Khan (ref_7) 2018; 16 Aroca (ref_40) 2016; 131 ref_63 ref_168 Gupta (ref_172) 2019; 18 Zhao (ref_45) 2014; 66 Shafeek (ref_183) 2015; 5 ref_170 Barash (ref_87) 2009; 47 Nelson (ref_184) 2004; 3 Colinet (ref_179) 2012; 26 Kim (ref_174) 2007; 226 Sharma (ref_147) 2013; 7 Liu (ref_29) 2013; 97 Cheynier (ref_192) 2013; 72 Marques (ref_50) 2016; Volume 2 Christensen (ref_2) 2007; 81 ref_196 Kohler (ref_61) 2008; 35 ref_31 ref_198 ref_38 Farooq (ref_12) 2014; 33 Mazumdar (ref_105) 2019; 26 Ngumbi (ref_20) 2016; 105 Wang (ref_27) 2012; 20 Barriuso (ref_177) 2008; 4 Zong (ref_200) 2020; 102 Pavlova (ref_68) 2017; 123 Hsiao (ref_3) 2000; 51 Ranty (ref_103) 2016; 7 ref_44 ref_185 Lafitte (ref_8) 2006; 58 ref_188 ref_189 Timmusk (ref_136) 2013; 1 Saikia (ref_163) 2018; 8 Arora (ref_151) 2020; 26 Gou (ref_115) 2015; 47 |
References_xml | – ident: ref_196 doi: 10.1186/s12870-014-0290-7 – ident: ref_31 doi: 10.1007/978-981-13-8383-0_11 – volume: 4 start-page: 123 year: 2017 ident: ref_62 article-title: Plant Growth Promoting Rhizobacteria (PGPR): A Bioprotectant bioinoculant for Sustainable Agrobiology. A Review publication-title: Int. J. Adv. Res. Biol. Sci. doi: 10.22192/ijarbs.2017.04.05.014 – volume: 102 start-page: 339 year: 2020 ident: ref_200 article-title: Maize NCP1 negatively regulates drought and ABA responses through interacting with and inhibiting the activity of transcription factor ABP9 publication-title: Plant Mol. Biol. doi: 10.1007/s11103-019-00951-6 – volume: 101 start-page: 91 year: 2009 ident: ref_9 article-title: Planting Date and Cultivar Effects on Grain Yield in Dryland Corn Production publication-title: Agron. J. doi: 10.2134/agronj2008.0090 – volume: 18 start-page: 611 year: 2008 ident: ref_142 article-title: Inoculation with Pseudomonas spp. Containing ACC-Deaminase Partially Eliminates the Effects of Drought Stress on Growth, Yield, and Ripening of Pea (Pisum sativum L.) publication-title: Pedosphere doi: 10.1016/S1002-0160(08)60055-7 – ident: ref_155 – volume: 166 start-page: 525 year: 2004 ident: ref_161 article-title: Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers publication-title: Plant Sci. doi: 10.1016/j.plantsci.2003.10.025 – volume: 337 start-page: 337 year: 2017 ident: ref_167 article-title: Plant Root-Associated Biofilms in Bioremediation publication-title: Biofilms Plant Soil Health doi: 10.1002/9781119246329.ch18 – volume: 7 start-page: 327 year: 2016 ident: ref_103 article-title: Calcium Sensors as Key Hubs in Plant Responses to Biotic and Abiotic Stresses publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00327 – volume: 24 start-page: 353 year: 2012 ident: ref_56 article-title: Loss of abaxial leaf epicuticular wax in Medicago truncatula irg1/palm1 mutants results in reduced spore differentiation of anthracnose and nonhost rust pathogens publication-title: Plant Cell doi: 10.1105/tpc.111.093104 – volume: 138 start-page: 59 year: 1998 ident: ref_52 article-title: Effects of drought on non-mycorrhizal and mycorrhizal maize: Changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids publication-title: New Phytol. doi: 10.1046/j.1469-8137.1998.00892.x – volume: 60 start-page: 7 year: 2007 ident: ref_122 article-title: Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress publication-title: Colloids Surfaces B Biointerfaces doi: 10.1016/j.colsurfb.2007.05.012 – volume: 167 start-page: 313 year: 2016 ident: ref_195 article-title: Abiotic Stress Signaling and Responses in Plants publication-title: Cell doi: 10.1016/j.cell.2016.08.029 – volume: 226 start-page: 647 year: 2007 ident: ref_174 article-title: A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis publication-title: Planta doi: 10.1007/s00425-007-0513-3 – volume: 9 start-page: 2507 year: 2018 ident: ref_171 article-title: Impact of Salicylic Acid and PGPR on the Drought Tolerance and Phytoremediation Potential of Helianthus annus publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02507 – volume: 8 start-page: 1 year: 2018 ident: ref_163 article-title: Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India publication-title: Sci. Rep. – volume: 85 start-page: 371 year: 2009 ident: ref_104 article-title: Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2116-3 – ident: ref_109 doi: 10.3390/agronomy10081180 – volume: 10 start-page: 153 year: 2017 ident: ref_124 article-title: Advances in detection of stress tolerance in plants through metabolomics approaches publication-title: Plant Omics doi: 10.21475/poj.10.03.17.pne600 – volume: 7 start-page: 39 year: 1989 ident: ref_181 article-title: Free-living bacterial inocula for enhancing crop productivity publication-title: Trends Biotechnol. doi: 10.1016/0167-7799(89)90057-7 – volume: 416 start-page: 309 year: 2017 ident: ref_60 article-title: Plant growth promoting rhizobacteria are more effective under drought: A meta-analysis publication-title: Plant Soil doi: 10.1007/s11104-017-3199-8 – volume: Volume 5 start-page: 19 year: 2017 ident: ref_70 article-title: Phytoremediation of Salt-Impacted Soils and Use of Plant Growth-Promoting Rhizobacteria (PGPR) to Enhance Phytoremediation publication-title: Phytoremediation doi: 10.1007/978-3-319-52381-1_2 – volume: 35 start-page: 90 year: 2019 ident: ref_148 article-title: A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-019-2659-0 – volume: 43 start-page: 83 year: 1992 ident: ref_157 article-title: Superoxide dismutase and stress tolerance publication-title: Ann. Rev. Plant Physiol. Mol. Biol. doi: 10.1146/annurev.pp.43.060192.000503 – volume: 395 start-page: 122661 year: 2020 ident: ref_204 article-title: The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122661 – volume: Volume 12 start-page: 337 year: 2015 ident: ref_169 article-title: Biofilm Formation and Biosurfactant Activity in Plant-Associated Bacteria publication-title: Sustainable Development and Biodiversity – volume: 200 start-page: 558 year: 2013 ident: ref_23 article-title: The PGPR strain P hyllobacterium brassicacearum STM 196 induces a reproductive delay and physiological changes that result in improved drought tolerance in A rabidopsis publication-title: New Phytol. doi: 10.1111/nph.12383 – ident: ref_189 doi: 10.1007/978-981-10-5589-8_3 – volume: 68 start-page: 331 year: 2018 ident: ref_117 article-title: Transcriptomic profiling of maize (Zea mays L.) seedlings in response to Pseudomonas putida stain FBKV2 inoculation under drought stress publication-title: Ann. Microbiol. doi: 10.1007/s13213-018-1341-3 – volume: 235 start-page: 1197 year: 2012 ident: ref_84 article-title: How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? publication-title: Planta doi: 10.1007/s00425-011-1568-8 – ident: ref_131 doi: 10.1002/9781119246329.ch16 – volume: 184 start-page: 13 year: 2016 ident: ref_113 article-title: Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria publication-title: Microbiol. Res. doi: 10.1016/j.micres.2015.12.003 – volume: 20 start-page: 1769 year: 2019 ident: ref_202 article-title: Microbes in cahoots with plants: MIST to hit the jackpot of agricultural productivity during drought publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20071769 – ident: ref_140 doi: 10.1007/978-3-030-18975-4_6 – ident: ref_127 doi: 10.1007/978-3-642-23465-1_10 – ident: ref_130 doi: 10.1007/978-3-030-30926-8_12 – volume: 54 start-page: 3673 year: 2018 ident: ref_32 article-title: Plant Growth-Promoting Rhizobacteria (PGPR) Reduce Evaporation and Increase Soil Water Retention publication-title: Water Resour. Res. doi: 10.1029/2018WR022656 – ident: ref_63 doi: 10.1007/978-3-319-29573-2_7 – volume: 102 start-page: 1283 year: 2007 ident: ref_72 article-title: ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2006.03179.x – ident: ref_150 doi: 10.3390/microorganisms8040541 – volume: 18 start-page: 311 year: 2005 ident: ref_91 article-title: Transcriptional Analysis of the Azospirillum brasilense Indole-3-Pyruvate Decarboxylase Gene and Identification of a cis-Acting Sequence Involved in Auxin Responsive Expression publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-18-0311 – ident: ref_93 doi: 10.1371/journal.pone.0076559 – ident: ref_164 doi: 10.3390/f11060652 – volume: Volume 2 start-page: 91 year: 2016 ident: ref_50 article-title: Plant Molecular Adaptations and Strategies Under Drought Stress publication-title: Drought Stress Tolerance in Plants – volume: 129 start-page: 1 year: 1990 ident: ref_73 article-title: Substrate flow in the rhizosphere publication-title: Plant Soil doi: 10.1007/BF00011685 – ident: ref_160 – volume: 41 start-page: 144 year: 2009 ident: ref_18 article-title: Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils publication-title: Soil. Biol. Biochem. doi: 10.1016/j.soilbio.2008.10.008 – volume: 47 start-page: 106 year: 2019 ident: ref_197 article-title: Long-distance signaling in plant stress response publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2018.10.006 – volume: 33 start-page: 331 year: 2014 ident: ref_12 article-title: Drought Stress in Wheat during Flowering and Grain-filling Periods publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352689.2014.875291 – volume: 113 start-page: 91 year: 2017 ident: ref_78 article-title: Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis publication-title: South Afr. J. Bot. doi: 10.1016/j.sajb.2017.07.007 – ident: ref_69 doi: 10.1007/978-94-007-5931-2_14 – volume: 18 start-page: 992 year: 2016 ident: ref_21 article-title: Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria publication-title: Plant Biol. doi: 10.1111/plb.12505 – ident: ref_88 doi: 10.1371/journal.pone.0035176 – volume: 275 start-page: 111300 year: 2020 ident: ref_108 article-title: Assessment of biofertilizer use for sustainable agriculture in the Great Mekong Region publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111300 – ident: ref_97 doi: 10.1007/978-3-319-54401-4_4 – volume: 4 start-page: 1 year: 2008 ident: ref_177 article-title: Ecology, Genetic Diversity and Screening Strategies of Plant Growth Promoting Rhizobacteria (PGPR) publication-title: Plant-Bact. Interact. – volume: 7 start-page: 128 year: 2006 ident: ref_55 article-title: Metabolomics technology and bioinformatics publication-title: Brief. Bioinform. doi: 10.1093/bib/bbl012 – volume: 11 start-page: 81 year: 1986 ident: ref_1 article-title: The use of wild food plants, and drought in Botswana publication-title: J. Arid. Environ. doi: 10.1016/S0140-1963(18)31312-0 – volume: 21 start-page: 3212 year: 2019 ident: ref_116 article-title: Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+-pumping pyrophosphatase in pepper plants publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.14272 – volume: 263 start-page: 12 year: 2017 ident: ref_125 article-title: Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation publication-title: Plant Sci. doi: 10.1016/j.plantsci.2017.06.009 – volume: 66 start-page: 1477 year: 2014 ident: ref_45 article-title: Analysis of different strategies adapted by two cassava cultivars in response to drought stress: Ensuring survival or continuing growth publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru507 – volume: 30 start-page: 515 year: 2010 ident: ref_25 article-title: Cold stress tolerance mechanisms in plants. A review publication-title: Agron. Sustain. Dev. doi: 10.1051/agro/2009050 – volume: 11 start-page: 3 year: 2001 ident: ref_37 article-title: Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis publication-title: Mycorrhiza doi: 10.1007/s005720100097 – volume: 7 start-page: 1577 year: 2016 ident: ref_119 article-title: Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms publication-title: Front. Microbiol. – volume: 41 start-page: 109 year: 1995 ident: ref_180 article-title: The enhancement of plant growth by free-living bacteria publication-title: Can. J. Microbiol. doi: 10.1139/m95-015 – volume: 27 start-page: 227 year: 2014 ident: ref_85 article-title: Characterization of a Tryptophan 2-Monooxygenase Gene from Puccinia graminis f. sp. tritici Involved in Auxin Biosynthesis and Rust Pathogenicity publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-09-13-0289-FI – volume: 26 start-page: 1521 year: 2007 ident: ref_5 article-title: Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress publication-title: Plant Cell Rep. doi: 10.1007/s00299-007-0362-3 – volume: 9 start-page: 715 year: 2015 ident: ref_77 article-title: Does a plant growth-promoting rhizobacteria enhance agricultural sustainability publication-title: J. Pure Appl. Microbiol. – volume: 431 start-page: 4749 year: 2019 ident: ref_138 article-title: Evolved Biofilm: Review on the Experimental Evolution Studies of Bacillus subtilis Pellicles publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2019.02.005 – volume: 16 start-page: 211 year: 2016 ident: ref_193 article-title: Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress publication-title: J. Soil Sci. Plant Nutr. – ident: ref_133 doi: 10.1007/978-981-10-8402-7_2 – volume: 20 start-page: 1097 year: 2012 ident: ref_27 article-title: Enhancement of tomato (Lycopersicon esculentum) tolerance to drought stress by plant-growth-promoting rhizobacterium (PGPR) Bacillus cereus AR156 publication-title: J. Agric. Biotechnol. – volume: 18 start-page: 211 year: 2015 ident: ref_187 article-title: Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation publication-title: Int. J. Phytoremediat. doi: 10.1080/15226514.2015.1064352 – volume: 27 start-page: 1231 year: 2011 ident: ref_152 article-title: Role of microorganisms in adaptation of agriculture crops to abiotic stresses publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-010-0572-7 – volume: 261 start-page: 108951 year: 2020 ident: ref_59 article-title: Intercropping fennel (Foeniculum vulgare L.) with common bean (Phaseolus vulgaris L.) as affected by PGPR inoculation: A strategy for improving yield, essential oil and fatty acid composition publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2019.108951 – volume: 356 start-page: 184 year: 2014 ident: ref_89 article-title: New insights into the role of indole-3-acetic acid in the virulence ofPseudomonas savastanoipv.savastanoi publication-title: FEMS Microbiol. Lett. doi: 10.1111/1574-6968.12413 – ident: ref_166 doi: 10.1007/978-3-319-24654-3_9 – ident: ref_102 doi: 10.1007/978-3-319-13401-7_12 – volume: 14 start-page: 100206 year: 2020 ident: ref_39 article-title: Estimation and optimization of exopolysaccharide production from rice rhizospheric soil and its interaction with soil carbon pools publication-title: Rhizosphere doi: 10.1016/j.rhisph.2020.100206 – volume: 55 start-page: 1608 year: 2015 ident: ref_16 article-title: Industry-Scale Evaluation of Maize Hybrids Selected for Increased Yield in Drought-Stress Conditions of the US Corn Belt publication-title: Crop. Sci. doi: 10.2135/cropsci2014.09.0654 – volume: 183 start-page: 109466 year: 2019 ident: ref_141 article-title: Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC- deaminase producing Bacillus strains under induced salinity stress publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.109466 – volume: 60 start-page: 3531 year: 2009 ident: ref_14 article-title: Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp194 – volume: 46 start-page: 1 year: 2008 ident: ref_13 article-title: Agroecosystem management in the 21st century: It is time for a paradigm shift publication-title: J. Trop. Agric. – volume: 414 start-page: 213 year: 2016 ident: ref_135 article-title: Molecular diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR from wheat (Triticum aestivum L.) rhizosphere publication-title: Plant Soil – volume: 4 start-page: 635 year: 2013 ident: ref_101 article-title: Effects of altered lignin biosynthesis on phenylpropanoid metabolism and plant stress publication-title: Biofuels doi: 10.4155/bfs.13.56 – volume: 14 start-page: 764 year: 2015 ident: ref_112 article-title: Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.) publication-title: Afr. J. Biotechnol. doi: 10.5897/AJB2015.14405 – volume: 3 start-page: 1 year: 2004 ident: ref_184 article-title: Plant Growth Promoting Rhizobacteria (PGPR): Prospects for New Inoculants publication-title: Crop Manag. doi: 10.1094/CM-2004-0301-05-RV – volume: 196 start-page: 91 year: 2015 ident: ref_64 article-title: Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2015.09.002 – ident: ref_198 doi: 10.3390/agronomy10091323 – volume: 51 start-page: 1595 year: 2000 ident: ref_3 article-title: Sensitivity of growth of roots versus leaves to water stress: Biophysical analysis and relation to water transport publication-title: J. Exp. Bot. doi: 10.1093/jexbot/51.350.1595 – ident: ref_149 doi: 10.3390/agronomy10060778 – volume: 8 start-page: 172 year: 2017 ident: ref_207 article-title: Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00172 – volume: 161 start-page: 502 year: 2017 ident: ref_28 article-title: Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression publication-title: Physiol. Plant. doi: 10.1111/ppl.12614 – volume: 47 start-page: 133 year: 2009 ident: ref_87 article-title: Recent Evolution of Bacterial Pathogens: The Gall-FormingPantoea agglomeransCase publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-080508-081803 – volume: Volume 44 start-page: 471 year: 2015 ident: ref_71 article-title: Characterization of Plant Growth-Promoting Rhizobacteria (PGPR): A Perspective of Conventional Versus Recent Techniques publication-title: Applied Bioremediation and Phytoremediation – volume: 15 start-page: 37 year: 2000 ident: ref_156 article-title: Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops publication-title: Appl. Soil Ecol. doi: 10.1016/S0929-1393(00)00070-6 – volume: 11 start-page: 100 year: 2009 ident: ref_43 article-title: Drought stress in plants: A review on morphological characteristics and pigments composition publication-title: Int. J. Agric. Biol. – volume: 26 start-page: 16923 year: 2019 ident: ref_17 article-title: Trends of electronic waste pollution and its impact on the global environment and ecosystem publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-04998-2 – volume: 147 start-page: 103367 year: 2020 ident: ref_96 article-title: Proline accumulation and glutathione reductase activity induced by drought-tolerant rhizobacteria as potential mechanisms to alleviate drought stress in Guinea grass publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2019.103367 – volume: 23 start-page: 80 year: 2011 ident: ref_81 article-title: Effect of plant growth promoting rhizobacteria and foliar application of amino acids and silicic acid on antioxidant enzyme activity of wheat under drought stress publication-title: Chem. Eng. – ident: ref_159 doi: 10.1371/journal.pone.0163689 – volume: 202 start-page: 21 year: 2017 ident: ref_51 article-title: In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress publication-title: Microbiol. Res. doi: 10.1016/j.micres.2017.04.007 – volume: 95 start-page: 331 year: 2012 ident: ref_139 article-title: Impact of Azotobacter exopolysaccharides on sustainable agriculture publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-012-4159-0 – volume: 56 start-page: 1 year: 2019 ident: ref_58 article-title: Open field inoculation with PGPR as a strategy to manage fertilization of ancient Triticum genotypes publication-title: Biol. Fertil. Soils – volume: 28 start-page: 1327 year: 2011 ident: ref_83 article-title: Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-011-0979-9 – volume: 54 start-page: 543 year: 2007 ident: ref_175 article-title: Drought Tolerance and Antioxidant Activities in Lavender Plants Colonized by Native Drought-tolerant or Drought-sensitive Glomus Species publication-title: Microb. Ecol. doi: 10.1007/s00248-007-9237-y – volume: 205 start-page: 118 year: 2018 ident: ref_19 article-title: Future risk assessment by estimating historical heat wave trends with projected heat accumulation using SimCLIM climate model in Pakistan publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2018.01.009 – ident: ref_75 doi: 10.1007/978-3-319-99651-6_5 – volume: 13 start-page: 132 year: 2010 ident: ref_205 article-title: ‘Omics’ analyses of regulatory networks in plant abiotic stress responses publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2009.12.006 – volume: 77 start-page: 265 year: 2018 ident: ref_95 article-title: Dynamics of endogenous hormone regulation in plants by phytohormone secreting rhizobacteria under water-stress publication-title: Symbiosis doi: 10.1007/s13199-018-00589-w – volume: 106 start-page: 85 year: 2014 ident: ref_86 article-title: Indole-3-acetic acid in plant–microbe interactions publication-title: Antonie van Leeuwenhoek doi: 10.1007/s10482-013-0095-y – volume: 8 start-page: 182 year: 2012 ident: ref_111 article-title: Studying of salinity stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in purslane (Portulaca oleracea L.) leaves publication-title: J. Stress Physiol. Biochem. – volume: 1 start-page: 6 year: 2013 ident: ref_136 article-title: Rhizobacterial plant drought stress tolerance enhancement: Towards sustainable water resource management and food security publication-title: J. Food Secur. – volume: 287 start-page: 2446 year: 2012 ident: ref_126 article-title: Macromolecular Crowding Regulates Assembly of mRNA Stress Granules after Osmotic Stress new role for compatible osmolytes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.292748 – volume: 123 start-page: 217 year: 2017 ident: ref_68 article-title: Colonization strategy of the endophytic plant growth-promoting strains of Pseudomonas fluorescens and Klebsiella oxytoca on the seeds, seedlings and roots of the epiphytic orchid, Dendrobium nobileLindl publication-title: J. Appl. Microbiol. doi: 10.1111/jam.13481 – volume: 603 start-page: 340 year: 2017 ident: ref_49 article-title: Drought-avoiding plants with low water use can achieve high rainfall retention without jeopardising survival on green roofs publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2017.06.061 – volume: 10 start-page: 3009 year: 2019 ident: ref_74 article-title: The physiological and biochemical responses of directly seeded and transplanted maize (Zea mays L.) supplied with plant growth-promoting rhizobacteria (PGPR) under water stress publication-title: Plant Physiol. – volume: 1 start-page: 239 year: 2018 ident: ref_199 article-title: Effects of exogenously applied plant growth regulators in combination with PGPR on the physiology and root growth of chickpea (Cicer arietinum) and their role in drought tolerance publication-title: J. Plant Interact. doi: 10.1080/17429145.2018.1471527 – volume: 43 start-page: 2725 year: 2019 ident: ref_10 article-title: Alleviation of Salinity Stress on Some Growth Parameters of Wheat by Exopolysaccharide-Producing Bacteria publication-title: Iran. J. Sci. Technol. Trans. A Sci. doi: 10.1007/s40995-019-00753-x – volume: 10 start-page: 1 year: 2019 ident: ref_54 article-title: Endophytic fungal diversity and their interaction with plants for agriculture sustainability under stressful condition publication-title: Recent Pat. Food Nutr. Agric. – volume: 27 start-page: 27 year: 2017 ident: ref_143 article-title: Role of PGPR in Biofilm Formations and Its Importance in Plant Health publication-title: Biofilms Plant Soil Health doi: 10.1002/9781119246329.ch2 – volume: 58 start-page: 1009 year: 2018 ident: ref_41 article-title: Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance publication-title: J. Basic Microbiol. doi: 10.1002/jobm.201800309 – volume: 7 start-page: 5749 year: 2013 ident: ref_147 article-title: Efficacy of aminocyclopropane-1-carboxylic acid (ACC)-deaminase-producing rhizobacteria in ameliorating water stress in chickpea under axenic conditions publication-title: Afr. J. Microbiol. Res. doi: 10.5897/AJMR2013.5918 – volume: 18 start-page: 1258 year: 2016 ident: ref_134 article-title: Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater publication-title: Int. J. Phytoremediat. doi: 10.1080/15226514.2016.1203287 – volume: 47 start-page: 285 year: 2007 ident: ref_15 article-title: Response to Direct Selection for Grain Yield under Drought Stress in Rice publication-title: Crop. Sci. doi: 10.2135/cropsci2006.03.0181 – volume: 35 start-page: 141 year: 2008 ident: ref_61 article-title: Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants publication-title: Funct. Plant Biol. doi: 10.1071/FP07218 – ident: ref_170 doi: 10.1016/B978-0-444-64279-0.00018-9 – volume: 18 start-page: 100175 year: 2019 ident: ref_172 article-title: Unravelling the biochemistry and genetics of ACC deaminase-An enzyme alleviating the biotic and abiotic stress in plants publication-title: Plant Gene doi: 10.1016/j.plgene.2019.100175 – volume: 14 start-page: 213 year: 2013 ident: ref_100 article-title: Effect of plant growth promoting rhizobacteria (PGPR) on reduction nitrogen fertilizer application in rapeseed (Brassica napus L.) publication-title: Middle-East J. Sci. Res. – ident: ref_154 doi: 10.1201/9781351070454-11 – volume: 66 start-page: 3393 year: 2000 ident: ref_132 article-title: Rhizosphere Soil Aggregation and Plant Growth Promotion of Sunflowers by an Exopolysaccharide-Producing Rhizobiumsp. Strain Isolated from Sunflower Roots publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.8.3393-3398.2000 – volume: 114 start-page: 104 year: 2015 ident: ref_98 article-title: A review of the effects of soil organisms on plant hormone signalling pathways publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2014.07.006 – ident: ref_76 doi: 10.1007/978-3-319-06542-7_7 – ident: ref_44 – volume: 26 start-page: 327 year: 2016 ident: ref_120 article-title: Exogenous Applications of Moringa Leaf Extract and Cytokinins Improve Plant Growth, Yield, and Fruit Quality of Cherry Tomato publication-title: HortTechnology doi: 10.21273/HORTTECH.26.3.327 – volume: 28 start-page: 89 year: 2003 ident: ref_128 article-title: Assessing relative soil moisture with remote sensing data: Theory, experimental validation, and application to drought monitoring over the North China Plain publication-title: Phys. Chem. Earth Parts A/B/C doi: 10.1016/S1474-7065(03)00010-X – volume: 26 start-page: 1917 year: 2003 ident: ref_110 article-title: Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.2003.01108.x – volume: 72 start-page: 1 year: 2013 ident: ref_192 article-title: Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.05.009 – volume: 54 start-page: 104 year: 2018 ident: ref_99 article-title: In vitro effects of GA3 on morphogenesis of CIP potato explants and acclimatization of plantlets in field publication-title: Invitro. Cell. Dev. Biol.-Plant doi: 10.1007/s11627-017-9874-x – volume: 66 start-page: 35 year: 2015 ident: ref_26 article-title: Plant-growth-promoting rhizobacteria: Drought stress alleviators to ameliorate crop production in drylands publication-title: Ann. Microbiol. doi: 10.1007/s13213-015-1112-3 – ident: ref_107 doi: 10.1371/journal.pone.0222302 – ident: ref_38 doi: 10.1007/978-3-642-39317-4_8 – volume: 5 start-page: 1072 year: 2016 ident: ref_57 article-title: Isolation and Identification of Plant Growth-Promoting Rhizobacteria (PGPR) from the Rhizosphere of Sugarcane in Saline and Non-Saline Soil publication-title: Int. J. Curr. Microbiol. Appl. Sci. doi: 10.20546/ijcmas.2016.510.113 – volume: 26 start-page: 333 year: 2019 ident: ref_105 article-title: Isolation, screening and application of a potent PGPR for enhancing growth of Chickpea as affected by nitrogen level publication-title: Int. J. Veg. Sci. doi: 10.1080/19315260.2019.1632401 – volume: 8 start-page: 235 year: 2018 ident: ref_129 article-title: Biofilm Development, Plant Growth Promoting Traits and Rhizosphere Colonization by Pseudomonas entomophila FAP1: A Promising PGPR publication-title: Adv. Microbiol. doi: 10.4236/aim.2018.83016 – ident: ref_53 doi: 10.1007/978-981-13-6536-2_4 – volume: 61 start-page: 723 year: 2011 ident: ref_92 article-title: Transcriptome Analysis of the Rhizosphere Bacterium Azospirillum brasilense Reveals an Extensive Auxin Response publication-title: Microb. Ecol. doi: 10.1007/s00248-011-9819-6 – volume: 14 start-page: 35 year: 2019 ident: ref_65 article-title: Plant Growth Promoting Rhizobacteria (PGPR): A Novel Agent for Sustainable Food Production publication-title: Am. J. Agric. Biol. Sci. doi: 10.3844/ajabssp.2019.35.54 – volume: 31 start-page: 833 year: 2015 ident: ref_173 article-title: Citricoccus zhacaiensis B-4 (MTCC 12119) a novel osmotolerant plant growth promoting actinobacterium enhances onion (Allium cepa L.) seed germination under osmotic stress conditions publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-015-1837-y – volume: 6 start-page: 84 year: 2015 ident: ref_48 article-title: Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00084 – volume: 58 start-page: 169 year: 2006 ident: ref_8 article-title: Whole plant responses, key processes, and adaptation to drought stress: The case of rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/erl101 – volume: 64 start-page: 1565 year: 2013 ident: ref_144 article-title: The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert031 – ident: ref_24 doi: 10.1016/B978-0-12-815879-1.00006-9 – volume: 131 start-page: 47 year: 2016 ident: ref_40 article-title: Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2016.06.015 – volume: 7 start-page: 096 year: 2015 ident: ref_186 article-title: Plant Growth Promoting Rhizobacteria (PGPR): Current and Future Prospects for Development of Sustainable Agriculture publication-title: J. Microb. Biochem. Technol. – volume: 14 start-page: 2535 year: 2009 ident: ref_176 article-title: Bacterial Extracellular Polysaccharides Involved in Biofilm Formation publication-title: Molecules doi: 10.3390/molecules14072535 – volume: 21 start-page: 214 year: 2011 ident: ref_153 article-title: Exopolysaccharide-Producing Plant Growth-Promoting Rhizobacteria under Salinity Condition publication-title: Pedosphere doi: 10.1016/S1002-0160(11)60120-3 – ident: ref_201 doi: 10.1186/1471-2164-12-149 – volume: 31 start-page: 47 year: 2012 ident: ref_162 article-title: Co-inoculation of phosphate solubilizing bacteria and rhizobia in the presence of L-tryptophan for the promotion of mash bean (Vigna mungo L.) publication-title: Soil Environ. – volume: 32 start-page: 122 year: 2012 ident: ref_47 article-title: Control of Drought Stress in Wheat Using Plant-Growth-Promoting Bacteria publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-012-9283-7 – volume: 38 start-page: 333 year: 2018 ident: ref_30 article-title: Regulation of Drought-Responsive Gene Expression in Glycine max L. Merrill is Mediated Through Pseudomonas simiae Strain AU publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-018-9846-3 – ident: ref_168 doi: 10.1007/978-3-662-45795-5_11 – volume: 9 start-page: 112 year: 2018 ident: ref_206 article-title: The Chemistry of Plant–Microbe Interactions in the Rhizosphere and the Potential for Metabolomics to Reveal Signaling Related to Defense Priming and Induced Systemic Resistance publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00112 – ident: ref_208 doi: 10.3390/microorganisms8071018 – volume: 181 start-page: 413 year: 2009 ident: ref_146 article-title: Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02657.x – volume: 7 start-page: 1029 year: 2016 ident: ref_42 article-title: Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01029 – volume: 8 start-page: 2580 year: 2018 ident: ref_36 article-title: Drought-Tolerant Plant Growth-Promoting Rhizobacteria Associated with Foxtail Millet in a Semi-arid Agroecosystem and Their Potential in Alleviating Drought Stress publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02580 – ident: ref_158 doi: 10.3390/agronomy10070938 – volume: 8 start-page: 2516 year: 2017 ident: ref_178 article-title: Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02516 – ident: ref_94 doi: 10.1016/B978-0-12-818469-1.00019-5 – volume: 26 start-page: 69 year: 2020 ident: ref_151 article-title: Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils publication-title: J. Adv. Res. doi: 10.1016/j.jare.2020.07.003 – volume: 9 start-page: 1636 year: 2018 ident: ref_190 article-title: Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01636 – volume: 3 start-page: 443 year: 2012 ident: ref_182 article-title: Drought stress: A review publication-title: Int. J. Agron. Plant Prod. – volume: 58 start-page: 170 year: 2012 ident: ref_46 article-title: Phytohormone production and colonization of canola (Brassica napusL.) roots byPseudomonas fluorescens6-8 under gnotobiotic conditions publication-title: Can. J. Microbiol. doi: 10.1139/w11-120 – volume: 81 start-page: 7 year: 2007 ident: ref_2 article-title: A summary of the PRUDENCE model projections of changes in European climate by the end of this century publication-title: Clim. Chang. doi: 10.1007/s10584-006-9210-7 – volume: 255 start-page: 571 year: 2003 ident: ref_4 article-title: Plant growth promoting rhizobacteria as biofertilizers publication-title: Plant Soil doi: 10.1023/A:1026037216893 – volume: 26 start-page: 711 year: 2012 ident: ref_179 article-title: Exploring the plastic response to cold acclimation through metabolomics publication-title: Funct. Ecol. doi: 10.1111/j.1365-2435.2012.01985.x – volume: 7 start-page: 421 year: 2007 ident: ref_22 article-title: Effect of PGPR inoculation on growth and yield of sweetpotato publication-title: J. Biol. Sci. doi: 10.3923/jbs.2007.421.424 – volume: 147 start-page: 316 year: 2008 ident: ref_121 article-title: Principal Transcriptional Programs Regulating Plant Amino Acid Metabolism in Response to Abiotic Stresses publication-title: Plant Physiol. doi: 10.1104/pp.108.115733 – volume: 67 start-page: 410 year: 2013 ident: ref_34 article-title: Differential Activity of Autochthonous Bacteria in Controlling Drought Stress in Native Lavandula and Salvia Plants Species Under Drought Conditions in Natural Arid Soil publication-title: Microb. Ecol. doi: 10.1007/s00248-013-0326-9 – ident: ref_165 doi: 10.1016/B978-0-444-64279-0.00016-5 – ident: ref_188 doi: 10.1007/978-3-662-45795-5_12 – volume: 34 start-page: 558 year: 2015 ident: ref_114 article-title: Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill) publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-015-9490-0 – volume: 105 start-page: 109 year: 2016 ident: ref_20 article-title: Bacterial-mediated drought tolerance: Current and future prospects publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2016.04.009 – volume: 97 start-page: 9155 year: 2013 ident: ref_29 article-title: Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-013-5193-2 – volume: 24 start-page: 291 year: 2017 ident: ref_123 article-title: Identification and Characterization of Genes Responsible for Drought Tolerance in Rice Mediated by Pseudomonas fluorescens publication-title: Rice Sci. doi: 10.1016/j.rsci.2017.04.005 – ident: ref_185 doi: 10.1007/978-3-642-18357-7_2 – volume: 63 start-page: 541 year: 2009 ident: ref_118 article-title: Plant-growth-promoting rhizobacteria publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.62.081307.162918 – volume: 47 start-page: 581 year: 2015 ident: ref_115 article-title: Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (Zea mays) by three plant growth promoting rhizobacteria (PGPR) strains publication-title: Pak J. Bot. – volume: 94 start-page: 1715 year: 2014 ident: ref_82 article-title: Phytohormonal basis for the plant growth promoting action of naturally occurring biostimulators publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.6545 – volume: 16 start-page: 405 year: 2018 ident: ref_7 article-title: Effects of exogenously applied salicylic acid and putrescine alone and in combination with rhizobacteria on the phytoremediation of heavy metals and chickpea growth in sandy soil publication-title: Int. J. Phytoremediat. doi: 10.1080/15226514.2017.1381940 – volume: 54 start-page: 226 year: 2009 ident: ref_35 article-title: Climate change and agriculture: Adaptation and mitigation stategies publication-title: Indian J. Agron. doi: 10.59797/ija.v54i2.4785 – ident: ref_137 doi: 10.1371/journal.pone.0079614 – volume: 20 start-page: 101271 year: 2019 ident: ref_33 article-title: Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture publication-title: Biocatal. Agric. Biotechnol. doi: 10.1016/j.bcab.2019.101271 – volume: 80 start-page: 160 year: 2014 ident: ref_106 article-title: Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2014.04.003 – volume: 14 start-page: 1 year: 2009 ident: ref_67 article-title: Rhizosphere bacteria help plants tolerate abiotic stress publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2008.10.004 – volume: 29 start-page: 2143 year: 2006 ident: ref_6 article-title: Drought stress response in wheat: Physiological and molecular analysis of resistant and sensitive genotypes publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2006.01588.x – volume: 9 start-page: 673 year: 2014 ident: ref_79 article-title: Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus publication-title: J. Plant Interact. doi: 10.1080/17429145.2014.894587 – volume: 18 start-page: 385 year: 2005 ident: ref_203 article-title: Microarray Analysis of the Gene Expression Profile Induced by the Endophytic Plant Growth-Promoting Rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-18-0385 – ident: ref_90 doi: 10.1371/journal.ppat.1006811 – volume: 56 start-page: 143 year: 1993 ident: ref_191 article-title: Clay- or sand-polysaccharide associations as models for the interface between micro-organisms and soil: Water related properties and microstructure publication-title: Geoderma doi: 10.1016/0016-7061(93)90106-U – volume: 149 start-page: 88 year: 2009 ident: ref_194 article-title: Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses: Figure 1 publication-title: Plant Physiol. doi: 10.1104/pp.108.129791 – volume: 107 start-page: 1687 year: 2009 ident: ref_11 article-title: Siderophores mediate reduced and increased uptake of cadmium byStreptomyces tendaeF4 and sunflower (Helianthus annuus), respectively publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2009.04355.x – ident: ref_66 doi: 10.1016/B978-0-12-815879-1.00007-0 – ident: ref_80 doi: 10.1007/978-3-319-24654-3_7 – volume: 5 start-page: 68 year: 2015 ident: ref_183 article-title: Use of some bio-stimulants for improving the growth, yield and bulb quality of onion plants (Allium cepa L.) under sandy soil conditions publication-title: Middle East J. Appl. Sci. – volume: 18 start-page: 958 year: 2008 ident: ref_145 article-title: Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions publication-title: J. Microbiol. Biotechnol. |
SSID | ssj0000913807 |
Score | 2.4610543 |
SecondaryResourceType | review_article |
Snippet | Drylands are stressful environment for plants growth and production. Plant growth-promoting rhizobacteria (PGPR) acts as a rampart against the adverse impacts... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1683 |
SubjectTerms | Accumulation agronomy Alcohols Amino acids Antioxidants architecture Arid lands Arid zones biofilm Biofilms biomass Carbohydrates Dehydration Desert soils Drought Drought resistance drought tolerance environment Environmental impact Exopolysaccharides Flowering Flowers & plants Metabolites Plant growth plant growth-promoting rhizobacteria Plant resistance Plants (botany) Polyamines Polyols rhizosphere bacteria root growth Sandy soils Solutes Sugar sugar alcohols Survival Sustainable agriculture systemic acquired resistance water Water conservation Water scarcity water shortages water stress Water uptake |
Title | Water Conservation and Plant Survival Strategies of Rhizobacteria under Drought Stress |
URI | https://www.proquest.com/docview/2524341271 https://www.proquest.com/docview/2498295429 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDAgnqJQKiOxMETNw7GdCRUoQkggxHuL4lcXlJY0_f_cpU5RGZhz8XC-9_nuI-RcikJpJkyQqMwFzEDCmqWOB1q6WEEAn_Jmwvvhkd-9sfvP9NMX3Gb-WWVrExtDbSYaa-SDOI0ZWNxYRJfT7wBRo7C76iE01skGmGApO2TjavT49LyssuDWSxmKRX8ygfx-UIyrZlogQpB1LpNVf7Rqjhsfc7tDtn1wSIeL29wla7bcI1vDceUXZNh98v4BwWFFEWezLafSojQUwYdq-jIHzQfZoe3SWTujE0ef8WGdWuxlLiiOjVX0psHnqZESjN0BebsdvV7fBR4bIdDAhDrgheBGKalkpBlEPRY8kEgtBHMZdyYS0powS5gKXWgiLZWTNrVSKiE5Z5FyySHplJPSHhFqQKsTJ4pUG-yi6YJprrNQCse0dXHYJYOWQ7n2i8MRv-IrhwQCeZr_5WmXXCz_mC6WZvxD22uZnnv1meW_l90lZ8vPIPjYzShKO5kDDcskNinj7Pj_I07IZoxJMjqcsEc6dTW3pxBJ1KrvxaXfZOI_Sc7Mzw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5ioS1GggOHaBPHsZ0Dqkof2tJ2hUoLvaXxqxeULdmsEH-K38hMHovKobeeM_ZhMv5mxuOZD-CdVqWxQrkoNXmIhMOENc-CjKwO3GAAn8m2w_tkJqfn4vNFdrEGf4ZeGHpWOWBiC9RubumOfMIzLhBxuUq2r39GxBpF1dWBQqMziyP_-xembIuPh3v4f99zfrB_tjuNelaByOLyJpKlks4YbXRiBcYLHrFbZR7DoFwGlyjtHWb5wsQhdonVJmifea2N0lKKxIQU970H6yKVMR_B-qf92ZfT1a0OTdnUserqoWmax5Pyqm67ExIidZc6ven_bsJ_69MOHsOjPhhlO531PIE1Xz2FhztXdT-Qwz-Db98xGK0Z8XoO17esrBwjsqOGfV0i0qCtsmHIrV-weWCn9JDPdHOgS0ZtajXba_mAGpJEcH0O53eitRcwquaVfwnMIYqkQZWZdVS1s6Ww0uaxVkFYH3g8hsmgocL2g8qJL-NHgQkL6bT4X6dj-LBacd0N6bhFdmNQetEf10Xxz7jG8Hb1GQ8aVU_Kys-XKCNyTUVRnr-6fYs3cH96dnJcHB_Ojl7DA04JOjm7eANGTb30mxjFNGarNx0Gl3dtrX8BIWAIXA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKhbYYCQ4cok0cx3YOqCrdrloKq6pQ6C2NX72gbMlmhfhr_Dpm8lhUDr31HMeHyZdvZjye-QDeaFUaK5SLUpOHSDhMWPMsyMjqwA0G8JlsO7w_z-Xhmfh4np1vwJ-hF4auVQ6c2BK1W1g6I5_wjAtkXK6SSeivRZxMZ7tXPyNSkKJK6yCn0UHk2P_-henb8v3RFL_1W85nB1_3D6NeYSCyuFUTyVJJZ4w2OrECYwePPK4yjyFRLoNLlPYOM35h4hC7xGoTtM-81kZpKUViQor73oFNRVnRCDY_HMxPTtcnPDRxU8eqq42maR5Pysu67VRISOBd6vS6L7zuClr_NnsID_rAlO11SHoEG756DPf3Lut-OId_At--Y2BaM9L4HI5yWVk5RsJHDfuyQtZB3LJh4K1fskVgp3Spz3QzoUtGLWs1m7baQA2tRKJ9Cme3YrVnMKoWlX8OzCGjpEGVmXVUwbOlsNLmsVZBWB94PIbJYKHC9kPLSTvjR4HJC9m0-N-mY3i3fuOqG9hxw9qtwehF_-sui39AG8Pr9WP86aiSUlZ-scI1ItdUIOX5i5u3eAV3EaXFp6P58Uu4xylXJ78Xb8GoqVd-GwOaxuz0yGFwcdtg_QsCYwyR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+Conservation+and+Plant+Survival+Strategies+of+Rhizobacteria+under+Drought+Stress&rft.jtitle=Agronomy+%28Basel%29&rft.au=Khan%2C+Naeem&rft.au=Ali%2C+Shahid&rft.au=Tariq%2C+Haleema&rft.au=Latif%2C+Sadia&rft.date=2020-10-30&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=10&rft.issue=11&rft_id=info:doi/10.3390%2Fagronomy10111683&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |