Characterizations of EP, normal, and Hermitian matrices
Various characterizations of EP, normal, and Hermitian matrices are obtained by exploiting an elegant representation of matrices derived by Hartwig and Spindelböck [ 7 , Corollary 6]. One aim of the present article is to demonstrate its usefulness when investigating different matrix identities. The...
Saved in:
Published in | Linear & multilinear algebra Vol. 56; no. 3; pp. 299 - 304 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
01.05.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 0308-1087 1563-5139 |
DOI | 10.1080/03081080600872616 |
Cover
Loading…
Abstract | Various characterizations of EP, normal, and Hermitian matrices are obtained by exploiting an elegant representation of matrices derived by Hartwig and Spindelböck [
7
, Corollary 6]. One aim of the present article is to demonstrate its usefulness when investigating different matrix identities. The second aim is to extend and generalize lists of characterizations of Equal Projectors (EP), normal, and Hermitian matrices known in the literature, by providing numerous sets of equivalent conditions referring to the notions of conjugate transpose, Moore-Penrose inverse, and group inverse. |
---|---|
AbstractList | Various characterizations of EP, normal, and Hermitian matrices are obtained by exploiting an elegant representation of matrices derived by Hartwig and Spindelböck [
7
, Corollary 6]. One aim of the present article is to demonstrate its usefulness when investigating different matrix identities. The second aim is to extend and generalize lists of characterizations of Equal Projectors (EP), normal, and Hermitian matrices known in the literature, by providing numerous sets of equivalent conditions referring to the notions of conjugate transpose, Moore-Penrose inverse, and group inverse. |
Author | Maria Baksalary, Oskar Trenkler, Götz |
Author_xml | – sequence: 1 givenname: Oskar surname: Maria Baksalary fullname: Maria Baksalary, Oskar email: baxx@amu.edu.pl organization: Institute of Physics , Adam Mickiewicz University – sequence: 2 givenname: Götz surname: Trenkler fullname: Trenkler, Götz organization: Department of Statistics , University of Dortmund |
BookMark | eNqNj8FKAzEQhoNUsK0-gLd9gK5ONrvZLHiRpVqhoAc9h2k2wchuIklA69PbtZ4sFE8z8M83M9-MTJx3mpBLClcUBFwDAzE2HEDUBaf8hExpxVleUdZMyHTM891AfUZmMb4BQElZNSV1-4oBVdLBfmGy3sXMm2z5tMicDwP2iwxdl610GGyy6LIBU7BKx3NyarCP-uK3zsnL3fK5XeXrx_uH9nadq5IWKefIsTC03JSFZqA6JoQSOD7Di2bDFGuwY9qUUKkaBYeuUbTeaKOgUbtQsDmh-70q-BiDNvI92AHDVlKQo7A8MN8x9R9G2fQjlwLa_ih5syetM6P-hw99JxNuex9MQKdslOwfh4_gB5RMn4l9A8lkgmQ |
CitedBy_id | crossref_primary_10_1142_S0219498824502049 crossref_primary_10_1016_j_cam_2023_115558 crossref_primary_10_1080_03081080802264372 crossref_primary_10_1007_s40840_017_0445_4 crossref_primary_10_1016_j_laa_2009_03_023 crossref_primary_10_1016_j_amc_2011_11_021 crossref_primary_10_1016_j_laa_2011_01_031 crossref_primary_10_1016_j_amc_2011_05_018 crossref_primary_10_1137_17M1128216 crossref_primary_10_1016_j_laa_2009_01_015 crossref_primary_10_1016_j_amc_2011_12_030 crossref_primary_10_4236_alamt_2013_34010 crossref_primary_10_1002_nla_663 crossref_primary_10_14710_jfma_v5i2_16363 crossref_primary_10_1007_s00010_022_00878_2 crossref_primary_10_1080_03081087_2017_1347136 crossref_primary_10_1016_j_laa_2008_05_003 crossref_primary_10_2298_FIL2315017L crossref_primary_10_2298_FIL2316347Z crossref_primary_10_1016_j_laa_2010_11_014 crossref_primary_10_1016_j_camwa_2011_07_015 crossref_primary_10_2298_FIL2322467C crossref_primary_10_1016_j_amc_2015_04_102 crossref_primary_10_1016_j_laa_2009_02_032 crossref_primary_10_1088_1742_6596_1943_1_012116 crossref_primary_10_1016_j_jmaa_2008_04_062 crossref_primary_10_1016_j_jmaa_2010_05_005 crossref_primary_10_2298_FIL2324229Z crossref_primary_10_2298_FIL2402393P crossref_primary_10_1016_j_laa_2011_03_005 crossref_primary_10_1155_2011_540212 crossref_primary_10_1515_spma_2019_0013 crossref_primary_10_1080_03081087_2020_1781038 crossref_primary_10_1007_s11785_023_01440_x crossref_primary_10_1007_s13398_021_01161_w |
Cites_doi | 10.1016/0024-3795(69)90009-3 10.1080/03081088308817561 10.1307/mmj/1028998132 10.1016/S0024-3795(03)00650-5 10.1007/978-1-4757-5797-2 10.4153/CMB-1975-061-4 10.1016/0024-3795(70)90020-0 10.1080/03081088308817529 10.1016/S0024-3795(98)10161-1 10.1016/0024-3795(87)90168-6 10.6028/jres.070B.004 10.1017/S0305004100040329 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2008 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2008 |
DBID | AAYXX CITATION |
DOI | 10.1080/03081080600872616 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1563-5139 |
EndPage | 304 |
ExternalDocumentID | 10_1080_03081080600872616 187189 |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADIYS ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGCQS AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 YQT ZGOLN ~S~ 07G 1TA AAGDL AAHIA AAIKQ AAKBW AAYXX ABEFU ACAGQ ACGEE ADYSH AEUMN AFFNX AFRVT AGLEN AGROQ AHMOU AIYEW ALCKM AMEWO AMPGV AMVHM AMXXU BCCOT BPLKW C06 CITATION CRFIH DMQIW DWIFK HF~ IVXBP LJTGL NUSFT QCRFL TAQ TFMCV TOXWX UB9 UU8 V3K V4Q |
ID | FETCH-LOGICAL-c412t-6a6a2f14b42e30cd388c8a0308629b3c39ad3ef405c7a860d9c17befc09cc3983 |
ISSN | 0308-1087 |
IngestDate | Tue Jul 01 01:40:17 EDT 2025 Thu Apr 24 22:58:28 EDT 2025 Mon May 13 12:09:03 EDT 2019 Wed Dec 25 09:02:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c412t-6a6a2f14b42e30cd388c8a0308629b3c39ad3ef405c7a860d9c17befc09cc3983 |
PageCount | 6 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_03081080600872616 crossref_primary_10_1080_03081080600872616 crossref_citationtrail_10_1080_03081080600872616 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 5/1/2008 2008-05-00 |
PublicationDateYYYYMMDD | 2008-05-01 |
PublicationDate_xml | – month: 05 year: 2008 text: 5/1/2008 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Linear & multilinear algebra |
PublicationYear | 2008 |
Publisher | Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis Group |
References | Zhang F (CIT0013) 1999 CIT0010 CIT0001 CIT0011 Schwerdtfeger H (CIT0012) 1950 Katz IJ (CIT0008) 1966; 70 CIT0003 CIT0002 CIT0005 CIT0004 CIT0007 CIT0006 CIT0009 |
References_xml | – ident: CIT0001 doi: 10.1016/0024-3795(69)90009-3 – volume-title: Introduction to Linear Algebra and The Theory of Matrices year: 1950 ident: CIT0012 – ident: CIT0007 doi: 10.1080/03081088308817561 – ident: CIT0010 doi: 10.1307/mmj/1028998132 – ident: CIT0003 doi: 10.1016/S0024-3795(03)00650-5 – volume-title: Matrix Theory year: 1999 ident: CIT0013 doi: 10.1007/978-1-4757-5797-2 – ident: CIT0002 doi: 10.4153/CMB-1975-061-4 – ident: CIT0009 doi: 10.1016/0024-3795(70)90020-0 – ident: CIT0006 doi: 10.1080/03081088308817529 – ident: CIT0004 doi: 10.1016/S0024-3795(98)10161-1 – ident: CIT0005 doi: 10.1016/0024-3795(87)90168-6 – volume: 70 start-page: 47 year: 1966 ident: CIT0008 publication-title: Journal of Research of the National Bureau of Standards Section B doi: 10.6028/jres.070B.004 – ident: CIT0011 doi: 10.1017/S0305004100040329 |
SSID | ssj0004135 |
Score | 2.0047565 |
Snippet | Various characterizations of EP, normal, and Hermitian matrices are obtained by exploiting an elegant representation of matrices derived by Hartwig and... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 299 |
SubjectTerms | AMS Subject Classifications: 15A09 Commutativity Conjugate transpose Group inverse Moore-Penrose inverse Singular value decomposition Skew Hermitian matrix |
Title | Characterizations of EP, normal, and Hermitian matrices |
URI | https://www.tandfonline.com/doi/abs/10.1080/03081080600872616 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgXOCAWEXZlAMnICiJE8c5shQqpEIPrUBcKtuJLy0F0SChfj3jJekGFfQSZXMWz8t4Jp55g9BJnKaSyyBy_YiqlJwsdVnCucvTkAqwGNJYp4s1Hki9Hd4_R8-jaqM6uyTnF2L4Y17JIlKFfSBXlSX7D8mWF4UdsA7yhSVIGJZ_kvF1ybY8HEW01Zqq2_rKFu0VsZl1FfKiv-VXTclvAweLPGiwNJmps6HjC3tmW1UA4R-l2m6AV83Orlh3wMAb1rJ5HHRZGdyromu7Nq_wTs2_X5F8OPFTgY5C-DQMWjP1PcZ-hdlsK00LawfLzCpPgt3IN-REhXY1tOEWRXhcVZrCSHbUxaYI8YxCtxGQcDe1ShSDHvh8U-TZxpsB148my2glAIchqKCVy_rNy9MoR9YWWy2eu5jhVjzr01efsFEmGGzHbI_WBlq3ToNzaRCwiZay_hZaa5SMu4NtFM9gwXmTTq157hgknDuAA6fEgVPgYAe1b2ut67pri2K4IvSD3CWMsED6IQ-DDHsixZQKytQrkCDhWOCEpTiTYIeLmFHipYnwY55J4SUCDlK8iyr9t362hxxBCaGYRbGafA4x5R6PBNg0CfdCKaVXRV7RDR1hGeNV4ZJexy-IZad7ropOyybvhi5l3sneeN92co06aQA3e3on_8qrKJrTBP96q_0F2x2gVc3Vqz-PQ1TJPz6zI7BCc35sAfYNXYt96Q |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6I8PTChpjhxYjsjqloVaCuGVuoWxXa8UFJEUwnx64nzKG2BDt0ixRdfHMd3Pn_3HcAtU0oL7XiW7XGTkhMpK_SFsIRyuUw9BsWydLFuj7YH7tPQGxYBt0kBqzR7aJ0TRWRrtfm5TTC6hMTdG44Vc0ENoVq6BaCbsOX5lJkKBgT3fvIiiwKbJKMw5aw81fzrEQt2aYG1dM7etPYhKDXNYSav9Wki6vJricRx_Vc5gL3CFUUP-dw5hI0oPoLd7ozHdXIMrDHjcy7SNdFYo-ZLDcVG8VENpT2jtgHUmJUCvWWE_9HkBAatZr_RtopSC5Z0bSexaEhDR9uucJ2IYKkI55KHRjnq-IJI4oeKRDr17iQLOcXKlzYTkZbYl-lNTk6hEo_j6AyQ5JRyEnrMHGm6hAssPJlaSl9gV2uNq4DLgQ5kwUNuymGMArukK10ekyrczUTecxKOVY3x_NcLkizyofMyJb-bB8lnUgVvhQj5t6vzNeVuYLvd73aCzmPv-QJ2cgiKwVBeQiX5mEZXqZ-TiOtsMn8DNaruCg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LT8IwHMd_UUyMHnwb8dmDJ8OwW7euOxqE4APCQRJuy_q6iEDcSIx_veseCPg4cFuydu26rv21_f4-P4BrX0rNteNZtseMS46SVhRwbnHpMpFaDNLP3MU6Xdruu48Db1Boc-JCVmnW0DoHRWRjtfm5J1KXirhbg1gxF9Tw1NIVAF2HDWrA4caDA3e_3SKL-JokI5gyvzzU_O0RC9PSArR0brpp7eYxVeOMUmhUJq_1acLr4nOJ4bjym-zBTmGIoru85-zDmhodwHZnRnGND8FvzGjOhbMmGmvU7NXQyNR7WENpwaht5DRmnEBvGe5fxUfQbzVfGm2rCLRgCdd2EotGNHK07XLXUQQLSRgTLDKVo07AiSBBJInSqW0n_IhRLANh-1xpgQOR3mTkGCqj8UidABKMUkYizzcHmi5hHHNPpPNkwLGrtcZVwGU7h6KgkJtgGMPQLmGly21ShZtZlkmO4PgvMZ7_eGGS7XvoPEjJz-Rh8pFUwfsnC_mzqNMV813BZu--FT4_dJ_OYCvXnxgB5TlUkvepukiNnIRfZl35C0YH7K4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizations+of+EP%2C+normal%2C+and+Hermitian+matrices&rft.jtitle=Linear+%26+multilinear+algebra&rft.au=Maria+Baksalary%2C+Oskar&rft.au=Trenkler%2C+G%C3%B6tz&rft.date=2008-05-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=0308-1087&rft.eissn=1563-5139&rft.volume=56&rft.issue=3&rft.spage=299&rft.epage=304&rft_id=info:doi/10.1080%2F03081080600872616&rft.externalDocID=187189 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-1087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-1087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-1087&client=summon |