Characterizations of EP, normal, and Hermitian matrices

Various characterizations of EP, normal, and Hermitian matrices are obtained by exploiting an elegant representation of matrices derived by Hartwig and Spindelböck [ 7 , Corollary 6]. One aim of the present article is to demonstrate its usefulness when investigating different matrix identities. The...

Full description

Saved in:
Bibliographic Details
Published inLinear & multilinear algebra Vol. 56; no. 3; pp. 299 - 304
Main Authors Maria Baksalary, Oskar, Trenkler, Götz
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 01.05.2008
Subjects
Online AccessGet full text
ISSN0308-1087
1563-5139
DOI10.1080/03081080600872616

Cover

Loading…
Abstract Various characterizations of EP, normal, and Hermitian matrices are obtained by exploiting an elegant representation of matrices derived by Hartwig and Spindelböck [ 7 , Corollary 6]. One aim of the present article is to demonstrate its usefulness when investigating different matrix identities. The second aim is to extend and generalize lists of characterizations of Equal Projectors (EP), normal, and Hermitian matrices known in the literature, by providing numerous sets of equivalent conditions referring to the notions of conjugate transpose, Moore-Penrose inverse, and group inverse.
AbstractList Various characterizations of EP, normal, and Hermitian matrices are obtained by exploiting an elegant representation of matrices derived by Hartwig and Spindelböck [ 7 , Corollary 6]. One aim of the present article is to demonstrate its usefulness when investigating different matrix identities. The second aim is to extend and generalize lists of characterizations of Equal Projectors (EP), normal, and Hermitian matrices known in the literature, by providing numerous sets of equivalent conditions referring to the notions of conjugate transpose, Moore-Penrose inverse, and group inverse.
Author Maria Baksalary, Oskar
Trenkler, Götz
Author_xml – sequence: 1
  givenname: Oskar
  surname: Maria Baksalary
  fullname: Maria Baksalary, Oskar
  email: baxx@amu.edu.pl
  organization: Institute of Physics , Adam Mickiewicz University
– sequence: 2
  givenname: Götz
  surname: Trenkler
  fullname: Trenkler, Götz
  organization: Department of Statistics , University of Dortmund
BookMark eNqNj8FKAzEQhoNUsK0-gLd9gK5ONrvZLHiRpVqhoAc9h2k2wchuIklA69PbtZ4sFE8z8M83M9-MTJx3mpBLClcUBFwDAzE2HEDUBaf8hExpxVleUdZMyHTM891AfUZmMb4BQElZNSV1-4oBVdLBfmGy3sXMm2z5tMicDwP2iwxdl610GGyy6LIBU7BKx3NyarCP-uK3zsnL3fK5XeXrx_uH9nadq5IWKefIsTC03JSFZqA6JoQSOD7Di2bDFGuwY9qUUKkaBYeuUbTeaKOgUbtQsDmh-70q-BiDNvI92AHDVlKQo7A8MN8x9R9G2fQjlwLa_ih5syetM6P-hw99JxNuex9MQKdslOwfh4_gB5RMn4l9A8lkgmQ
CitedBy_id crossref_primary_10_1142_S0219498824502049
crossref_primary_10_1016_j_cam_2023_115558
crossref_primary_10_1080_03081080802264372
crossref_primary_10_1007_s40840_017_0445_4
crossref_primary_10_1016_j_laa_2009_03_023
crossref_primary_10_1016_j_amc_2011_11_021
crossref_primary_10_1016_j_laa_2011_01_031
crossref_primary_10_1016_j_amc_2011_05_018
crossref_primary_10_1137_17M1128216
crossref_primary_10_1016_j_laa_2009_01_015
crossref_primary_10_1016_j_amc_2011_12_030
crossref_primary_10_4236_alamt_2013_34010
crossref_primary_10_1002_nla_663
crossref_primary_10_14710_jfma_v5i2_16363
crossref_primary_10_1007_s00010_022_00878_2
crossref_primary_10_1080_03081087_2017_1347136
crossref_primary_10_1016_j_laa_2008_05_003
crossref_primary_10_2298_FIL2315017L
crossref_primary_10_2298_FIL2316347Z
crossref_primary_10_1016_j_laa_2010_11_014
crossref_primary_10_1016_j_camwa_2011_07_015
crossref_primary_10_2298_FIL2322467C
crossref_primary_10_1016_j_amc_2015_04_102
crossref_primary_10_1016_j_laa_2009_02_032
crossref_primary_10_1088_1742_6596_1943_1_012116
crossref_primary_10_1016_j_jmaa_2008_04_062
crossref_primary_10_1016_j_jmaa_2010_05_005
crossref_primary_10_2298_FIL2324229Z
crossref_primary_10_2298_FIL2402393P
crossref_primary_10_1016_j_laa_2011_03_005
crossref_primary_10_1155_2011_540212
crossref_primary_10_1515_spma_2019_0013
crossref_primary_10_1080_03081087_2020_1781038
crossref_primary_10_1007_s11785_023_01440_x
crossref_primary_10_1007_s13398_021_01161_w
Cites_doi 10.1016/0024-3795(69)90009-3
10.1080/03081088308817561
10.1307/mmj/1028998132
10.1016/S0024-3795(03)00650-5
10.1007/978-1-4757-5797-2
10.4153/CMB-1975-061-4
10.1016/0024-3795(70)90020-0
10.1080/03081088308817529
10.1016/S0024-3795(98)10161-1
10.1016/0024-3795(87)90168-6
10.6028/jres.070B.004
10.1017/S0305004100040329
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2008
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2008
DBID AAYXX
CITATION
DOI 10.1080/03081080600872616
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1563-5139
EndPage 304
ExternalDocumentID 10_1080_03081080600872616
187189
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADIYS
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGCQS
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
~S~
07G
1TA
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ABEFU
ACAGQ
ACGEE
ADYSH
AEUMN
AFFNX
AFRVT
AGLEN
AGROQ
AHMOU
AIYEW
ALCKM
AMEWO
AMPGV
AMVHM
AMXXU
BCCOT
BPLKW
C06
CITATION
CRFIH
DMQIW
DWIFK
HF~
IVXBP
LJTGL
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
ID FETCH-LOGICAL-c412t-6a6a2f14b42e30cd388c8a0308629b3c39ad3ef405c7a860d9c17befc09cc3983
ISSN 0308-1087
IngestDate Tue Jul 01 01:40:17 EDT 2025
Thu Apr 24 22:58:28 EDT 2025
Mon May 13 12:09:03 EDT 2019
Wed Dec 25 09:02:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-6a6a2f14b42e30cd388c8a0308629b3c39ad3ef405c7a860d9c17befc09cc3983
PageCount 6
ParticipantIDs informaworld_taylorfrancis_310_1080_03081080600872616
crossref_primary_10_1080_03081080600872616
crossref_citationtrail_10_1080_03081080600872616
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 5/1/2008
2008-05-00
PublicationDateYYYYMMDD 2008-05-01
PublicationDate_xml – month: 05
  year: 2008
  text: 5/1/2008
  day: 01
PublicationDecade 2000
PublicationTitle Linear & multilinear algebra
PublicationYear 2008
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References Zhang F (CIT0013) 1999
CIT0010
CIT0001
CIT0011
Schwerdtfeger H (CIT0012) 1950
Katz IJ (CIT0008) 1966; 70
CIT0003
CIT0002
CIT0005
CIT0004
CIT0007
CIT0006
CIT0009
References_xml – ident: CIT0001
  doi: 10.1016/0024-3795(69)90009-3
– volume-title: Introduction to Linear Algebra and The Theory of Matrices
  year: 1950
  ident: CIT0012
– ident: CIT0007
  doi: 10.1080/03081088308817561
– ident: CIT0010
  doi: 10.1307/mmj/1028998132
– ident: CIT0003
  doi: 10.1016/S0024-3795(03)00650-5
– volume-title: Matrix Theory
  year: 1999
  ident: CIT0013
  doi: 10.1007/978-1-4757-5797-2
– ident: CIT0002
  doi: 10.4153/CMB-1975-061-4
– ident: CIT0009
  doi: 10.1016/0024-3795(70)90020-0
– ident: CIT0006
  doi: 10.1080/03081088308817529
– ident: CIT0004
  doi: 10.1016/S0024-3795(98)10161-1
– ident: CIT0005
  doi: 10.1016/0024-3795(87)90168-6
– volume: 70
  start-page: 47
  year: 1966
  ident: CIT0008
  publication-title: Journal of Research of the National Bureau of Standards Section B
  doi: 10.6028/jres.070B.004
– ident: CIT0011
  doi: 10.1017/S0305004100040329
SSID ssj0004135
Score 2.0047565
Snippet Various characterizations of EP, normal, and Hermitian matrices are obtained by exploiting an elegant representation of matrices derived by Hartwig and...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 299
SubjectTerms AMS Subject Classifications: 15A09
Commutativity
Conjugate transpose
Group inverse
Moore-Penrose inverse
Singular value decomposition
Skew Hermitian matrix
Title Characterizations of EP, normal, and Hermitian matrices
URI https://www.tandfonline.com/doi/abs/10.1080/03081080600872616
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgXOCAWEXZlAMnICiJE8c5shQqpEIPrUBcKtuJLy0F0SChfj3jJekGFfQSZXMWz8t4Jp55g9BJnKaSyyBy_YiqlJwsdVnCucvTkAqwGNJYp4s1Hki9Hd4_R8-jaqM6uyTnF2L4Y17JIlKFfSBXlSX7D8mWF4UdsA7yhSVIGJZ_kvF1ybY8HEW01Zqq2_rKFu0VsZl1FfKiv-VXTclvAweLPGiwNJmps6HjC3tmW1UA4R-l2m6AV83Orlh3wMAb1rJ5HHRZGdyromu7Nq_wTs2_X5F8OPFTgY5C-DQMWjP1PcZ-hdlsK00LawfLzCpPgt3IN-REhXY1tOEWRXhcVZrCSHbUxaYI8YxCtxGQcDe1ShSDHvh8U-TZxpsB148my2glAIchqKCVy_rNy9MoR9YWWy2eu5jhVjzr01efsFEmGGzHbI_WBlq3ToNzaRCwiZay_hZaa5SMu4NtFM9gwXmTTq157hgknDuAA6fEgVPgYAe1b2ut67pri2K4IvSD3CWMsED6IQ-DDHsixZQKytQrkCDhWOCEpTiTYIeLmFHipYnwY55J4SUCDlK8iyr9t362hxxBCaGYRbGafA4x5R6PBNg0CfdCKaVXRV7RDR1hGeNV4ZJexy-IZad7ropOyybvhi5l3sneeN92co06aQA3e3on_8qrKJrTBP96q_0F2x2gVc3Vqz-PQ1TJPz6zI7BCc35sAfYNXYt96Q
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6I8PTChpjhxYjsjqloVaCuGVuoWxXa8UFJEUwnx64nzKG2BDt0ixRdfHMd3Pn_3HcAtU0oL7XiW7XGTkhMpK_SFsIRyuUw9BsWydLFuj7YH7tPQGxYBt0kBqzR7aJ0TRWRrtfm5TTC6hMTdG44Vc0ENoVq6BaCbsOX5lJkKBgT3fvIiiwKbJKMw5aw81fzrEQt2aYG1dM7etPYhKDXNYSav9Wki6vJricRx_Vc5gL3CFUUP-dw5hI0oPoLd7ozHdXIMrDHjcy7SNdFYo-ZLDcVG8VENpT2jtgHUmJUCvWWE_9HkBAatZr_RtopSC5Z0bSexaEhDR9uucJ2IYKkI55KHRjnq-IJI4oeKRDr17iQLOcXKlzYTkZbYl-lNTk6hEo_j6AyQ5JRyEnrMHGm6hAssPJlaSl9gV2uNq4DLgQ5kwUNuymGMArukK10ekyrczUTecxKOVY3x_NcLkizyofMyJb-bB8lnUgVvhQj5t6vzNeVuYLvd73aCzmPv-QJ2cgiKwVBeQiX5mEZXqZ-TiOtsMn8DNaruCg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LT8IwHMd_UUyMHnwb8dmDJ8OwW7euOxqE4APCQRJuy_q6iEDcSIx_veseCPg4cFuydu26rv21_f4-P4BrX0rNteNZtseMS46SVhRwbnHpMpFaDNLP3MU6Xdruu48Db1Boc-JCVmnW0DoHRWRjtfm5J1KXirhbg1gxF9Tw1NIVAF2HDWrA4caDA3e_3SKL-JokI5gyvzzU_O0RC9PSArR0brpp7eYxVeOMUmhUJq_1acLr4nOJ4bjym-zBTmGIoru85-zDmhodwHZnRnGND8FvzGjOhbMmGmvU7NXQyNR7WENpwaht5DRmnEBvGe5fxUfQbzVfGm2rCLRgCdd2EotGNHK07XLXUQQLSRgTLDKVo07AiSBBJInSqW0n_IhRLANh-1xpgQOR3mTkGCqj8UidABKMUkYizzcHmi5hHHNPpPNkwLGrtcZVwGU7h6KgkJtgGMPQLmGly21ShZtZlkmO4PgvMZ7_eGGS7XvoPEjJz-Rh8pFUwfsnC_mzqNMV813BZu--FT4_dJ_OYCvXnxgB5TlUkvepukiNnIRfZl35C0YH7K4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizations+of+EP%2C+normal%2C+and+Hermitian+matrices&rft.jtitle=Linear+%26+multilinear+algebra&rft.au=Maria+Baksalary%2C+Oskar&rft.au=Trenkler%2C+G%C3%B6tz&rft.date=2008-05-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=0308-1087&rft.eissn=1563-5139&rft.volume=56&rft.issue=3&rft.spage=299&rft.epage=304&rft_id=info:doi/10.1080%2F03081080600872616&rft.externalDocID=187189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-1087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-1087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-1087&client=summon