Realizing effective magnetic field for photons by controlling the phase of dynamic modulation

The goal to achieve arbitrary control of photon flow has motivated much of the recent research on photonic crystals and metamaterials. As a new mechanism for controlling photon flow, we introduce a scheme that generates an effective magnetic field for photons. We consider a resonator lattice in whic...

Full description

Saved in:
Bibliographic Details
Published inNature photonics Vol. 6; no. 11; pp. 782 - 787
Main Authors Fang, Kejie, Yu, Zongfu, Fan, Shanhui
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.11.2012
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The goal to achieve arbitrary control of photon flow has motivated much of the recent research on photonic crystals and metamaterials. As a new mechanism for controlling photon flow, we introduce a scheme that generates an effective magnetic field for photons. We consider a resonator lattice in which the coupling constants between the resonators are harmonically modulated in time. With appropriate choice of the spatial distribution of the modulation phases, an effective magnetic field for photons can be created, leading to a Lorentz force for photons and the emergence of topologically protected one-way photon edge states that are robust against disorders—without the use of magneto-optical effects. By considering a resonator lattice in which the coupling constants between the resonators are harmonically modulated in time and by controlling the spatial distribution of the modulation phases, scientists introduce a scheme that can generate an effective magnetic field for photons, without the use of magneto-optical effects.
AbstractList The goal to achieve arbitrary control of photon flow has motivated much of the recent research on photonic crystals and metamaterials. As a new mechanism for controlling photon flow, we introduce a scheme that generates an effective magnetic field for photons. We consider a resonator lattice in which the coupling constants between the resonators are harmonically modulated in time. With appropriate choice of the spatial distribution of the modulation phases, an effective magnetic field for photons can be created, leading to a Lorentz force for photons and the emergence of topologically protected one-way photon edge states that are robust against disorders-without the use of magneto-optical effects.
The goal to achieve arbitrary control of photon flow has motivated much of the recent research on photonic crystals and metamaterials. As a new mechanism for controlling photon flow, we introduce a scheme that generates an effective magnetic field for photons. We consider a resonator lattice in which the coupling constants between the resonators are harmonically modulated in time. With appropriate choice of the spatial distribution of the modulation phases, an effective magnetic field for photons can be created, leading to a Lorentz force for photons and the emergence of topologically protected one-way photon edge states that are robust against disorders—without the use of magneto-optical effects. By considering a resonator lattice in which the coupling constants between the resonators are harmonically modulated in time and by controlling the spatial distribution of the modulation phases, scientists introduce a scheme that can generate an effective magnetic field for photons, without the use of magneto-optical effects.
Author Fan, Shanhui
Yu, Zongfu
Fang, Kejie
Author_xml – sequence: 1
  givenname: Kejie
  surname: Fang
  fullname: Fang, Kejie
  organization: Department of Physics, Stanford University
– sequence: 2
  givenname: Zongfu
  surname: Yu
  fullname: Yu, Zongfu
  organization: Department of Electrical Engineering, Stanford University
– sequence: 3
  givenname: Shanhui
  surname: Fan
  fullname: Fan, Shanhui
  email: shanhui@stanford.edu
  organization: Department of Electrical Engineering, Stanford University
BookMark eNp9kEtLQzEQRoNU0Fb3LgNu3LQmubmvpYgvKAiiSwlp7qRNyU1qkgr115vaIiLoKgPzncnMGaKB8w4QOqNkQknRXLrVwifvJoxQNmFFdYCOac3bMW_aYvBdN-URGsa4JKQsWsaO0esTSGs-jJtj0BpUMu-Aezl3kIzC2oDtsPYB76ZHPNtg5V0K3totkxaQWzIC9hp3Gyf7TPW-W1uZjHcn6FBLG-F0_47Qy-3N8_X9ePp493B9NR0rTlkal7NOVZrWndSSlHVRasqAzTSFtqCKAC-7rlL5sIa0BeOs45JTyWSTS8ZLWYzQxW7uKvi3NcQkehMVWCsd-HUUlFVVnTVRnqPnv6JLvw4ubydobhPe1rTMKbJLqeBjDKDFKpheho2gRGx9i71vsfUtsu-MVL8QZdKXhRSksf-BdAfG_IebQ_ix0V_MJ-0Gmtw
CitedBy_id crossref_primary_10_1103_PhysRevLett_133_083802
crossref_primary_10_3390_photonics7010018
crossref_primary_10_1038_s41567_020_01093_z
crossref_primary_10_1088_1674_4926_43_12_121201
crossref_primary_10_1038_srep43392
crossref_primary_10_1515_nanoph_2020_0004
crossref_primary_10_1103_PhysRevA_97_033840
crossref_primary_10_1103_PRXQuantum_4_010306
crossref_primary_10_1126_sciadv_1602738
crossref_primary_10_1364_OL_535222
crossref_primary_10_1021_acsnano_2c09883
crossref_primary_10_1103_PhysRevApplied_4_034002
crossref_primary_10_1103_PhysRevA_97_023801
crossref_primary_10_1103_PhysRevB_101_195105
crossref_primary_10_1364_AO_57_008503
crossref_primary_10_1103_PhysRevLett_114_106806
crossref_primary_10_1126_sciadv_aau8135
crossref_primary_10_1038_s41566_017_0051_x
crossref_primary_10_1364_OL_40_005443
crossref_primary_10_1016_j_crhy_2018_03_002
crossref_primary_10_1103_PhysRevApplied_20_064036
crossref_primary_10_1038_s41566_019_0375_9
crossref_primary_10_1002_andp_201800118
crossref_primary_10_1103_PhysRevA_103_013505
crossref_primary_10_1103_PhysRevLett_133_093602
crossref_primary_10_1103_PhysRevX_9_041015
crossref_primary_10_1021_acsphotonics_0c00263
crossref_primary_10_1142_S021886352350039X
crossref_primary_10_1364_OE_452216
crossref_primary_10_1073_pnas_1915027116
crossref_primary_10_1209_0295_5075_ac65af
crossref_primary_10_1103_PhysRevLett_131_123801
crossref_primary_10_1364_OME_550403
crossref_primary_10_1038_496173a
crossref_primary_10_1364_OL_490001
crossref_primary_10_1038_s41467_024_44939_3
crossref_primary_10_1103_PhysRevB_96_165425
crossref_primary_10_1016_j_physleta_2024_130105
crossref_primary_10_1117_1_OE_55_9_097105
crossref_primary_10_1364_OL_492427
crossref_primary_10_59717_j_xinn_mater_2024_100083
crossref_primary_10_1007_s12200_019_0949_7
crossref_primary_10_1515_nanoph_2019_0043
crossref_primary_10_1103_PhysRevB_99_134306
crossref_primary_10_1038_s41598_017_01646_y
crossref_primary_10_1103_PhysRevLett_126_067401
crossref_primary_10_1103_PhysRevLett_126_103603
crossref_primary_10_1038_s41467_020_17550_5
crossref_primary_10_1103_PhysRevLett_117_017701
crossref_primary_10_1364_OE_25_030395
crossref_primary_10_1038_nphoton_2014_177
crossref_primary_10_1515_nanoph_2020_0441
crossref_primary_10_3390_opt3020013
crossref_primary_10_1109_LAWP_2018_2856258
crossref_primary_10_1103_PhysRevB_94_115437
crossref_primary_10_1103_PhysRevApplied_18_024027
crossref_primary_10_1103_PhysRevLett_121_073901
crossref_primary_10_1103_PhysRevApplied_12_054008
crossref_primary_10_1109_TMAG_2021_3083427
crossref_primary_10_1038_srep08352
crossref_primary_10_1038_s41467_019_10974_8
crossref_primary_10_1103_PhysRevLett_122_103903
crossref_primary_10_1364_OE_26_000835
crossref_primary_10_1038_s41467_024_49747_3
crossref_primary_10_1063_5_0046878
crossref_primary_10_1364_OL_38_003570
crossref_primary_10_1088_1367_2630_17_2_023024
crossref_primary_10_1103_PhysRevB_93_085415
crossref_primary_10_1103_PhysRevA_97_043864
crossref_primary_10_1038_ncomms13368
crossref_primary_10_1209_0295_5075_129_34001
crossref_primary_10_1038_nphoton_2013_321
crossref_primary_10_1016_j_ijmecsci_2019_02_037
crossref_primary_10_1038_s41598_024_67985_9
crossref_primary_10_1002_adma_202309835
crossref_primary_10_1080_15376494_2024_2380382
crossref_primary_10_1364_OME_550605
crossref_primary_10_1103_PhysRevB_96_094106
crossref_primary_10_1515_nanoph_2019_0075
crossref_primary_10_1098_rsos_240569
crossref_primary_10_1103_PhysRevB_102_245149
crossref_primary_10_1088_1367_2630_17_7_075008
crossref_primary_10_1038_srep10880
crossref_primary_10_1364_OPTICA_5_001156
crossref_primary_10_1103_PhysRevA_94_063827
crossref_primary_10_1364_OPTICA_5_001396
crossref_primary_10_1103_PhysRevA_89_023803
crossref_primary_10_1016_j_aop_2016_03_005
crossref_primary_10_1364_OPTICA_5_001390
crossref_primary_10_1103_PhysRevB_98_081405
crossref_primary_10_1103_PhysRevApplied_12_044004
crossref_primary_10_1364_OL_491783
crossref_primary_10_1103_PhysRevLett_113_235501
crossref_primary_10_1038_s41566_021_00882_z
crossref_primary_10_7498_aps_71_20220978
crossref_primary_10_1016_j_physe_2020_114415
crossref_primary_10_1038_nphys4009
crossref_primary_10_1103_PhysRevA_105_033501
crossref_primary_10_1103_PhysRevLett_126_203601
crossref_primary_10_1142_S0217979217502496
crossref_primary_10_1103_PhysRevApplied_15_054044
crossref_primary_10_1093_nsr_nwx154
crossref_primary_10_1002_apxr_202300125
crossref_primary_10_1016_j_physe_2015_09_035
crossref_primary_10_1103_Physics_7_87
crossref_primary_10_3390_photonics10111220
crossref_primary_10_1103_PhysRevLett_113_113904
crossref_primary_10_1103_PhysRevLett_116_213901
crossref_primary_10_1063_5_0034291
crossref_primary_10_1364_PRJ_453603
crossref_primary_10_3788_LOP241585
crossref_primary_10_1103_PhysRevX_6_041026
crossref_primary_10_1088_1367_2630_17_11_115008
crossref_primary_10_1103_PhysRevApplied_21_034058
crossref_primary_10_1364_PRJ_485676
crossref_primary_10_1103_PhysRevB_104_085131
crossref_primary_10_1103_PhysRevB_104_085132
crossref_primary_10_1038_s41598_023_48503_9
crossref_primary_10_1103_PhysRevA_94_023805
crossref_primary_10_1103_PhysRevX_6_041043
crossref_primary_10_1038_ncomms4225
crossref_primary_10_1002_lpor_202200626
crossref_primary_10_1063_5_0050775
crossref_primary_10_1103_PhysRevLett_127_105901
crossref_primary_10_1364_OL_503244
crossref_primary_10_1088_2053_1591_ac5f8b
crossref_primary_10_1103_PhysRevB_104_144207
crossref_primary_10_1016_j_physleta_2020_126596
crossref_primary_10_1038_s41467_018_07084_2
crossref_primary_10_1103_PhysRevA_101_053807
crossref_primary_10_1038_srep22270
crossref_primary_10_1002_andp_202100191
crossref_primary_10_1209_0295_5075_116_30005
crossref_primary_10_3390_cryst9040221
crossref_primary_10_1038_s41467_021_21250_z
crossref_primary_10_7498_aps_66_224203
crossref_primary_10_1038_s41566_019_0453_z
crossref_primary_10_1103_PhysRevResearch_1_032005
crossref_primary_10_1038_s41377_020_00354_z
crossref_primary_10_1039_C5NR00231A
crossref_primary_10_1103_PhysRevLett_129_053901
crossref_primary_10_1103_PhysRevLett_133_223801
crossref_primary_10_1088_1612_202X_aadf61
crossref_primary_10_1103_PhysRevA_105_042422
crossref_primary_10_1088_1367_2630_aa7c82
crossref_primary_10_1103_PhysRevA_109_013323
crossref_primary_10_1103_PhysRevA_97_023846
crossref_primary_10_1103_PhysRevB_94_020301
crossref_primary_10_1038_s41566_021_00910_y
crossref_primary_10_1038_ncomms7710
crossref_primary_10_1088_2040_8978_18_7_075105
crossref_primary_10_1364_OL_463458
crossref_primary_10_1038_s41377_021_00464_2
crossref_primary_10_1088_2053_1583_aa56de
crossref_primary_10_1126_science_ado8192
crossref_primary_10_1103_PhysRevA_99_053834
crossref_primary_10_1002_lpor_202300458
crossref_primary_10_1103_PhysRevB_106_235418
crossref_primary_10_1109_JPROC_2020_3012381
crossref_primary_10_1007_s11082_020_2248_3
crossref_primary_10_1126_science_aat3100
crossref_primary_10_1142_S0217979214410070
crossref_primary_10_1038_s42005_019_0263_0
crossref_primary_10_1103_PhysRevB_108_195423
crossref_primary_10_1016_j_isci_2022_104727
crossref_primary_10_1364_OL_40_005259
crossref_primary_10_1103_PhysRevB_109_054312
crossref_primary_10_1103_PhysRevLett_110_203904
crossref_primary_10_1103_PhysRevA_105_023504
crossref_primary_10_1103_PhysRevX_4_031031
crossref_primary_10_1364_JOSAB_484961
crossref_primary_10_1103_PhysRevB_97_035442
crossref_primary_10_1364_AOP_411024
crossref_primary_10_1088_1367_2630_aa66f8
crossref_primary_10_1103_PhysRevApplied_10_044028
crossref_primary_10_1103_PhysRevApplied_10_054069
crossref_primary_10_1109_TMTT_2021_3079250
crossref_primary_10_1038_s41563_018_0252_9
crossref_primary_10_1364_OE_26_015255
crossref_primary_10_1364_OL_384552
crossref_primary_10_1103_PhysRevA_103_013309
crossref_primary_10_1002_qute_202100017
crossref_primary_10_1038_nphys3134
crossref_primary_10_1016_j_ijleo_2021_167351
crossref_primary_10_1103_PhysRevApplied_15_044041
crossref_primary_10_1016_j_optcom_2016_05_038
crossref_primary_10_1103_PhysRevA_88_043847
crossref_primary_10_1103_PhysRevApplied_17_064029
crossref_primary_10_1364_OL_40_005275
crossref_primary_10_1038_srep30055
crossref_primary_10_1364_OE_405820
crossref_primary_10_1109_JLT_2016_2586959
crossref_primary_10_1007_s00339_021_04989_6
crossref_primary_10_1103_PhysRevApplied_15_024002
crossref_primary_10_1103_PhysRevB_95_165109
crossref_primary_10_1103_PhysRevA_105_043318
crossref_primary_10_1103_PhysRevA_94_021801
crossref_primary_10_1103_PhysRevA_107_063501
crossref_primary_10_1002_pssb_202200214
crossref_primary_10_1103_PhysRevB_97_184201
crossref_primary_10_1103_PhysRevLett_133_233805
crossref_primary_10_1103_PhysRevX_9_021051
crossref_primary_10_1063_5_0152354
crossref_primary_10_1126_sciadv_adg7541
crossref_primary_10_1103_PhysRevA_107_053701
crossref_primary_10_1088_1367_2630_aad136
crossref_primary_10_1364_OL_411622
crossref_primary_10_1364_OE_398421
crossref_primary_10_1038_ncomms9183
crossref_primary_10_1103_PhysRevResearch_4_043162
crossref_primary_10_1364_OL_38_001912
crossref_primary_10_1038_ncomms16023
crossref_primary_10_1103_PhysRevA_99_033844
crossref_primary_10_1016_j_ssc_2024_115735
crossref_primary_10_1016_j_chaos_2023_113333
crossref_primary_10_1103_PhysRevB_98_075412
crossref_primary_10_1142_S0217979214410033
crossref_primary_10_1063_5_0039586
crossref_primary_10_1103_PhysRevB_97_075128
crossref_primary_10_1103_PhysRevA_110_043716
crossref_primary_10_1103_PhysRevApplied_13_044070
crossref_primary_10_1103_PhysRevApplied_16_014036
crossref_primary_10_1038_nphoton_2016_107
crossref_primary_10_1103_PhysRevA_91_033827
crossref_primary_10_1364_OPTICA_6_000839
crossref_primary_10_1080_00018732_2021_1876991
crossref_primary_10_1103_PhysRevLett_120_023601
crossref_primary_10_1103_PhysRevLett_120_116802
crossref_primary_10_1038_s41566_023_01189_x
crossref_primary_10_1103_PhysRevB_95_161115
crossref_primary_10_1038_s41563_022_01200_w
crossref_primary_10_1038_s41565_019_0584_x
crossref_primary_10_1073_pnas_2300860120
crossref_primary_10_1021_acsphotonics_3c00747
crossref_primary_10_1088_1367_2630_aaac04
crossref_primary_10_1038_srep28453
crossref_primary_10_21468_SciPostPhys_14_5_107
crossref_primary_10_1038_nphys3458
crossref_primary_10_1103_PhysRevResearch_4_L032046
crossref_primary_10_1364_OL_41_000741
crossref_primary_10_1021_acs_jpcb_4c05966
crossref_primary_10_1364_OL_40_000463
crossref_primary_10_1103_PhysRevA_109_023522
crossref_primary_10_1002_lpor_201900126
crossref_primary_10_1038_s41467_021_22597_z
crossref_primary_10_1103_PhysRevB_103_035415
crossref_primary_10_1117_1_OE_61_9_097103
crossref_primary_10_1038_s42005_024_01676_9
crossref_primary_10_1142_S0217979214410021
crossref_primary_10_1103_PhysRevB_99_081103
crossref_primary_10_1103_PhysRevB_98_165129
crossref_primary_10_1103_PhysRevA_96_043816
crossref_primary_10_1103_PhysRevB_94_155437
crossref_primary_10_1142_S021797921441001X
crossref_primary_10_1103_PhysRevLett_124_206601
crossref_primary_10_1088_1367_2630_18_11_113029
crossref_primary_10_1364_OE_27_025841
crossref_primary_10_1103_PhysRevApplied_7_054022
crossref_primary_10_1063_1_4982164
crossref_primary_10_1038_s41598_024_68602_5
crossref_primary_10_1080_23746149_2021_1905546
crossref_primary_10_1103_PhysRevB_87_235429
crossref_primary_10_1364_OME_529108
crossref_primary_10_1103_PhysRevB_100_054302
crossref_primary_10_1103_PhysRevLett_130_083601
crossref_primary_10_1038_s41377_020_00384_7
crossref_primary_10_1002_adma_202310010
crossref_primary_10_1038_srep13376
crossref_primary_10_1103_PhysRevResearch_2_013387
crossref_primary_10_1103_PhysRevB_99_014103
crossref_primary_10_1021_acs_chemrev_2c00800
crossref_primary_10_1103_PhysRevB_94_165405
crossref_primary_10_1063_5_0180301
crossref_primary_10_1364_OL_42_005006
crossref_primary_10_1103_PhysRevB_93_020502
crossref_primary_10_1016_j_micrna_2022_207447
crossref_primary_10_1038_ncomms11619
crossref_primary_10_1038_s41567_020_0815_y
crossref_primary_10_1103_PhysRevLett_121_023901
crossref_primary_10_7498_aps_73_20240040
crossref_primary_10_1002_lpor_202100003
crossref_primary_10_1038_ncomms10779
crossref_primary_10_1364_JOSAB_36_000306
crossref_primary_10_1103_PhysRevLett_124_083603
crossref_primary_10_1088_2040_8986_ab18eb
crossref_primary_10_1103_PhysRevB_93_041415
crossref_primary_10_1038_srep32752
crossref_primary_10_1103_PhysRevA_97_012121
crossref_primary_10_1088_1367_2630_16_11_113023
crossref_primary_10_1126_science_aaz3071
crossref_primary_10_1088_1367_2630_aa57ba
crossref_primary_10_1103_PhysRevLett_124_253601
crossref_primary_10_1103_PhysRevA_99_013826
crossref_primary_10_1103_PhysRevLett_134_116607
crossref_primary_10_1002_lpor_202401157
crossref_primary_10_1038_ncomms16097
crossref_primary_10_1088_2040_8986_aaa701
crossref_primary_10_1364_PRJ_530245
crossref_primary_10_1103_PhysRevB_108_134119
crossref_primary_10_1021_acsphotonics_0c00961
crossref_primary_10_1364_OE_500291
crossref_primary_10_1103_PhysRevX_5_011012
crossref_primary_10_1186_s11671_018_2538_x
crossref_primary_10_1103_PhysRevA_101_023839
crossref_primary_10_1088_1367_2630_ac20eb
crossref_primary_10_1103_PhysRevB_91_161413
crossref_primary_10_1103_PhysRevLett_122_143901
crossref_primary_10_1103_PhysRevA_99_013816
crossref_primary_10_1103_PhysRevA_105_023319
crossref_primary_10_1103_PhysRevLett_114_103902
crossref_primary_10_1209_0295_5075_120_54003
crossref_primary_10_1002_adom_201801582
crossref_primary_10_1038_s41467_019_11117_9
crossref_primary_10_1103_PhysRevB_89_075113
crossref_primary_10_1364_OPTICA_3_001256
crossref_primary_10_1038_s41566_018_0179_3
crossref_primary_10_1103_PhysRevResearch_2_012011
crossref_primary_10_1016_j_optcom_2021_126870
crossref_primary_10_1109_JSTQE_2020_3010586
crossref_primary_10_1364_OE_395504
crossref_primary_10_1109_JPROC_2019_2939987
crossref_primary_10_1103_PhysRevA_107_023705
crossref_primary_10_1103_PhysRevB_94_140303
crossref_primary_10_1364_OE_439769
crossref_primary_10_1103_PhysRevB_87_060301
crossref_primary_10_1016_j_mtphys_2024_101489
crossref_primary_10_1140_epjst_e2018_800091_5
crossref_primary_10_1103_PhysRevA_91_053854
crossref_primary_10_1103_PhysRevA_102_013723
crossref_primary_10_1063_5_0008202
crossref_primary_10_1021_acsphotonics_1c00968
crossref_primary_10_1364_OE_493283
crossref_primary_10_1364_OE_25_013448
crossref_primary_10_1103_PhysRevLett_116_176401
crossref_primary_10_1021_acsphotonics_2c01807
crossref_primary_10_1038_nphys3611
crossref_primary_10_1038_s41598_020_58018_2
crossref_primary_10_1088_1367_2630_aac4fa
crossref_primary_10_1103_PhysRevLett_134_070601
crossref_primary_10_1016_j_optcom_2021_126861
crossref_primary_10_1038_s41467_023_37065_z
crossref_primary_10_1364_OE_450558
crossref_primary_10_1103_PhysRevApplied_11_024046
crossref_primary_10_1364_AO_520654
crossref_primary_10_1515_nanoph_2021_0231
crossref_primary_10_1103_PhysRevA_104_053529
crossref_primary_10_1103_PhysRevA_99_013851
crossref_primary_10_1103_PhysRevLett_114_243901
crossref_primary_10_1103_PhysRevA_107_023720
crossref_primary_10_1126_sciadv_aat2774
crossref_primary_10_1038_s41377_022_00870_0
crossref_primary_10_1103_PhysRevLett_121_075502
crossref_primary_10_1103_PhysRevB_95_045102
crossref_primary_10_1016_j_optlastec_2022_107957
crossref_primary_10_1364_JOSAB_35_000417
crossref_primary_10_1109_JPROC_2020_3023959
crossref_primary_10_1016_j_physleta_2022_128299
crossref_primary_10_1364_OE_24_002496
crossref_primary_10_1016_j_optcom_2023_129446
crossref_primary_10_1016_j_optlastec_2018_06_044
crossref_primary_10_1103_PhysRevB_96_100202
crossref_primary_10_1364_OE_418865
crossref_primary_10_7566_JPSJ_84_054401
crossref_primary_10_1364_OL_387043
crossref_primary_10_1007_s11107_019_00876_6
crossref_primary_10_1364_OE_438474
crossref_primary_10_1063_1_4938003
crossref_primary_10_1103_PhysRevA_111_013304
crossref_primary_10_1103_PhysRevA_94_012116
crossref_primary_10_1364_OPTICA_6_000213
crossref_primary_10_1103_PhysRevB_97_205102
crossref_primary_10_1002_adma_201805002
crossref_primary_10_1002_andp_202200157
crossref_primary_10_1088_2515_7647_ac4ee4
crossref_primary_10_1103_PhysRevLett_112_210405
crossref_primary_10_1103_PhysRevLett_121_124501
crossref_primary_10_1039_D3NR01288C
crossref_primary_10_1038_s41467_019_14124_y
crossref_primary_10_1103_PhysRevA_109_063518
crossref_primary_10_1103_PhysRevApplied_13_044037
crossref_primary_10_1063_5_0041458
crossref_primary_10_1002_adom_202300986
crossref_primary_10_1007_s11433_022_2043_3
crossref_primary_10_1103_PhysRevA_98_053806
crossref_primary_10_1364_OME_497791
crossref_primary_10_1364_JOSAB_33_001128
crossref_primary_10_1038_s41377_023_01196_1
crossref_primary_10_3788_AOS241040
crossref_primary_10_1103_PhysRevA_107_023506
crossref_primary_10_1103_PhysRevLett_120_217401
crossref_primary_10_1103_PhysRevB_96_064304
crossref_primary_10_1364_OE_25_023293
crossref_primary_10_1103_PhysRevLett_126_193901
crossref_primary_10_1002_adma_202209123
crossref_primary_10_1038_s41928_021_00658_x
crossref_primary_10_1103_PhysRevA_102_011502
crossref_primary_10_1140_epjb_e2019_100495_6
crossref_primary_10_1140_epjp_s13360_023_04797_2
crossref_primary_10_1038_ncomms9317
crossref_primary_10_7498_aps_64_184208
crossref_primary_10_1038_srep20976
crossref_primary_10_1016_j_scib_2023_01_018
crossref_primary_10_1103_PhysRevLett_115_040402
crossref_primary_10_1021_acsphotonics_4c00776
crossref_primary_10_1002_lpor_201400462
crossref_primary_10_1063_5_0239265
crossref_primary_10_1103_PhysRevApplied_18_054065
crossref_primary_10_1126_science_aar4005
crossref_primary_10_1364_OE_462333
crossref_primary_10_1088_1367_2630_18_9_093013
crossref_primary_10_1126_science_aar4003
crossref_primary_10_1063_5_0099423
crossref_primary_10_1103_PhysRevResearch_3_043226
crossref_primary_10_1021_acsphotonics_2c01623
crossref_primary_10_1103_PhysRevB_95_075157
crossref_primary_10_1002_lpor_202100631
crossref_primary_10_1016_j_physleta_2013_06_011
crossref_primary_10_1103_PhysRevApplied_18_044055
crossref_primary_10_1103_PhysRevA_102_033526
crossref_primary_10_1103_PhysRevB_96_241306
crossref_primary_10_1063_5_0239018
crossref_primary_10_1007_s10955_022_02960_0
crossref_primary_10_1038_srep32919
crossref_primary_10_1103_PhysRevLett_118_045302
crossref_primary_10_1002_qute_201900117
crossref_primary_10_1515_nanoph_2022_0820
crossref_primary_10_1103_PhysRevB_100_045423
crossref_primary_10_1103_PhysRevA_110_062409
crossref_primary_10_1080_23746149_2024_2325611
crossref_primary_10_1103_PhysRevA_96_043864
crossref_primary_10_1140_epjd_e2015_60220_7
crossref_primary_10_1039_D0NR06272C
crossref_primary_10_1515_nanoph_2019_0376
crossref_primary_10_1016_j_chip_2022_100025
crossref_primary_10_1364_OL_491680
crossref_primary_10_1088_0256_307X_38_2_024202
crossref_primary_10_1103_PhysRevB_94_195427
crossref_primary_10_1364_OE_462156
crossref_primary_10_1364_OE_489873
crossref_primary_10_1088_1361_6463_aaa9fe
crossref_primary_10_1103_PhysRevLett_122_083903
crossref_primary_10_1364_OE_440121
crossref_primary_10_1364_OPTICA_3_000200
crossref_primary_10_35848_1882_0786_acca5e
crossref_primary_10_1038_nmat4573
crossref_primary_10_1103_PhysRevA_104_033504
crossref_primary_10_1103_PhysRevA_95_063808
crossref_primary_10_1038_s42005_024_01691_w
crossref_primary_10_1038_nature12066
crossref_primary_10_1103_PhysRevX_8_031079
crossref_primary_10_1021_acsphotonics_8b01355
crossref_primary_10_1103_PhysRevLett_118_083603
crossref_primary_10_1038_s41928_022_00751_9
crossref_primary_10_21468_SciPostPhys_13_5_107
crossref_primary_10_1103_PhysRevA_100_023804
crossref_primary_10_1103_PhysRevB_93_195153
crossref_primary_10_1002_adma_202004376
crossref_primary_10_1038_nphoton_2013_274
crossref_primary_10_1103_PhysRevResearch_3_043211
crossref_primary_10_1364_OL_40_003380
crossref_primary_10_1063_5_0008046
crossref_primary_10_1103_PhysRevA_107_013507
crossref_primary_10_1103_PhysRevB_102_100102
crossref_primary_10_1063_5_0045228
crossref_primary_10_1103_PhysRevA_104_L031502
crossref_primary_10_1038_s41566_023_01333_7
crossref_primary_10_1103_PhysRevResearch_1_033069
crossref_primary_10_1088_1674_1056_acf662
crossref_primary_10_1063_5_0056359
crossref_primary_10_1002_lpor_202401900
crossref_primary_10_1364_OL_42_001990
crossref_primary_10_1063_5_0228315
crossref_primary_10_1209_0295_5075_ac9e71
crossref_primary_10_1103_PhysRevLett_119_023603
crossref_primary_10_1364_JOSAB_452642
crossref_primary_10_1016_j_physrep_2017_10_002
crossref_primary_10_1103_PhysRevLett_127_100503
crossref_primary_10_1103_PhysRevB_103_214409
crossref_primary_10_1038_s41467_018_08281_9
crossref_primary_10_1021_acsphotonics_0c01208
crossref_primary_10_1109_TAP_2020_2967302
crossref_primary_10_1038_s41377_020_0299_7
crossref_primary_10_1038_ncomms14540
crossref_primary_10_1038_s41566_020_0688_8
crossref_primary_10_3788_LOP232334
crossref_primary_10_1103_PhysRevA_96_013808
crossref_primary_10_1103_PhysRevA_107_013523
crossref_primary_10_1364_OL_41_004791
crossref_primary_10_1103_PhysRevB_99_165148
crossref_primary_10_1103_PhysRevLett_114_114301
crossref_primary_10_1103_PhysRevLett_114_223901
crossref_primary_10_1088_2040_8986_aa9b06
crossref_primary_10_1364_JOSAB_448397
crossref_primary_10_1103_PhysRevApplied_18_027001
crossref_primary_10_1103_PhysRevLett_126_036801
crossref_primary_10_1038_s41377_021_00702_7
crossref_primary_10_1103_PhysRevApplied_14_024091
crossref_primary_10_1103_PhysRevB_92_014210
crossref_primary_10_1103_PhysRevApplied_14_014063
crossref_primary_10_1103_PhysRevLett_130_171901
crossref_primary_10_1364_OPTICA_423089
crossref_primary_10_59277_RomRepPhys_2024_76_903
crossref_primary_10_1103_PhysRevA_88_013853
crossref_primary_10_1103_PhysRevA_106_053714
crossref_primary_10_1038_srep07381
crossref_primary_10_1088_1367_2630_aa7cb5
crossref_primary_10_1103_PhysRevLett_126_230503
crossref_primary_10_1142_S0217979225501218
crossref_primary_10_1364_JOSAB_34_000831
crossref_primary_10_1103_PhysRevResearch_4_023082
crossref_primary_10_1103_PhysRevApplied_13_064033
crossref_primary_10_1038_s41377_020_0331_y
crossref_primary_10_1038_s41565_024_01737_8
crossref_primary_10_1103_PhysRevB_94_125125
crossref_primary_10_1103_PhysRevLett_111_243905
crossref_primary_10_1103_PhysRevResearch_5_023189
crossref_primary_10_1364_OPTICA_6_001321
crossref_primary_10_1016_j_jmps_2022_105163
crossref_primary_10_1063_1_4953364
crossref_primary_10_1088_1367_2630_aa8a9f
crossref_primary_10_1038_ncomms13486
crossref_primary_10_1103_PhysRevA_98_033807
crossref_primary_10_1103_PhysRevResearch_3_L022006
crossref_primary_10_1103_PhysRevLett_120_043902
crossref_primary_10_1103_PhysRevLett_120_043901
crossref_primary_10_1103_PhysRevResearch_6_033020
crossref_primary_10_3390_cryst10070605
crossref_primary_10_1038_nphoton_2014_248
crossref_primary_10_1016_j_crhy_2016_07_003
crossref_primary_10_1103_PhysRevLett_125_213902
crossref_primary_10_1038_ncomms8704
crossref_primary_10_1063_1_4935981
crossref_primary_10_1103_PhysRevApplied_11_034017
crossref_primary_10_1103_PhysRevLett_114_127401
crossref_primary_10_1038_s41565_019_0630_8
crossref_primary_10_1063_5_0153703
crossref_primary_10_1103_PhysRevLett_125_213901
crossref_primary_10_35848_1882_0786_ac8598
crossref_primary_10_1038_s41567_024_02644_4
crossref_primary_10_1103_PhysRevLett_125_255502
crossref_primary_10_1126_sciadv_abq7533
crossref_primary_10_1103_PhysRevB_100_085118
crossref_primary_10_1016_j_scib_2019_02_017
crossref_primary_10_1038_ncomms6782
crossref_primary_10_1063_1_4976013
crossref_primary_10_1098_rspa_2021_0507
crossref_primary_10_1364_OPTICA_430821
crossref_primary_10_1364_OE_24_015631
crossref_primary_10_1364_OE_26_032554
crossref_primary_10_3390_photonics9080585
crossref_primary_10_1088_2058_9565_ab32a4
crossref_primary_10_1103_PhysRevResearch_4_013078
crossref_primary_10_1103_PhysRevB_100_014306
crossref_primary_10_1080_09500340_2019_1696997
crossref_primary_10_1364_OL_411102
crossref_primary_10_1103_PhysRevLett_132_083801
crossref_primary_10_1088_1674_1056_26_11_117801
crossref_primary_10_1038_s41467_017_01205_z
crossref_primary_10_1103_PhysRevResearch_2_033517
crossref_primary_10_1021_acsphotonics_7b00448
crossref_primary_10_1209_0295_5075_131_24004
crossref_primary_10_1088_2040_8986_ad9ab4
crossref_primary_10_3788_CJL231385
crossref_primary_10_1038_s41567_021_01185_4
crossref_primary_10_1103_PhysRevLett_119_167401
crossref_primary_10_1364_PRJ_443928
crossref_primary_10_1103_PhysRevA_106_053517
crossref_primary_10_1364_OE_21_018216
crossref_primary_10_1063_5_0153523
crossref_primary_10_1103_PhysRevA_93_062319
crossref_primary_10_1016_j_optcom_2015_12_052
crossref_primary_10_1038_ncomms13038
crossref_primary_10_1109_JSTQE_2015_2487879
crossref_primary_10_1364_OL_455757
crossref_primary_10_1038_s41377_020_00411_7
crossref_primary_10_1103_PhysRevResearch_4_023044
crossref_primary_10_1364_JOSAB_521931
crossref_primary_10_1103_PhysRevA_95_043814
crossref_primary_10_1103_PhysRevB_107_035144
crossref_primary_10_1103_PhysRevLett_120_063902
crossref_primary_10_1364_OE_482836
crossref_primary_10_1088_1361_6455_ad2e2b
crossref_primary_10_1002_lpor_202300354
crossref_primary_10_1103_PhysRevX_5_021025
crossref_primary_10_1364_AOP_529288
crossref_primary_10_1038_s41467_023_35956_9
crossref_primary_10_1088_1367_2630_aaba18
crossref_primary_10_1103_PhysRevB_107_L180101
crossref_primary_10_1063_1_4939915
crossref_primary_10_1021_acs_jpcc_9b10030
crossref_primary_10_1103_PhysRevLett_125_203901
crossref_primary_10_1103_PhysRevA_106_062206
crossref_primary_10_1063_5_0003888
crossref_primary_10_1103_PhysRevA_93_043827
crossref_primary_10_1103_PhysRevB_107_035133
crossref_primary_10_1103_PhysRevB_107_174105
crossref_primary_10_1103_PhysRevApplied_11_054060
crossref_primary_10_1038_s42005_024_01695_6
crossref_primary_10_1103_PhysRevB_95_121409
crossref_primary_10_1103_PhysRevB_93_085105
crossref_primary_10_1103_PhysRevB_97_201408
crossref_primary_10_1088_2040_8986_aada5b
crossref_primary_10_1103_PhysRevLett_128_104501
crossref_primary_10_1126_science_adt2495
crossref_primary_10_1038_s41467_019_11021_2
crossref_primary_10_1103_PhysRevA_93_062110
crossref_primary_10_1103_PhysRevA_98_033830
crossref_primary_10_1063_5_0030833
crossref_primary_10_1088_1361_6463_aa7619
crossref_primary_10_1103_PhysRevApplied_16_064036
crossref_primary_10_1038_s41566_019_0561_9
crossref_primary_10_1103_PhysRevA_106_063523
crossref_primary_10_1103_PhysRevLett_122_153904
crossref_primary_10_1364_OE_22_017409
crossref_primary_10_1364_OL_41_005242
crossref_primary_10_1088_1367_2630_aa847d
crossref_primary_10_1103_PhysRevApplied_22_044029
crossref_primary_10_1103_PhysRevB_108_035423
crossref_primary_10_1126_sciadv_abk0468
crossref_primary_10_1038_s41534_022_00591_7
crossref_primary_10_1364_OE_27_006946
crossref_primary_10_1103_Physics_8_122
crossref_primary_10_1103_PhysRevLett_125_053901
crossref_primary_10_1002_pssr_201900175
crossref_primary_10_1103_PhysRevA_110_042216
crossref_primary_10_1103_PhysRevLett_114_123901
crossref_primary_10_1038_s41467_019_08881_z
crossref_primary_10_1007_s11082_021_02745_x
crossref_primary_10_1038_srep32572
crossref_primary_10_1364_PRJ_451344
crossref_primary_10_1103_PhysRevLett_127_153903
crossref_primary_10_1103_PhysRevA_104_023501
crossref_primary_10_1103_PhysRevA_95_063846
crossref_primary_10_1103_PhysRevB_93_104303
crossref_primary_10_1088_1367_2630_17_12_125002
crossref_primary_10_1038_s41566_019_0498_z
crossref_primary_10_1103_PhysRevB_95_144307
crossref_primary_10_1103_PhysRevLett_115_200402
crossref_primary_10_1088_1367_2630_17_12_125015
crossref_primary_10_1103_PhysRevA_93_023827
crossref_primary_10_1103_PhysRevB_95_085402
crossref_primary_10_1038_s42254_018_0018_y
crossref_primary_10_1103_PhysRevLett_122_233904
crossref_primary_10_3389_fphy_2022_845579
crossref_primary_10_1364_OE_23_010498
crossref_primary_10_7498_aps_66_227803
crossref_primary_10_1364_OE_510902
crossref_primary_10_3788_gzxb20235208_0826001
crossref_primary_10_1103_PhysRevB_101_121405
crossref_primary_10_1126_sciadv_aap8802
crossref_primary_10_1103_PhysRevB_101_165427
crossref_primary_10_1103_PhysRevB_91_094502
crossref_primary_10_1103_PhysRevLett_116_163901
crossref_primary_10_1063_5_0039839
crossref_primary_10_1103_PhysRevB_106_094305
crossref_primary_10_1103_PhysRevLett_120_060601
crossref_primary_10_1103_PhysRevX_5_031001
crossref_primary_10_1038_s41467_024_45580_w
crossref_primary_10_1098_rspa_2016_0819
crossref_primary_10_1103_PhysRevLett_114_037402
crossref_primary_10_1103_PhysRevLett_120_133901
crossref_primary_10_1016_j_chaos_2018_02_030
crossref_primary_10_1038_s41377_023_01200_8
crossref_primary_10_1002_lpor_202200717
crossref_primary_10_1016_j_optcom_2021_127262
crossref_primary_10_1038_s41467_022_35398_9
crossref_primary_10_1103_PhysRevLett_125_123901
crossref_primary_10_1103_PhysRevX_5_031011
crossref_primary_10_1142_S0218863517500126
crossref_primary_10_1063_5_0140483
crossref_primary_10_1364_PRJ_485595
crossref_primary_10_1002_adom_201700357
crossref_primary_10_1002_pssr_201800322
crossref_primary_10_1063_1_5135927
crossref_primary_10_1126_sciadv_adp7779
crossref_primary_10_1364_OL_40_005140
crossref_primary_10_1016_j_photonics_2022_101049
crossref_primary_10_1103_PhysRevA_106_032606
crossref_primary_10_1364_OPTICA_6_000096
crossref_primary_10_1103_PhysRevApplied_6_024016
crossref_primary_10_1364_PRJ_412904
crossref_primary_10_1103_PhysRevLett_118_084303
crossref_primary_10_1038_s41565_018_0297_6
crossref_primary_10_1103_PhysRevLett_121_203602
crossref_primary_10_1364_OE_23_010327
crossref_primary_10_1002_adpr_202100013
crossref_primary_10_1088_1361_6463_aa9ecb
crossref_primary_10_1002_lpor_201600042
crossref_primary_10_1038_s41566_018_0269_2
crossref_primary_10_1038_s41467_020_15705_y
crossref_primary_10_1063_5_0232163
crossref_primary_10_1088_2040_8978_18_10_104005
crossref_primary_10_1103_PhysRevA_108_063709
crossref_primary_10_1002_pssr_201700357
crossref_primary_10_1103_PhysRevLett_128_163901
crossref_primary_10_1364_OL_509503
crossref_primary_10_1038_s41566_024_01424_z
crossref_primary_10_1063_5_0097591
crossref_primary_10_1103_PhysRevB_104_045408
crossref_primary_10_1103_PhysRevA_100_012112
crossref_primary_10_1103_PhysRevB_97_155124
crossref_primary_10_1109_MAP_2020_3043437
crossref_primary_10_1016_j_physrep_2014_01_003
crossref_primary_10_1088_1361_6463_ac4b72
crossref_primary_10_1016_j_ijleo_2019_03_160
crossref_primary_10_1103_PhysRevA_97_063838
crossref_primary_10_1103_PhysRevA_98_013855
crossref_primary_10_1103_PhysRevB_102_174107
crossref_primary_10_1103_PhysRevResearch_3_013122
crossref_primary_10_1121_10_0001812
crossref_primary_10_23919_emsci_2022_0005
crossref_primary_10_1016_j_physe_2016_02_027
crossref_primary_10_1002_adma_202210825
crossref_primary_10_1002_lpor_202000584
crossref_primary_10_1088_1367_2630_aa5127
crossref_primary_10_1103_PhysRevLett_132_033803
crossref_primary_10_1103_PhysRevB_109_L020302
crossref_primary_10_1088_1612_202X_aa9e58
crossref_primary_10_1103_PhysRevLett_115_166804
crossref_primary_10_1103_PhysRevApplied_19_064016
crossref_primary_10_1103_PhysRevA_104_013305
crossref_primary_10_3788_AOS240938
crossref_primary_10_1103_PhysRevLett_117_013902
crossref_primary_10_1038_srep29202
crossref_primary_10_1364_OPTICA_3_000925
crossref_primary_10_1038_nphoton_2013_3
crossref_primary_10_1103_PhysRevLett_118_245301
crossref_primary_10_1038_nmat4811
crossref_primary_10_1109_TAP_2023_3320196
crossref_primary_10_1103_PhysRevA_98_013635
crossref_primary_10_1103_PhysRevLett_111_203901
crossref_primary_10_1364_OL_40_002941
crossref_primary_10_1063_1_4973990
crossref_primary_10_1038_nphys3999
crossref_primary_10_1088_1367_2630_aa4fa9
crossref_primary_10_1364_PRJ_403279
crossref_primary_10_1002_lpor_202000360
crossref_primary_10_1002_adom_201900900
crossref_primary_10_1038_nmat4807
crossref_primary_10_1103_PhysRevLett_114_225301
crossref_primary_10_1016_j_ijmecsci_2022_107360
crossref_primary_10_1364_OL_539578
crossref_primary_10_1364_OE_26_014567
crossref_primary_10_1364_OPTICA_2_000635
crossref_primary_10_1038_ncomms11744
crossref_primary_10_1364_OL_42_000915
crossref_primary_10_1088_1674_1056_ada9d9
crossref_primary_10_1103_PhysRevA_106_023512
crossref_primary_10_1364_OME_546801
crossref_primary_10_1364_OE_504997
crossref_primary_10_1016_j_optlaseng_2024_108136
crossref_primary_10_1038_s41377_020_00385_6
crossref_primary_10_1038_npjqi_2016_15
crossref_primary_10_1103_PhysRevB_90_075423
crossref_primary_10_1126_science_aay3183
crossref_primary_10_1038_s41377_024_01433_1
crossref_primary_10_1007_s11468_017_0558_5
crossref_primary_10_1002_adpr_202400023
crossref_primary_10_1016_j_scib_2023_08_013
crossref_primary_10_1103_PhysRevLett_123_073601
crossref_primary_10_1063_1_5086312
crossref_primary_10_1016_j_optcom_2019_04_070
crossref_primary_10_1088_1367_2630_16_10_103027
crossref_primary_10_1002_adpr_202000104
crossref_primary_10_1364_OE_438779
crossref_primary_10_1364_PRJ_471905
crossref_primary_10_1186_s43593_022_00036_w
crossref_primary_10_1002_lpor_201900425
crossref_primary_10_1038_s41467_020_15682_2
crossref_primary_10_1016_j_physleta_2020_126448
crossref_primary_10_1364_JOSAB_477338
crossref_primary_10_1016_j_revip_2022_100076
crossref_primary_10_1038_nphys3796
crossref_primary_10_1103_PhysRevResearch_3_033161
crossref_primary_10_1103_PhysRevA_103_053701
crossref_primary_10_1103_PhysRevA_95_033801
crossref_primary_10_1103_PhysRevA_92_043625
crossref_primary_10_1038_s41566_019_0370_1
crossref_primary_10_1038_s41377_020_00408_2
crossref_primary_10_1103_PhysRevA_108_043708
crossref_primary_10_1103_PhysRevA_95_013830
crossref_primary_10_1103_PhysRevLett_112_133902
crossref_primary_10_1038_s41377_019_0149_7
crossref_primary_10_1103_PhysRevX_8_041031
crossref_primary_10_1103_PhysRevB_98_014302
crossref_primary_10_1038_s41467_019_12092_x
crossref_primary_10_1063_1_4985381
crossref_primary_10_1103_PhysRevLett_113_087403
crossref_primary_10_1364_OE_551936
crossref_primary_10_1126_science_aau0227
crossref_primary_10_1038_s41598_018_36170_0
crossref_primary_10_1103_PhysRevLett_124_223902
crossref_primary_10_1364_JOSAB_457969
crossref_primary_10_1515_nanoph_2020_0415
crossref_primary_10_1103_PhysRevLett_132_156602
crossref_primary_10_1016_j_optcom_2023_130113
crossref_primary_10_1063_1_5055601
crossref_primary_10_1103_PhysRevLett_121_204301
crossref_primary_10_1103_RevModPhys_91_015006
crossref_primary_10_7498_aps_70_20201808
crossref_primary_10_2139_ssrn_4762792
crossref_primary_10_1364_OPTICA_429945
crossref_primary_10_1103_PhysRevA_95_013837
crossref_primary_10_7567_1882_0786_ab0468
crossref_primary_10_1038_ncomms9682
crossref_primary_10_1103_PhysRevApplied_4_024013
crossref_primary_10_1002_lpor_202401627
crossref_primary_10_1038_nphoton_2014_208
crossref_primary_10_1364_OL_40_001278
crossref_primary_10_1002_lpor_201900087
crossref_primary_10_1103_PhysRevB_101_045415
crossref_primary_10_1103_PhysRevApplied_9_044031
crossref_primary_10_1103_PhysRevLett_120_263202
crossref_primary_10_7567_JJAP_57_07LD16
crossref_primary_10_1038_s41467_018_04202_y
crossref_primary_10_1038_s41586_018_0418_2
crossref_primary_10_1103_PhysRevA_103_023721
crossref_primary_10_1038_ncomms13731
crossref_primary_10_1103_PhysRevB_100_115412
crossref_primary_10_1103_PhysRevA_97_043833
crossref_primary_10_1364_JOSAB_547846
crossref_primary_10_1063_5_0196844
crossref_primary_10_1103_PhysRevB_104_024306
crossref_primary_10_1002_lpor_202100300
crossref_primary_10_1103_PhysRevB_109_115147
crossref_primary_10_1103_PhysRevA_103_033513
crossref_primary_10_1103_PhysRevA_92_041805
crossref_primary_10_7498_aps_68_20191437
crossref_primary_10_1103_PhysRevA_103_033511
crossref_primary_10_1038_s41586_022_04609_0
crossref_primary_10_1103_PhysRevA_97_043841
crossref_primary_10_1103_PhysRevLett_128_256101
crossref_primary_10_1038_s41598_024_69751_3
crossref_primary_10_1103_PhysRevA_103_042219
crossref_primary_10_1103_PhysRevB_103_214112
crossref_primary_10_1073_pnas_1508777112
crossref_primary_10_1016_j_physb_2020_412733
crossref_primary_10_1103_PhysRevApplied_12_024027
crossref_primary_10_1038_s41586_024_08259_2
crossref_primary_10_1103_PhysRevX_6_011016
crossref_primary_10_1103_PhysRevX_10_011059
crossref_primary_10_1038_ncomms13756
crossref_primary_10_1103_PhysRevApplied_14_054007
crossref_primary_10_1016_j_revip_2025_100108
crossref_primary_10_1038_nphoton_2016_10
crossref_primary_10_1038_s41377_024_01557_4
crossref_primary_10_1155_2015_959546
crossref_primary_10_7498_aps_66_228101
crossref_primary_10_1364_OE_23_000950
crossref_primary_10_1038_s41377_020_0334_8
crossref_primary_10_1103_PhysRevA_97_063845
crossref_primary_10_1364_OE_26_024307
crossref_primary_10_1103_PhysRevB_97_165128
crossref_primary_10_1103_PhysRevLett_119_137402
crossref_primary_10_1073_pnas_1708944114
crossref_primary_10_1364_OE_438132
crossref_primary_10_1103_PhysRevMaterials_2_105201
crossref_primary_10_1109_JQE_2015_2389853
crossref_primary_10_1016_j_chaos_2023_114350
crossref_primary_10_1126_sciadv_abj2062
crossref_primary_10_1038_ncomms12435
crossref_primary_10_1063_1_5009597
crossref_primary_10_1103_PhysRevB_102_100303
crossref_primary_10_1103_PhysRevB_106_064109
crossref_primary_10_1002_adpr_202300113
crossref_primary_10_1038_nphys3930
crossref_primary_10_1364_OL_39_005892
crossref_primary_10_1103_PhysRevB_107_064401
crossref_primary_10_1021_acsphotonics_4c01502
crossref_primary_10_1364_OE_453985
crossref_primary_10_1038_s41566_017_0048_5
crossref_primary_10_1088_1361_648X_aa8bdd
crossref_primary_10_1103_PhysRevA_108_043507
crossref_primary_10_1103_PhysRevB_108_094103
crossref_primary_10_1103_PhysRevLett_114_173902
crossref_primary_10_7498_aps_69_20191962
crossref_primary_10_1007_s11082_018_1617_7
crossref_primary_10_1038_nmat4630
crossref_primary_10_1038_s41467_018_05461_5
crossref_primary_10_1103_PhysRevA_92_053822
crossref_primary_10_1103_PhysRevA_92_063626
crossref_primary_10_1038_s42005_025_02013_4
crossref_primary_10_1038_s41598_019_49465_7
crossref_primary_10_1038_nphoton_2016_253
crossref_primary_10_3389_fphy_2021_771481
crossref_primary_10_1103_PhysRevLett_115_253901
crossref_primary_10_1364_OPTICA_386347
crossref_primary_10_1103_PhysRevApplied_9_034032
crossref_primary_10_1103_PhysRevLett_127_053901
crossref_primary_10_1002_admt_202100252
crossref_primary_10_1088_1361_6633_aa518f
crossref_primary_10_1098_rsos_172447
crossref_primary_10_1038_s41377_022_00993_4
crossref_primary_10_1103_PhysRevB_101_054307
Cites_doi 10.1038/nphoton.2006.49
10.1038/nature08293
10.1038/nphoton.2008.273
10.1038/nature04204
10.1103/PhysRevB.59.1551
10.1038/nphoton.2008.226
10.1142/S0217979207042598
10.1103/PhysRevA.84.043804
10.1103/PhysRev.84.814
10.1103/PhysRevLett.58.2486
10.1103/PhysRev.138.B979
10.1103/PhysRevLett.108.153901
10.1103/PhysRevLett.107.023901
10.1103/PhysRevB.54.7837
10.1103/PhysRevLett.48.1559
10.1103/PhysRevA.86.023837
10.1103/PhysRevB.25.2185
10.1103/PhysRevLett.100.013904
10.1103/PhysRevLett.49.405
10.1364/OE.15.017206
10.1364/OE.20.007672
10.1038/nature08190
10.1103/PhysRevA.7.2203
10.1103/PhysRevLett.100.033904
10.1038/nphys2251
10.1103/PhysRevLett.58.2059
10.1103/PhysRevLett.85.3966
10.1038/386143a0
10.1103/PhysRevLett.100.023902
10.1103/PhysRevLett.100.013905
10.1103/PhysRevB.64.075313
10.1038/nphys2063
10.1103/PhysRevA.82.043811
10.1103/PhysRevLett.45.494
10.1103/PhysRevB.23.5632
10.1126/science.1096796
10.1103/PhysRevLett.109.033901
10.1103/PhysRevLett.71.3697
10.1103/PhysRevB.14.2239
10.1103/PhysRevLett.93.083901
10.1103/PhysRevA.78.033834
10.1038/nature03569
ContentType Journal Article
Copyright Springer Nature Limited 2012
Copyright Nature Publishing Group Nov 2012
Copyright_xml – notice: Springer Nature Limited 2012
– notice: Copyright Nature Publishing Group Nov 2012
DBID AAYXX
CITATION
7QO
7SP
7U5
8FD
8FE
8FG
8FH
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
H8D
HCIFZ
L7M
LK8
M7P
P5Z
P62
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1038/nphoton.2012.236
DatabaseName CrossRef
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Databases
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aerospace Database
ProQuest Central Student

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1749-4893
EndPage 787
ExternalDocumentID 2810525431
10_1038_nphoton_2012_236
GroupedDBID -~X
0R~
123
29M
39C
4.4
5BI
5M7
5S5
70F
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABZEH
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
CCPQU
CS3
DU5
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
HCIFZ
HVGLF
HZ~
I-F
LK8
M7P
NNMJJ
O9-
ODYON
P2P
P62
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7QO
7SP
7U5
8FD
AZQEC
DWQXO
FR3
GNUQQ
H8D
L7M
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c412t-5bdc6f17dafa05735f12e2bf1e931c0e45dd6c0128093242d4a41a2a842d245a3
IEDL.DBID BENPR
ISSN 1749-4885
IngestDate Fri Jul 11 03:54:52 EDT 2025
Wed Jul 16 16:24:07 EDT 2025
Thu Apr 24 22:58:54 EDT 2025
Tue Jul 01 02:34:12 EDT 2025
Fri Feb 21 02:42:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-5bdc6f17dafa05735f12e2bf1e931c0e45dd6c0128093242d4a41a2a842d245a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1143049715
PQPubID 546300
PageCount 6
ParticipantIDs proquest_miscellaneous_1266710314
proquest_journals_1143049715
crossref_primary_10_1038_nphoton_2012_236
crossref_citationtrail_10_1038_nphoton_2012_236
springer_journals_10_1038_nphoton_2012_236
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-01
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature photonics
PublicationTitleAbbrev Nature Photon
PublicationYear 2012
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Klitzing, Dorda, Pepper (CR1) 1980; 45
Hatsugai (CR6) 1993; 71
Thouless, Kohmoto, Nightingale, Nijs (CR5) 1982; 49
Sherley (CR29) 1965; 138
Wang, Chong, Joannopoulos, Soljačić (CR17) 2009; 461
Umucallar, Carusotto (CR20) 2011; 84
Notomi, Kuramochi, Tanabe (CR35) 2008; 2
Villeneuve, Fan, Joannopoulos (CR33) 1996; 54
Underwood, Shanks, Koch, Houck (CR41) 2012; 86
Samba (CR30) 1973; 7
Tsui, Stormer, Gossard (CR2) 1982; 48
Takahashi (CR34) 2007; 15
Kuo (CR32) 2005; 437
Halperin (CR4) 1982; 25
Hafezi, Rabi (CR43) 2012; 20
John (CR8) 1987; 58
Chen (CR22) 2011; 107
Laughlin (CR3) 1981; 23
Hofstadter (CR28) 1976; 14
Houck, Tureci, Koch (CR42) 2012; 8
Fang, Yu, Fan (CR23) 2012; 108
Dong, Preble, Robinson, Manipatruni, Lipson (CR25) 2008; 100
Yu, Fan (CR26) 2009; 3
Winn, Fan, Joannopoulos, Ippen (CR24) 1999; 59
Kane (CR21) 2007; 21
Povinelli, Johnson, Fan, Joannopoulos (CR36) 2001; 64
Pozar (CR39) 2005
Joannopoulos, Villeneuve, Fan (CR9) 1997; 386
Luttinger (CR27) 1951; 84
Koch, Houck, Le Hur, Girvin (CR40) 2010; 82
Yu, Veronis, Wang, Fan (CR18) 2008; 100
Onoda, Murakami, Nagaosa (CR13) 2004; 93
Raghu, Haldane (CR14) 2008; 78
Yablonovitch (CR7) 1987; 58
Haldane, Raghu (CR15) 2008; 100
Xu, Schmidt, Pradhan, Lipson (CR31) 2005; 435
Pendry (CR10) 2000; 85
Wang, Chong, Joannopoulos, Soljačić (CR16) 2008; 100
Smith, Pendry, Wiltshire (CR11) 2004; 305
Hafezi, Demler, Lukin, Taylor (CR19) 2011; 7
Lira, Yu, Fan, Lipson (CR38) 2012; 109
Shalaev (CR12) 2007; 1
Ishizaki, Noda (CR37) 2009; 460
R Laughlin (BFnphoton2012236_CR3) 1981; 23
M Hafezi (BFnphoton2012236_CR19) 2011; 7
DR Hofstadter (BFnphoton2012236_CR28) 1976; 14
Y Hatsugai (BFnphoton2012236_CR6) 1993; 71
JH Sherley (BFnphoton2012236_CR29) 1965; 138
S Raghu (BFnphoton2012236_CR14) 2008; 78
K Ishizaki (BFnphoton2012236_CR37) 2009; 460
Y Takahashi (BFnphoton2012236_CR34) 2007; 15
DM Pozar (BFnphoton2012236_CR39) 2005
M Hafezi (BFnphoton2012236_CR43) 2012; 20
M Onoda (BFnphoton2012236_CR13) 2004; 93
JN Winn (BFnphoton2012236_CR24) 1999; 59
D Thouless (BFnphoton2012236_CR5) 1982; 49
H Lira (BFnphoton2012236_CR38) 2012; 109
P Dong (BFnphoton2012236_CR25) 2008; 100
KV Klitzing (BFnphoton2012236_CR1) 1980; 45
DC Tsui (BFnphoton2012236_CR2) 1982; 48
DR Smith (BFnphoton2012236_CR11) 2004; 305
Z Wang (BFnphoton2012236_CR17) 2009; 461
FDM Haldane (BFnphoton2012236_CR15) 2008; 100
E Yablonovitch (BFnphoton2012236_CR7) 1987; 58
BI Halperin (BFnphoton2012236_CR4) 1982; 25
Z Yu (BFnphoton2012236_CR18) 2008; 100
RO Umucallar (BFnphoton2012236_CR20) 2011; 84
D Underwood (BFnphoton2012236_CR41) 2012; 86
VM Shalaev (BFnphoton2012236_CR12) 2007; 1
CL Kane (BFnphoton2012236_CR21) 2007; 21
JM Luttinger (BFnphoton2012236_CR27) 1951; 84
S John (BFnphoton2012236_CR8) 1987; 58
K Fang (BFnphoton2012236_CR23) 2012; 108
H Samba (BFnphoton2012236_CR30) 1973; 7
Y-H Kuo (BFnphoton2012236_CR32) 2005; 437
AA Houck (BFnphoton2012236_CR42) 2012; 8
JD Joannopoulos (BFnphoton2012236_CR9) 1997; 386
PR Villeneuve (BFnphoton2012236_CR33) 1996; 54
ML Povinelli (BFnphoton2012236_CR36) 2001; 64
Z Wang (BFnphoton2012236_CR16) 2008; 100
JB Pendry (BFnphoton2012236_CR10) 2000; 85
Z Yu (BFnphoton2012236_CR26) 2009; 3
W-J Chen (BFnphoton2012236_CR22) 2011; 107
M Notomi (BFnphoton2012236_CR35) 2008; 2
Q Xu (BFnphoton2012236_CR31) 2005; 435
J Koch (BFnphoton2012236_CR40) 2010; 82
References_xml – volume: 1
  start-page: 41
  year: 2007
  end-page: 48
  ident: CR12
  article-title: Optical negative-index metamaterials
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2006.49
– volume: 461
  start-page: 772
  year: 2009
  end-page: 775
  ident: CR17
  article-title: Observation of unidirectional backscattering-immune topological electromagnetic states
  publication-title: Nature
  doi: 10.1038/nature08293
– volume: 3
  start-page: 91
  year: 2009
  end-page: 94
  ident: CR26
  article-title: Complete optical isolation created by indirect interband photonic transitions
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2008.273
– volume: 437
  start-page: 1334
  year: 2005
  end-page: 1336
  ident: CR32
  article-title: Strong quantum-confined Stark effect in germanium quantum-well structures on silicon
  publication-title: Nature
  doi: 10.1038/nature04204
– volume: 59
  start-page: 1551
  year: 1999
  end-page: 1554
  ident: CR24
  article-title: Interband transitions in photonic crystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1551
– volume: 2
  start-page: 741
  year: 2008
  end-page: 747
  ident: CR35
  article-title: Large-scale arrays of ultrahigh- coupled nanocavities
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2008.226
– volume: 21
  start-page: 1155
  year: 2007
  end-page: 1164
  ident: CR21
  article-title: Graphene and the quantum spin Hall effect
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979207042598
– volume: 84
  start-page: 043804
  year: 2011
  ident: CR20
  article-title: Artificial gauge field for photons in coupled cavity arrays
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.043804
– volume: 84
  start-page: 814
  year: 1951
  end-page: 817
  ident: CR27
  article-title: The effect of a magnetic field on electrons in a periodic potential
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.84.814
– volume: 58
  start-page: 2486
  year: 1987
  end-page: 2489
  ident: CR8
  article-title: Strong localization of photons in certain disordered dielectric superlattices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.2486
– volume: 138
  start-page: B979
  year: 1965
  end-page: B987
  ident: CR29
  article-title: Solution of the Schrödinger equation with a Hamiltonian periodic in time
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.138.B979
– volume: 108
  start-page: 153901
  year: 2012
  ident: CR23
  article-title: Photonic Aharonov–Bohm effect based on dynamic modulation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.153901
– volume: 107
  start-page: 023901
  year: 2011
  ident: CR22
  article-title: Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.023901
– volume: 54
  start-page: 7837
  year: 1996
  end-page: 7842
  ident: CR33
  article-title: Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.7837
– volume: 48
  start-page: 1559
  year: 1982
  end-page: 1562
  ident: CR2
  article-title: Two-dimensional magnetotransport in the extreme quantum limit
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.1559
– start-page: 618
  year: 2005
  ident: CR39
  publication-title: Microwave Engineering
– volume: 86
  start-page: 023837
  year: 2012
  ident: CR41
  article-title: Low-disorder microwave cavity lattices for quantum simulation with photons
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.023837
– volume: 25
  start-page: 2185
  year: 1982
  end-page: 2190
  ident: CR4
  article-title: Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.25.2185
– volume: 100
  start-page: 013904
  year: 2008
  ident: CR15
  article-title: Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.013904
– volume: 49
  start-page: 405
  year: 1982
  end-page: 408
  ident: CR5
  article-title: Quantized Hall conductance in a two-dimensional periodic potential
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.405
– volume: 15
  start-page: 17206
  year: 2007
  end-page: 17213
  ident: CR34
  article-title: High- nanocavity with a 2-ns photon lifetime
  publication-title: Opt. Express
  doi: 10.1364/OE.15.017206
– volume: 20
  start-page: 7672
  year: 2012
  end-page: 7684
  ident: CR43
  article-title: Optomechanically induced non-reciprocity in microring resonators
  publication-title: Opt. Express
  doi: 10.1364/OE.20.007672
– volume: 460
  start-page: 367
  year: 2009
  end-page: 370
  ident: CR37
  article-title: Manipulation of photons at the surface of three-dimensional photonic crystals
  publication-title: Nature
  doi: 10.1038/nature08190
– volume: 7
  start-page: 2203
  year: 1973
  end-page: 2213
  ident: CR30
  article-title: Steady states and quasi energies of a quantum-mechanical system in an oscillating field
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.7.2203
– volume: 100
  start-page: 033904
  year: 2008
  ident: CR25
  article-title: Inducing photonic transitions between discrete modes in a silicon optical microcavity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.033904
– volume: 8
  start-page: 292
  year: 2012
  end-page: 299
  ident: CR42
  article-title: On-chip quantum simulation with superconducting circuits
  publication-title: Nature Phys.
  doi: 10.1038/nphys2251
– volume: 58
  start-page: 2059
  year: 1987
  end-page: 2062
  ident: CR7
  article-title: Inhibited spontaneous emission in solid-state physics and electronics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.2059
– volume: 85
  start-page: 3966
  year: 2000
  end-page: 3969
  ident: CR10
  article-title: Negative refraction makes a perfect lens
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.3966
– volume: 386
  start-page: 143
  year: 1997
  end-page: 149
  ident: CR9
  article-title: Photonic crystals: putting a new twist on light
  publication-title: Nature
  doi: 10.1038/386143a0
– volume: 100
  start-page: 023902
  year: 2008
  ident: CR18
  article-title: One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.023902
– volume: 100
  start-page: 013905
  year: 2008
  ident: CR16
  article-title: Reflection-free one-way edge modes in a gyromagnetic photonic crystal
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.013905
– volume: 64
  start-page: 075313
  year: 2001
  ident: CR36
  article-title: Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.075313
– volume: 7
  start-page: 907
  year: 2011
  end-page: 912
  ident: CR19
  article-title: Robust optical delay lines with topological protection
  publication-title: Nature Phys.
  doi: 10.1038/nphys2063
– volume: 82
  start-page: 043811
  year: 2010
  ident: CR40
  article-title: Time-reversal-symmetry breaking in circuit-QED-based photon lattices
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.043811
– volume: 45
  start-page: 494
  year: 1980
  end-page: 497
  ident: CR1
  article-title: New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.494
– volume: 23
  start-page: 5632
  year: 1981
  end-page: 5633
  ident: CR3
  article-title: Quantized Hall conductivity in two dimensions
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.23.5632
– volume: 305
  start-page: 788
  year: 2004
  end-page: 792
  ident: CR11
  article-title: Metamaterials and negative refractive index
  publication-title: Science
  doi: 10.1126/science.1096796
– volume: 109
  start-page: 033901
  year: 2012
  ident: CR38
  article-title: Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.033901
– volume: 71
  start-page: 3697
  year: 1993
  end-page: 3700
  ident: CR6
  article-title: Chern number and edge states in the integer quantum Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.3697
– volume: 14
  start-page: 2239
  year: 1976
  end-page: 2249
  ident: CR28
  article-title: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.14.2239
– volume: 93
  start-page: 083901
  year: 2004
  ident: CR13
  article-title: Hall effect of light
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.083901
– volume: 78
  start-page: 033834
  year: 2008
  ident: CR14
  article-title: Analogs of quantum-Hall-effect edge states in photonic crystals
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.78.033834
– volume: 435
  start-page: 325
  year: 2005
  end-page: 327
  ident: CR31
  article-title: Micrometre-scale silicon electro-optic modulator
  publication-title: Nature
  doi: 10.1038/nature03569
– volume: 437
  start-page: 1334
  year: 2005
  ident: BFnphoton2012236_CR32
  publication-title: Nature
  doi: 10.1038/nature04204
– volume: 82
  start-page: 043811
  year: 2010
  ident: BFnphoton2012236_CR40
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.043811
– volume: 107
  start-page: 023901
  year: 2011
  ident: BFnphoton2012236_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.023901
– volume: 84
  start-page: 814
  year: 1951
  ident: BFnphoton2012236_CR27
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.84.814
– volume: 49
  start-page: 405
  year: 1982
  ident: BFnphoton2012236_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.405
– volume: 138
  start-page: B979
  year: 1965
  ident: BFnphoton2012236_CR29
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.138.B979
– volume: 93
  start-page: 083901
  year: 2004
  ident: BFnphoton2012236_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.083901
– volume: 59
  start-page: 1551
  year: 1999
  ident: BFnphoton2012236_CR24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1551
– volume: 100
  start-page: 033904
  year: 2008
  ident: BFnphoton2012236_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.033904
– volume: 7
  start-page: 2203
  year: 1973
  ident: BFnphoton2012236_CR30
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.7.2203
– volume: 15
  start-page: 17206
  year: 2007
  ident: BFnphoton2012236_CR34
  publication-title: Opt. Express
  doi: 10.1364/OE.15.017206
– volume: 100
  start-page: 013905
  year: 2008
  ident: BFnphoton2012236_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.013905
– volume: 48
  start-page: 1559
  year: 1982
  ident: BFnphoton2012236_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.1559
– volume: 460
  start-page: 367
  year: 2009
  ident: BFnphoton2012236_CR37
  publication-title: Nature
  doi: 10.1038/nature08190
– volume: 1
  start-page: 41
  year: 2007
  ident: BFnphoton2012236_CR12
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2006.49
– start-page: 618
  volume-title: Microwave Engineering
  year: 2005
  ident: BFnphoton2012236_CR39
– volume: 108
  start-page: 153901
  year: 2012
  ident: BFnphoton2012236_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.153901
– volume: 23
  start-page: 5632
  year: 1981
  ident: BFnphoton2012236_CR3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.23.5632
– volume: 7
  start-page: 907
  year: 2011
  ident: BFnphoton2012236_CR19
  publication-title: Nature Phys.
  doi: 10.1038/nphys2063
– volume: 3
  start-page: 91
  year: 2009
  ident: BFnphoton2012236_CR26
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2008.273
– volume: 8
  start-page: 292
  year: 2012
  ident: BFnphoton2012236_CR42
  publication-title: Nature Phys.
  doi: 10.1038/nphys2251
– volume: 386
  start-page: 143
  year: 1997
  ident: BFnphoton2012236_CR9
  publication-title: Nature
  doi: 10.1038/386143a0
– volume: 54
  start-page: 7837
  year: 1996
  ident: BFnphoton2012236_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.7837
– volume: 85
  start-page: 3966
  year: 2000
  ident: BFnphoton2012236_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.3966
– volume: 58
  start-page: 2486
  year: 1987
  ident: BFnphoton2012236_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.2486
– volume: 20
  start-page: 7672
  year: 2012
  ident: BFnphoton2012236_CR43
  publication-title: Opt. Express
  doi: 10.1364/OE.20.007672
– volume: 305
  start-page: 788
  year: 2004
  ident: BFnphoton2012236_CR11
  publication-title: Science
  doi: 10.1126/science.1096796
– volume: 84
  start-page: 043804
  year: 2011
  ident: BFnphoton2012236_CR20
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.043804
– volume: 86
  start-page: 023837
  year: 2012
  ident: BFnphoton2012236_CR41
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.023837
– volume: 25
  start-page: 2185
  year: 1982
  ident: BFnphoton2012236_CR4
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.25.2185
– volume: 2
  start-page: 741
  year: 2008
  ident: BFnphoton2012236_CR35
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2008.226
– volume: 64
  start-page: 075313
  year: 2001
  ident: BFnphoton2012236_CR36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.075313
– volume: 100
  start-page: 023902
  year: 2008
  ident: BFnphoton2012236_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.023902
– volume: 14
  start-page: 2239
  year: 1976
  ident: BFnphoton2012236_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.14.2239
– volume: 435
  start-page: 325
  year: 2005
  ident: BFnphoton2012236_CR31
  publication-title: Nature
  doi: 10.1038/nature03569
– volume: 100
  start-page: 013904
  year: 2008
  ident: BFnphoton2012236_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.013904
– volume: 45
  start-page: 494
  year: 1980
  ident: BFnphoton2012236_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.494
– volume: 21
  start-page: 1155
  year: 2007
  ident: BFnphoton2012236_CR21
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979207042598
– volume: 109
  start-page: 033901
  year: 2012
  ident: BFnphoton2012236_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.033901
– volume: 78
  start-page: 033834
  year: 2008
  ident: BFnphoton2012236_CR14
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.78.033834
– volume: 71
  start-page: 3697
  year: 1993
  ident: BFnphoton2012236_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.3697
– volume: 58
  start-page: 2059
  year: 1987
  ident: BFnphoton2012236_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.2059
– volume: 461
  start-page: 772
  year: 2009
  ident: BFnphoton2012236_CR17
  publication-title: Nature
  doi: 10.1038/nature08293
SSID ssj0053922
Score 2.6150718
Snippet The goal to achieve arbitrary control of photon flow has motivated much of the recent research on photonic crystals and metamaterials. As a new mechanism for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 782
SubjectTerms 639/624/400/1101
Applied and Technical Physics
Constants
Crystals
Magnetic fields
Metamaterials
Modulation
Photonic crystals
Photons
Physics
Quantum Physics
Resonators
Spatial distribution
Title Realizing effective magnetic field for photons by controlling the phase of dynamic modulation
URI https://link.springer.com/article/10.1038/nphoton.2012.236
https://www.proquest.com/docview/1143049715
https://www.proquest.com/docview/1266710314
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB7c9eLFt1gfSwQvCnWbR18nUXEVDyKLghcpaZOq4LarXQ_66520qbsI7i2QaVImmZmPzAvgUOmMijzw3DxSnis4jmJEpSjxXOSahgh562iL2-D6Qdw8-o_2wa2yYZWtTqwVtSoz80beR9xuPEIh9U_H767pGmW8q7aFRgcWUQVHURcWzy9v74atLvbR-rMmJTJ28ar61lHp8ahfjF9KhFcmuoudsLpE84xhmqLNPw7S2u4MVmHZAkZy1pzwGizoYh1WLHgkVjSrDXgaIuR7_cY1SBOjgWqMjORzYbIUSR2oRhCgkuZ_KpJ-ERumbhLSCeJAnEKTRsqcqKZNPRmVynb32oSHweX9xbVreye4maBs4vqpyoKchkrm0tQ89HPKNEtzqmNOM08LX6kgM9bJiw2mUkIKKpmMcMiEL_kWdIuy0NtAuKSR0kxwngoheRCHGlGAQnIq0bhnDvRbxiWZLSxu-lu8JbWDm0eJZXViWJ0gqx04-v1i3BTVmEO7155FYsWrSqaXwYGD32kUDOPtkIUuP5EGoUdomlgIB47bM5xZ4p_9dubvtwtLhrLJRtyD7uTjU-8jLJmkPehEg6uevYE_3BjjWw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8NAFH5UPejFXazrCHpQiO0sWXoQEbXW9SAKXiROMhMVbFJti9Qf5W_0TTJREfTmbWC28ObNe9_kbQDrSsdUJF7dSQJVdwTHVgNRKd54LhJNfYS8ubfFhde6Fic37k0F3stYGONWWcrEXFCrLDb_yGuI241FyKfubufZMVWjjHW1LKFRsMWpHrzik627c3yA57vBWPPwar_l2KoCTiwo6zlupGIvob6SiTTZAN2EMs2ihOoGp3FdC1cpLzZyGx_7qMCUkIJKJgNsMuFKjusOwYjgqMlNZHrzqJT8LmINVgRgNhy8GK41i9Z5UEs7DxmCOeNLxrZZnhD6mxr8wrY_zLG5lmtOwriFp2Sv4KcpqOh0GiYsVCVWEHRn4PYSAebjG65BCo8QFJqkLe9TExNJcrc4gnCYFN_TJdGAWKd4E_5OEHViFypQkiVEDVLZxlntTNlaYrNw_S80nYPhNEv1PBAuaaA0Q_JGQkjuNXyNmEPhcCoRSsRVqJWEC2ObxtxU03gKc3M6D0JL6tCQOkRSV2Hzc0anSOHxx9il8ixCe5m74RfrVWHtsxuvobGtyFRnfRyDQMc3JTNEFbbKM_y2xC_7Lfy93yqMtq7Oz8Kz44vTRRgzs4o4yCUY7r309TICol60knMhgbv_ZvsPeHgdcg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZaxsxEB5cG0pfcvSgzqlC-9DC1taxhx9CSGKbpCnGmAbyUjbaldQE4l0ntgnuT-uvy2hXm5hA85Y3ga5lNJr5tHMBfFY6pcIEbc9Equ0Jjq0OolK88VwYTUOEvIW3xSA4PhM_zv3zGvyrYmGsW2UlEwtBrfLU_iNvIW63FqGQ-i3j3CKG3f7-5MazFaSspbUqp1GyyKle3OHzbbp30sWz_sJYv_fr6NhzFQa8VFA28_xEpYGhoZJG2syAvqFMs8RQ3eE0bWvhKxWkVobjwx-VmRJSUMlkhE0mfMlx3VfQCO2rqA6Nw95gOKr0gI_Ig5XhmB0Pr4nvjKRtHrWyyWWO0M56lrHvrEgPvaQUH5HuE-NsofP6a7DiwCo5KLlrHWo6ewurDrgSJxam7-D3COHm1V9cg5T-IShCyVj-yWyEJCmc5AiCY1J-z5QkC-Jc5G0wPEEMil2oTkluiFpkcoyzxrlylcXew9mLUPUD1LM80x-BcEkjpZngPBFC8qATakQgCodTicAibUKrIlycuqTmtrbGdVwY13kUO1LHltQxkroJXx9mTMqEHs-M3arOInZXexo_MmITPj1046W0lhaZ6XyOYxD2hLaAhmjCt-oMl5b4z34bz--3C6-R5eOfJ4PTTXhjJ5VBkVtQn93O9Taio1my49iQwMVLc_49X34jBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realizing+effective+magnetic+field+for+photons+by+controlling+the+phase+of+dynamic+modulation&rft.jtitle=Nature+photonics&rft.au=Fang%2C+Kejie&rft.au=Yu%2C+Zongfu&rft.au=Fan%2C+Shanhui&rft.date=2012-11-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1749-4885&rft.eissn=1749-4893&rft.volume=6&rft.issue=11&rft.spage=782&rft.epage=787&rft_id=info:doi/10.1038%2Fnphoton.2012.236&rft.externalDocID=10_1038_nphoton_2012_236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-4885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-4885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-4885&client=summon