Realizing effective magnetic field for photons by controlling the phase of dynamic modulation
The goal to achieve arbitrary control of photon flow has motivated much of the recent research on photonic crystals and metamaterials. As a new mechanism for controlling photon flow, we introduce a scheme that generates an effective magnetic field for photons. We consider a resonator lattice in whic...
Saved in:
Published in | Nature photonics Vol. 6; no. 11; pp. 782 - 787 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2012
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The goal to achieve arbitrary control of photon flow has motivated much of the recent research on photonic crystals and metamaterials. As a new mechanism for controlling photon flow, we introduce a scheme that generates an effective magnetic field for photons. We consider a resonator lattice in which the coupling constants between the resonators are harmonically modulated in time. With appropriate choice of the spatial distribution of the modulation phases, an effective magnetic field for photons can be created, leading to a Lorentz force for photons and the emergence of topologically protected one-way photon edge states that are robust against disorders—without the use of magneto-optical effects.
By considering a resonator lattice in which the coupling constants between the resonators are harmonically modulated in time and by controlling the spatial distribution of the modulation phases, scientists introduce a scheme that can generate an effective magnetic field for photons, without the use of magneto-optical effects. |
---|---|
AbstractList | The goal to achieve arbitrary control of photon flow has motivated much of the recent research on photonic crystals and metamaterials. As a new mechanism for controlling photon flow, we introduce a scheme that generates an effective magnetic field for photons. We consider a resonator lattice in which the coupling constants between the resonators are harmonically modulated in time. With appropriate choice of the spatial distribution of the modulation phases, an effective magnetic field for photons can be created, leading to a Lorentz force for photons and the emergence of topologically protected one-way photon edge states that are robust against disorders-without the use of magneto-optical effects. The goal to achieve arbitrary control of photon flow has motivated much of the recent research on photonic crystals and metamaterials. As a new mechanism for controlling photon flow, we introduce a scheme that generates an effective magnetic field for photons. We consider a resonator lattice in which the coupling constants between the resonators are harmonically modulated in time. With appropriate choice of the spatial distribution of the modulation phases, an effective magnetic field for photons can be created, leading to a Lorentz force for photons and the emergence of topologically protected one-way photon edge states that are robust against disorders—without the use of magneto-optical effects. By considering a resonator lattice in which the coupling constants between the resonators are harmonically modulated in time and by controlling the spatial distribution of the modulation phases, scientists introduce a scheme that can generate an effective magnetic field for photons, without the use of magneto-optical effects. |
Author | Fan, Shanhui Yu, Zongfu Fang, Kejie |
Author_xml | – sequence: 1 givenname: Kejie surname: Fang fullname: Fang, Kejie organization: Department of Physics, Stanford University – sequence: 2 givenname: Zongfu surname: Yu fullname: Yu, Zongfu organization: Department of Electrical Engineering, Stanford University – sequence: 3 givenname: Shanhui surname: Fan fullname: Fan, Shanhui email: shanhui@stanford.edu organization: Department of Electrical Engineering, Stanford University |
BookMark | eNp9kEtLQzEQRoNU0Fb3LgNu3LQmubmvpYgvKAiiSwlp7qRNyU1qkgr115vaIiLoKgPzncnMGaKB8w4QOqNkQknRXLrVwifvJoxQNmFFdYCOac3bMW_aYvBdN-URGsa4JKQsWsaO0esTSGs-jJtj0BpUMu-Aezl3kIzC2oDtsPYB76ZHPNtg5V0K3totkxaQWzIC9hp3Gyf7TPW-W1uZjHcn6FBLG-F0_47Qy-3N8_X9ePp493B9NR0rTlkal7NOVZrWndSSlHVRasqAzTSFtqCKAC-7rlL5sIa0BeOs45JTyWSTS8ZLWYzQxW7uKvi3NcQkehMVWCsd-HUUlFVVnTVRnqPnv6JLvw4ubydobhPe1rTMKbJLqeBjDKDFKpheho2gRGx9i71vsfUtsu-MVL8QZdKXhRSksf-BdAfG_IebQ_ix0V_MJ-0Gmtw |
CitedBy_id | crossref_primary_10_1103_PhysRevLett_133_083802 crossref_primary_10_3390_photonics7010018 crossref_primary_10_1038_s41567_020_01093_z crossref_primary_10_1088_1674_4926_43_12_121201 crossref_primary_10_1038_srep43392 crossref_primary_10_1515_nanoph_2020_0004 crossref_primary_10_1103_PhysRevA_97_033840 crossref_primary_10_1103_PRXQuantum_4_010306 crossref_primary_10_1126_sciadv_1602738 crossref_primary_10_1364_OL_535222 crossref_primary_10_1021_acsnano_2c09883 crossref_primary_10_1103_PhysRevApplied_4_034002 crossref_primary_10_1103_PhysRevA_97_023801 crossref_primary_10_1103_PhysRevB_101_195105 crossref_primary_10_1364_AO_57_008503 crossref_primary_10_1103_PhysRevLett_114_106806 crossref_primary_10_1126_sciadv_aau8135 crossref_primary_10_1038_s41566_017_0051_x crossref_primary_10_1364_OL_40_005443 crossref_primary_10_1016_j_crhy_2018_03_002 crossref_primary_10_1103_PhysRevApplied_20_064036 crossref_primary_10_1038_s41566_019_0375_9 crossref_primary_10_1002_andp_201800118 crossref_primary_10_1103_PhysRevA_103_013505 crossref_primary_10_1103_PhysRevLett_133_093602 crossref_primary_10_1103_PhysRevX_9_041015 crossref_primary_10_1021_acsphotonics_0c00263 crossref_primary_10_1142_S021886352350039X crossref_primary_10_1364_OE_452216 crossref_primary_10_1073_pnas_1915027116 crossref_primary_10_1209_0295_5075_ac65af crossref_primary_10_1103_PhysRevLett_131_123801 crossref_primary_10_1364_OME_550403 crossref_primary_10_1038_496173a crossref_primary_10_1364_OL_490001 crossref_primary_10_1038_s41467_024_44939_3 crossref_primary_10_1103_PhysRevB_96_165425 crossref_primary_10_1016_j_physleta_2024_130105 crossref_primary_10_1117_1_OE_55_9_097105 crossref_primary_10_1364_OL_492427 crossref_primary_10_59717_j_xinn_mater_2024_100083 crossref_primary_10_1007_s12200_019_0949_7 crossref_primary_10_1515_nanoph_2019_0043 crossref_primary_10_1103_PhysRevB_99_134306 crossref_primary_10_1038_s41598_017_01646_y crossref_primary_10_1103_PhysRevLett_126_067401 crossref_primary_10_1103_PhysRevLett_126_103603 crossref_primary_10_1038_s41467_020_17550_5 crossref_primary_10_1103_PhysRevLett_117_017701 crossref_primary_10_1364_OE_25_030395 crossref_primary_10_1038_nphoton_2014_177 crossref_primary_10_1515_nanoph_2020_0441 crossref_primary_10_3390_opt3020013 crossref_primary_10_1109_LAWP_2018_2856258 crossref_primary_10_1103_PhysRevB_94_115437 crossref_primary_10_1103_PhysRevApplied_18_024027 crossref_primary_10_1103_PhysRevLett_121_073901 crossref_primary_10_1103_PhysRevApplied_12_054008 crossref_primary_10_1109_TMAG_2021_3083427 crossref_primary_10_1038_srep08352 crossref_primary_10_1038_s41467_019_10974_8 crossref_primary_10_1103_PhysRevLett_122_103903 crossref_primary_10_1364_OE_26_000835 crossref_primary_10_1038_s41467_024_49747_3 crossref_primary_10_1063_5_0046878 crossref_primary_10_1364_OL_38_003570 crossref_primary_10_1088_1367_2630_17_2_023024 crossref_primary_10_1103_PhysRevB_93_085415 crossref_primary_10_1103_PhysRevA_97_043864 crossref_primary_10_1038_ncomms13368 crossref_primary_10_1209_0295_5075_129_34001 crossref_primary_10_1038_nphoton_2013_321 crossref_primary_10_1016_j_ijmecsci_2019_02_037 crossref_primary_10_1038_s41598_024_67985_9 crossref_primary_10_1002_adma_202309835 crossref_primary_10_1080_15376494_2024_2380382 crossref_primary_10_1364_OME_550605 crossref_primary_10_1103_PhysRevB_96_094106 crossref_primary_10_1515_nanoph_2019_0075 crossref_primary_10_1098_rsos_240569 crossref_primary_10_1103_PhysRevB_102_245149 crossref_primary_10_1088_1367_2630_17_7_075008 crossref_primary_10_1038_srep10880 crossref_primary_10_1364_OPTICA_5_001156 crossref_primary_10_1103_PhysRevA_94_063827 crossref_primary_10_1364_OPTICA_5_001396 crossref_primary_10_1103_PhysRevA_89_023803 crossref_primary_10_1016_j_aop_2016_03_005 crossref_primary_10_1364_OPTICA_5_001390 crossref_primary_10_1103_PhysRevB_98_081405 crossref_primary_10_1103_PhysRevApplied_12_044004 crossref_primary_10_1364_OL_491783 crossref_primary_10_1103_PhysRevLett_113_235501 crossref_primary_10_1038_s41566_021_00882_z crossref_primary_10_7498_aps_71_20220978 crossref_primary_10_1016_j_physe_2020_114415 crossref_primary_10_1038_nphys4009 crossref_primary_10_1103_PhysRevA_105_033501 crossref_primary_10_1103_PhysRevLett_126_203601 crossref_primary_10_1142_S0217979217502496 crossref_primary_10_1103_PhysRevApplied_15_054044 crossref_primary_10_1093_nsr_nwx154 crossref_primary_10_1002_apxr_202300125 crossref_primary_10_1016_j_physe_2015_09_035 crossref_primary_10_1103_Physics_7_87 crossref_primary_10_3390_photonics10111220 crossref_primary_10_1103_PhysRevLett_113_113904 crossref_primary_10_1103_PhysRevLett_116_213901 crossref_primary_10_1063_5_0034291 crossref_primary_10_1364_PRJ_453603 crossref_primary_10_3788_LOP241585 crossref_primary_10_1103_PhysRevX_6_041026 crossref_primary_10_1088_1367_2630_17_11_115008 crossref_primary_10_1103_PhysRevApplied_21_034058 crossref_primary_10_1364_PRJ_485676 crossref_primary_10_1103_PhysRevB_104_085131 crossref_primary_10_1103_PhysRevB_104_085132 crossref_primary_10_1038_s41598_023_48503_9 crossref_primary_10_1103_PhysRevA_94_023805 crossref_primary_10_1103_PhysRevX_6_041043 crossref_primary_10_1038_ncomms4225 crossref_primary_10_1002_lpor_202200626 crossref_primary_10_1063_5_0050775 crossref_primary_10_1103_PhysRevLett_127_105901 crossref_primary_10_1364_OL_503244 crossref_primary_10_1088_2053_1591_ac5f8b crossref_primary_10_1103_PhysRevB_104_144207 crossref_primary_10_1016_j_physleta_2020_126596 crossref_primary_10_1038_s41467_018_07084_2 crossref_primary_10_1103_PhysRevA_101_053807 crossref_primary_10_1038_srep22270 crossref_primary_10_1002_andp_202100191 crossref_primary_10_1209_0295_5075_116_30005 crossref_primary_10_3390_cryst9040221 crossref_primary_10_1038_s41467_021_21250_z crossref_primary_10_7498_aps_66_224203 crossref_primary_10_1038_s41566_019_0453_z crossref_primary_10_1103_PhysRevResearch_1_032005 crossref_primary_10_1038_s41377_020_00354_z crossref_primary_10_1039_C5NR00231A crossref_primary_10_1103_PhysRevLett_129_053901 crossref_primary_10_1103_PhysRevLett_133_223801 crossref_primary_10_1088_1612_202X_aadf61 crossref_primary_10_1103_PhysRevA_105_042422 crossref_primary_10_1088_1367_2630_aa7c82 crossref_primary_10_1103_PhysRevA_109_013323 crossref_primary_10_1103_PhysRevA_97_023846 crossref_primary_10_1103_PhysRevB_94_020301 crossref_primary_10_1038_s41566_021_00910_y crossref_primary_10_1038_ncomms7710 crossref_primary_10_1088_2040_8978_18_7_075105 crossref_primary_10_1364_OL_463458 crossref_primary_10_1038_s41377_021_00464_2 crossref_primary_10_1088_2053_1583_aa56de crossref_primary_10_1126_science_ado8192 crossref_primary_10_1103_PhysRevA_99_053834 crossref_primary_10_1002_lpor_202300458 crossref_primary_10_1103_PhysRevB_106_235418 crossref_primary_10_1109_JPROC_2020_3012381 crossref_primary_10_1007_s11082_020_2248_3 crossref_primary_10_1126_science_aat3100 crossref_primary_10_1142_S0217979214410070 crossref_primary_10_1038_s42005_019_0263_0 crossref_primary_10_1103_PhysRevB_108_195423 crossref_primary_10_1016_j_isci_2022_104727 crossref_primary_10_1364_OL_40_005259 crossref_primary_10_1103_PhysRevB_109_054312 crossref_primary_10_1103_PhysRevLett_110_203904 crossref_primary_10_1103_PhysRevA_105_023504 crossref_primary_10_1103_PhysRevX_4_031031 crossref_primary_10_1364_JOSAB_484961 crossref_primary_10_1103_PhysRevB_97_035442 crossref_primary_10_1364_AOP_411024 crossref_primary_10_1088_1367_2630_aa66f8 crossref_primary_10_1103_PhysRevApplied_10_044028 crossref_primary_10_1103_PhysRevApplied_10_054069 crossref_primary_10_1109_TMTT_2021_3079250 crossref_primary_10_1038_s41563_018_0252_9 crossref_primary_10_1364_OE_26_015255 crossref_primary_10_1364_OL_384552 crossref_primary_10_1103_PhysRevA_103_013309 crossref_primary_10_1002_qute_202100017 crossref_primary_10_1038_nphys3134 crossref_primary_10_1016_j_ijleo_2021_167351 crossref_primary_10_1103_PhysRevApplied_15_044041 crossref_primary_10_1016_j_optcom_2016_05_038 crossref_primary_10_1103_PhysRevA_88_043847 crossref_primary_10_1103_PhysRevApplied_17_064029 crossref_primary_10_1364_OL_40_005275 crossref_primary_10_1038_srep30055 crossref_primary_10_1364_OE_405820 crossref_primary_10_1109_JLT_2016_2586959 crossref_primary_10_1007_s00339_021_04989_6 crossref_primary_10_1103_PhysRevApplied_15_024002 crossref_primary_10_1103_PhysRevB_95_165109 crossref_primary_10_1103_PhysRevA_105_043318 crossref_primary_10_1103_PhysRevA_94_021801 crossref_primary_10_1103_PhysRevA_107_063501 crossref_primary_10_1002_pssb_202200214 crossref_primary_10_1103_PhysRevB_97_184201 crossref_primary_10_1103_PhysRevLett_133_233805 crossref_primary_10_1103_PhysRevX_9_021051 crossref_primary_10_1063_5_0152354 crossref_primary_10_1126_sciadv_adg7541 crossref_primary_10_1103_PhysRevA_107_053701 crossref_primary_10_1088_1367_2630_aad136 crossref_primary_10_1364_OL_411622 crossref_primary_10_1364_OE_398421 crossref_primary_10_1038_ncomms9183 crossref_primary_10_1103_PhysRevResearch_4_043162 crossref_primary_10_1364_OL_38_001912 crossref_primary_10_1038_ncomms16023 crossref_primary_10_1103_PhysRevA_99_033844 crossref_primary_10_1016_j_ssc_2024_115735 crossref_primary_10_1016_j_chaos_2023_113333 crossref_primary_10_1103_PhysRevB_98_075412 crossref_primary_10_1142_S0217979214410033 crossref_primary_10_1063_5_0039586 crossref_primary_10_1103_PhysRevB_97_075128 crossref_primary_10_1103_PhysRevA_110_043716 crossref_primary_10_1103_PhysRevApplied_13_044070 crossref_primary_10_1103_PhysRevApplied_16_014036 crossref_primary_10_1038_nphoton_2016_107 crossref_primary_10_1103_PhysRevA_91_033827 crossref_primary_10_1364_OPTICA_6_000839 crossref_primary_10_1080_00018732_2021_1876991 crossref_primary_10_1103_PhysRevLett_120_023601 crossref_primary_10_1103_PhysRevLett_120_116802 crossref_primary_10_1038_s41566_023_01189_x crossref_primary_10_1103_PhysRevB_95_161115 crossref_primary_10_1038_s41563_022_01200_w crossref_primary_10_1038_s41565_019_0584_x crossref_primary_10_1073_pnas_2300860120 crossref_primary_10_1021_acsphotonics_3c00747 crossref_primary_10_1088_1367_2630_aaac04 crossref_primary_10_1038_srep28453 crossref_primary_10_21468_SciPostPhys_14_5_107 crossref_primary_10_1038_nphys3458 crossref_primary_10_1103_PhysRevResearch_4_L032046 crossref_primary_10_1364_OL_41_000741 crossref_primary_10_1021_acs_jpcb_4c05966 crossref_primary_10_1364_OL_40_000463 crossref_primary_10_1103_PhysRevA_109_023522 crossref_primary_10_1002_lpor_201900126 crossref_primary_10_1038_s41467_021_22597_z crossref_primary_10_1103_PhysRevB_103_035415 crossref_primary_10_1117_1_OE_61_9_097103 crossref_primary_10_1038_s42005_024_01676_9 crossref_primary_10_1142_S0217979214410021 crossref_primary_10_1103_PhysRevB_99_081103 crossref_primary_10_1103_PhysRevB_98_165129 crossref_primary_10_1103_PhysRevA_96_043816 crossref_primary_10_1103_PhysRevB_94_155437 crossref_primary_10_1142_S021797921441001X crossref_primary_10_1103_PhysRevLett_124_206601 crossref_primary_10_1088_1367_2630_18_11_113029 crossref_primary_10_1364_OE_27_025841 crossref_primary_10_1103_PhysRevApplied_7_054022 crossref_primary_10_1063_1_4982164 crossref_primary_10_1038_s41598_024_68602_5 crossref_primary_10_1080_23746149_2021_1905546 crossref_primary_10_1103_PhysRevB_87_235429 crossref_primary_10_1364_OME_529108 crossref_primary_10_1103_PhysRevB_100_054302 crossref_primary_10_1103_PhysRevLett_130_083601 crossref_primary_10_1038_s41377_020_00384_7 crossref_primary_10_1002_adma_202310010 crossref_primary_10_1038_srep13376 crossref_primary_10_1103_PhysRevResearch_2_013387 crossref_primary_10_1103_PhysRevB_99_014103 crossref_primary_10_1021_acs_chemrev_2c00800 crossref_primary_10_1103_PhysRevB_94_165405 crossref_primary_10_1063_5_0180301 crossref_primary_10_1364_OL_42_005006 crossref_primary_10_1103_PhysRevB_93_020502 crossref_primary_10_1016_j_micrna_2022_207447 crossref_primary_10_1038_ncomms11619 crossref_primary_10_1038_s41567_020_0815_y crossref_primary_10_1103_PhysRevLett_121_023901 crossref_primary_10_7498_aps_73_20240040 crossref_primary_10_1002_lpor_202100003 crossref_primary_10_1038_ncomms10779 crossref_primary_10_1364_JOSAB_36_000306 crossref_primary_10_1103_PhysRevLett_124_083603 crossref_primary_10_1088_2040_8986_ab18eb crossref_primary_10_1103_PhysRevB_93_041415 crossref_primary_10_1038_srep32752 crossref_primary_10_1103_PhysRevA_97_012121 crossref_primary_10_1088_1367_2630_16_11_113023 crossref_primary_10_1126_science_aaz3071 crossref_primary_10_1088_1367_2630_aa57ba crossref_primary_10_1103_PhysRevLett_124_253601 crossref_primary_10_1103_PhysRevA_99_013826 crossref_primary_10_1103_PhysRevLett_134_116607 crossref_primary_10_1002_lpor_202401157 crossref_primary_10_1038_ncomms16097 crossref_primary_10_1088_2040_8986_aaa701 crossref_primary_10_1364_PRJ_530245 crossref_primary_10_1103_PhysRevB_108_134119 crossref_primary_10_1021_acsphotonics_0c00961 crossref_primary_10_1364_OE_500291 crossref_primary_10_1103_PhysRevX_5_011012 crossref_primary_10_1186_s11671_018_2538_x crossref_primary_10_1103_PhysRevA_101_023839 crossref_primary_10_1088_1367_2630_ac20eb crossref_primary_10_1103_PhysRevB_91_161413 crossref_primary_10_1103_PhysRevLett_122_143901 crossref_primary_10_1103_PhysRevA_99_013816 crossref_primary_10_1103_PhysRevA_105_023319 crossref_primary_10_1103_PhysRevLett_114_103902 crossref_primary_10_1209_0295_5075_120_54003 crossref_primary_10_1002_adom_201801582 crossref_primary_10_1038_s41467_019_11117_9 crossref_primary_10_1103_PhysRevB_89_075113 crossref_primary_10_1364_OPTICA_3_001256 crossref_primary_10_1038_s41566_018_0179_3 crossref_primary_10_1103_PhysRevResearch_2_012011 crossref_primary_10_1016_j_optcom_2021_126870 crossref_primary_10_1109_JSTQE_2020_3010586 crossref_primary_10_1364_OE_395504 crossref_primary_10_1109_JPROC_2019_2939987 crossref_primary_10_1103_PhysRevA_107_023705 crossref_primary_10_1103_PhysRevB_94_140303 crossref_primary_10_1364_OE_439769 crossref_primary_10_1103_PhysRevB_87_060301 crossref_primary_10_1016_j_mtphys_2024_101489 crossref_primary_10_1140_epjst_e2018_800091_5 crossref_primary_10_1103_PhysRevA_91_053854 crossref_primary_10_1103_PhysRevA_102_013723 crossref_primary_10_1063_5_0008202 crossref_primary_10_1021_acsphotonics_1c00968 crossref_primary_10_1364_OE_493283 crossref_primary_10_1364_OE_25_013448 crossref_primary_10_1103_PhysRevLett_116_176401 crossref_primary_10_1021_acsphotonics_2c01807 crossref_primary_10_1038_nphys3611 crossref_primary_10_1038_s41598_020_58018_2 crossref_primary_10_1088_1367_2630_aac4fa crossref_primary_10_1103_PhysRevLett_134_070601 crossref_primary_10_1016_j_optcom_2021_126861 crossref_primary_10_1038_s41467_023_37065_z crossref_primary_10_1364_OE_450558 crossref_primary_10_1103_PhysRevApplied_11_024046 crossref_primary_10_1364_AO_520654 crossref_primary_10_1515_nanoph_2021_0231 crossref_primary_10_1103_PhysRevA_104_053529 crossref_primary_10_1103_PhysRevA_99_013851 crossref_primary_10_1103_PhysRevLett_114_243901 crossref_primary_10_1103_PhysRevA_107_023720 crossref_primary_10_1126_sciadv_aat2774 crossref_primary_10_1038_s41377_022_00870_0 crossref_primary_10_1103_PhysRevLett_121_075502 crossref_primary_10_1103_PhysRevB_95_045102 crossref_primary_10_1016_j_optlastec_2022_107957 crossref_primary_10_1364_JOSAB_35_000417 crossref_primary_10_1109_JPROC_2020_3023959 crossref_primary_10_1016_j_physleta_2022_128299 crossref_primary_10_1364_OE_24_002496 crossref_primary_10_1016_j_optcom_2023_129446 crossref_primary_10_1016_j_optlastec_2018_06_044 crossref_primary_10_1103_PhysRevB_96_100202 crossref_primary_10_1364_OE_418865 crossref_primary_10_7566_JPSJ_84_054401 crossref_primary_10_1364_OL_387043 crossref_primary_10_1007_s11107_019_00876_6 crossref_primary_10_1364_OE_438474 crossref_primary_10_1063_1_4938003 crossref_primary_10_1103_PhysRevA_111_013304 crossref_primary_10_1103_PhysRevA_94_012116 crossref_primary_10_1364_OPTICA_6_000213 crossref_primary_10_1103_PhysRevB_97_205102 crossref_primary_10_1002_adma_201805002 crossref_primary_10_1002_andp_202200157 crossref_primary_10_1088_2515_7647_ac4ee4 crossref_primary_10_1103_PhysRevLett_112_210405 crossref_primary_10_1103_PhysRevLett_121_124501 crossref_primary_10_1039_D3NR01288C crossref_primary_10_1038_s41467_019_14124_y crossref_primary_10_1103_PhysRevA_109_063518 crossref_primary_10_1103_PhysRevApplied_13_044037 crossref_primary_10_1063_5_0041458 crossref_primary_10_1002_adom_202300986 crossref_primary_10_1007_s11433_022_2043_3 crossref_primary_10_1103_PhysRevA_98_053806 crossref_primary_10_1364_OME_497791 crossref_primary_10_1364_JOSAB_33_001128 crossref_primary_10_1038_s41377_023_01196_1 crossref_primary_10_3788_AOS241040 crossref_primary_10_1103_PhysRevA_107_023506 crossref_primary_10_1103_PhysRevLett_120_217401 crossref_primary_10_1103_PhysRevB_96_064304 crossref_primary_10_1364_OE_25_023293 crossref_primary_10_1103_PhysRevLett_126_193901 crossref_primary_10_1002_adma_202209123 crossref_primary_10_1038_s41928_021_00658_x crossref_primary_10_1103_PhysRevA_102_011502 crossref_primary_10_1140_epjb_e2019_100495_6 crossref_primary_10_1140_epjp_s13360_023_04797_2 crossref_primary_10_1038_ncomms9317 crossref_primary_10_7498_aps_64_184208 crossref_primary_10_1038_srep20976 crossref_primary_10_1016_j_scib_2023_01_018 crossref_primary_10_1103_PhysRevLett_115_040402 crossref_primary_10_1021_acsphotonics_4c00776 crossref_primary_10_1002_lpor_201400462 crossref_primary_10_1063_5_0239265 crossref_primary_10_1103_PhysRevApplied_18_054065 crossref_primary_10_1126_science_aar4005 crossref_primary_10_1364_OE_462333 crossref_primary_10_1088_1367_2630_18_9_093013 crossref_primary_10_1126_science_aar4003 crossref_primary_10_1063_5_0099423 crossref_primary_10_1103_PhysRevResearch_3_043226 crossref_primary_10_1021_acsphotonics_2c01623 crossref_primary_10_1103_PhysRevB_95_075157 crossref_primary_10_1002_lpor_202100631 crossref_primary_10_1016_j_physleta_2013_06_011 crossref_primary_10_1103_PhysRevApplied_18_044055 crossref_primary_10_1103_PhysRevA_102_033526 crossref_primary_10_1103_PhysRevB_96_241306 crossref_primary_10_1063_5_0239018 crossref_primary_10_1007_s10955_022_02960_0 crossref_primary_10_1038_srep32919 crossref_primary_10_1103_PhysRevLett_118_045302 crossref_primary_10_1002_qute_201900117 crossref_primary_10_1515_nanoph_2022_0820 crossref_primary_10_1103_PhysRevB_100_045423 crossref_primary_10_1103_PhysRevA_110_062409 crossref_primary_10_1080_23746149_2024_2325611 crossref_primary_10_1103_PhysRevA_96_043864 crossref_primary_10_1140_epjd_e2015_60220_7 crossref_primary_10_1039_D0NR06272C crossref_primary_10_1515_nanoph_2019_0376 crossref_primary_10_1016_j_chip_2022_100025 crossref_primary_10_1364_OL_491680 crossref_primary_10_1088_0256_307X_38_2_024202 crossref_primary_10_1103_PhysRevB_94_195427 crossref_primary_10_1364_OE_462156 crossref_primary_10_1364_OE_489873 crossref_primary_10_1088_1361_6463_aaa9fe crossref_primary_10_1103_PhysRevLett_122_083903 crossref_primary_10_1364_OE_440121 crossref_primary_10_1364_OPTICA_3_000200 crossref_primary_10_35848_1882_0786_acca5e crossref_primary_10_1038_nmat4573 crossref_primary_10_1103_PhysRevA_104_033504 crossref_primary_10_1103_PhysRevA_95_063808 crossref_primary_10_1038_s42005_024_01691_w crossref_primary_10_1038_nature12066 crossref_primary_10_1103_PhysRevX_8_031079 crossref_primary_10_1021_acsphotonics_8b01355 crossref_primary_10_1103_PhysRevLett_118_083603 crossref_primary_10_1038_s41928_022_00751_9 crossref_primary_10_21468_SciPostPhys_13_5_107 crossref_primary_10_1103_PhysRevA_100_023804 crossref_primary_10_1103_PhysRevB_93_195153 crossref_primary_10_1002_adma_202004376 crossref_primary_10_1038_nphoton_2013_274 crossref_primary_10_1103_PhysRevResearch_3_043211 crossref_primary_10_1364_OL_40_003380 crossref_primary_10_1063_5_0008046 crossref_primary_10_1103_PhysRevA_107_013507 crossref_primary_10_1103_PhysRevB_102_100102 crossref_primary_10_1063_5_0045228 crossref_primary_10_1103_PhysRevA_104_L031502 crossref_primary_10_1038_s41566_023_01333_7 crossref_primary_10_1103_PhysRevResearch_1_033069 crossref_primary_10_1088_1674_1056_acf662 crossref_primary_10_1063_5_0056359 crossref_primary_10_1002_lpor_202401900 crossref_primary_10_1364_OL_42_001990 crossref_primary_10_1063_5_0228315 crossref_primary_10_1209_0295_5075_ac9e71 crossref_primary_10_1103_PhysRevLett_119_023603 crossref_primary_10_1364_JOSAB_452642 crossref_primary_10_1016_j_physrep_2017_10_002 crossref_primary_10_1103_PhysRevLett_127_100503 crossref_primary_10_1103_PhysRevB_103_214409 crossref_primary_10_1038_s41467_018_08281_9 crossref_primary_10_1021_acsphotonics_0c01208 crossref_primary_10_1109_TAP_2020_2967302 crossref_primary_10_1038_s41377_020_0299_7 crossref_primary_10_1038_ncomms14540 crossref_primary_10_1038_s41566_020_0688_8 crossref_primary_10_3788_LOP232334 crossref_primary_10_1103_PhysRevA_96_013808 crossref_primary_10_1103_PhysRevA_107_013523 crossref_primary_10_1364_OL_41_004791 crossref_primary_10_1103_PhysRevB_99_165148 crossref_primary_10_1103_PhysRevLett_114_114301 crossref_primary_10_1103_PhysRevLett_114_223901 crossref_primary_10_1088_2040_8986_aa9b06 crossref_primary_10_1364_JOSAB_448397 crossref_primary_10_1103_PhysRevApplied_18_027001 crossref_primary_10_1103_PhysRevLett_126_036801 crossref_primary_10_1038_s41377_021_00702_7 crossref_primary_10_1103_PhysRevApplied_14_024091 crossref_primary_10_1103_PhysRevB_92_014210 crossref_primary_10_1103_PhysRevApplied_14_014063 crossref_primary_10_1103_PhysRevLett_130_171901 crossref_primary_10_1364_OPTICA_423089 crossref_primary_10_59277_RomRepPhys_2024_76_903 crossref_primary_10_1103_PhysRevA_88_013853 crossref_primary_10_1103_PhysRevA_106_053714 crossref_primary_10_1038_srep07381 crossref_primary_10_1088_1367_2630_aa7cb5 crossref_primary_10_1103_PhysRevLett_126_230503 crossref_primary_10_1142_S0217979225501218 crossref_primary_10_1364_JOSAB_34_000831 crossref_primary_10_1103_PhysRevResearch_4_023082 crossref_primary_10_1103_PhysRevApplied_13_064033 crossref_primary_10_1038_s41377_020_0331_y crossref_primary_10_1038_s41565_024_01737_8 crossref_primary_10_1103_PhysRevB_94_125125 crossref_primary_10_1103_PhysRevLett_111_243905 crossref_primary_10_1103_PhysRevResearch_5_023189 crossref_primary_10_1364_OPTICA_6_001321 crossref_primary_10_1016_j_jmps_2022_105163 crossref_primary_10_1063_1_4953364 crossref_primary_10_1088_1367_2630_aa8a9f crossref_primary_10_1038_ncomms13486 crossref_primary_10_1103_PhysRevA_98_033807 crossref_primary_10_1103_PhysRevResearch_3_L022006 crossref_primary_10_1103_PhysRevLett_120_043902 crossref_primary_10_1103_PhysRevLett_120_043901 crossref_primary_10_1103_PhysRevResearch_6_033020 crossref_primary_10_3390_cryst10070605 crossref_primary_10_1038_nphoton_2014_248 crossref_primary_10_1016_j_crhy_2016_07_003 crossref_primary_10_1103_PhysRevLett_125_213902 crossref_primary_10_1038_ncomms8704 crossref_primary_10_1063_1_4935981 crossref_primary_10_1103_PhysRevApplied_11_034017 crossref_primary_10_1103_PhysRevLett_114_127401 crossref_primary_10_1038_s41565_019_0630_8 crossref_primary_10_1063_5_0153703 crossref_primary_10_1103_PhysRevLett_125_213901 crossref_primary_10_35848_1882_0786_ac8598 crossref_primary_10_1038_s41567_024_02644_4 crossref_primary_10_1103_PhysRevLett_125_255502 crossref_primary_10_1126_sciadv_abq7533 crossref_primary_10_1103_PhysRevB_100_085118 crossref_primary_10_1016_j_scib_2019_02_017 crossref_primary_10_1038_ncomms6782 crossref_primary_10_1063_1_4976013 crossref_primary_10_1098_rspa_2021_0507 crossref_primary_10_1364_OPTICA_430821 crossref_primary_10_1364_OE_24_015631 crossref_primary_10_1364_OE_26_032554 crossref_primary_10_3390_photonics9080585 crossref_primary_10_1088_2058_9565_ab32a4 crossref_primary_10_1103_PhysRevResearch_4_013078 crossref_primary_10_1103_PhysRevB_100_014306 crossref_primary_10_1080_09500340_2019_1696997 crossref_primary_10_1364_OL_411102 crossref_primary_10_1103_PhysRevLett_132_083801 crossref_primary_10_1088_1674_1056_26_11_117801 crossref_primary_10_1038_s41467_017_01205_z crossref_primary_10_1103_PhysRevResearch_2_033517 crossref_primary_10_1021_acsphotonics_7b00448 crossref_primary_10_1209_0295_5075_131_24004 crossref_primary_10_1088_2040_8986_ad9ab4 crossref_primary_10_3788_CJL231385 crossref_primary_10_1038_s41567_021_01185_4 crossref_primary_10_1103_PhysRevLett_119_167401 crossref_primary_10_1364_PRJ_443928 crossref_primary_10_1103_PhysRevA_106_053517 crossref_primary_10_1364_OE_21_018216 crossref_primary_10_1063_5_0153523 crossref_primary_10_1103_PhysRevA_93_062319 crossref_primary_10_1016_j_optcom_2015_12_052 crossref_primary_10_1038_ncomms13038 crossref_primary_10_1109_JSTQE_2015_2487879 crossref_primary_10_1364_OL_455757 crossref_primary_10_1038_s41377_020_00411_7 crossref_primary_10_1103_PhysRevResearch_4_023044 crossref_primary_10_1364_JOSAB_521931 crossref_primary_10_1103_PhysRevA_95_043814 crossref_primary_10_1103_PhysRevB_107_035144 crossref_primary_10_1103_PhysRevLett_120_063902 crossref_primary_10_1364_OE_482836 crossref_primary_10_1088_1361_6455_ad2e2b crossref_primary_10_1002_lpor_202300354 crossref_primary_10_1103_PhysRevX_5_021025 crossref_primary_10_1364_AOP_529288 crossref_primary_10_1038_s41467_023_35956_9 crossref_primary_10_1088_1367_2630_aaba18 crossref_primary_10_1103_PhysRevB_107_L180101 crossref_primary_10_1063_1_4939915 crossref_primary_10_1021_acs_jpcc_9b10030 crossref_primary_10_1103_PhysRevLett_125_203901 crossref_primary_10_1103_PhysRevA_106_062206 crossref_primary_10_1063_5_0003888 crossref_primary_10_1103_PhysRevA_93_043827 crossref_primary_10_1103_PhysRevB_107_035133 crossref_primary_10_1103_PhysRevB_107_174105 crossref_primary_10_1103_PhysRevApplied_11_054060 crossref_primary_10_1038_s42005_024_01695_6 crossref_primary_10_1103_PhysRevB_95_121409 crossref_primary_10_1103_PhysRevB_93_085105 crossref_primary_10_1103_PhysRevB_97_201408 crossref_primary_10_1088_2040_8986_aada5b crossref_primary_10_1103_PhysRevLett_128_104501 crossref_primary_10_1126_science_adt2495 crossref_primary_10_1038_s41467_019_11021_2 crossref_primary_10_1103_PhysRevA_93_062110 crossref_primary_10_1103_PhysRevA_98_033830 crossref_primary_10_1063_5_0030833 crossref_primary_10_1088_1361_6463_aa7619 crossref_primary_10_1103_PhysRevApplied_16_064036 crossref_primary_10_1038_s41566_019_0561_9 crossref_primary_10_1103_PhysRevA_106_063523 crossref_primary_10_1103_PhysRevLett_122_153904 crossref_primary_10_1364_OE_22_017409 crossref_primary_10_1364_OL_41_005242 crossref_primary_10_1088_1367_2630_aa847d crossref_primary_10_1103_PhysRevApplied_22_044029 crossref_primary_10_1103_PhysRevB_108_035423 crossref_primary_10_1126_sciadv_abk0468 crossref_primary_10_1038_s41534_022_00591_7 crossref_primary_10_1364_OE_27_006946 crossref_primary_10_1103_Physics_8_122 crossref_primary_10_1103_PhysRevLett_125_053901 crossref_primary_10_1002_pssr_201900175 crossref_primary_10_1103_PhysRevA_110_042216 crossref_primary_10_1103_PhysRevLett_114_123901 crossref_primary_10_1038_s41467_019_08881_z crossref_primary_10_1007_s11082_021_02745_x crossref_primary_10_1038_srep32572 crossref_primary_10_1364_PRJ_451344 crossref_primary_10_1103_PhysRevLett_127_153903 crossref_primary_10_1103_PhysRevA_104_023501 crossref_primary_10_1103_PhysRevA_95_063846 crossref_primary_10_1103_PhysRevB_93_104303 crossref_primary_10_1088_1367_2630_17_12_125002 crossref_primary_10_1038_s41566_019_0498_z crossref_primary_10_1103_PhysRevB_95_144307 crossref_primary_10_1103_PhysRevLett_115_200402 crossref_primary_10_1088_1367_2630_17_12_125015 crossref_primary_10_1103_PhysRevA_93_023827 crossref_primary_10_1103_PhysRevB_95_085402 crossref_primary_10_1038_s42254_018_0018_y crossref_primary_10_1103_PhysRevLett_122_233904 crossref_primary_10_3389_fphy_2022_845579 crossref_primary_10_1364_OE_23_010498 crossref_primary_10_7498_aps_66_227803 crossref_primary_10_1364_OE_510902 crossref_primary_10_3788_gzxb20235208_0826001 crossref_primary_10_1103_PhysRevB_101_121405 crossref_primary_10_1126_sciadv_aap8802 crossref_primary_10_1103_PhysRevB_101_165427 crossref_primary_10_1103_PhysRevB_91_094502 crossref_primary_10_1103_PhysRevLett_116_163901 crossref_primary_10_1063_5_0039839 crossref_primary_10_1103_PhysRevB_106_094305 crossref_primary_10_1103_PhysRevLett_120_060601 crossref_primary_10_1103_PhysRevX_5_031001 crossref_primary_10_1038_s41467_024_45580_w crossref_primary_10_1098_rspa_2016_0819 crossref_primary_10_1103_PhysRevLett_114_037402 crossref_primary_10_1103_PhysRevLett_120_133901 crossref_primary_10_1016_j_chaos_2018_02_030 crossref_primary_10_1038_s41377_023_01200_8 crossref_primary_10_1002_lpor_202200717 crossref_primary_10_1016_j_optcom_2021_127262 crossref_primary_10_1038_s41467_022_35398_9 crossref_primary_10_1103_PhysRevLett_125_123901 crossref_primary_10_1103_PhysRevX_5_031011 crossref_primary_10_1142_S0218863517500126 crossref_primary_10_1063_5_0140483 crossref_primary_10_1364_PRJ_485595 crossref_primary_10_1002_adom_201700357 crossref_primary_10_1002_pssr_201800322 crossref_primary_10_1063_1_5135927 crossref_primary_10_1126_sciadv_adp7779 crossref_primary_10_1364_OL_40_005140 crossref_primary_10_1016_j_photonics_2022_101049 crossref_primary_10_1103_PhysRevA_106_032606 crossref_primary_10_1364_OPTICA_6_000096 crossref_primary_10_1103_PhysRevApplied_6_024016 crossref_primary_10_1364_PRJ_412904 crossref_primary_10_1103_PhysRevLett_118_084303 crossref_primary_10_1038_s41565_018_0297_6 crossref_primary_10_1103_PhysRevLett_121_203602 crossref_primary_10_1364_OE_23_010327 crossref_primary_10_1002_adpr_202100013 crossref_primary_10_1088_1361_6463_aa9ecb crossref_primary_10_1002_lpor_201600042 crossref_primary_10_1038_s41566_018_0269_2 crossref_primary_10_1038_s41467_020_15705_y crossref_primary_10_1063_5_0232163 crossref_primary_10_1088_2040_8978_18_10_104005 crossref_primary_10_1103_PhysRevA_108_063709 crossref_primary_10_1002_pssr_201700357 crossref_primary_10_1103_PhysRevLett_128_163901 crossref_primary_10_1364_OL_509503 crossref_primary_10_1038_s41566_024_01424_z crossref_primary_10_1063_5_0097591 crossref_primary_10_1103_PhysRevB_104_045408 crossref_primary_10_1103_PhysRevA_100_012112 crossref_primary_10_1103_PhysRevB_97_155124 crossref_primary_10_1109_MAP_2020_3043437 crossref_primary_10_1016_j_physrep_2014_01_003 crossref_primary_10_1088_1361_6463_ac4b72 crossref_primary_10_1016_j_ijleo_2019_03_160 crossref_primary_10_1103_PhysRevA_97_063838 crossref_primary_10_1103_PhysRevA_98_013855 crossref_primary_10_1103_PhysRevB_102_174107 crossref_primary_10_1103_PhysRevResearch_3_013122 crossref_primary_10_1121_10_0001812 crossref_primary_10_23919_emsci_2022_0005 crossref_primary_10_1016_j_physe_2016_02_027 crossref_primary_10_1002_adma_202210825 crossref_primary_10_1002_lpor_202000584 crossref_primary_10_1088_1367_2630_aa5127 crossref_primary_10_1103_PhysRevLett_132_033803 crossref_primary_10_1103_PhysRevB_109_L020302 crossref_primary_10_1088_1612_202X_aa9e58 crossref_primary_10_1103_PhysRevLett_115_166804 crossref_primary_10_1103_PhysRevApplied_19_064016 crossref_primary_10_1103_PhysRevA_104_013305 crossref_primary_10_3788_AOS240938 crossref_primary_10_1103_PhysRevLett_117_013902 crossref_primary_10_1038_srep29202 crossref_primary_10_1364_OPTICA_3_000925 crossref_primary_10_1038_nphoton_2013_3 crossref_primary_10_1103_PhysRevLett_118_245301 crossref_primary_10_1038_nmat4811 crossref_primary_10_1109_TAP_2023_3320196 crossref_primary_10_1103_PhysRevA_98_013635 crossref_primary_10_1103_PhysRevLett_111_203901 crossref_primary_10_1364_OL_40_002941 crossref_primary_10_1063_1_4973990 crossref_primary_10_1038_nphys3999 crossref_primary_10_1088_1367_2630_aa4fa9 crossref_primary_10_1364_PRJ_403279 crossref_primary_10_1002_lpor_202000360 crossref_primary_10_1002_adom_201900900 crossref_primary_10_1038_nmat4807 crossref_primary_10_1103_PhysRevLett_114_225301 crossref_primary_10_1016_j_ijmecsci_2022_107360 crossref_primary_10_1364_OL_539578 crossref_primary_10_1364_OE_26_014567 crossref_primary_10_1364_OPTICA_2_000635 crossref_primary_10_1038_ncomms11744 crossref_primary_10_1364_OL_42_000915 crossref_primary_10_1088_1674_1056_ada9d9 crossref_primary_10_1103_PhysRevA_106_023512 crossref_primary_10_1364_OME_546801 crossref_primary_10_1364_OE_504997 crossref_primary_10_1016_j_optlaseng_2024_108136 crossref_primary_10_1038_s41377_020_00385_6 crossref_primary_10_1038_npjqi_2016_15 crossref_primary_10_1103_PhysRevB_90_075423 crossref_primary_10_1126_science_aay3183 crossref_primary_10_1038_s41377_024_01433_1 crossref_primary_10_1007_s11468_017_0558_5 crossref_primary_10_1002_adpr_202400023 crossref_primary_10_1016_j_scib_2023_08_013 crossref_primary_10_1103_PhysRevLett_123_073601 crossref_primary_10_1063_1_5086312 crossref_primary_10_1016_j_optcom_2019_04_070 crossref_primary_10_1088_1367_2630_16_10_103027 crossref_primary_10_1002_adpr_202000104 crossref_primary_10_1364_OE_438779 crossref_primary_10_1364_PRJ_471905 crossref_primary_10_1186_s43593_022_00036_w crossref_primary_10_1002_lpor_201900425 crossref_primary_10_1038_s41467_020_15682_2 crossref_primary_10_1016_j_physleta_2020_126448 crossref_primary_10_1364_JOSAB_477338 crossref_primary_10_1016_j_revip_2022_100076 crossref_primary_10_1038_nphys3796 crossref_primary_10_1103_PhysRevResearch_3_033161 crossref_primary_10_1103_PhysRevA_103_053701 crossref_primary_10_1103_PhysRevA_95_033801 crossref_primary_10_1103_PhysRevA_92_043625 crossref_primary_10_1038_s41566_019_0370_1 crossref_primary_10_1038_s41377_020_00408_2 crossref_primary_10_1103_PhysRevA_108_043708 crossref_primary_10_1103_PhysRevA_95_013830 crossref_primary_10_1103_PhysRevLett_112_133902 crossref_primary_10_1038_s41377_019_0149_7 crossref_primary_10_1103_PhysRevX_8_041031 crossref_primary_10_1103_PhysRevB_98_014302 crossref_primary_10_1038_s41467_019_12092_x crossref_primary_10_1063_1_4985381 crossref_primary_10_1103_PhysRevLett_113_087403 crossref_primary_10_1364_OE_551936 crossref_primary_10_1126_science_aau0227 crossref_primary_10_1038_s41598_018_36170_0 crossref_primary_10_1103_PhysRevLett_124_223902 crossref_primary_10_1364_JOSAB_457969 crossref_primary_10_1515_nanoph_2020_0415 crossref_primary_10_1103_PhysRevLett_132_156602 crossref_primary_10_1016_j_optcom_2023_130113 crossref_primary_10_1063_1_5055601 crossref_primary_10_1103_PhysRevLett_121_204301 crossref_primary_10_1103_RevModPhys_91_015006 crossref_primary_10_7498_aps_70_20201808 crossref_primary_10_2139_ssrn_4762792 crossref_primary_10_1364_OPTICA_429945 crossref_primary_10_1103_PhysRevA_95_013837 crossref_primary_10_7567_1882_0786_ab0468 crossref_primary_10_1038_ncomms9682 crossref_primary_10_1103_PhysRevApplied_4_024013 crossref_primary_10_1002_lpor_202401627 crossref_primary_10_1038_nphoton_2014_208 crossref_primary_10_1364_OL_40_001278 crossref_primary_10_1002_lpor_201900087 crossref_primary_10_1103_PhysRevB_101_045415 crossref_primary_10_1103_PhysRevApplied_9_044031 crossref_primary_10_1103_PhysRevLett_120_263202 crossref_primary_10_7567_JJAP_57_07LD16 crossref_primary_10_1038_s41467_018_04202_y crossref_primary_10_1038_s41586_018_0418_2 crossref_primary_10_1103_PhysRevA_103_023721 crossref_primary_10_1038_ncomms13731 crossref_primary_10_1103_PhysRevB_100_115412 crossref_primary_10_1103_PhysRevA_97_043833 crossref_primary_10_1364_JOSAB_547846 crossref_primary_10_1063_5_0196844 crossref_primary_10_1103_PhysRevB_104_024306 crossref_primary_10_1002_lpor_202100300 crossref_primary_10_1103_PhysRevB_109_115147 crossref_primary_10_1103_PhysRevA_103_033513 crossref_primary_10_1103_PhysRevA_92_041805 crossref_primary_10_7498_aps_68_20191437 crossref_primary_10_1103_PhysRevA_103_033511 crossref_primary_10_1038_s41586_022_04609_0 crossref_primary_10_1103_PhysRevA_97_043841 crossref_primary_10_1103_PhysRevLett_128_256101 crossref_primary_10_1038_s41598_024_69751_3 crossref_primary_10_1103_PhysRevA_103_042219 crossref_primary_10_1103_PhysRevB_103_214112 crossref_primary_10_1073_pnas_1508777112 crossref_primary_10_1016_j_physb_2020_412733 crossref_primary_10_1103_PhysRevApplied_12_024027 crossref_primary_10_1038_s41586_024_08259_2 crossref_primary_10_1103_PhysRevX_6_011016 crossref_primary_10_1103_PhysRevX_10_011059 crossref_primary_10_1038_ncomms13756 crossref_primary_10_1103_PhysRevApplied_14_054007 crossref_primary_10_1016_j_revip_2025_100108 crossref_primary_10_1038_nphoton_2016_10 crossref_primary_10_1038_s41377_024_01557_4 crossref_primary_10_1155_2015_959546 crossref_primary_10_7498_aps_66_228101 crossref_primary_10_1364_OE_23_000950 crossref_primary_10_1038_s41377_020_0334_8 crossref_primary_10_1103_PhysRevA_97_063845 crossref_primary_10_1364_OE_26_024307 crossref_primary_10_1103_PhysRevB_97_165128 crossref_primary_10_1103_PhysRevLett_119_137402 crossref_primary_10_1073_pnas_1708944114 crossref_primary_10_1364_OE_438132 crossref_primary_10_1103_PhysRevMaterials_2_105201 crossref_primary_10_1109_JQE_2015_2389853 crossref_primary_10_1016_j_chaos_2023_114350 crossref_primary_10_1126_sciadv_abj2062 crossref_primary_10_1038_ncomms12435 crossref_primary_10_1063_1_5009597 crossref_primary_10_1103_PhysRevB_102_100303 crossref_primary_10_1103_PhysRevB_106_064109 crossref_primary_10_1002_adpr_202300113 crossref_primary_10_1038_nphys3930 crossref_primary_10_1364_OL_39_005892 crossref_primary_10_1103_PhysRevB_107_064401 crossref_primary_10_1021_acsphotonics_4c01502 crossref_primary_10_1364_OE_453985 crossref_primary_10_1038_s41566_017_0048_5 crossref_primary_10_1088_1361_648X_aa8bdd crossref_primary_10_1103_PhysRevA_108_043507 crossref_primary_10_1103_PhysRevB_108_094103 crossref_primary_10_1103_PhysRevLett_114_173902 crossref_primary_10_7498_aps_69_20191962 crossref_primary_10_1007_s11082_018_1617_7 crossref_primary_10_1038_nmat4630 crossref_primary_10_1038_s41467_018_05461_5 crossref_primary_10_1103_PhysRevA_92_053822 crossref_primary_10_1103_PhysRevA_92_063626 crossref_primary_10_1038_s42005_025_02013_4 crossref_primary_10_1038_s41598_019_49465_7 crossref_primary_10_1038_nphoton_2016_253 crossref_primary_10_3389_fphy_2021_771481 crossref_primary_10_1103_PhysRevLett_115_253901 crossref_primary_10_1364_OPTICA_386347 crossref_primary_10_1103_PhysRevApplied_9_034032 crossref_primary_10_1103_PhysRevLett_127_053901 crossref_primary_10_1002_admt_202100252 crossref_primary_10_1088_1361_6633_aa518f crossref_primary_10_1098_rsos_172447 crossref_primary_10_1038_s41377_022_00993_4 crossref_primary_10_1103_PhysRevB_101_054307 |
Cites_doi | 10.1038/nphoton.2006.49 10.1038/nature08293 10.1038/nphoton.2008.273 10.1038/nature04204 10.1103/PhysRevB.59.1551 10.1038/nphoton.2008.226 10.1142/S0217979207042598 10.1103/PhysRevA.84.043804 10.1103/PhysRev.84.814 10.1103/PhysRevLett.58.2486 10.1103/PhysRev.138.B979 10.1103/PhysRevLett.108.153901 10.1103/PhysRevLett.107.023901 10.1103/PhysRevB.54.7837 10.1103/PhysRevLett.48.1559 10.1103/PhysRevA.86.023837 10.1103/PhysRevB.25.2185 10.1103/PhysRevLett.100.013904 10.1103/PhysRevLett.49.405 10.1364/OE.15.017206 10.1364/OE.20.007672 10.1038/nature08190 10.1103/PhysRevA.7.2203 10.1103/PhysRevLett.100.033904 10.1038/nphys2251 10.1103/PhysRevLett.58.2059 10.1103/PhysRevLett.85.3966 10.1038/386143a0 10.1103/PhysRevLett.100.023902 10.1103/PhysRevLett.100.013905 10.1103/PhysRevB.64.075313 10.1038/nphys2063 10.1103/PhysRevA.82.043811 10.1103/PhysRevLett.45.494 10.1103/PhysRevB.23.5632 10.1126/science.1096796 10.1103/PhysRevLett.109.033901 10.1103/PhysRevLett.71.3697 10.1103/PhysRevB.14.2239 10.1103/PhysRevLett.93.083901 10.1103/PhysRevA.78.033834 10.1038/nature03569 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2012 Copyright Nature Publishing Group Nov 2012 |
Copyright_xml | – notice: Springer Nature Limited 2012 – notice: Copyright Nature Publishing Group Nov 2012 |
DBID | AAYXX CITATION 7QO 7SP 7U5 8FD 8FE 8FG 8FH AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ H8D HCIFZ L7M LK8 M7P P5Z P62 P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1038/nphoton.2012.236 |
DatabaseName | CrossRef Biotechnology Research Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Databases Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Biological Sciences Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Aerospace Database ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1749-4893 |
EndPage | 787 |
ExternalDocumentID | 2810525431 10_1038_nphoton_2012_236 |
GroupedDBID | -~X 0R~ 123 29M 39C 4.4 5BI 5M7 5S5 70F 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABZEH ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO CCPQU CS3 DU5 EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE HCIFZ HVGLF HZ~ I-F LK8 M7P NNMJJ O9- ODYON P2P P62 Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ALPWD ATHPR CITATION PHGZM PHGZT 7QO 7SP 7U5 8FD AZQEC DWQXO FR3 GNUQQ H8D L7M P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c412t-5bdc6f17dafa05735f12e2bf1e931c0e45dd6c0128093242d4a41a2a842d245a3 |
IEDL.DBID | BENPR |
ISSN | 1749-4885 |
IngestDate | Fri Jul 11 03:54:52 EDT 2025 Wed Jul 16 16:24:07 EDT 2025 Thu Apr 24 22:58:54 EDT 2025 Tue Jul 01 02:34:12 EDT 2025 Fri Feb 21 02:42:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-5bdc6f17dafa05735f12e2bf1e931c0e45dd6c0128093242d4a41a2a842d245a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 1143049715 |
PQPubID | 546300 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1266710314 proquest_journals_1143049715 crossref_primary_10_1038_nphoton_2012_236 crossref_citationtrail_10_1038_nphoton_2012_236 springer_journals_10_1038_nphoton_2012_236 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-11-01 |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature photonics |
PublicationTitleAbbrev | Nature Photon |
PublicationYear | 2012 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Klitzing, Dorda, Pepper (CR1) 1980; 45 Hatsugai (CR6) 1993; 71 Thouless, Kohmoto, Nightingale, Nijs (CR5) 1982; 49 Sherley (CR29) 1965; 138 Wang, Chong, Joannopoulos, Soljačić (CR17) 2009; 461 Umucallar, Carusotto (CR20) 2011; 84 Notomi, Kuramochi, Tanabe (CR35) 2008; 2 Villeneuve, Fan, Joannopoulos (CR33) 1996; 54 Underwood, Shanks, Koch, Houck (CR41) 2012; 86 Samba (CR30) 1973; 7 Tsui, Stormer, Gossard (CR2) 1982; 48 Takahashi (CR34) 2007; 15 Kuo (CR32) 2005; 437 Halperin (CR4) 1982; 25 Hafezi, Rabi (CR43) 2012; 20 John (CR8) 1987; 58 Chen (CR22) 2011; 107 Laughlin (CR3) 1981; 23 Hofstadter (CR28) 1976; 14 Houck, Tureci, Koch (CR42) 2012; 8 Fang, Yu, Fan (CR23) 2012; 108 Dong, Preble, Robinson, Manipatruni, Lipson (CR25) 2008; 100 Yu, Fan (CR26) 2009; 3 Winn, Fan, Joannopoulos, Ippen (CR24) 1999; 59 Kane (CR21) 2007; 21 Povinelli, Johnson, Fan, Joannopoulos (CR36) 2001; 64 Pozar (CR39) 2005 Joannopoulos, Villeneuve, Fan (CR9) 1997; 386 Luttinger (CR27) 1951; 84 Koch, Houck, Le Hur, Girvin (CR40) 2010; 82 Yu, Veronis, Wang, Fan (CR18) 2008; 100 Onoda, Murakami, Nagaosa (CR13) 2004; 93 Raghu, Haldane (CR14) 2008; 78 Yablonovitch (CR7) 1987; 58 Haldane, Raghu (CR15) 2008; 100 Xu, Schmidt, Pradhan, Lipson (CR31) 2005; 435 Pendry (CR10) 2000; 85 Wang, Chong, Joannopoulos, Soljačić (CR16) 2008; 100 Smith, Pendry, Wiltshire (CR11) 2004; 305 Hafezi, Demler, Lukin, Taylor (CR19) 2011; 7 Lira, Yu, Fan, Lipson (CR38) 2012; 109 Shalaev (CR12) 2007; 1 Ishizaki, Noda (CR37) 2009; 460 R Laughlin (BFnphoton2012236_CR3) 1981; 23 M Hafezi (BFnphoton2012236_CR19) 2011; 7 DR Hofstadter (BFnphoton2012236_CR28) 1976; 14 Y Hatsugai (BFnphoton2012236_CR6) 1993; 71 JH Sherley (BFnphoton2012236_CR29) 1965; 138 S Raghu (BFnphoton2012236_CR14) 2008; 78 K Ishizaki (BFnphoton2012236_CR37) 2009; 460 Y Takahashi (BFnphoton2012236_CR34) 2007; 15 DM Pozar (BFnphoton2012236_CR39) 2005 M Hafezi (BFnphoton2012236_CR43) 2012; 20 M Onoda (BFnphoton2012236_CR13) 2004; 93 JN Winn (BFnphoton2012236_CR24) 1999; 59 D Thouless (BFnphoton2012236_CR5) 1982; 49 H Lira (BFnphoton2012236_CR38) 2012; 109 P Dong (BFnphoton2012236_CR25) 2008; 100 KV Klitzing (BFnphoton2012236_CR1) 1980; 45 DC Tsui (BFnphoton2012236_CR2) 1982; 48 DR Smith (BFnphoton2012236_CR11) 2004; 305 Z Wang (BFnphoton2012236_CR17) 2009; 461 FDM Haldane (BFnphoton2012236_CR15) 2008; 100 E Yablonovitch (BFnphoton2012236_CR7) 1987; 58 BI Halperin (BFnphoton2012236_CR4) 1982; 25 Z Yu (BFnphoton2012236_CR18) 2008; 100 RO Umucallar (BFnphoton2012236_CR20) 2011; 84 D Underwood (BFnphoton2012236_CR41) 2012; 86 VM Shalaev (BFnphoton2012236_CR12) 2007; 1 CL Kane (BFnphoton2012236_CR21) 2007; 21 JM Luttinger (BFnphoton2012236_CR27) 1951; 84 S John (BFnphoton2012236_CR8) 1987; 58 K Fang (BFnphoton2012236_CR23) 2012; 108 H Samba (BFnphoton2012236_CR30) 1973; 7 Y-H Kuo (BFnphoton2012236_CR32) 2005; 437 AA Houck (BFnphoton2012236_CR42) 2012; 8 JD Joannopoulos (BFnphoton2012236_CR9) 1997; 386 PR Villeneuve (BFnphoton2012236_CR33) 1996; 54 ML Povinelli (BFnphoton2012236_CR36) 2001; 64 Z Wang (BFnphoton2012236_CR16) 2008; 100 JB Pendry (BFnphoton2012236_CR10) 2000; 85 Z Yu (BFnphoton2012236_CR26) 2009; 3 W-J Chen (BFnphoton2012236_CR22) 2011; 107 M Notomi (BFnphoton2012236_CR35) 2008; 2 Q Xu (BFnphoton2012236_CR31) 2005; 435 J Koch (BFnphoton2012236_CR40) 2010; 82 |
References_xml | – volume: 1 start-page: 41 year: 2007 end-page: 48 ident: CR12 article-title: Optical negative-index metamaterials publication-title: Nature Photon. doi: 10.1038/nphoton.2006.49 – volume: 461 start-page: 772 year: 2009 end-page: 775 ident: CR17 article-title: Observation of unidirectional backscattering-immune topological electromagnetic states publication-title: Nature doi: 10.1038/nature08293 – volume: 3 start-page: 91 year: 2009 end-page: 94 ident: CR26 article-title: Complete optical isolation created by indirect interband photonic transitions publication-title: Nature Photon. doi: 10.1038/nphoton.2008.273 – volume: 437 start-page: 1334 year: 2005 end-page: 1336 ident: CR32 article-title: Strong quantum-confined Stark effect in germanium quantum-well structures on silicon publication-title: Nature doi: 10.1038/nature04204 – volume: 59 start-page: 1551 year: 1999 end-page: 1554 ident: CR24 article-title: Interband transitions in photonic crystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1551 – volume: 2 start-page: 741 year: 2008 end-page: 747 ident: CR35 article-title: Large-scale arrays of ultrahigh- coupled nanocavities publication-title: Nature Photon. doi: 10.1038/nphoton.2008.226 – volume: 21 start-page: 1155 year: 2007 end-page: 1164 ident: CR21 article-title: Graphene and the quantum spin Hall effect publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979207042598 – volume: 84 start-page: 043804 year: 2011 ident: CR20 article-title: Artificial gauge field for photons in coupled cavity arrays publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.043804 – volume: 84 start-page: 814 year: 1951 end-page: 817 ident: CR27 article-title: The effect of a magnetic field on electrons in a periodic potential publication-title: Phys. Rev. doi: 10.1103/PhysRev.84.814 – volume: 58 start-page: 2486 year: 1987 end-page: 2489 ident: CR8 article-title: Strong localization of photons in certain disordered dielectric superlattices publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.2486 – volume: 138 start-page: B979 year: 1965 end-page: B987 ident: CR29 article-title: Solution of the Schrödinger equation with a Hamiltonian periodic in time publication-title: Phys. Rev. doi: 10.1103/PhysRev.138.B979 – volume: 108 start-page: 153901 year: 2012 ident: CR23 article-title: Photonic Aharonov–Bohm effect based on dynamic modulation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.153901 – volume: 107 start-page: 023901 year: 2011 ident: CR22 article-title: Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.023901 – volume: 54 start-page: 7837 year: 1996 end-page: 7842 ident: CR33 article-title: Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.7837 – volume: 48 start-page: 1559 year: 1982 end-page: 1562 ident: CR2 article-title: Two-dimensional magnetotransport in the extreme quantum limit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.48.1559 – start-page: 618 year: 2005 ident: CR39 publication-title: Microwave Engineering – volume: 86 start-page: 023837 year: 2012 ident: CR41 article-title: Low-disorder microwave cavity lattices for quantum simulation with photons publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.023837 – volume: 25 start-page: 2185 year: 1982 end-page: 2190 ident: CR4 article-title: Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.25.2185 – volume: 100 start-page: 013904 year: 2008 ident: CR15 article-title: Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.013904 – volume: 49 start-page: 405 year: 1982 end-page: 408 ident: CR5 article-title: Quantized Hall conductance in a two-dimensional periodic potential publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.405 – volume: 15 start-page: 17206 year: 2007 end-page: 17213 ident: CR34 article-title: High- nanocavity with a 2-ns photon lifetime publication-title: Opt. Express doi: 10.1364/OE.15.017206 – volume: 20 start-page: 7672 year: 2012 end-page: 7684 ident: CR43 article-title: Optomechanically induced non-reciprocity in microring resonators publication-title: Opt. Express doi: 10.1364/OE.20.007672 – volume: 460 start-page: 367 year: 2009 end-page: 370 ident: CR37 article-title: Manipulation of photons at the surface of three-dimensional photonic crystals publication-title: Nature doi: 10.1038/nature08190 – volume: 7 start-page: 2203 year: 1973 end-page: 2213 ident: CR30 article-title: Steady states and quasi energies of a quantum-mechanical system in an oscillating field publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.7.2203 – volume: 100 start-page: 033904 year: 2008 ident: CR25 article-title: Inducing photonic transitions between discrete modes in a silicon optical microcavity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.033904 – volume: 8 start-page: 292 year: 2012 end-page: 299 ident: CR42 article-title: On-chip quantum simulation with superconducting circuits publication-title: Nature Phys. doi: 10.1038/nphys2251 – volume: 58 start-page: 2059 year: 1987 end-page: 2062 ident: CR7 article-title: Inhibited spontaneous emission in solid-state physics and electronics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.2059 – volume: 85 start-page: 3966 year: 2000 end-page: 3969 ident: CR10 article-title: Negative refraction makes a perfect lens publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.3966 – volume: 386 start-page: 143 year: 1997 end-page: 149 ident: CR9 article-title: Photonic crystals: putting a new twist on light publication-title: Nature doi: 10.1038/386143a0 – volume: 100 start-page: 023902 year: 2008 ident: CR18 article-title: One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.023902 – volume: 100 start-page: 013905 year: 2008 ident: CR16 article-title: Reflection-free one-way edge modes in a gyromagnetic photonic crystal publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.013905 – volume: 64 start-page: 075313 year: 2001 ident: CR36 article-title: Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.64.075313 – volume: 7 start-page: 907 year: 2011 end-page: 912 ident: CR19 article-title: Robust optical delay lines with topological protection publication-title: Nature Phys. doi: 10.1038/nphys2063 – volume: 82 start-page: 043811 year: 2010 ident: CR40 article-title: Time-reversal-symmetry breaking in circuit-QED-based photon lattices publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.043811 – volume: 45 start-page: 494 year: 1980 end-page: 497 ident: CR1 article-title: New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.494 – volume: 23 start-page: 5632 year: 1981 end-page: 5633 ident: CR3 article-title: Quantized Hall conductivity in two dimensions publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.23.5632 – volume: 305 start-page: 788 year: 2004 end-page: 792 ident: CR11 article-title: Metamaterials and negative refractive index publication-title: Science doi: 10.1126/science.1096796 – volume: 109 start-page: 033901 year: 2012 ident: CR38 article-title: Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.033901 – volume: 71 start-page: 3697 year: 1993 end-page: 3700 ident: CR6 article-title: Chern number and edge states in the integer quantum Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.3697 – volume: 14 start-page: 2239 year: 1976 end-page: 2249 ident: CR28 article-title: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.14.2239 – volume: 93 start-page: 083901 year: 2004 ident: CR13 article-title: Hall effect of light publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.083901 – volume: 78 start-page: 033834 year: 2008 ident: CR14 article-title: Analogs of quantum-Hall-effect edge states in photonic crystals publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.78.033834 – volume: 435 start-page: 325 year: 2005 end-page: 327 ident: CR31 article-title: Micrometre-scale silicon electro-optic modulator publication-title: Nature doi: 10.1038/nature03569 – volume: 437 start-page: 1334 year: 2005 ident: BFnphoton2012236_CR32 publication-title: Nature doi: 10.1038/nature04204 – volume: 82 start-page: 043811 year: 2010 ident: BFnphoton2012236_CR40 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.043811 – volume: 107 start-page: 023901 year: 2011 ident: BFnphoton2012236_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.023901 – volume: 84 start-page: 814 year: 1951 ident: BFnphoton2012236_CR27 publication-title: Phys. Rev. doi: 10.1103/PhysRev.84.814 – volume: 49 start-page: 405 year: 1982 ident: BFnphoton2012236_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.405 – volume: 138 start-page: B979 year: 1965 ident: BFnphoton2012236_CR29 publication-title: Phys. Rev. doi: 10.1103/PhysRev.138.B979 – volume: 93 start-page: 083901 year: 2004 ident: BFnphoton2012236_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.083901 – volume: 59 start-page: 1551 year: 1999 ident: BFnphoton2012236_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1551 – volume: 100 start-page: 033904 year: 2008 ident: BFnphoton2012236_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.033904 – volume: 7 start-page: 2203 year: 1973 ident: BFnphoton2012236_CR30 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.7.2203 – volume: 15 start-page: 17206 year: 2007 ident: BFnphoton2012236_CR34 publication-title: Opt. Express doi: 10.1364/OE.15.017206 – volume: 100 start-page: 013905 year: 2008 ident: BFnphoton2012236_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.013905 – volume: 48 start-page: 1559 year: 1982 ident: BFnphoton2012236_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.48.1559 – volume: 460 start-page: 367 year: 2009 ident: BFnphoton2012236_CR37 publication-title: Nature doi: 10.1038/nature08190 – volume: 1 start-page: 41 year: 2007 ident: BFnphoton2012236_CR12 publication-title: Nature Photon. doi: 10.1038/nphoton.2006.49 – start-page: 618 volume-title: Microwave Engineering year: 2005 ident: BFnphoton2012236_CR39 – volume: 108 start-page: 153901 year: 2012 ident: BFnphoton2012236_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.153901 – volume: 23 start-page: 5632 year: 1981 ident: BFnphoton2012236_CR3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.23.5632 – volume: 7 start-page: 907 year: 2011 ident: BFnphoton2012236_CR19 publication-title: Nature Phys. doi: 10.1038/nphys2063 – volume: 3 start-page: 91 year: 2009 ident: BFnphoton2012236_CR26 publication-title: Nature Photon. doi: 10.1038/nphoton.2008.273 – volume: 8 start-page: 292 year: 2012 ident: BFnphoton2012236_CR42 publication-title: Nature Phys. doi: 10.1038/nphys2251 – volume: 386 start-page: 143 year: 1997 ident: BFnphoton2012236_CR9 publication-title: Nature doi: 10.1038/386143a0 – volume: 54 start-page: 7837 year: 1996 ident: BFnphoton2012236_CR33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.7837 – volume: 85 start-page: 3966 year: 2000 ident: BFnphoton2012236_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.3966 – volume: 58 start-page: 2486 year: 1987 ident: BFnphoton2012236_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.2486 – volume: 20 start-page: 7672 year: 2012 ident: BFnphoton2012236_CR43 publication-title: Opt. Express doi: 10.1364/OE.20.007672 – volume: 305 start-page: 788 year: 2004 ident: BFnphoton2012236_CR11 publication-title: Science doi: 10.1126/science.1096796 – volume: 84 start-page: 043804 year: 2011 ident: BFnphoton2012236_CR20 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.84.043804 – volume: 86 start-page: 023837 year: 2012 ident: BFnphoton2012236_CR41 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.023837 – volume: 25 start-page: 2185 year: 1982 ident: BFnphoton2012236_CR4 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.25.2185 – volume: 2 start-page: 741 year: 2008 ident: BFnphoton2012236_CR35 publication-title: Nature Photon. doi: 10.1038/nphoton.2008.226 – volume: 64 start-page: 075313 year: 2001 ident: BFnphoton2012236_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.64.075313 – volume: 100 start-page: 023902 year: 2008 ident: BFnphoton2012236_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.023902 – volume: 14 start-page: 2239 year: 1976 ident: BFnphoton2012236_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.14.2239 – volume: 435 start-page: 325 year: 2005 ident: BFnphoton2012236_CR31 publication-title: Nature doi: 10.1038/nature03569 – volume: 100 start-page: 013904 year: 2008 ident: BFnphoton2012236_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.013904 – volume: 45 start-page: 494 year: 1980 ident: BFnphoton2012236_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.494 – volume: 21 start-page: 1155 year: 2007 ident: BFnphoton2012236_CR21 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979207042598 – volume: 109 start-page: 033901 year: 2012 ident: BFnphoton2012236_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.033901 – volume: 78 start-page: 033834 year: 2008 ident: BFnphoton2012236_CR14 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.78.033834 – volume: 71 start-page: 3697 year: 1993 ident: BFnphoton2012236_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.3697 – volume: 58 start-page: 2059 year: 1987 ident: BFnphoton2012236_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.2059 – volume: 461 start-page: 772 year: 2009 ident: BFnphoton2012236_CR17 publication-title: Nature doi: 10.1038/nature08293 |
SSID | ssj0053922 |
Score | 2.6150718 |
Snippet | The goal to achieve arbitrary control of photon flow has motivated much of the recent research on photonic crystals and metamaterials. As a new mechanism for... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 782 |
SubjectTerms | 639/624/400/1101 Applied and Technical Physics Constants Crystals Magnetic fields Metamaterials Modulation Photonic crystals Photons Physics Quantum Physics Resonators Spatial distribution |
Title | Realizing effective magnetic field for photons by controlling the phase of dynamic modulation |
URI | https://link.springer.com/article/10.1038/nphoton.2012.236 https://www.proquest.com/docview/1143049715 https://www.proquest.com/docview/1266710314 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB7c9eLFt1gfSwQvCnWbR18nUXEVDyKLghcpaZOq4LarXQ_66520qbsI7i2QaVImmZmPzAvgUOmMijzw3DxSnis4jmJEpSjxXOSahgh562iL2-D6Qdw8-o_2wa2yYZWtTqwVtSoz80beR9xuPEIh9U_H767pGmW8q7aFRgcWUQVHURcWzy9v74atLvbR-rMmJTJ28ar61lHp8ahfjF9KhFcmuoudsLpE84xhmqLNPw7S2u4MVmHZAkZy1pzwGizoYh1WLHgkVjSrDXgaIuR7_cY1SBOjgWqMjORzYbIUSR2oRhCgkuZ_KpJ-ERumbhLSCeJAnEKTRsqcqKZNPRmVynb32oSHweX9xbVreye4maBs4vqpyoKchkrm0tQ89HPKNEtzqmNOM08LX6kgM9bJiw2mUkIKKpmMcMiEL_kWdIuy0NtAuKSR0kxwngoheRCHGlGAQnIq0bhnDvRbxiWZLSxu-lu8JbWDm0eJZXViWJ0gqx04-v1i3BTVmEO7155FYsWrSqaXwYGD32kUDOPtkIUuP5EGoUdomlgIB47bM5xZ4p_9dubvtwtLhrLJRtyD7uTjU-8jLJmkPehEg6uevYE_3BjjWw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8NAFH5UPejFXazrCHpQiO0sWXoQEbXW9SAKXiROMhMVbFJti9Qf5W_0TTJREfTmbWC28ObNe9_kbQDrSsdUJF7dSQJVdwTHVgNRKd54LhJNfYS8ubfFhde6Fic37k0F3stYGONWWcrEXFCrLDb_yGuI241FyKfubufZMVWjjHW1LKFRsMWpHrzik627c3yA57vBWPPwar_l2KoCTiwo6zlupGIvob6SiTTZAN2EMs2ihOoGp3FdC1cpLzZyGx_7qMCUkIJKJgNsMuFKjusOwYjgqMlNZHrzqJT8LmINVgRgNhy8GK41i9Z5UEs7DxmCOeNLxrZZnhD6mxr8wrY_zLG5lmtOwriFp2Sv4KcpqOh0GiYsVCVWEHRn4PYSAebjG65BCo8QFJqkLe9TExNJcrc4gnCYFN_TJdGAWKd4E_5OEHViFypQkiVEDVLZxlntTNlaYrNw_S80nYPhNEv1PBAuaaA0Q_JGQkjuNXyNmEPhcCoRSsRVqJWEC2ObxtxU03gKc3M6D0JL6tCQOkRSV2Hzc0anSOHxx9il8ixCe5m74RfrVWHtsxuvobGtyFRnfRyDQMc3JTNEFbbKM_y2xC_7Lfy93yqMtq7Oz8Kz44vTRRgzs4o4yCUY7r309TICol60knMhgbv_ZvsPeHgdcg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZaxsxEB5cG0pfcvSgzqlC-9DC1taxhx9CSGKbpCnGmAbyUjbaldQE4l0ntgnuT-uvy2hXm5hA85Y3ga5lNJr5tHMBfFY6pcIEbc9Equ0Jjq0OolK88VwYTUOEvIW3xSA4PhM_zv3zGvyrYmGsW2UlEwtBrfLU_iNvIW63FqGQ-i3j3CKG3f7-5MazFaSspbUqp1GyyKle3OHzbbp30sWz_sJYv_fr6NhzFQa8VFA28_xEpYGhoZJG2syAvqFMs8RQ3eE0bWvhKxWkVobjwx-VmRJSUMlkhE0mfMlx3VfQCO2rqA6Nw95gOKr0gI_Ig5XhmB0Pr4nvjKRtHrWyyWWO0M56lrHvrEgPvaQUH5HuE-NsofP6a7DiwCo5KLlrHWo6ewurDrgSJxam7-D3COHm1V9cg5T-IShCyVj-yWyEJCmc5AiCY1J-z5QkC-Jc5G0wPEEMil2oTkluiFpkcoyzxrlylcXew9mLUPUD1LM80x-BcEkjpZngPBFC8qATakQgCodTicAibUKrIlycuqTmtrbGdVwY13kUO1LHltQxkroJXx9mTMqEHs-M3arOInZXexo_MmITPj1046W0lhaZ6XyOYxD2hLaAhmjCt-oMl5b4z34bz--3C6-R5eOfJ4PTTXhjJ5VBkVtQn93O9Taio1my49iQwMVLc_49X34jBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realizing+effective+magnetic+field+for+photons+by+controlling+the+phase+of+dynamic+modulation&rft.jtitle=Nature+photonics&rft.au=Fang%2C+Kejie&rft.au=Yu%2C+Zongfu&rft.au=Fan%2C+Shanhui&rft.date=2012-11-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1749-4885&rft.eissn=1749-4893&rft.volume=6&rft.issue=11&rft.spage=782&rft.epage=787&rft_id=info:doi/10.1038%2Fnphoton.2012.236&rft.externalDocID=10_1038_nphoton_2012_236 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-4885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-4885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-4885&client=summon |