Harnessing the Power of GPUs to Speed Up Feature Selection for Outlier Detection
Acquiring a set of features that emphasize the differences between normal data points and outliers can drastically facilitate the task of identifying outliers. In our work, we present a novel non-parametric evaluation criterion for filter-based feature selection which has an eye towards the final go...
Saved in:
Published in | Journal of computer science and technology Vol. 29; no. 3; pp. 408 - 422 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.05.2014
Springer Nature B.V Department of Electrical and Computer Engineering, Northeastern University, Boston 02115-5096, U.S.A.%College of Computer and Information Science, Northeastern University, Boston 02115-5096, U.S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acquiring a set of features that emphasize the differences between normal data points and outliers can drastically facilitate the task of identifying outliers. In our work, we present a novel non-parametric evaluation criterion for filter-based feature selection which has an eye towards the final goal of outlier detection. The proposed method seeks the subset of features that represent the inherent characteristics of the normal dataset while forcing outliers to stand out, making them more easily distinguished by outlier detection algorithms. Experimental results on real datasets show the advantage of our feature selection algorithm compared with popular and state-of-the-art methods. We also show that the proposed algorithm is able to overcome the small sample space problem and perform well on highly imbalanced datasets. Furthermore, due to the highly parallelizable nature of the feature selection, we implement the algorithm on a graphics processing unit (GPU) to gain significant speedup over the serial version. The benefits of the GPU implementation are two-fold, as its performance scales very well in terms of the number of features, as well as the number of data points. |
---|---|
AbstractList | Acquiring a set of features that emphasize the differences between normal data points and outliers can drastically facilitate the task of identifying outliers. In our work, we present a novel non-parametric evaluation criterion for filter-based feature selection which has an eye towards the final goal of outlier detection. The proposed method seeks the subset of features that represent the inherent characteristics of the normal dataset while forcing outliers to stand out, making them more easily distinguished by outlier detection algorithms. Experimental results on real datasets show the advantage of our feature selection algorithm compared with popular and state-of-the-art methods. We also show that the proposed algorithm is able to overcome the small sample space problem and perform well on highly imbalanced datasets. Furthermore, due to the highly parallelizable nature of the feature selection, we implement the algorithm on a graphics processing unit (GPU) to gain significant speedup over the serial version. The benefits of the GPU implementation are two-fold, as its performance scales very well in terms of the number of features, as well as the number of data points. Acquiring a set of features that emphasize the differences between normal data points and outliers can drastically facilitate the task of identifying outliers. In our work, we present a novel non-parametric evaluation criterion for filter-based feature selection which has an eye towards the final goal of outlier detection. The proposed method seeks the subset of features that represent the inherent characteristics of the normal dataset while forcing outliers to stand out, making them more easily distinguished by outlier detection algorithms. Experimental results on real datasets show the advantage of our feature selection algorithm compared with popular and state-of-the-art methods. We also show that the proposed algorithm is able to overcome the small sample space problem and perform well on highly imbalanced datasets. Furthermore, due to the highly parallelizable nature of the feature selection, we implement the algorithm on a graphics processing unit (GPU) to gain significant speedup over the serial version. The benefits of the GPU implementation are two-fold, as its performance scales very well in terms of the number of features, as well as the number of data points.[PUBLICATION ABSTRACT] Acquiring a set of features that emphasize the differences between normal data points and outliers can drastically facilitate the task of identifying outliers. In our work, we present a novel non-parametric evaluation criterion for filter-based feature selection which has an eye towards the final goal of outlier detection. The proposed method seeks the subset of features that represent the inherent characteristics of the normal dataset while forcing outliers to stand out, making them more easily distinguished by outlier detection algorithms. Experimental results on real datasets show the advantage of our feature selection algorithm compared with popular and state-of-the-art methods. We also show that the proposed algorithm is able to overcome the small sample space problem and perform well on highly imbalanced datasets. Furthermore, due to the highly parallelizable nature of the feature selection, we implement the algorithm on a graphics processing unit (GPU) to gain significant speedup over the serial version. The benefits of the GPU implementation are two-fold, as its performance scales very well in terms of the number of features, as well as the number of data points. |
Author | Fatemeh Azmandian Member, IEEE, Ayse Yilmazer Student Member, IEEE, Jennifer G. Dy Member, IEEE Javed A. Aslam IEEE, Jennifer G. Dy Member, ACM David R. Kaeli Fellow, IEEE, Member, ACM |
AuthorAffiliation | Department of Electrical and Computer Engineering, Northeastern University, Boston 02115-5096, U.S.A. College of Computer and Information Science, Northeastern University, Boston 02115-5096, U.S.A. |
AuthorAffiliation_xml | – name: Department of Electrical and Computer Engineering, Northeastern University, Boston 02115-5096, U.S.A.%College of Computer and Information Science, Northeastern University, Boston 02115-5096, U.S.A |
Author_xml | – sequence: 1 fullname: Fatemeh Azmandian Member, IEEE, Ayse Yilmazer Student Member, IEEE, Jennifer G. Dy Member, IEEE Javed A. Aslam IEEE, Jennifer G. Dy Member, ACM David R. Kaeli Fellow, IEEE, Member, ACM |
BookMark | eNp9kU9rFDEYxoNUsK1-AG8RLx4cfd8kszM5SmtbodCFuueQZN_ZzjhNtskMrd_eLFOKePCShPB7_sBzwo5CDMTYe4QvCNB8zYhSQwWoKlRSV-oVO8Z2BZVqlD4qbwCodDnesJOcBwDZgFLHbH1lU6Cc-7Dj0x3xdXykxGPHL9ebzKfIb_dEW77Z8wuy05yI39JIfupj4F1M_Gaexr4ozmlaft-y150dM717vk_Z5uL7z7Or6vrm8sfZt-vKKxRTVbdWkwDnfavarRNo3bbUBYudtK6RVjcgNNXgNdZCe4fOqW7VWdDa29bJU_Z58X20obNhZ4Y4p1ASzZCHX09DfnKmBKACCVAX_NOC71N8mClP5r7PnsbRBopzNrhqcAWI9QH9-A_6Yl2q1EKIppWFwoXyKeacqDP71N_b9NsgmMMkZpnElArmMIlRRSMWTS5s2FH6y_k_og_PQXcx7B6K7iVJ6Vo3ogX5B8lGmaE |
CitedBy_id | crossref_primary_10_1016_j_future_2019_08_031 crossref_primary_10_1016_j_ins_2019_01_050 crossref_primary_10_1007_s41060_020_00222_4 |
Cites_doi | 10.1007/978-94-015-3994-4 10.1093/bioinformatics/btm216 10.1214/aoms/1177728190 10.1162/089976698300017467 10.1007/s10115-011-0474-5 10.1214/aoms/1177704472 10.1145/335191.335388 10.1017/CBO9780511810817 10.1145/293347.293348 10.1007/s10115-011-0430-4 10.1007/s10115-010-0283-2 10.1016/j.neunet.2010.10.005 10.1016/S0004-3702(97)00043-X 10.1109/TPAMI.2012.197 10.1016/S1088-467X(97)00008-5 10.1007/s00778-004-0125-5 10.1145/1401890.1401910 10.1016/B978-1-55860-247-2.50037-1 10.1111/j.2517-6161.1996.tb02080.x 10.1007/978-1-4615-5689-3 10.1109/CVPRW.2008.4563100 10.1109/ICDM.2012.51 10.1145/1143844.1143854 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York & Science Press, China 2014 Springer Science+Business Media New York & Science Press, China 2014. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media New York & Science Press, China 2014 – notice: Springer Science+Business Media New York & Science Press, China 2014. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PQBIZ PQBZA PQEST PQQKQ PQUKI PTHSS Q9U 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s11390-014-1439-4 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest_ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection Computing Database ProQuest Engineering Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | Harnessing the Power of GPUs to Speed Up Feature Selection for Outlier Detection |
EISSN | 1860-4749 |
EndPage | 422 |
ExternalDocumentID | jsjkxjsxb_e201403005 3305842851 10_1007_s11390_014_1439_4 49597280 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29K 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VR 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 92H 92I 92L 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADGRI ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCEZO CCPQU CHBEP COF CQIGP CS3 CSCUP CUBFJ CW9 D-I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M4Y M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCL SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGT TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W92 WK8 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ~A9 ~EX ~WA -SI -S~ 5XA 5XJ AACDK AAEOY AAJBT AASML AAXDM AAYXX ABAKF ACDTI AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CAJEI CITATION H13 PQBZA Q-- U1G U5S 7SC 7XB 8AL 8FD 8FK JQ2 L.- L6V L7M L~C L~D PQEST PQUKI Q9U AAYZH 4A8 AAGNY PSX |
ID | FETCH-LOGICAL-c412t-58a9e20bcc848db21abd8600a1f3ab73a97029e50c91529cb1bb4f6fa099ca8b3 |
IEDL.DBID | 8FG |
ISSN | 1000-9000 |
IngestDate | Wed Nov 06 04:32:15 EST 2024 Fri Oct 25 02:29:46 EDT 2024 Thu Oct 10 22:09:40 EDT 2024 Thu Sep 12 16:36:27 EDT 2024 Sat Dec 16 12:08:36 EST 2023 Wed Feb 14 10:36:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | imbalanced data outlier detection feature selection GPU acceleration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-58a9e20bcc848db21abd8600a1f3ab73a97029e50c91529cb1bb4f6fa099ca8b3 |
Notes | 11-2296/TP Acquiring a set of features that emphasize the differences between normal data points and outliers can drastically facilitate the task of identifying outliers. In our work, we present a novel non-parametric evaluation criterion for filter-based feature selection which has an eye towards the final goal of outlier detection. The proposed method seeks the subset of features that represent the inherent characteristics of the normal dataset while forcing outliers to stand out, making them more easily distinguished by outlier detection algorithms. Experimental results on real datasets show the advantage of our feature selection algorithm compared with popular and state-of-the-art methods. We also show that the proposed algorithm is able to overcome the small sample space problem and perform well on highly imbalanced datasets. Furthermore, due to the highly parallelizable nature of the feature selection, we implement the algorithm on a graphics processing unit (GPU) to gain significant speedup over the serial version. The benefits of the GPU implementation are two-fold, as its performance scales very well in terms of the number of features, as well as the number of data points. feature selection, outlier detection, imbalanced data, GPU acceleration ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1525222783 |
PQPubID | 326258 |
PageCount | 15 |
ParticipantIDs | wanfang_journals_jsjkxjsxb_e201403005 proquest_miscellaneous_1671601155 proquest_journals_1525222783 crossref_primary_10_1007_s11390_014_1439_4 springer_journals_10_1007_s11390_014_1439_4 chongqing_primary_49597280 |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: Beijing |
PublicationTitle | Journal of computer science and technology |
PublicationTitleAbbrev | J. Comput. Sci. Technol |
PublicationTitleAlternate | Journal of Computer Science and Technology |
PublicationTitle_FL | Journal of Computer Science & Technology |
PublicationYear | 2014 |
Publisher | Springer US Springer Nature B.V Department of Electrical and Computer Engineering, Northeastern University, Boston 02115-5096, U.S.A.%College of Computer and Information Science, Northeastern University, Boston 02115-5096, U.S.A |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Department of Electrical and Computer Engineering, Northeastern University, Boston 02115-5096, U.S.A.%College of Computer and Information Science, Northeastern University, Boston 02115-5096, U.S.A |
References | Kohavi, John (CR4) 1997; 97 CR18 Wu, Yu, Ding (CR11) 2013; 35 Aggarwal, Yu (CR13) 2005; 14 CR12 CR32 Parzen (CR23) 1962; 33 CR31 CR30 de Vries, Chawla, Houle (CR14) 2012; 32 Breunig, Kriegel, Ng (CR20) 2000; 29 Rosenblatt (CR24) 1956; 27 CR2 CR3 Schölkopf, Smola, Müller (CR1) 1998; 10 CR8 CR7 CR28 CR27 CR26 CR22 Hido, Tsuboi, Kashima (CR16) 2011; 26 Dash, Liu (CR5) 1997; 1 Tibshirani (CR9) 1996; 58 Arya, Mount, Netanyahu (CR29) 1998; 45 Guyon, Elisseeff (CR6) 2003; 3 Sugiyama, Yamada, von Bünau (CR17) 2011; 24 Song, Bedo, Borgwardt (CR10) 2007; 23 Horn, Johnson (CR21) 1985 Hawkins (CR19) 1980 Devijver, Kittler (CR25) 1982 Branch, Giannella, Szymanski (CR15) 2013; 34 M Sugiyama (1439_CR17) 2011; 24 1439_CR7 1439_CR8 R Tibshirani (1439_CR9) 1996; 58 RA Horn (1439_CR21) 1985 M Dash (1439_CR5) 1997; 1 L Song (1439_CR10) 2007; 23 R Kohavi (1439_CR4) 1997; 97 B Schölkopf (1439_CR1) 1998; 10 JW Branch (1439_CR15) 2013; 34 1439_CR30 1439_CR31 1439_CR12 S Hido (1439_CR16) 2011; 26 M Rosenblatt (1439_CR24) 1956; 27 1439_CR32 E Parzen (1439_CR23) 1962; 33 1439_CR2 1439_CR3 I Guyon (1439_CR6) 2003; 3 1439_CR18 X Wu (1439_CR11) 2013; 35 S Arya (1439_CR29) 1998; 45 1439_CR22 PA Devijver (1439_CR25) 1982 1439_CR27 1439_CR28 MM Breunig (1439_CR20) 2000; 29 1439_CR26 DM Hawkins (1439_CR19) 1980 T Vries de (1439_CR14) 2012; 32 C Aggarwal (1439_CR13) 2005; 14 |
References_xml | – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: CR6 article-title: An introduction to variable and feature selection publication-title: J. Machine Learning Research contributor: fullname: Elisseeff – ident: CR22 – year: 1980 ident: CR19 publication-title: Identification of Outliers doi: 10.1007/978-94-015-3994-4 contributor: fullname: Hawkins – volume: 23 start-page: i490 issue: 3 year: 2007 end-page: i498 ident: CR10 article-title: Gene selection via the BAHSIC family of algorithms publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm216 contributor: fullname: Borgwardt – ident: CR18 – volume: 27 start-page: 832 issue: 3 year: 1956 end-page: 837 ident: CR24 article-title: Remarks on some nonparametric estimates of a density function publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177728190 contributor: fullname: Rosenblatt – volume: 10 start-page: 1299 issue: 5 year: 1998 end-page: 1319 ident: CR1 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Computation doi: 10.1162/089976698300017467 contributor: fullname: Müller – ident: CR2 – ident: CR12 – ident: CR30 – volume: 34 start-page: 23 issue: 1 year: 2013 end-page: 54 ident: CR15 article-title: In-network outlier detection in wireless sensor networks publication-title: Knowledge and Information Systems doi: 10.1007/s10115-011-0474-5 contributor: fullname: Szymanski – volume: 33 start-page: 1065 issue: 3 year: 1962 end-page: 1076 ident: CR23 article-title: On estimation of a probability density function and mode publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177704472 contributor: fullname: Parzen – volume: 29 start-page: 93 issue: 2 year: 2000 end-page: 104 ident: CR20 article-title: LOF: Identifying density-based local outliers publication-title: ACM SIGMOD Record doi: 10.1145/335191.335388 contributor: fullname: Ng – year: 1985 ident: CR21 publication-title: Matrix Analysis doi: 10.1017/CBO9780511810817 contributor: fullname: Johnson – volume: 58 start-page: 267 issue: 1 year: 1996 end-page: 288 ident: CR9 article-title: Regression shrinkage and selection via the lasso publication-title: J. Royal Statistical Society, Series B contributor: fullname: Tibshirani – volume: 45 start-page: 891 issue: 6 year: 1998 end-page: 923 ident: CR29 article-title: An optimal algorithm for approximate nearest neighbor searching fixed dimensions publication-title: Journal of the ACM doi: 10.1145/293347.293348 contributor: fullname: Netanyahu – ident: CR8 – year: 1982 ident: CR25 publication-title: Pattern Recognition: A Statistical Approach contributor: fullname: Kittler – ident: CR27 – volume: 32 start-page: 25 issue: 1 year: 2012 end-page: 52 ident: CR14 article-title: Density-preserving projections for large-scale local anomaly detection publication-title: Knowledge and Information Systems doi: 10.1007/s10115-011-0430-4 contributor: fullname: Houle – ident: CR3 – volume: 26 start-page: 309 issue: 2 year: 2011 end-page: 336 ident: CR16 article-title: Statistical outlier detection using direct density ratio estimation publication-title: Knowledge and Information Systems doi: 10.1007/s10115-010-0283-2 contributor: fullname: Kashima – ident: CR31 – volume: 24 start-page: 183 issue: 2 year: 2011 end-page: 198 ident: CR17 article-title: Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search publication-title: Neural Networks doi: 10.1016/j.neunet.2010.10.005 contributor: fullname: von Bünau – ident: CR32 – volume: 97 start-page: 273 issue: 1/2 year: 1997 end-page: 324 ident: CR4 article-title: Wrappers for feature subset selection publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(97)00043-X contributor: fullname: John – ident: CR7 – volume: 35 start-page: 1178 issue: 5 year: 2013 end-page: 1192 ident: CR11 article-title: Online feature selection with streaming features publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2012.197 contributor: fullname: Ding – ident: CR28 – ident: CR26 – volume: 1 start-page: 131 issue: 1/4 year: 1997 end-page: 156 ident: CR5 article-title: Feature selection for classification publication-title: Intelligent Data Analysis doi: 10.1016/S1088-467X(97)00008-5 contributor: fullname: Liu – volume: 14 start-page: 211 issue: 2 year: 2005 end-page: 221 ident: CR13 article-title: An effective and efficient algorithm for high-dimensional outlier detection publication-title: The VLDB Journal doi: 10.1007/s00778-004-0125-5 contributor: fullname: Yu – volume-title: Pattern Recognition: A Statistical Approach year: 1982 ident: 1439_CR25 contributor: fullname: PA Devijver – volume: 45 start-page: 891 issue: 6 year: 1998 ident: 1439_CR29 publication-title: Journal of the ACM doi: 10.1145/293347.293348 contributor: fullname: S Arya – volume: 34 start-page: 23 issue: 1 year: 2013 ident: 1439_CR15 publication-title: Knowledge and Information Systems doi: 10.1007/s10115-011-0474-5 contributor: fullname: JW Branch – ident: 1439_CR12 doi: 10.1145/1401890.1401910 – ident: 1439_CR18 – volume: 33 start-page: 1065 issue: 3 year: 1962 ident: 1439_CR23 publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177704472 contributor: fullname: E Parzen – volume: 10 start-page: 1299 issue: 5 year: 1998 ident: 1439_CR1 publication-title: Neural Computation doi: 10.1162/089976698300017467 contributor: fullname: B Schölkopf – ident: 1439_CR32 – volume: 26 start-page: 309 issue: 2 year: 2011 ident: 1439_CR16 publication-title: Knowledge and Information Systems doi: 10.1007/s10115-010-0283-2 contributor: fullname: S Hido – volume: 1 start-page: 131 issue: 1/4 year: 1997 ident: 1439_CR5 publication-title: Intelligent Data Analysis doi: 10.1016/S1088-467X(97)00008-5 contributor: fullname: M Dash – ident: 1439_CR7 – ident: 1439_CR2 doi: 10.1016/B978-1-55860-247-2.50037-1 – ident: 1439_CR28 – ident: 1439_CR26 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 1439_CR9 publication-title: J. Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1996.tb02080.x contributor: fullname: R Tibshirani – volume-title: Identification of Outliers year: 1980 ident: 1439_CR19 doi: 10.1007/978-94-015-3994-4 contributor: fullname: DM Hawkins – ident: 1439_CR3 doi: 10.1007/978-1-4615-5689-3 – volume: 23 start-page: i490 issue: 3 year: 2007 ident: 1439_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm216 contributor: fullname: L Song – volume: 14 start-page: 211 issue: 2 year: 2005 ident: 1439_CR13 publication-title: The VLDB Journal doi: 10.1007/s00778-004-0125-5 contributor: fullname: C Aggarwal – ident: 1439_CR30 doi: 10.1109/CVPRW.2008.4563100 – ident: 1439_CR8 doi: 10.1109/ICDM.2012.51 – volume: 3 start-page: 1157 year: 2003 ident: 1439_CR6 publication-title: J. Machine Learning Research contributor: fullname: I Guyon – ident: 1439_CR31 – volume: 97 start-page: 273 issue: 1/2 year: 1997 ident: 1439_CR4 publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(97)00043-X contributor: fullname: R Kohavi – ident: 1439_CR22 doi: 10.1145/1143844.1143854 – volume: 24 start-page: 183 issue: 2 year: 2011 ident: 1439_CR17 publication-title: Neural Networks doi: 10.1016/j.neunet.2010.10.005 contributor: fullname: M Sugiyama – volume-title: Matrix Analysis year: 1985 ident: 1439_CR21 doi: 10.1017/CBO9780511810817 contributor: fullname: RA Horn – volume: 35 start-page: 1178 issue: 5 year: 2013 ident: 1439_CR11 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2012.197 contributor: fullname: X Wu – volume: 27 start-page: 832 issue: 3 year: 1956 ident: 1439_CR24 publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177728190 contributor: fullname: M Rosenblatt – ident: 1439_CR27 – volume: 29 start-page: 93 issue: 2 year: 2000 ident: 1439_CR20 publication-title: ACM SIGMOD Record doi: 10.1145/335191.335388 contributor: fullname: MM Breunig – volume: 32 start-page: 25 issue: 1 year: 2012 ident: 1439_CR14 publication-title: Knowledge and Information Systems doi: 10.1007/s10115-011-0430-4 contributor: fullname: T Vries de |
SSID | ssj0037044 |
Score | 2.0811682 |
Snippet | Acquiring a set of features that emphasize the differences between normal data points and outliers can drastically facilitate the task of identifying outliers.... |
SourceID | wanfang proquest crossref springer chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 408 |
SubjectTerms | Algorithms Analysis Artificial Intelligence Computer Science Data points Data Structures and Information Theory Datasets Feature extraction Feature selection Gain GPU Graphics processing units Information Systems Applications (incl.Internet) Machine learning Performance evaluation Regular Paper Serials Software Engineering Stands State of the art Studies Tasks Theory of Computation 图形处理单元 孤立点检测 异常检测 权力 特征选择 算法比较 识别功能 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB626SWXJm0S6jyKCu0lQcUP-XVckiZLoO3CxpCbkWQpYQP2xuuF_PzMeG3vFtJDr5Y8ghlp5pNGmg_gmynCOFA24VaIlIuw8LhCmMG1ZyMKR6Fpq_P_-h1NMnF7H96PwB-OLsqnH31GsnXUm7duiFXoDpXgGOJR7Dt4j9hB0IYr88e99w1ityVwpWNrToSYfSbzLRFUT-GxKh-ecbi_49IGbA750fZVT2ll-bAVgK734UOHHNl4beqPMDLlJ9jrWRlYt0gPYDqRNfkvFMcQ3bEp8aCxyrKbabZkTcVmC4xYLFswgn-r2rBZy4WDBmKIYNmfVYO4tGZXpll_PYTs-ufd5YR3vAlcC89veJjI1Piu0joRSaF8T6oiQWAjPRtIFQcyjV0_NaGrU4zeqVaeUsJGViJa1DJRwRHslFVpPgOLgyLyjFY2ElIUEtFDoaWPsCyWxKIuHTgeNJgv1vUxctxzpcR65cB5r9KhbVMlmWyRoy1yskUuHDjtlZ53y2iZEzlT-1g3cODr0IwLgLIasjTVCvtEuOUjYBs6cNEba0vEvwf83tlz03m-nD-9zJcvKkf9USVD9FHH_yX1BHbpz_WVyFPYaeqVOUPY0qgv7Tx9BQp14iY priority: 102 providerName: Springer Nature |
Title | Harnessing the Power of GPUs to Speed Up Feature Selection for Outlier Detection |
URI | http://lib.cqvip.com/qk/85226X/201403/49597280.html https://link.springer.com/article/10.1007/s11390-014-1439-4 https://www.proquest.com/docview/1525222783 https://search.proquest.com/docview/1671601155 https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201403005 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-69GUv6z6pu7RosL1siMW2_PVU0i4fdKwL6wztk5FkKSUFO40d6J-_O8dOuof2ySAJWdxJdz_ppPsBfDZ5EPnKxtwKkXAR5C5XCDO4dm1I7igwTXb-X5fhNBUX18F1e-BWtdcqO5vYGOq81HRG_p14epp3m_7p8p4TaxRFV1sKjRew73pRRFe64vGks8R-NGjIXOkImxM5ZhfVbJ7OIfShK1mCI2LAUVJuhduymN-jx_jfR-2A5zZW2rzwKaws5o-c0fg1vGpRJBtu1P4G9kzxFg46hgbWLth3MJvKFdky7I4h0mMz4kRjpWWTWVqxumRXS_ReLF0ygoLrlWFXDS8OKoshmmW_1zVi1BX7YepN6XtIx6O_51PecihwLVyv5kEsE-MNlNaxiHPluVLlMYIc6VpfqsiXSTTwEhMMdIISTrRylRI2tBKRo5ax8j9ArygLcwgs8vPQNVrZUEiRS0QSuZYeQrRIEqO6dOBoK8FsucmVkeH-KyEGLAe-diLd1u0yJpMuMtRFRrrIhAP9TuhZu6SqbDcBHPi0rcbFQBEOWZhyjW1C3P4RyA0c-NYp61EXT__wS6vPXeNFtbh7WFQPKkP5UVZDtFdHzw_sI7ykppv7kH3o1au1OUbMUquTZmKewP5wcvNzhN-z0eXsD5am3vAfbZrqJw |
link.rule.ids | 315,783,787,12778,21401,27937,27938,33386,33387,33757,33758,41094,41536,42163,42605,43613,43818,52124,52247 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gAXKC-R0hYjwQVksUmc1wnRFwu0y4p2pd4s27FbbaVku8lK_fnMZJ3dcoBr_Ig1Y8989tjzAby3ZZLF2uXcCVFwkZQh1wgzuAldSu4osV12_rNxOpqKH5fJpT9wa_y1yt4mdoa6rA2dkX8mnp7u3Wb8ZX7LiTWKoqueQuMhbFGqqnwAWwfH48nv3hbH2bCjc6VDbE70mH1cs3s8h-CHLmUJjpgBx0nZFa7r6uoWfcbfXmoDPdfR0u6NT-VUdXXPHZ1swxOPI9nXleKfwQNbPYenPUcD80v2BUxGakHWDLtjiPXYhFjRWO3Yt8m0YW3Nzufov9h0zggMLheWnXfMOKguhniW_Vq2iFIX7Mi2q68vYXpyfHE44p5FgRsRRi1PclXYaKiNyUVe6ihUuswR5qjQxUpnsSqyYVTYZGgKlHFhdKi1cKlTiB2NynX8CgZVXdnXwLK4TENrtEuFEqVCLFEaFSFIyxRxqqsAdtYSlPNVtgyJO7CCOLAC-NiLdF22yZlMupCoC0m6kCKA3V7o0i-qRm6mQADv1sW4HCjGoSpbL7FOihtAgrlJAJ96Zd3r4t8__OD1uak8a2Y3d7PmTkuUH-U1RIu18_-BvYVHo4uzU3n6ffzzDTymZqvbkbswaBdLu4cIptX7fpr-AV4n6mE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkJcKE-RUsBIcAGl3STO61jRbhcKZaWyUjkZ27GLtlKybBKp4tczk8S7BcEBcY2tGdljz3yOx_MBvDRFnEbKZr7lPPd5XAS-Qpjh68AmFI5i01Xn_3iaTOf8_Xl8PvCc1i7b3V1J9m8aqEpT2ewvC7u_efiGwIUSqriP8R513IQtHuBJZQRbB8dfTo6cM47SccfnSn-xfeLHdBebfxJC5RW-VeXFd1T-a5jaYM_1dWn3yKe0sry4Fo8m2_DVjaRPQ7ncaxu1p3_8VuTxP4Z6F-4MWJUd9IvrHtww5X3YdjwQbHALD2A2lSvymKiCIZ5kM2JeY5Vlx7N5zZqKnS0xRrL5khHgbFeGnXXsO7gkGGJm9qltEAmv2KFp-q8PYT45-vx26g9MDb7mQdj4cSZzE46V1hnPChUGUhUZQikZ2EiqNJJ5Og5zE491jngh1ypQitvESsSnWmYqegSjsirNY2BpVCSB0comXPJCIl4ptAwRCKaSeNulBztrI4llX5FD4CkvJ54tD147q63bNnWZaSIFTqSgiRTcg11nVzFs3FoQHVT3PDjy4MW6Gbcc3aPI0lQt9knwkElQOvbgjTPgNRF_V_hqWDKbzot6cXm1qK-UwPmj2onoFXf-SepzuDU7nIgP705PnsBtEtLnY-7CqFm15ilipkY9G_bFT_udCzM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+the+Power+of+GPUs+to+Speed+Up+Feature+Selection+for+Outlier+Detection&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Azmandian%2C+Fatemeh&rft.au=Yilmazer%2C+Ayse&rft.au=Dy%2C+Jennifer+G.&rft.au=Aslam%2C+Javed+A.&rft.date=2014-05-01&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=29&rft.issue=3&rft.spage=408&rft.epage=422&rft_id=info:doi/10.1007%2Fs11390-014-1439-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11390_014_1439_4 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg |