Harnessing the Power of GPUs to Speed Up Feature Selection for Outlier Detection

Acquiring a set of features that emphasize the differences between normal data points and outliers can drastically facilitate the task of identifying outliers. In our work, we present a novel non-parametric evaluation criterion for filter-based feature selection which has an eye towards the final go...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 29; no. 3; pp. 408 - 422
Main Author Fatemeh Azmandian Member, IEEE, Ayse Yilmazer Student Member, IEEE, Jennifer G. Dy Member, IEEE Javed A. Aslam IEEE, Jennifer G. Dy Member, ACM David R. Kaeli Fellow, IEEE, Member, ACM
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.05.2014
Springer Nature B.V
Department of Electrical and Computer Engineering, Northeastern University, Boston 02115-5096, U.S.A.%College of Computer and Information Science, Northeastern University, Boston 02115-5096, U.S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Acquiring a set of features that emphasize the differences between normal data points and outliers can drastically facilitate the task of identifying outliers. In our work, we present a novel non-parametric evaluation criterion for filter-based feature selection which has an eye towards the final goal of outlier detection. The proposed method seeks the subset of features that represent the inherent characteristics of the normal dataset while forcing outliers to stand out, making them more easily distinguished by outlier detection algorithms. Experimental results on real datasets show the advantage of our feature selection algorithm compared with popular and state-of-the-art methods. We also show that the proposed algorithm is able to overcome the small sample space problem and perform well on highly imbalanced datasets. Furthermore, due to the highly parallelizable nature of the feature selection, we implement the algorithm on a graphics processing unit (GPU) to gain significant speedup over the serial version. The benefits of the GPU implementation are two-fold, as its performance scales very well in terms of the number of features, as well as the number of data points.
AbstractList Acquiring a set of features that emphasize the differences between normal data points and outliers can drastically facilitate the task of identifying outliers. In our work, we present a novel non-parametric evaluation criterion for filter-based feature selection which has an eye towards the final goal of outlier detection. The proposed method seeks the subset of features that represent the inherent characteristics of the normal dataset while forcing outliers to stand out, making them more easily distinguished by outlier detection algorithms. Experimental results on real datasets show the advantage of our feature selection algorithm compared with popular and state-of-the-art methods. We also show that the proposed algorithm is able to overcome the small sample space problem and perform well on highly imbalanced datasets. Furthermore, due to the highly parallelizable nature of the feature selection, we implement the algorithm on a graphics processing unit (GPU) to gain significant speedup over the serial version. The benefits of the GPU implementation are two-fold, as its performance scales very well in terms of the number of features, as well as the number of data points.
Acquiring a set of features that emphasize the differences between normal data points and outliers can drastically facilitate the task of identifying outliers. In our work, we present a novel non-parametric evaluation criterion for filter-based feature selection which has an eye towards the final goal of outlier detection. The proposed method seeks the subset of features that represent the inherent characteristics of the normal dataset while forcing outliers to stand out, making them more easily distinguished by outlier detection algorithms. Experimental results on real datasets show the advantage of our feature selection algorithm compared with popular and state-of-the-art methods. We also show that the proposed algorithm is able to overcome the small sample space problem and perform well on highly imbalanced datasets. Furthermore, due to the highly parallelizable nature of the feature selection, we implement the algorithm on a graphics processing unit (GPU) to gain significant speedup over the serial version. The benefits of the GPU implementation are two-fold, as its performance scales very well in terms of the number of features, as well as the number of data points.[PUBLICATION ABSTRACT]
Acquiring a set of features that emphasize the differences between normal data points and outliers can drastically facilitate the task of identifying outliers. In our work, we present a novel non-parametric evaluation criterion for filter-based feature selection which has an eye towards the final goal of outlier detection. The proposed method seeks the subset of features that represent the inherent characteristics of the normal dataset while forcing outliers to stand out, making them more easily distinguished by outlier detection algorithms. Experimental results on real datasets show the advantage of our feature selection algorithm compared with popular and state-of-the-art methods. We also show that the proposed algorithm is able to overcome the small sample space problem and perform well on highly imbalanced datasets. Furthermore, due to the highly parallelizable nature of the feature selection, we implement the algorithm on a graphics processing unit (GPU) to gain significant speedup over the serial version. The benefits of the GPU implementation are two-fold, as its performance scales very well in terms of the number of features, as well as the number of data points.
Author Fatemeh Azmandian Member, IEEE, Ayse Yilmazer Student Member, IEEE, Jennifer G. Dy Member, IEEE Javed A. Aslam IEEE, Jennifer G. Dy Member, ACM David R. Kaeli Fellow, IEEE, Member, ACM
AuthorAffiliation Department of Electrical and Computer Engineering, Northeastern University, Boston 02115-5096, U.S.A. College of Computer and Information Science, Northeastern University, Boston 02115-5096, U.S.A.
AuthorAffiliation_xml – name: Department of Electrical and Computer Engineering, Northeastern University, Boston 02115-5096, U.S.A.%College of Computer and Information Science, Northeastern University, Boston 02115-5096, U.S.A
Author_xml – sequence: 1
  fullname: Fatemeh Azmandian Member, IEEE, Ayse Yilmazer Student Member, IEEE, Jennifer G. Dy Member, IEEE Javed A. Aslam IEEE, Jennifer G. Dy Member, ACM David R. Kaeli Fellow, IEEE, Member, ACM
BookMark eNp9kU9rFDEYxoNUsK1-AG8RLx4cfd8kszM5SmtbodCFuueQZN_ZzjhNtskMrd_eLFOKePCShPB7_sBzwo5CDMTYe4QvCNB8zYhSQwWoKlRSV-oVO8Z2BZVqlD4qbwCodDnesJOcBwDZgFLHbH1lU6Cc-7Dj0x3xdXykxGPHL9ebzKfIb_dEW77Z8wuy05yI39JIfupj4F1M_Gaexr4ozmlaft-y150dM717vk_Z5uL7z7Or6vrm8sfZt-vKKxRTVbdWkwDnfavarRNo3bbUBYudtK6RVjcgNNXgNdZCe4fOqW7VWdDa29bJU_Z58X20obNhZ4Y4p1ASzZCHX09DfnKmBKACCVAX_NOC71N8mClP5r7PnsbRBopzNrhqcAWI9QH9-A_6Yl2q1EKIppWFwoXyKeacqDP71N_b9NsgmMMkZpnElArmMIlRRSMWTS5s2FH6y_k_og_PQXcx7B6K7iVJ6Vo3ogX5B8lGmaE
CitedBy_id crossref_primary_10_1016_j_future_2019_08_031
crossref_primary_10_1016_j_ins_2019_01_050
crossref_primary_10_1007_s41060_020_00222_4
Cites_doi 10.1007/978-94-015-3994-4
10.1093/bioinformatics/btm216
10.1214/aoms/1177728190
10.1162/089976698300017467
10.1007/s10115-011-0474-5
10.1214/aoms/1177704472
10.1145/335191.335388
10.1017/CBO9780511810817
10.1145/293347.293348
10.1007/s10115-011-0430-4
10.1007/s10115-010-0283-2
10.1016/j.neunet.2010.10.005
10.1016/S0004-3702(97)00043-X
10.1109/TPAMI.2012.197
10.1016/S1088-467X(97)00008-5
10.1007/s00778-004-0125-5
10.1145/1401890.1401910
10.1016/B978-1-55860-247-2.50037-1
10.1111/j.2517-6161.1996.tb02080.x
10.1007/978-1-4615-5689-3
10.1109/CVPRW.2008.4563100
10.1109/ICDM.2012.51
10.1145/1143844.1143854
ContentType Journal Article
Copyright Springer Science+Business Media New York & Science Press, China 2014
Springer Science+Business Media New York & Science Press, China 2014.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media New York & Science Press, China 2014
– notice: Springer Science+Business Media New York & Science Press, China 2014.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PTHSS
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11390-014-1439-4
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest_ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection
Computing Database
ProQuest Engineering Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts


ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Harnessing the Power of GPUs to Speed Up Feature Selection for Outlier Detection
EISSN 1860-4749
EndPage 422
ExternalDocumentID jsjkxjsxb_e201403005
3305842851
10_1007_s11390_014_1439_4
49597280
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92L
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADGRI
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCEZO
CCPQU
CHBEP
COF
CQIGP
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W92
WK8
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
~WA
-SI
-S~
5XA
5XJ
AACDK
AAEOY
AAJBT
AASML
AAXDM
AAYXX
ABAKF
ACDTI
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CAJEI
CITATION
H13
PQBZA
Q--
U1G
U5S
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L6V
L7M
L~C
L~D
PQEST
PQUKI
Q9U
AAYZH
4A8
AAGNY
PSX
ID FETCH-LOGICAL-c412t-58a9e20bcc848db21abd8600a1f3ab73a97029e50c91529cb1bb4f6fa099ca8b3
IEDL.DBID 8FG
ISSN 1000-9000
IngestDate Wed Nov 06 04:32:15 EST 2024
Fri Oct 25 02:29:46 EDT 2024
Thu Oct 10 22:09:40 EDT 2024
Thu Sep 12 16:36:27 EDT 2024
Sat Dec 16 12:08:36 EST 2023
Wed Feb 14 10:36:53 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords imbalanced data
outlier detection
feature selection
GPU acceleration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-58a9e20bcc848db21abd8600a1f3ab73a97029e50c91529cb1bb4f6fa099ca8b3
Notes 11-2296/TP
Acquiring a set of features that emphasize the differences between normal data points and outliers can drastically facilitate the task of identifying outliers. In our work, we present a novel non-parametric evaluation criterion for filter-based feature selection which has an eye towards the final goal of outlier detection. The proposed method seeks the subset of features that represent the inherent characteristics of the normal dataset while forcing outliers to stand out, making them more easily distinguished by outlier detection algorithms. Experimental results on real datasets show the advantage of our feature selection algorithm compared with popular and state-of-the-art methods. We also show that the proposed algorithm is able to overcome the small sample space problem and perform well on highly imbalanced datasets. Furthermore, due to the highly parallelizable nature of the feature selection, we implement the algorithm on a graphics processing unit (GPU) to gain significant speedup over the serial version. The benefits of the GPU implementation are two-fold, as its performance scales very well in terms of the number of features, as well as the number of data points.
feature selection, outlier detection, imbalanced data, GPU acceleration
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1525222783
PQPubID 326258
PageCount 15
ParticipantIDs wanfang_journals_jsjkxjsxb_e201403005
proquest_miscellaneous_1671601155
proquest_journals_1525222783
crossref_primary_10_1007_s11390_014_1439_4
springer_journals_10_1007_s11390_014_1439_4
chongqing_primary_49597280
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitleAlternate Journal of Computer Science and Technology
PublicationTitle_FL Journal of Computer Science & Technology
PublicationYear 2014
Publisher Springer US
Springer Nature B.V
Department of Electrical and Computer Engineering, Northeastern University, Boston 02115-5096, U.S.A.%College of Computer and Information Science, Northeastern University, Boston 02115-5096, U.S.A
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Department of Electrical and Computer Engineering, Northeastern University, Boston 02115-5096, U.S.A.%College of Computer and Information Science, Northeastern University, Boston 02115-5096, U.S.A
References Kohavi, John (CR4) 1997; 97
CR18
Wu, Yu, Ding (CR11) 2013; 35
Aggarwal, Yu (CR13) 2005; 14
CR12
CR32
Parzen (CR23) 1962; 33
CR31
CR30
de Vries, Chawla, Houle (CR14) 2012; 32
Breunig, Kriegel, Ng (CR20) 2000; 29
Rosenblatt (CR24) 1956; 27
CR2
CR3
Schölkopf, Smola, Müller (CR1) 1998; 10
CR8
CR7
CR28
CR27
CR26
CR22
Hido, Tsuboi, Kashima (CR16) 2011; 26
Dash, Liu (CR5) 1997; 1
Tibshirani (CR9) 1996; 58
Arya, Mount, Netanyahu (CR29) 1998; 45
Guyon, Elisseeff (CR6) 2003; 3
Sugiyama, Yamada, von Bünau (CR17) 2011; 24
Song, Bedo, Borgwardt (CR10) 2007; 23
Horn, Johnson (CR21) 1985
Hawkins (CR19) 1980
Devijver, Kittler (CR25) 1982
Branch, Giannella, Szymanski (CR15) 2013; 34
M Sugiyama (1439_CR17) 2011; 24
1439_CR7
1439_CR8
R Tibshirani (1439_CR9) 1996; 58
RA Horn (1439_CR21) 1985
M Dash (1439_CR5) 1997; 1
L Song (1439_CR10) 2007; 23
R Kohavi (1439_CR4) 1997; 97
B Schölkopf (1439_CR1) 1998; 10
JW Branch (1439_CR15) 2013; 34
1439_CR30
1439_CR31
1439_CR12
S Hido (1439_CR16) 2011; 26
M Rosenblatt (1439_CR24) 1956; 27
1439_CR32
E Parzen (1439_CR23) 1962; 33
1439_CR2
1439_CR3
I Guyon (1439_CR6) 2003; 3
1439_CR18
X Wu (1439_CR11) 2013; 35
S Arya (1439_CR29) 1998; 45
1439_CR22
PA Devijver (1439_CR25) 1982
1439_CR27
1439_CR28
MM Breunig (1439_CR20) 2000; 29
1439_CR26
DM Hawkins (1439_CR19) 1980
T Vries de (1439_CR14) 2012; 32
C Aggarwal (1439_CR13) 2005; 14
References_xml – volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: CR6
  article-title: An introduction to variable and feature selection
  publication-title: J. Machine Learning Research
  contributor:
    fullname: Elisseeff
– ident: CR22
– year: 1980
  ident: CR19
  publication-title: Identification of Outliers
  doi: 10.1007/978-94-015-3994-4
  contributor:
    fullname: Hawkins
– volume: 23
  start-page: i490
  issue: 3
  year: 2007
  end-page: i498
  ident: CR10
  article-title: Gene selection via the BAHSIC family of algorithms
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm216
  contributor:
    fullname: Borgwardt
– ident: CR18
– volume: 27
  start-page: 832
  issue: 3
  year: 1956
  end-page: 837
  ident: CR24
  article-title: Remarks on some nonparametric estimates of a density function
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177728190
  contributor:
    fullname: Rosenblatt
– volume: 10
  start-page: 1299
  issue: 5
  year: 1998
  end-page: 1319
  ident: CR1
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Computation
  doi: 10.1162/089976698300017467
  contributor:
    fullname: Müller
– ident: CR2
– ident: CR12
– ident: CR30
– volume: 34
  start-page: 23
  issue: 1
  year: 2013
  end-page: 54
  ident: CR15
  article-title: In-network outlier detection in wireless sensor networks
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-011-0474-5
  contributor:
    fullname: Szymanski
– volume: 33
  start-page: 1065
  issue: 3
  year: 1962
  end-page: 1076
  ident: CR23
  article-title: On estimation of a probability density function and mode
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177704472
  contributor:
    fullname: Parzen
– volume: 29
  start-page: 93
  issue: 2
  year: 2000
  end-page: 104
  ident: CR20
  article-title: LOF: Identifying density-based local outliers
  publication-title: ACM SIGMOD Record
  doi: 10.1145/335191.335388
  contributor:
    fullname: Ng
– year: 1985
  ident: CR21
  publication-title: Matrix Analysis
  doi: 10.1017/CBO9780511810817
  contributor:
    fullname: Johnson
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  ident: CR9
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. Royal Statistical Society, Series B
  contributor:
    fullname: Tibshirani
– volume: 45
  start-page: 891
  issue: 6
  year: 1998
  end-page: 923
  ident: CR29
  article-title: An optimal algorithm for approximate nearest neighbor searching fixed dimensions
  publication-title: Journal of the ACM
  doi: 10.1145/293347.293348
  contributor:
    fullname: Netanyahu
– ident: CR8
– year: 1982
  ident: CR25
  publication-title: Pattern Recognition: A Statistical Approach
  contributor:
    fullname: Kittler
– ident: CR27
– volume: 32
  start-page: 25
  issue: 1
  year: 2012
  end-page: 52
  ident: CR14
  article-title: Density-preserving projections for large-scale local anomaly detection
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-011-0430-4
  contributor:
    fullname: Houle
– ident: CR3
– volume: 26
  start-page: 309
  issue: 2
  year: 2011
  end-page: 336
  ident: CR16
  article-title: Statistical outlier detection using direct density ratio estimation
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-010-0283-2
  contributor:
    fullname: Kashima
– ident: CR31
– volume: 24
  start-page: 183
  issue: 2
  year: 2011
  end-page: 198
  ident: CR17
  article-title: Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2010.10.005
  contributor:
    fullname: von Bünau
– ident: CR32
– volume: 97
  start-page: 273
  issue: 1/2
  year: 1997
  end-page: 324
  ident: CR4
  article-title: Wrappers for feature subset selection
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(97)00043-X
  contributor:
    fullname: John
– ident: CR7
– volume: 35
  start-page: 1178
  issue: 5
  year: 2013
  end-page: 1192
  ident: CR11
  article-title: Online feature selection with streaming features
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2012.197
  contributor:
    fullname: Ding
– ident: CR28
– ident: CR26
– volume: 1
  start-page: 131
  issue: 1/4
  year: 1997
  end-page: 156
  ident: CR5
  article-title: Feature selection for classification
  publication-title: Intelligent Data Analysis
  doi: 10.1016/S1088-467X(97)00008-5
  contributor:
    fullname: Liu
– volume: 14
  start-page: 211
  issue: 2
  year: 2005
  end-page: 221
  ident: CR13
  article-title: An effective and efficient algorithm for high-dimensional outlier detection
  publication-title: The VLDB Journal
  doi: 10.1007/s00778-004-0125-5
  contributor:
    fullname: Yu
– volume-title: Pattern Recognition: A Statistical Approach
  year: 1982
  ident: 1439_CR25
  contributor:
    fullname: PA Devijver
– volume: 45
  start-page: 891
  issue: 6
  year: 1998
  ident: 1439_CR29
  publication-title: Journal of the ACM
  doi: 10.1145/293347.293348
  contributor:
    fullname: S Arya
– volume: 34
  start-page: 23
  issue: 1
  year: 2013
  ident: 1439_CR15
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-011-0474-5
  contributor:
    fullname: JW Branch
– ident: 1439_CR12
  doi: 10.1145/1401890.1401910
– ident: 1439_CR18
– volume: 33
  start-page: 1065
  issue: 3
  year: 1962
  ident: 1439_CR23
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177704472
  contributor:
    fullname: E Parzen
– volume: 10
  start-page: 1299
  issue: 5
  year: 1998
  ident: 1439_CR1
  publication-title: Neural Computation
  doi: 10.1162/089976698300017467
  contributor:
    fullname: B Schölkopf
– ident: 1439_CR32
– volume: 26
  start-page: 309
  issue: 2
  year: 2011
  ident: 1439_CR16
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-010-0283-2
  contributor:
    fullname: S Hido
– volume: 1
  start-page: 131
  issue: 1/4
  year: 1997
  ident: 1439_CR5
  publication-title: Intelligent Data Analysis
  doi: 10.1016/S1088-467X(97)00008-5
  contributor:
    fullname: M Dash
– ident: 1439_CR7
– ident: 1439_CR2
  doi: 10.1016/B978-1-55860-247-2.50037-1
– ident: 1439_CR28
– ident: 1439_CR26
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 1439_CR9
  publication-title: J. Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
  contributor:
    fullname: R Tibshirani
– volume-title: Identification of Outliers
  year: 1980
  ident: 1439_CR19
  doi: 10.1007/978-94-015-3994-4
  contributor:
    fullname: DM Hawkins
– ident: 1439_CR3
  doi: 10.1007/978-1-4615-5689-3
– volume: 23
  start-page: i490
  issue: 3
  year: 2007
  ident: 1439_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm216
  contributor:
    fullname: L Song
– volume: 14
  start-page: 211
  issue: 2
  year: 2005
  ident: 1439_CR13
  publication-title: The VLDB Journal
  doi: 10.1007/s00778-004-0125-5
  contributor:
    fullname: C Aggarwal
– ident: 1439_CR30
  doi: 10.1109/CVPRW.2008.4563100
– ident: 1439_CR8
  doi: 10.1109/ICDM.2012.51
– volume: 3
  start-page: 1157
  year: 2003
  ident: 1439_CR6
  publication-title: J. Machine Learning Research
  contributor:
    fullname: I Guyon
– ident: 1439_CR31
– volume: 97
  start-page: 273
  issue: 1/2
  year: 1997
  ident: 1439_CR4
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(97)00043-X
  contributor:
    fullname: R Kohavi
– ident: 1439_CR22
  doi: 10.1145/1143844.1143854
– volume: 24
  start-page: 183
  issue: 2
  year: 2011
  ident: 1439_CR17
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2010.10.005
  contributor:
    fullname: M Sugiyama
– volume-title: Matrix Analysis
  year: 1985
  ident: 1439_CR21
  doi: 10.1017/CBO9780511810817
  contributor:
    fullname: RA Horn
– volume: 35
  start-page: 1178
  issue: 5
  year: 2013
  ident: 1439_CR11
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2012.197
  contributor:
    fullname: X Wu
– volume: 27
  start-page: 832
  issue: 3
  year: 1956
  ident: 1439_CR24
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177728190
  contributor:
    fullname: M Rosenblatt
– ident: 1439_CR27
– volume: 29
  start-page: 93
  issue: 2
  year: 2000
  ident: 1439_CR20
  publication-title: ACM SIGMOD Record
  doi: 10.1145/335191.335388
  contributor:
    fullname: MM Breunig
– volume: 32
  start-page: 25
  issue: 1
  year: 2012
  ident: 1439_CR14
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-011-0430-4
  contributor:
    fullname: T Vries de
SSID ssj0037044
Score 2.0811682
Snippet Acquiring a set of features that emphasize the differences between normal data points and outliers can drastically facilitate the task of identifying outliers....
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Publisher
StartPage 408
SubjectTerms Algorithms
Analysis
Artificial Intelligence
Computer Science
Data points
Data Structures and Information Theory
Datasets
Feature extraction
Feature selection
Gain
GPU
Graphics processing units
Information Systems Applications (incl.Internet)
Machine learning
Performance evaluation
Regular Paper
Serials
Software Engineering
Stands
State of the art
Studies
Tasks
Theory of Computation
图形处理单元
孤立点检测
异常检测
权力
特征选择
算法比较
识别功能
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB626SWXJm0S6jyKCu0lQcUP-XVckiZLoO3CxpCbkWQpYQP2xuuF_PzMeG3vFtJDr5Y8ghlp5pNGmg_gmynCOFA24VaIlIuw8LhCmMG1ZyMKR6Fpq_P_-h1NMnF7H96PwB-OLsqnH31GsnXUm7duiFXoDpXgGOJR7Dt4j9hB0IYr88e99w1ityVwpWNrToSYfSbzLRFUT-GxKh-ecbi_49IGbA750fZVT2ll-bAVgK734UOHHNl4beqPMDLlJ9jrWRlYt0gPYDqRNfkvFMcQ3bEp8aCxyrKbabZkTcVmC4xYLFswgn-r2rBZy4WDBmKIYNmfVYO4tGZXpll_PYTs-ufd5YR3vAlcC89veJjI1Piu0joRSaF8T6oiQWAjPRtIFQcyjV0_NaGrU4zeqVaeUsJGViJa1DJRwRHslFVpPgOLgyLyjFY2ElIUEtFDoaWPsCyWxKIuHTgeNJgv1vUxctxzpcR65cB5r9KhbVMlmWyRoy1yskUuHDjtlZ53y2iZEzlT-1g3cODr0IwLgLIasjTVCvtEuOUjYBs6cNEba0vEvwf83tlz03m-nD-9zJcvKkf9USVD9FHH_yX1BHbpz_WVyFPYaeqVOUPY0qgv7Tx9BQp14iY
  priority: 102
  providerName: Springer Nature
Title Harnessing the Power of GPUs to Speed Up Feature Selection for Outlier Detection
URI http://lib.cqvip.com/qk/85226X/201403/49597280.html
https://link.springer.com/article/10.1007/s11390-014-1439-4
https://www.proquest.com/docview/1525222783
https://search.proquest.com/docview/1671601155
https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201403005
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-69GUv6z6pu7RosL1siMW2_PVU0i4fdKwL6wztk5FkKSUFO40d6J-_O8dOuof2ySAJWdxJdz_ppPsBfDZ5EPnKxtwKkXAR5C5XCDO4dm1I7igwTXb-X5fhNBUX18F1e-BWtdcqO5vYGOq81HRG_p14epp3m_7p8p4TaxRFV1sKjRew73pRRFe64vGks8R-NGjIXOkImxM5ZhfVbJ7OIfShK1mCI2LAUVJuhduymN-jx_jfR-2A5zZW2rzwKaws5o-c0fg1vGpRJBtu1P4G9kzxFg46hgbWLth3MJvKFdky7I4h0mMz4kRjpWWTWVqxumRXS_ReLF0ygoLrlWFXDS8OKoshmmW_1zVi1BX7YepN6XtIx6O_51PecihwLVyv5kEsE-MNlNaxiHPluVLlMYIc6VpfqsiXSTTwEhMMdIISTrRylRI2tBKRo5ax8j9ArygLcwgs8vPQNVrZUEiRS0QSuZYeQrRIEqO6dOBoK8FsucmVkeH-KyEGLAe-diLd1u0yJpMuMtRFRrrIhAP9TuhZu6SqbDcBHPi0rcbFQBEOWZhyjW1C3P4RyA0c-NYp61EXT__wS6vPXeNFtbh7WFQPKkP5UVZDtFdHzw_sI7ykppv7kH3o1au1OUbMUquTZmKewP5wcvNzhN-z0eXsD5am3vAfbZrqJw
link.rule.ids 315,783,787,12778,21401,27937,27938,33386,33387,33757,33758,41094,41536,42163,42605,43613,43818,52124,52247
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gAXKC-R0hYjwQVksUmc1wnRFwu0y4p2pd4s27FbbaVku8lK_fnMZJ3dcoBr_Ig1Y8989tjzAby3ZZLF2uXcCVFwkZQh1wgzuAldSu4osV12_rNxOpqKH5fJpT9wa_y1yt4mdoa6rA2dkX8mnp7u3Wb8ZX7LiTWKoqueQuMhbFGqqnwAWwfH48nv3hbH2bCjc6VDbE70mH1cs3s8h-CHLmUJjpgBx0nZFa7r6uoWfcbfXmoDPdfR0u6NT-VUdXXPHZ1swxOPI9nXleKfwQNbPYenPUcD80v2BUxGakHWDLtjiPXYhFjRWO3Yt8m0YW3Nzufov9h0zggMLheWnXfMOKguhniW_Vq2iFIX7Mi2q68vYXpyfHE44p5FgRsRRi1PclXYaKiNyUVe6ihUuswR5qjQxUpnsSqyYVTYZGgKlHFhdKi1cKlTiB2NynX8CgZVXdnXwLK4TENrtEuFEqVCLFEaFSFIyxRxqqsAdtYSlPNVtgyJO7CCOLAC-NiLdF22yZlMupCoC0m6kCKA3V7o0i-qRm6mQADv1sW4HCjGoSpbL7FOihtAgrlJAJ96Zd3r4t8__OD1uak8a2Y3d7PmTkuUH-U1RIu18_-BvYVHo4uzU3n6ffzzDTymZqvbkbswaBdLu4cIptX7fpr-AV4n6mE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkJcKE-RUsBIcAGl3STO61jRbhcKZaWyUjkZ27GLtlKybBKp4tczk8S7BcEBcY2tGdljz3yOx_MBvDRFnEbKZr7lPPd5XAS-Qpjh68AmFI5i01Xn_3iaTOf8_Xl8PvCc1i7b3V1J9m8aqEpT2ewvC7u_efiGwIUSqriP8R513IQtHuBJZQRbB8dfTo6cM47SccfnSn-xfeLHdBebfxJC5RW-VeXFd1T-a5jaYM_1dWn3yKe0sry4Fo8m2_DVjaRPQ7ncaxu1p3_8VuTxP4Z6F-4MWJUd9IvrHtww5X3YdjwQbHALD2A2lSvymKiCIZ5kM2JeY5Vlx7N5zZqKnS0xRrL5khHgbFeGnXXsO7gkGGJm9qltEAmv2KFp-q8PYT45-vx26g9MDb7mQdj4cSZzE46V1hnPChUGUhUZQikZ2EiqNJJ5Og5zE491jngh1ypQitvESsSnWmYqegSjsirNY2BpVCSB0comXPJCIl4ptAwRCKaSeNulBztrI4llX5FD4CkvJ54tD147q63bNnWZaSIFTqSgiRTcg11nVzFs3FoQHVT3PDjy4MW6Gbcc3aPI0lQt9knwkElQOvbgjTPgNRF_V_hqWDKbzot6cXm1qK-UwPmj2onoFXf-SepzuDU7nIgP705PnsBtEtLnY-7CqFm15ilipkY9G_bFT_udCzM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+the+Power+of+GPUs+to+Speed+Up+Feature+Selection+for+Outlier+Detection&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Azmandian%2C+Fatemeh&rft.au=Yilmazer%2C+Ayse&rft.au=Dy%2C+Jennifer+G.&rft.au=Aslam%2C+Javed+A.&rft.date=2014-05-01&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=29&rft.issue=3&rft.spage=408&rft.epage=422&rft_id=info:doi/10.1007%2Fs11390-014-1439-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11390_014_1439_4
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg