Conformational dynamics of the Hop1 HORMA domain reveal a common mechanism with the spindle checkpoint protein Mad2

Abstract The HORMA domain is a highly conserved protein-protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short 'closure motifs' in partner proteins b...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 46; no. 1; pp. 279 - 292
Main Authors West, Alan M V, Komives, Elizabeth A, Corbett, Kevin D
Format Journal Article
LanguageEnglish
Published England Oxford University Press 09.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract The HORMA domain is a highly conserved protein-protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short 'closure motifs' in partner proteins by wrapping their C-terminal 'safety belt' region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain-closure motif interactions underlie both Hop1's initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed 'closed' conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13.
AbstractList Abstract The HORMA domain is a highly conserved protein-protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short 'closure motifs' in partner proteins by wrapping their C-terminal 'safety belt' region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain-closure motif interactions underlie both Hop1's initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed 'closed' conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13.
The HORMA domain is a highly conserved protein–protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short ‘closure motifs’ in partner proteins by wrapping their C-terminal ‘safety belt’ region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain–closure motif interactions underlie both Hop1’s initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed ‘closed’ conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13.
The HORMA domain is a highly conserved protein-protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short 'closure motifs' in partner proteins by wrapping their C-terminal 'safety belt' region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain-closure motif interactions underlie both Hop1's initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed 'closed' conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13.
Author Komives, Elizabeth A
Corbett, Kevin D
West, Alan M V
AuthorAffiliation Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA
AuthorAffiliation_xml – name: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
– name: Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
– name: Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA
– name: Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
Author_xml – sequence: 1
  givenname: Alan M V
  surname: West
  fullname: West, Alan M V
  organization: Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA
– sequence: 2
  givenname: Elizabeth A
  surname: Komives
  fullname: Komives, Elizabeth A
  organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
– sequence: 3
  givenname: Kevin D
  orcidid: 0000-0001-5854-2388
  surname: Corbett
  fullname: Corbett, Kevin D
  email: kcorbett@ucsd.edu
  organization: Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29186573$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS1URLeFE3fkE6qEQm0nTuwLUrWCLlKrSgjOluOMG9PYDna20H-P210qeulpDvO990bzjtBBiAEQekvJR0pkfRp0Or2--UOpbF-gFa1bVjWyZQdoRWrCK0oacYiOcv5JCG0ob16hQyapaHlXr1Bex2Bj8npxMegJD3dBe2cyjhYvI-BNnCneXH27PMND9NoFnOAWCqixid7HgD2YUQeXPf7tlvFBlGcXhgmwGcHczNGFBc8pLlDUl3pgr9FLq6cMb_bzGP348vn7elNdXJ1_XZ9dVKahbKk4FYPsuOhBMF4Lpru-7Ri30BsJXOtamLYgote05bXtwErLmvIR1hHbGFofo08733nbexgMhCXpSc3JeZ3uVNROPd0EN6rreKt4SRXi3uBkb5Diry3kRXmXDUyTDhC3WVHZkbaWTJKCftihJsWcE9jHGErUfU2q1KT2NRX63f-XPbL_einA-x0Qt_OzTn8Bz2OfUQ
CitedBy_id crossref_primary_10_1002_1873_3468_14717
crossref_primary_10_1016_j_cub_2018_08_026
crossref_primary_10_1146_annurev_biochem_090920_103246
crossref_primary_10_1007_s00294_018_0827_7
crossref_primary_10_1093_nar_gkaa527
crossref_primary_10_7554_eLife_72330
crossref_primary_10_1038_s41556_019_0442_y
crossref_primary_10_1093_nar_gkac227
crossref_primary_10_1371_journal_pbio_3002705
crossref_primary_10_3389_fcell_2022_1097446
crossref_primary_10_1080_15384101_2020_1758435
crossref_primary_10_1371_journal_pgen_1010708
crossref_primary_10_1371_journal_pgen_1009560
crossref_primary_10_1093_nar_gkz754
crossref_primary_10_1002_jcb_28028
crossref_primary_10_1371_journal_pgen_1010822
crossref_primary_10_7554_eLife_40372
crossref_primary_10_15252_embj_2019101625
crossref_primary_10_1371_journal_pgen_1007832
crossref_primary_10_1007_s00294_021_01160_9
crossref_primary_10_1007_s00294_021_01166_3
crossref_primary_10_3390_cells12121627
crossref_primary_10_1007_s00294_019_00937_3
crossref_primary_10_1016_j_cub_2020_08_064
crossref_primary_10_1093_genetics_iyad125
crossref_primary_10_1093_nar_gkac1160
crossref_primary_10_3389_fcell_2021_667073
crossref_primary_10_3390_genes13050777
crossref_primary_10_3390_jof9010110
crossref_primary_10_1038_s44318_024_00034_3
crossref_primary_10_1101_sqb_2017_82_035394
crossref_primary_10_1002_prot_26667
crossref_primary_10_7554_eLife_57720
crossref_primary_10_1016_j_tcb_2021_05_009
crossref_primary_10_3389_fcell_2021_688878
crossref_primary_10_1111_gtc_13049
crossref_primary_10_1093_pnasnexus_pgac302
crossref_primary_10_3389_fcell_2021_642737
crossref_primary_10_1016_j_cub_2020_07_089
crossref_primary_10_1093_iob_obac008
crossref_primary_10_1007_s00412_019_00696_7
crossref_primary_10_1371_journal_pgen_1011026
crossref_primary_10_1042_BST20230712
crossref_primary_10_1073_pnas_1902440116
crossref_primary_10_1146_annurev_genet_071719_020235
crossref_primary_10_1107_S2059798318011993
crossref_primary_10_1093_genetics_iyac106
Cites_doi 10.1242/jcs.01203
10.1083/jcb.143.2.283
10.1371/journal.pgen.1000702
10.1016/S0092-8674(02)01167-4
10.1016/j.cub.2012.10.006
10.1016/j.cell.2007.08.049
10.1021/bi4005528
10.1016/j.celrep.2016.01.001
10.1074/jbc.274.3.1783
10.1105/tpc.113.113175
10.1016/j.cell.2014.06.028
10.1083/jcb.200212080
10.1093/genetics/128.1.79
10.1073/pnas.1512197112
10.15252/embj.201797291
10.1371/journal.pbio.1002369
10.1016/S0092-8674(00)00131-8
10.1038/22774
10.1016/j.cub.2005.01.038
10.1091/mbc.E08-12-1223
10.1093/emboj/20.22.6371
10.1083/jcb.136.5.957
10.1016/j.devcel.2014.09.013
10.1128/MCB.14.2.1137
10.1091/mbc.E05-05-0465
10.1016/S0968-0004(98)01257-2
10.1128/MCB.00416-07
10.1007/s004120050413
10.1007/978-1-59745-196-3_19
10.1016/j.str.2008.10.002
10.1016/j.yexcr.2014.08.024
10.1093/emboj/21.10.2496
10.1073/pnas.1100023108
10.1101/cshperspect.a016626
10.1093/genetics/133.4.785
10.1016/S0092-8674(00)81876-0
10.1016/S0092-8674(00)80741-2
10.1016/S0092-8674(00)80609-1
10.1128/MCB.20.18.6646-6658.2000
10.1093/genetics/132.1.75
10.1371/journal.pgen.1000571
10.1038/nature10896
10.1038/nature21384
10.1098/rstb.2004.1618
10.1093/genetics/121.3.445
10.1093/nar/gkl1162
10.1186/1471-2121-13-15
10.1016/j.tcb.2011.03.004
10.1016/j.cell.2011.07.003
10.1093/nar/gkw506
10.1371/journal.pgen.1000557
10.1371/journal.pone.0134297
10.1016/j.sbi.2007.08.011
10.1007/BF00311213
10.1007/s00438-003-0934-z
10.1016/j.cell.2010.11.015
10.1093/genetics/136.2.449
10.1093/nar/26.11.2572
10.1371/journal.pgen.1003978
10.1093/genetics/123.4.675
10.1128/MCB.18.3.1424
10.1038/73338
10.1074/jbc.M114.585315
10.1016/S1097-2765(01)00435-X
10.1016/j.cell.2008.01.035
10.1016/j.yexcr.2009.08.007
10.1534/genetics.106.058768
10.1371/journal.pgen.1001062
10.1073/pnas.1412901111
10.1038/nature13120
10.1101/gad.1338505
10.1073/pnas.0711864105
10.1016/S0092-8674(00)80378-5
10.4161/cc.9.3.10773
10.1101/gad.1348205
10.1073/pnas.85.16.6057
10.1371/journal.pgen.1005372
10.1146/annurev.genet.33.1.603
10.1101/gad.13.17.2258
10.1083/jcb.201509076
10.1073/pnas.1515358112
10.1242/jcs.093286
10.1093/genetics/147.1.33
10.1016/j.cub.2015.08.051
10.1038/sj.emboj.7601033
10.1101/gad.1626408
10.1083/jcb.201301130
10.1016/j.molcel.2009.09.029
10.1093/nar/gks920
10.1371/journal.pbio.0060050
ContentType Journal Article
Copyright The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2018
The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2018
– notice: The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1093/nar/gkx1196
DatabaseName Oxford Journals Open Access Collection
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 292
ExternalDocumentID 10_1093_nar_gkx1196
29186573
10.1093/nar/gkx1196
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM104141
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFULF
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AOIJS
BAWUL
BAYMD
BCNDV
BTTYL
CAG
CIDKT
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
EMOBN
ESTFP
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
M49
M~E
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROX
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c412t-518d9758be825382a7b6725febc9e5aa38c618d8ba1653f7ef9f24093270f4c13
IEDL.DBID RPM
ISSN 0305-1048
IngestDate Tue Sep 17 21:25:55 EDT 2024
Sat Oct 26 01:28:10 EDT 2024
Fri Aug 23 03:39:08 EDT 2024
Wed Oct 16 00:51:25 EDT 2024
Wed Aug 28 03:19:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-518d9758be825382a7b6725febc9e5aa38c618d8ba1653f7ef9f24093270f4c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5854-2388
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5758881/
PMID 29186573
PQID 1970639290
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5758881
proquest_miscellaneous_1970639290
crossref_primary_10_1093_nar_gkx1196
pubmed_primary_29186573
oup_primary_10_1093_nar_gkx1196
PublicationCentury 2000
PublicationDate 2018-01-09
PublicationDateYYYYMMDD 2018-01-09
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-09
  day: 09
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References ( key 20180109025259_B14) 2015; 11
( key 20180109025259_B44) 2016; 14
( key 20180109025259_B91) 2010; 316
( key 20180109025259_B78) 2014; 289
( key 20180109025259_B39) 1991; 128
( key 20180109025259_B70) 1998; 143
( key 20180109025259_B41) 2008; 22
( key 20180109025259_B65) 2015; 211
( key 20180109025259_B72) 2004; 14
( key 20180109025259_B92) 2005; 360
( key 20180109025259_B22) 1998; 26
( key 20180109025259_B16) 2011; 21
( key 20180109025259_B95) 2013; 25
( key 20180109025259_B19) 2000; 103
( key 20180109025259_B8) 2013; 9
( key 20180109025259_B94) 2010; 6
( key 20180109025259_B45) 2012; 40
( key 20180109025259_B66) 2002; 21
( key 20180109025259_B15) 2014; 510
( key 20180109025259_B38) 2007; 35
( key 20180109025259_B27) 2004; 117
( key 20180109025259_B56) 2005; 19
( key 20180109025259_B26) 1995; 27
( key 20180109025259_B54) 1999; 13
( key 20180109025259_B71) 2001; 20
( key 20180109025259_B50) 2000; 109
( key 20180109025259_B53) 1989; 121
( key 20180109025259_B80) 2015; 112
( key 20180109025259_B85) 1994; 136
( key 20180109025259_B4) 2014; 329
( key 20180109025259_B68) 2000; 7
( key 20180109025259_B10) 1999; 33
( key 20180109025259_B40) 1989; 123
( key 20180109025259_B6) 2007; 27
( key 20180109025259_B18) 1999; 400
( key 20180109025259_B86) 1998; 18
( key 20180109025259_B46) 2005; 16
( key 20180109025259_B24) 2000; 20
( key 20180109025259_B64) 2008; 16
( key 20180109025259_B32) 1999; 274
( key 20180109025259_B55) 2005; 19
( key 20180109025259_B28) 1997; 136
( key 20180109025259_B77) 2012; 13
( key 20180109025259_B51) 2004; 271
( key 20180109025259_B52) 2014; 31
( key 20180109025259_B21) 1999; 98
( key 20180109025259_B47) 1999; 97
( key 20180109025259_B61) 2013; 201
( key 20180109025259_B9) 2015; 7
( key 20180109025259_B13) 2008; 105
( key 20180109025259_B1) 2002; 111
( key 20180109025259_B29) 2011; 146
( key 20180109025259_B34) 1997; 90
( key 20180109025259_B31) 2015; 4
( key 20180109025259_B36) 2010; 143
( key 20180109025259_B7) 2009; 36
( key 20180109025259_B73) 2012; 484
( key 20180109025259_B35) 2009; 20
( key 20180109025259_B75) 2015; 112
( key 20180109025259_B3) 2010; 9
( key 20180109025259_B67) 2002; 9
( key 20180109025259_B59) 2012; 22
( key 20180109025259_B49) 2009; 5
( key 20180109025259_B82) 2011; 124
( key 20180109025259_B88) 1993; 133
( key 20180109025259_B5) 2008; 132
( key 20180109025259_B33) 1997; 147
( key 20180109025259_B48) 2016; 44
( key 20180109025259_B87) 2009; 498
( key 20180109025259_B43) 2015; 10
( key 20180109025259_B30) 1999; 98
( key 20180109025259_B57) 1998; 23
( key 20180109025259_B79) 2011; 108
( key 20180109025259_B83) 2014; 31
( key 20180109025259_B93) 2017; 36
( key 20180109025259_B2) 1997; 88
( key 20180109025259_B63) 2005; 15
( key 20180109025259_B12) 2009; 5
( key 20180109025259_B25) 1994; 14
( key 20180109025259_B81) 2014; 111
( key 20180109025259_B76) 2015; 4
( key 20180109025259_B89) 2008; 6
( key 20180109025259_B90) 2006; 25
( key 20180109025259_B84) 2013; 52
( key 20180109025259_B20) 2003; 160
( key 20180109025259_B17) 1992; 132
( key 20180109025259_B58) 2015; 211
( key 20180109025259_B11) 2009; 5
( key 20180109025259_B37) 2006; 173
( key 20180109025259_B62) 2007; 17
( key 20180109025259_B74) 2017; 542
( key 20180109025259_B69) 2007; 131
( key 20180109025259_B96) 2016; 14
( key 20180109025259_B42) 2014; 158
( key 20180109025259_B60) 2015; 25
( key 20180109025259_B23) 1988; 85
References_xml – volume: 117
  start-page: 3343
  year: 2004
  ident: key 20180109025259_B27
  article-title: S. pombe meiotic linear elements contain proteins related to synaptonemal complex components
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.01203
– volume: 143
  start-page: 283
  year: 1998
  ident: key 20180109025259_B70
  article-title: Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.143.2.283
– volume: 5
  start-page: e1000702
  year: 2009
  ident: key 20180109025259_B11
  article-title: Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000702
– volume: 111
  start-page: 791
  year: 2002
  ident: key 20180109025259_B1
  article-title: Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)01167-4
– volume: 22
  start-page: R966
  year: 2012
  ident: key 20180109025259_B59
  article-title: The spindle assembly checkpoint
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.10.006
– volume: 4
  start-page: 8522
  year: 2015
  ident: key 20180109025259_B31
  article-title: Transcription dynamically patterns the meiotic chromosome-axis interface
  publication-title: eLife
– volume: 131
  start-page: 730
  year: 2007
  ident: key 20180109025259_B69
  article-title: The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint
  publication-title: Cell
  doi: 10.1016/j.cell.2007.08.049
– volume: 52
  start-page: 5265
  year: 2013
  ident: key 20180109025259_B84
  article-title: N-terminal disordered domain of Saccharomyces cerevisiae Hop1 protein is dispensable for DNA binding, bridging, and synapsis of double-stranded DNA molecules but is necessary for spore formation
  publication-title: Biochemistry
  doi: 10.1021/bi4005528
– volume: 14
  start-page: 942
  year: 2004
  ident: key 20180109025259_B72
  article-title: Dynamics of centromere and kinetochore proteins; implications for checkpoint signaling and silencing
  publication-title: Curr. Biol.
– volume: 14
  start-page: 1086
  year: 2016
  ident: key 20180109025259_B96
  article-title: TRIP13 regulates both the activation and inactivation of the spindle-assembly checkpoint
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.01.001
– volume: 274
  start-page: 1783
  year: 1999
  ident: key 20180109025259_B32
  article-title: Red1p, a MEK1-dependent phosphoprotein that physically interacts with Hop1p during meiosis in yeast
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.3.1783
– volume: 25
  start-page: 2998
  year: 2013
  ident: key 20180109025259_B95
  article-title: CENTRAL REGION COMPONENT1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.113175
– volume: 158
  start-page: 861
  year: 2014
  ident: key 20180109025259_B42
  article-title: Temporospatial coordination of meiotic DNA replication and recombination via DDK recruitment to replisomes
  publication-title: Cell
  doi: 10.1016/j.cell.2014.06.028
– volume: 160
  start-page: 657
  year: 2003
  ident: key 20180109025259_B20
  article-title: Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1β and SMC3
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200212080
– volume: 128
  start-page: 79
  year: 1991
  ident: key 20180109025259_B39
  article-title: Isolation of mutants defective in early steps of meiotic recombination in the yeast Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1093/genetics/128.1.79
– volume: 112
  start-page: 11252
  year: 2015
  ident: key 20180109025259_B75
  article-title: Structure of an intermediate conformer of the spindle checkpoint protein Mad2
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1512197112
– volume: 36
  start-page: 2419
  year: 2017
  ident: key 20180109025259_B93
  article-title: The AAA+ ATPase TRIP13 remodels HORMA domains through N‐terminal engagement and unfolding
  publication-title: EMBO J
  doi: 10.15252/embj.201797291
– volume: 14
  start-page: e1002369
  year: 2016
  ident: key 20180109025259_B44
  article-title: Chromosome synapsis alleviates Mek1-dependent suppression of meiotic DNA repair
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1002369
– volume: 103
  start-page: 387
  year: 2000
  ident: key 20180109025259_B19
  article-title: Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00131-8
– volume: 400
  start-page: 461
  year: 1999
  ident: key 20180109025259_B18
  article-title: Cohesin Rec8 is required for reductional chromosome segregation at meiosis
  publication-title: Nature
  doi: 10.1038/22774
– volume: 15
  start-page: 214
  year: 2005
  ident: key 20180109025259_B63
  article-title: The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2005.01.038
– volume: 20
  start-page: 3064
  year: 2009
  ident: key 20180109025259_B35
  article-title: Rec8 guides canonical Spo11 distribution along yeast meiotic chromosomes
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E08-12-1223
– volume: 20
  start-page: 6371
  year: 2001
  ident: key 20180109025259_B71
  article-title: Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint
  publication-title: EMBO J
  doi: 10.1093/emboj/20.22.6371
– volume: 136
  start-page: 957
  year: 1997
  ident: key 20180109025259_B28
  article-title: The yeast Red1 protein localizes to the cores of meiotic chromosomes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.136.5.957
– volume: 31
  start-page: 487
  year: 2014
  ident: key 20180109025259_B52
  article-title: The chromosome axis controls meiotic events through a hierarchical assembly of HORMA domain proteins
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2014.09.013
– volume: 14
  start-page: 1137
  year: 1994
  ident: key 20180109025259_B25
  article-title: The gene encoding a major component of the lateral elements of synaptonemal complexes of the rat is related to X-linked lymphocyte-regulated genes
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.14.2.1137
– volume: 16
  start-page: 5804
  year: 2005
  ident: key 20180109025259_B46
  article-title: Partner choice during meiosis is regulated by Hop1-promoted dimerization of Mek1
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E05-05-0465
– volume: 23
  start-page: 284
  year: 1998
  ident: key 20180109025259_B57
  article-title: The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(98)01257-2
– volume: 27
  start-page: 5456
  year: 2007
  ident: key 20180109025259_B6
  article-title: Mek1 kinase is regulated to suppress double-strand break repair between sister chromatids during budding yeast meiosis
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00416-07
– volume: 109
  start-page: 62
  year: 2000
  ident: key 20180109025259_B50
  article-title: A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1
  publication-title: Chromosoma
  doi: 10.1007/s004120050413
– volume: 498
  start-page: 297
  year: 2009
  ident: key 20180109025259_B87
  article-title: Expression and purification of soluble His(6)-tagged TEV protease
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-196-3_19
– volume: 16
  start-page: 1616
  year: 2008
  ident: key 20180109025259_B64
  article-title: Protein metamorphosis: the two-state behavior of Mad2
  publication-title: Structure
  doi: 10.1016/j.str.2008.10.002
– volume: 329
  start-page: 53
  year: 2014
  ident: key 20180109025259_B4
  article-title: A non-sister act: recombination template choice during meiosis
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2014.08.024
– volume: 21
  start-page: 2496
  year: 2002
  ident: key 20180109025259_B66
  article-title: Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint
  publication-title: EMBO J
  doi: 10.1093/emboj/21.10.2496
– volume: 108
  start-page: 3187
  year: 2011
  ident: key 20180109025259_B79
  article-title: p31comet promotes disassembly of the mitotic checkpoint complex in an ATP-dependent process
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1100023108
– volume: 7
  start-page: a016626
  year: 2015
  ident: key 20180109025259_B9
  article-title: Recombination, Pairing, and Synapsis of Homologs during Meiosis
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a016626
– volume: 133
  start-page: 785
  year: 1993
  ident: key 20180109025259_B88
  article-title: A conditional allele of the Saccharomyces cerevisiae HOP1 gene is suppressed by overexpression of two other meiosis-specific genes: RED1 and REC104
  publication-title: Genetics
  doi: 10.1093/genetics/133.4.785
– volume: 88
  start-page: 375
  year: 1997
  ident: key 20180109025259_B2
  article-title: Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81876-0
– volume: 97
  start-page: 313
  year: 1999
  ident: key 20180109025259_B47
  article-title: Pch2 links chromatin silencing to meiotic checkpoint control
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80741-2
– volume: 98
  start-page: 91
  year: 1999
  ident: key 20180109025259_B21
  article-title: A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80609-1
– volume: 20
  start-page: 6646
  year: 2000
  ident: key 20180109025259_B24
  article-title: Meiotic segregation, synapsis, and recombination checkpoint functions require physical interaction between the chromosomal proteins Red1p and Hop1p
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.20.18.6646-6658.2000
– volume: 132
  start-page: 75
  year: 1992
  ident: key 20180109025259_B17
  article-title: Meiotically induced rec7 and rec8 genes of Schizosaccharomyces pombe
  publication-title: Genetics
  doi: 10.1093/genetics/132.1.75
– volume: 5
  start-page: e1000571
  year: 2009
  ident: key 20180109025259_B49
  article-title: The pch2Δ; mutation in Baker's yeast alters meiotic crossover levels and confers a defect in crossover interference
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000571
– volume: 484
  start-page: 208
  year: 2012
  ident: key 20180109025259_B73
  article-title: Structure of the mitotic checkpoint complex
  publication-title: Nature
  doi: 10.1038/nature10896
– volume: 542
  start-page: 498
  year: 2017
  ident: key 20180109025259_B74
  article-title: Basis of catalytic assembly of the mitotic checkpoint complex
  publication-title: Nature
  doi: 10.1038/nature21384
– volume: 360
  start-page: 637
  year: 2005
  ident: key 20180109025259_B92
  article-title: Explaining the oligomerization properties of the spindle assembly checkpoint protein Mad2
  publication-title: Philos. Trans. R. Soc. Lond., B, Biol. Sci.
  doi: 10.1098/rstb.2004.1618
– volume: 121
  start-page: 445
  year: 1989
  ident: key 20180109025259_B53
  article-title: HOP1: a yeast meiotic pairing gene
  publication-title: Genetics
  doi: 10.1093/genetics/121.3.445
– volume: 35
  start-page: 1119
  year: 2007
  ident: key 20180109025259_B38
  article-title: Meiotic association between Spo11 regulated by Rec102, Rec104 and Rec114
  publication-title: Nucleci Acids Res.
  doi: 10.1093/nar/gkl1162
– volume: 13
  start-page: 15
  year: 2012
  ident: key 20180109025259_B77
  article-title: Identification of novel mitosis regulators through data mining with human centromere/kinetochore proteins as group queries
  publication-title: BMC Cell Biol
  doi: 10.1186/1471-2121-13-15
– volume: 21
  start-page: 393
  year: 2011
  ident: key 20180109025259_B16
  article-title: Checkpoint mechanisms: the puppet masters of meiotic prophase
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2011.03.004
– volume: 146
  start-page: 372
  year: 2011
  ident: key 20180109025259_B29
  article-title: Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.003
– volume: 44
  start-page: 7722
  year: 2016
  ident: key 20180109025259_B48
  article-title: The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw506
– volume: 5
  start-page: e1000557
  year: 2009
  ident: key 20180109025259_B12
  article-title: Pch2 links chromosome axis remodeling at future crossover sites and crossover distribution during yeast meiosis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000557
– volume: 10
  start-page: e0134297
  year: 2015
  ident: key 20180109025259_B43
  article-title: Essential and checkpoint functions of budding yeast ATM and ATR during meiotic prophase are facilitated by differential phosphorylation of a meiotic adaptor protein, Hop1
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0134297
– volume: 17
  start-page: 716
  year: 2007
  ident: key 20180109025259_B62
  article-title: MAD contortions: conformational dimerization boosts spindle checkpoint signaling
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2007.08.011
– volume: 27
  start-page: 440
  year: 1995
  ident: key 20180109025259_B26
  article-title: Molecular cloning of the meiosis-induced rec10 gene of Schizosaccharomyces pombe
  publication-title: Curr. Genet.
  doi: 10.1007/BF00311213
– volume: 271
  start-page: 121
  year: 2004
  ident: key 20180109025259_B51
  article-title: An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis
  publication-title: Mol. Genet. Genomics
  doi: 10.1007/s00438-003-0934-z
– volume: 143
  start-page: 924
  year: 2010
  ident: key 20180109025259_B36
  article-title: Sister cohesion and structural axis components mediate homolog bias of meiotic recombination
  publication-title: Cell
  doi: 10.1016/j.cell.2010.11.015
– volume: 136
  start-page: 449
  year: 1994
  ident: key 20180109025259_B85
  article-title: Insertional mutations in the yeast HOP1 gene: evidence for multimeric assembly in meiosis
  publication-title: Genetics
  doi: 10.1093/genetics/136.2.449
– volume: 26
  start-page: 2572
  year: 1998
  ident: key 20180109025259_B22
  article-title: SCP2: a major protein component of the axial elements of synaptonemal complexes of the rat
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/26.11.2572
– volume: 9
  start-page: e1003978
  year: 2013
  ident: key 20180109025259_B8
  article-title: Meiotic crossover control by concerted action of Rad51-Dmc1 in homolog template bias and robust homeostatic regulation
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003978
– volume: 123
  start-page: 675
  year: 1989
  ident: key 20180109025259_B40
  article-title: MEI4, a yeast gene required for meiotic recombination
  publication-title: Genetics
  doi: 10.1093/genetics/123.4.675
– volume: 18
  start-page: 1424
  year: 1998
  ident: key 20180109025259_B86
  article-title: DNA-binding activities of Hop1 protein, a synaptonemal complex component from Saccharomyces cerevisiae
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.18.3.1424
– volume: 7
  start-page: 224
  year: 2000
  ident: key 20180109025259_B68
  article-title: Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/73338
– volume: 289
  start-page: 23928
  year: 2014
  ident: key 20180109025259_B78
  article-title: Thyroid hormone receptor interacting protein 13 (TRIP13) AAA-ATPase is a novel mitotic checkpoint-silencing protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.585315
– volume: 9
  start-page: 59
  year: 2002
  ident: key 20180109025259_B67
  article-title: The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00435-X
– volume: 132
  start-page: 758
  year: 2008
  ident: key 20180109025259_B5
  article-title: Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.035
– volume: 316
  start-page: 158
  year: 2010
  ident: key 20180109025259_B91
  article-title: A novel mammalian HORMA domain-containing protein, HORMAD1, preferentially associates with unsynapsed meiotic chromosomes
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2009.08.007
– volume: 173
  start-page: 1969
  year: 2006
  ident: key 20180109025259_B37
  article-title: Saccharomyces cerevisiae Mer2, Mei4 and Rec114 form a complex required for meiotic double-strand break formation
  publication-title: Genetics
  doi: 10.1534/genetics.106.058768
– volume: 6
  start-page: e1001062
  year: 2010
  ident: key 20180109025259_B94
  article-title: Mouse TRIP13/PCH2 is required for recombination and normal higher-order chromosome structure during meiosis
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001062
– volume: 111
  start-page: 12019
  year: 2014
  ident: key 20180109025259_B81
  article-title: Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31(comet)
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1412901111
– volume: 510
  start-page: 241
  year: 2014
  ident: key 20180109025259_B15
  article-title: Homologue engagement controls meiotic DNA break number and distribution
  publication-title: Nature
  doi: 10.1038/nature13120
– volume: 19
  start-page: 2727
  year: 2005
  ident: key 20180109025259_B56
  article-title: HTP-1-dependent constraints coordinate homolog pairing and synapsis and promote chiasma formation during C. elegans meiosis
  publication-title: Genes Dev.
  doi: 10.1101/gad.1338505
– volume: 105
  start-page: 3327
  year: 2008
  ident: key 20180109025259_B13
  article-title: Yeast Pch2 promotes domainal axis organization, timely recombination progression, and arrest of defective recombinosomes during meiosis
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0711864105
– volume: 90
  start-page: 1123
  year: 1997
  ident: key 20180109025259_B34
  article-title: Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80378-5
– volume: 9
  start-page: 436
  year: 2010
  ident: key 20180109025259_B3
  article-title: Phosphorylation and the creation of interhomolog bias during meiosis in yeast
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.3.10773
– volume: 19
  start-page: 2744
  year: 2005
  ident: key 20180109025259_B55
  article-title: HTP-1 coordinates synaptonemal complex assembly with homolog alignment during meiosis in C. elegans
  publication-title: Genes Dev.
  doi: 10.1101/gad.1348205
– volume: 85
  start-page: 6057
  year: 1988
  ident: key 20180109025259_B23
  article-title: RED1: a yeast gene required for the segregation of chromosomes during the reductional division of meiosis
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.85.16.6057
– volume: 11
  start-page: e1005372
  year: 2015
  ident: key 20180109025259_B14
  article-title: Arabidopsis PCH2 mediates meiotic chromosome remodeling and maturation of crossovers
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005372
– volume: 33
  start-page: 603
  year: 1999
  ident: key 20180109025259_B10
  article-title: Meiotic chromosomes: integrating structure and function
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.33.1.603
– volume: 4
  start-page: 213
  year: 2015
  ident: key 20180109025259_B76
  article-title: TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching
  publication-title: eLife
– volume: 13
  start-page: 2258
  year: 1999
  ident: key 20180109025259_B54
  article-title: Synapsis and chiasma formation in Caenorhabditis elegans require HIM-3, a meiotic chromosome core component that functions in chromosome segregation
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.17.2258
– volume: 211
  start-page: 745
  year: 2015
  ident: key 20180109025259_B65
  article-title: The multifaceted roles of the HORMA domain in cellular signaling
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201509076
– volume: 211
  start-page: 745
  year: 2015
  ident: key 20180109025259_B58
  article-title: The multifaceted roles of the HORMA domain in cellular signaling
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201509076
– volume: 98
  start-page: 91
  year: 1999
  ident: key 20180109025259_B30
  article-title: A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80609-1
– volume: 31
  start-page: 487
  year: 2014
  ident: key 20180109025259_B83
  article-title: The chromosome axis controls meiotic events through a hierarchical assembly of HORMA domain proteins
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2014.09.013
– volume: 112
  start-page: 11536
  year: 2015
  ident: key 20180109025259_B80
  article-title: Mode of interaction of TRIP13 AAA-ATPase with the Mad2-binding protein p31comet and with mitotic checkpoint complexes
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1515358112
– volume: 124
  start-page: 3905
  year: 2011
  ident: key 20180109025259_B82
  article-title: p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.093286
– volume: 147
  start-page: 33
  year: 1997
  ident: key 20180109025259_B33
  article-title: Genetic interactions between HOP1, RED1 and MEK1 suggest that MEK1 regulates assembly of axial element components during meiosis in the yeast Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1093/genetics/147.1.33
– volume: 25
  start-page: R1002
  year: 2015
  ident: key 20180109025259_B60
  article-title: The molecular biology of spindle assembly checkpoint signaling dynamics
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.08.051
– volume: 25
  start-page: 1273
  year: 2006
  ident: key 20180109025259_B90
  article-title: Determinants of conformational dimerization of Mad2 and its inhibition by p31comet
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601033
– volume: 22
  start-page: 386
  year: 2008
  ident: key 20180109025259_B41
  article-title: Cdc28-Clb5 (CDK-S) and Cdc7-Dbf4 (DDK) collaborate to initiate meiotic recombination in yeast
  publication-title: Genes Dev
  doi: 10.1101/gad.1626408
– volume: 201
  start-page: 177
  year: 2013
  ident: key 20180109025259_B61
  article-title: Panta rhei: the APC/C at steady state
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201301130
– volume: 36
  start-page: 393
  year: 2009
  ident: key 20180109025259_B7
  article-title: Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.09.029
– volume: 40
  start-page: 11416
  year: 2012
  ident: key 20180109025259_B45
  article-title: Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis
  publication-title: Nucleci Acids Res.
  doi: 10.1093/nar/gks920
– volume: 6
  start-page: e50
  year: 2008
  ident: key 20180109025259_B89
  article-title: Insights into Mad2 regulation in the spindle checkpoint revealed by the crystal structure of the symmetric Mad2 dimer
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0060050
SSID ssj0014154
Score 2.515133
Snippet Abstract The HORMA domain is a highly conserved protein-protein interaction module found in eukaryotic signaling proteins including the spindle assembly...
The HORMA domain is a highly conserved protein-protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint...
The HORMA domain is a highly conserved protein–protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint...
SourceID pubmedcentral
proquest
crossref
pubmed
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 279
SubjectTerms Amino Acid Sequence
Binding Sites - genetics
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Genome Integrity, Repair and
M Phase Cell Cycle Checkpoints
Mad2 Proteins - chemistry
Mad2 Proteins - genetics
Mad2 Proteins - metabolism
Models, Molecular
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Protein Binding
Protein Domains
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sequence Homology, Amino Acid
Title Conformational dynamics of the Hop1 HORMA domain reveal a common mechanism with the spindle checkpoint protein Mad2
URI https://www.ncbi.nlm.nih.gov/pubmed/29186573
https://search.proquest.com/docview/1970639290
https://pubmed.ncbi.nlm.nih.gov/PMC5758881
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVJLu2ltEk_tklTFUJvjiNLsqzjsiQshW1KSWBvRpKl1qSWTbyB5t9nJNshm0MPvezFI7HoDcyb0cwTQie6EDZjmiTOOZkwVYlEOloluWIVNwoiatTZXn3Pl9fs25qvdxCfZmFi077R9an_05z6-nfsrewak059YumP1QIoBiRuJN1Fu-CgU4o-Xh1ARBo0o6LEJivGoTzI3FOvbtNfN38JeF0QAZakyLmgWxFpa8rtCdl83jP5JAhdvEavRvaI58O_fIN2rN9HB3MPmXNzj7_i2M8ZC-X76MViesvtAPVhsG8aU4QNquEd-h63DgMDxMu2I3h5-XM1x1XbqNrjoOwEhgqDR4Kn4saGEeG6b3Co3MZFfVcHhQYMsJubrq39BkfVB1i9UlX2Fl1fnF8tlsn43EJiGMk2CSdFJeFktYWskRaZEjoXGXdWG2m5UrQwOZgUWpGcUyeskw74ABBAceaYIfQd2vOttx8QNkA6FNFK20yx3CkJWWEFzIJJyilsP0Mn05GX3aCqUQ634bQEkMoRpBn6DHD82-LLBFUJRxouO5S37V1fEikC-8rk2Qy9H6B73GhCfobEFqiPBkFze_sLuGLU3h5d7-N_rzxEL4FzFbGKI4_Q3ub2zn4CXrPRx7EecBy9GX6vLtcPQtz7pg
link.rule.ids 230,315,730,783,787,867,888,1607,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcigXBC0fy1eNVHFLs07sOD6uVlQBmoJQK_UW2YldohInarYS_HsmTlJ1OXDgnLEV-Y01b-yZZ4AjnQoTMU0Da60MmKpEIG1cBYliFS8VRlSvs52fJdkF-3zJL3eAz70wvmi_1PWx-9kcu_qHr63smjKc68TCb_kaKQYmbjR8AA9xvy7ZnKRPlwcYk0bVKC-yydKpLQ9z99Cpm_Dq-hdFvxtkgCVNEy7irZi01ed2j27-XTV5LwydPIHHE38kq_E_n8KOcftwsHKYOze_yQfiKzr9Ufk-7K3n19wOoB9a--ZGRZygGl-i70lrCXJAkrUdJdnX7_mKVG2jakcGbSc0VAR9En2VNGZoEq77hgxnt35Q39WDRgNB4Mvrrq3dhnjdBxydqyp6BhcnH8_XWTA9uBCUjEabgNO0kri22mDeGKeREjoREbdGl9JwpeK0TNAk1YomPLbCWGmRESAFFEvLSho_h13XOvMSSIm0Q1GttIkUS6ySmBdWyC2YjHmM0y_gaF7yoht1NYrxPjwuEKRiAmkBhwjHvy3ez1AVuKTDdYdypr3tCyrFwL8iuVzAixG6u4lm5BcgtkC9MxhUt7e_oDN69e3J-V7998hD2MvO89Pi9NPZl9fwCBlY6s905BvY3dzcmrfIcjb6nffpP8x6_Os
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSNALghbo8qqRKm5p1rHz8HG17Wp5bKkQlXqL_KRRGydqthL8e8ZOUu1y4MB5x9bK30TzjT3zDUJHsshNwiSJrLU8YkLnEbdUR5lgOlUCImrQ2V6dZcsL9vkyvdwY9RWK9pWsjt1Nfeyqq1Bb2dYqHuvE4vPVHCgGJG4kbrWNH6JH8M1OszFRHx4QIC71ylFBaJMVQ2se5O-xE7fxz-tfBHzPSwFzUmRpTrfi0lav2wbl_LtyciMULZ6hpwOHxLP-vz5HD4zbQ_szB_lz_Rt_xKGqM1yX76En83Gi2z7qfHvf2KwIG-h-Gn2HG4uBB-Jl0xK8_PZ9NcO6qUXlsNd3AkOBwS_BX3FtfKNw1dXY39-GRV1beZ0GDOCr67ap3BoH7QdYvRI6eYEuFqc_5stoGLoQKUaSdZSSQnM4X2kgd6RFInKZ5UlqjVTcpELQQmVgUkhBspTa3FhugRUADcynlilCX6Id1zhzgLAC6iGIFNIkgmVWcMgNNfALxmlKYfsJOhqPvGx7bY2yfxOnJYBUDiBN0CHA8W-LDyNUJRypf_IQzjR3XUl47jlYwqcT9KqH7n6jEfkJyrdAvTfwytvbv4BDBgXuwQFf__fKQ_T4_GRRfv109uUN2gUSVoRrHf4W7axv78w7IDpr-T649B9sGP3-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conformational+dynamics+of+the+Hop1+HORMA+domain+reveal+a+common+mechanism+with+the+spindle+checkpoint+protein+Mad2&rft.jtitle=Nucleic+acids+research&rft.au=West%2C+Alan+M+V&rft.au=Komives%2C+Elizabeth+A&rft.au=Corbett%2C+Kevin+D&rft.date=2018-01-09&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=46&rft.issue=1&rft.spage=279&rft.epage=292&rft_id=info:doi/10.1093%2Fnar%2Fgkx1196&rft.externalDocID=10.1093%2Fnar%2Fgkx1196
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon