Conformational dynamics of the Hop1 HORMA domain reveal a common mechanism with the spindle checkpoint protein Mad2
Abstract The HORMA domain is a highly conserved protein-protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short 'closure motifs' in partner proteins b...
Saved in:
Published in | Nucleic acids research Vol. 46; no. 1; pp. 279 - 292 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
09.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
The HORMA domain is a highly conserved protein-protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short 'closure motifs' in partner proteins by wrapping their C-terminal 'safety belt' region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain-closure motif interactions underlie both Hop1's initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed 'closed' conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13. |
---|---|
AbstractList | Abstract
The HORMA domain is a highly conserved protein-protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short 'closure motifs' in partner proteins by wrapping their C-terminal 'safety belt' region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain-closure motif interactions underlie both Hop1's initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed 'closed' conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13. The HORMA domain is a highly conserved protein–protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short ‘closure motifs’ in partner proteins by wrapping their C-terminal ‘safety belt’ region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain–closure motif interactions underlie both Hop1’s initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed ‘closed’ conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13. The HORMA domain is a highly conserved protein-protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short 'closure motifs' in partner proteins by wrapping their C-terminal 'safety belt' region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain-closure motif interactions underlie both Hop1's initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed 'closed' conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13. |
Author | Komives, Elizabeth A Corbett, Kevin D West, Alan M V |
AuthorAffiliation | Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA |
AuthorAffiliation_xml | – name: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA – name: Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA – name: Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA – name: Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA |
Author_xml | – sequence: 1 givenname: Alan M V surname: West fullname: West, Alan M V organization: Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA – sequence: 2 givenname: Elizabeth A surname: Komives fullname: Komives, Elizabeth A organization: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA – sequence: 3 givenname: Kevin D orcidid: 0000-0001-5854-2388 surname: Corbett fullname: Corbett, Kevin D email: kcorbett@ucsd.edu organization: Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29186573$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv1DAQhS1URLeFE3fkE6qEQm0nTuwLUrWCLlKrSgjOluOMG9PYDna20H-P210qeulpDvO990bzjtBBiAEQekvJR0pkfRp0Or2--UOpbF-gFa1bVjWyZQdoRWrCK0oacYiOcv5JCG0ob16hQyapaHlXr1Bex2Bj8npxMegJD3dBe2cyjhYvI-BNnCneXH27PMND9NoFnOAWCqixid7HgD2YUQeXPf7tlvFBlGcXhgmwGcHczNGFBc8pLlDUl3pgr9FLq6cMb_bzGP348vn7elNdXJ1_XZ9dVKahbKk4FYPsuOhBMF4Lpru-7Ri30BsJXOtamLYgote05bXtwErLmvIR1hHbGFofo08733nbexgMhCXpSc3JeZ3uVNROPd0EN6rreKt4SRXi3uBkb5Diry3kRXmXDUyTDhC3WVHZkbaWTJKCftihJsWcE9jHGErUfU2q1KT2NRX63f-XPbL_einA-x0Qt_OzTn8Bz2OfUQ |
CitedBy_id | crossref_primary_10_1002_1873_3468_14717 crossref_primary_10_1016_j_cub_2018_08_026 crossref_primary_10_1146_annurev_biochem_090920_103246 crossref_primary_10_1007_s00294_018_0827_7 crossref_primary_10_1093_nar_gkaa527 crossref_primary_10_7554_eLife_72330 crossref_primary_10_1038_s41556_019_0442_y crossref_primary_10_1093_nar_gkac227 crossref_primary_10_1371_journal_pbio_3002705 crossref_primary_10_3389_fcell_2022_1097446 crossref_primary_10_1080_15384101_2020_1758435 crossref_primary_10_1371_journal_pgen_1010708 crossref_primary_10_1371_journal_pgen_1009560 crossref_primary_10_1093_nar_gkz754 crossref_primary_10_1002_jcb_28028 crossref_primary_10_1371_journal_pgen_1010822 crossref_primary_10_7554_eLife_40372 crossref_primary_10_15252_embj_2019101625 crossref_primary_10_1371_journal_pgen_1007832 crossref_primary_10_1007_s00294_021_01160_9 crossref_primary_10_1007_s00294_021_01166_3 crossref_primary_10_3390_cells12121627 crossref_primary_10_1007_s00294_019_00937_3 crossref_primary_10_1016_j_cub_2020_08_064 crossref_primary_10_1093_genetics_iyad125 crossref_primary_10_1093_nar_gkac1160 crossref_primary_10_3389_fcell_2021_667073 crossref_primary_10_3390_genes13050777 crossref_primary_10_3390_jof9010110 crossref_primary_10_1038_s44318_024_00034_3 crossref_primary_10_1101_sqb_2017_82_035394 crossref_primary_10_1002_prot_26667 crossref_primary_10_7554_eLife_57720 crossref_primary_10_1016_j_tcb_2021_05_009 crossref_primary_10_3389_fcell_2021_688878 crossref_primary_10_1111_gtc_13049 crossref_primary_10_1093_pnasnexus_pgac302 crossref_primary_10_3389_fcell_2021_642737 crossref_primary_10_1016_j_cub_2020_07_089 crossref_primary_10_1093_iob_obac008 crossref_primary_10_1007_s00412_019_00696_7 crossref_primary_10_1371_journal_pgen_1011026 crossref_primary_10_1042_BST20230712 crossref_primary_10_1073_pnas_1902440116 crossref_primary_10_1146_annurev_genet_071719_020235 crossref_primary_10_1107_S2059798318011993 crossref_primary_10_1093_genetics_iyac106 |
Cites_doi | 10.1242/jcs.01203 10.1083/jcb.143.2.283 10.1371/journal.pgen.1000702 10.1016/S0092-8674(02)01167-4 10.1016/j.cub.2012.10.006 10.1016/j.cell.2007.08.049 10.1021/bi4005528 10.1016/j.celrep.2016.01.001 10.1074/jbc.274.3.1783 10.1105/tpc.113.113175 10.1016/j.cell.2014.06.028 10.1083/jcb.200212080 10.1093/genetics/128.1.79 10.1073/pnas.1512197112 10.15252/embj.201797291 10.1371/journal.pbio.1002369 10.1016/S0092-8674(00)00131-8 10.1038/22774 10.1016/j.cub.2005.01.038 10.1091/mbc.E08-12-1223 10.1093/emboj/20.22.6371 10.1083/jcb.136.5.957 10.1016/j.devcel.2014.09.013 10.1128/MCB.14.2.1137 10.1091/mbc.E05-05-0465 10.1016/S0968-0004(98)01257-2 10.1128/MCB.00416-07 10.1007/s004120050413 10.1007/978-1-59745-196-3_19 10.1016/j.str.2008.10.002 10.1016/j.yexcr.2014.08.024 10.1093/emboj/21.10.2496 10.1073/pnas.1100023108 10.1101/cshperspect.a016626 10.1093/genetics/133.4.785 10.1016/S0092-8674(00)81876-0 10.1016/S0092-8674(00)80741-2 10.1016/S0092-8674(00)80609-1 10.1128/MCB.20.18.6646-6658.2000 10.1093/genetics/132.1.75 10.1371/journal.pgen.1000571 10.1038/nature10896 10.1038/nature21384 10.1098/rstb.2004.1618 10.1093/genetics/121.3.445 10.1093/nar/gkl1162 10.1186/1471-2121-13-15 10.1016/j.tcb.2011.03.004 10.1016/j.cell.2011.07.003 10.1093/nar/gkw506 10.1371/journal.pgen.1000557 10.1371/journal.pone.0134297 10.1016/j.sbi.2007.08.011 10.1007/BF00311213 10.1007/s00438-003-0934-z 10.1016/j.cell.2010.11.015 10.1093/genetics/136.2.449 10.1093/nar/26.11.2572 10.1371/journal.pgen.1003978 10.1093/genetics/123.4.675 10.1128/MCB.18.3.1424 10.1038/73338 10.1074/jbc.M114.585315 10.1016/S1097-2765(01)00435-X 10.1016/j.cell.2008.01.035 10.1016/j.yexcr.2009.08.007 10.1534/genetics.106.058768 10.1371/journal.pgen.1001062 10.1073/pnas.1412901111 10.1038/nature13120 10.1101/gad.1338505 10.1073/pnas.0711864105 10.1016/S0092-8674(00)80378-5 10.4161/cc.9.3.10773 10.1101/gad.1348205 10.1073/pnas.85.16.6057 10.1371/journal.pgen.1005372 10.1146/annurev.genet.33.1.603 10.1101/gad.13.17.2258 10.1083/jcb.201509076 10.1073/pnas.1515358112 10.1242/jcs.093286 10.1093/genetics/147.1.33 10.1016/j.cub.2015.08.051 10.1038/sj.emboj.7601033 10.1101/gad.1626408 10.1083/jcb.201301130 10.1016/j.molcel.2009.09.029 10.1093/nar/gks920 10.1371/journal.pbio.0060050 |
ContentType | Journal Article |
Copyright | The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2018 The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. |
Copyright_xml | – notice: The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2018 – notice: The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. |
DBID | TOX CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1093/nar/gkx1196 |
DatabaseName | Oxford Journals Open Access Collection Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 292 |
ExternalDocumentID | 10_1093_nar_gkx1196 29186573 10.1093/nar/gkx1196 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM104141 |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFULF AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AOIJS BAWUL BAYMD BCNDV BTTYL CAG CIDKT CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EJD EMOBN ESTFP F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI M49 M~E NU- OAWHX OBC OBS OEB OES OJQWA P2P PEELM PQQKQ R44 RD5 RNS ROL ROX ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c412t-518d9758be825382a7b6725febc9e5aa38c618d8ba1653f7ef9f24093270f4c13 |
IEDL.DBID | RPM |
ISSN | 0305-1048 |
IngestDate | Tue Sep 17 21:25:55 EDT 2024 Sat Oct 26 01:28:10 EDT 2024 Fri Aug 23 03:39:08 EDT 2024 Wed Oct 16 00:51:25 EDT 2024 Wed Aug 28 03:19:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-518d9758be825382a7b6725febc9e5aa38c618d8ba1653f7ef9f24093270f4c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5854-2388 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5758881/ |
PMID | 29186573 |
PQID | 1970639290 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5758881 proquest_miscellaneous_1970639290 crossref_primary_10_1093_nar_gkx1196 pubmed_primary_29186573 oup_primary_10_1093_nar_gkx1196 |
PublicationCentury | 2000 |
PublicationDate | 2018-01-09 |
PublicationDateYYYYMMDD | 2018-01-09 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | ( key 20180109025259_B14) 2015; 11 ( key 20180109025259_B44) 2016; 14 ( key 20180109025259_B91) 2010; 316 ( key 20180109025259_B78) 2014; 289 ( key 20180109025259_B39) 1991; 128 ( key 20180109025259_B70) 1998; 143 ( key 20180109025259_B41) 2008; 22 ( key 20180109025259_B65) 2015; 211 ( key 20180109025259_B72) 2004; 14 ( key 20180109025259_B92) 2005; 360 ( key 20180109025259_B22) 1998; 26 ( key 20180109025259_B16) 2011; 21 ( key 20180109025259_B95) 2013; 25 ( key 20180109025259_B19) 2000; 103 ( key 20180109025259_B8) 2013; 9 ( key 20180109025259_B94) 2010; 6 ( key 20180109025259_B45) 2012; 40 ( key 20180109025259_B66) 2002; 21 ( key 20180109025259_B15) 2014; 510 ( key 20180109025259_B38) 2007; 35 ( key 20180109025259_B27) 2004; 117 ( key 20180109025259_B56) 2005; 19 ( key 20180109025259_B26) 1995; 27 ( key 20180109025259_B54) 1999; 13 ( key 20180109025259_B71) 2001; 20 ( key 20180109025259_B50) 2000; 109 ( key 20180109025259_B53) 1989; 121 ( key 20180109025259_B80) 2015; 112 ( key 20180109025259_B85) 1994; 136 ( key 20180109025259_B4) 2014; 329 ( key 20180109025259_B68) 2000; 7 ( key 20180109025259_B10) 1999; 33 ( key 20180109025259_B40) 1989; 123 ( key 20180109025259_B6) 2007; 27 ( key 20180109025259_B18) 1999; 400 ( key 20180109025259_B86) 1998; 18 ( key 20180109025259_B46) 2005; 16 ( key 20180109025259_B24) 2000; 20 ( key 20180109025259_B64) 2008; 16 ( key 20180109025259_B32) 1999; 274 ( key 20180109025259_B55) 2005; 19 ( key 20180109025259_B28) 1997; 136 ( key 20180109025259_B77) 2012; 13 ( key 20180109025259_B51) 2004; 271 ( key 20180109025259_B52) 2014; 31 ( key 20180109025259_B21) 1999; 98 ( key 20180109025259_B47) 1999; 97 ( key 20180109025259_B61) 2013; 201 ( key 20180109025259_B9) 2015; 7 ( key 20180109025259_B13) 2008; 105 ( key 20180109025259_B1) 2002; 111 ( key 20180109025259_B29) 2011; 146 ( key 20180109025259_B34) 1997; 90 ( key 20180109025259_B31) 2015; 4 ( key 20180109025259_B36) 2010; 143 ( key 20180109025259_B7) 2009; 36 ( key 20180109025259_B73) 2012; 484 ( key 20180109025259_B35) 2009; 20 ( key 20180109025259_B75) 2015; 112 ( key 20180109025259_B3) 2010; 9 ( key 20180109025259_B67) 2002; 9 ( key 20180109025259_B59) 2012; 22 ( key 20180109025259_B49) 2009; 5 ( key 20180109025259_B82) 2011; 124 ( key 20180109025259_B88) 1993; 133 ( key 20180109025259_B5) 2008; 132 ( key 20180109025259_B33) 1997; 147 ( key 20180109025259_B48) 2016; 44 ( key 20180109025259_B87) 2009; 498 ( key 20180109025259_B43) 2015; 10 ( key 20180109025259_B30) 1999; 98 ( key 20180109025259_B57) 1998; 23 ( key 20180109025259_B79) 2011; 108 ( key 20180109025259_B83) 2014; 31 ( key 20180109025259_B93) 2017; 36 ( key 20180109025259_B2) 1997; 88 ( key 20180109025259_B63) 2005; 15 ( key 20180109025259_B12) 2009; 5 ( key 20180109025259_B25) 1994; 14 ( key 20180109025259_B81) 2014; 111 ( key 20180109025259_B76) 2015; 4 ( key 20180109025259_B89) 2008; 6 ( key 20180109025259_B90) 2006; 25 ( key 20180109025259_B84) 2013; 52 ( key 20180109025259_B20) 2003; 160 ( key 20180109025259_B17) 1992; 132 ( key 20180109025259_B58) 2015; 211 ( key 20180109025259_B11) 2009; 5 ( key 20180109025259_B37) 2006; 173 ( key 20180109025259_B62) 2007; 17 ( key 20180109025259_B74) 2017; 542 ( key 20180109025259_B69) 2007; 131 ( key 20180109025259_B96) 2016; 14 ( key 20180109025259_B42) 2014; 158 ( key 20180109025259_B60) 2015; 25 ( key 20180109025259_B23) 1988; 85 |
References_xml | – volume: 117 start-page: 3343 year: 2004 ident: key 20180109025259_B27 article-title: S. pombe meiotic linear elements contain proteins related to synaptonemal complex components publication-title: J. Cell Sci. doi: 10.1242/jcs.01203 – volume: 143 start-page: 283 year: 1998 ident: key 20180109025259_B70 article-title: Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores publication-title: J. Cell Biol. doi: 10.1083/jcb.143.2.283 – volume: 5 start-page: e1000702 year: 2009 ident: key 20180109025259_B11 article-title: Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000702 – volume: 111 start-page: 791 year: 2002 ident: key 20180109025259_B1 article-title: Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation publication-title: Cell doi: 10.1016/S0092-8674(02)01167-4 – volume: 22 start-page: R966 year: 2012 ident: key 20180109025259_B59 article-title: The spindle assembly checkpoint publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.10.006 – volume: 4 start-page: 8522 year: 2015 ident: key 20180109025259_B31 article-title: Transcription dynamically patterns the meiotic chromosome-axis interface publication-title: eLife – volume: 131 start-page: 730 year: 2007 ident: key 20180109025259_B69 article-title: The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint publication-title: Cell doi: 10.1016/j.cell.2007.08.049 – volume: 52 start-page: 5265 year: 2013 ident: key 20180109025259_B84 article-title: N-terminal disordered domain of Saccharomyces cerevisiae Hop1 protein is dispensable for DNA binding, bridging, and synapsis of double-stranded DNA molecules but is necessary for spore formation publication-title: Biochemistry doi: 10.1021/bi4005528 – volume: 14 start-page: 942 year: 2004 ident: key 20180109025259_B72 article-title: Dynamics of centromere and kinetochore proteins; implications for checkpoint signaling and silencing publication-title: Curr. Biol. – volume: 14 start-page: 1086 year: 2016 ident: key 20180109025259_B96 article-title: TRIP13 regulates both the activation and inactivation of the spindle-assembly checkpoint publication-title: Cell Rep doi: 10.1016/j.celrep.2016.01.001 – volume: 274 start-page: 1783 year: 1999 ident: key 20180109025259_B32 article-title: Red1p, a MEK1-dependent phosphoprotein that physically interacts with Hop1p during meiosis in yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.3.1783 – volume: 25 start-page: 2998 year: 2013 ident: key 20180109025259_B95 article-title: CENTRAL REGION COMPONENT1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice publication-title: Plant Cell doi: 10.1105/tpc.113.113175 – volume: 158 start-page: 861 year: 2014 ident: key 20180109025259_B42 article-title: Temporospatial coordination of meiotic DNA replication and recombination via DDK recruitment to replisomes publication-title: Cell doi: 10.1016/j.cell.2014.06.028 – volume: 160 start-page: 657 year: 2003 ident: key 20180109025259_B20 article-title: Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1β and SMC3 publication-title: J. Cell Biol. doi: 10.1083/jcb.200212080 – volume: 128 start-page: 79 year: 1991 ident: key 20180109025259_B39 article-title: Isolation of mutants defective in early steps of meiotic recombination in the yeast Saccharomyces cerevisiae publication-title: Genetics doi: 10.1093/genetics/128.1.79 – volume: 112 start-page: 11252 year: 2015 ident: key 20180109025259_B75 article-title: Structure of an intermediate conformer of the spindle checkpoint protein Mad2 publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.1512197112 – volume: 36 start-page: 2419 year: 2017 ident: key 20180109025259_B93 article-title: The AAA+ ATPase TRIP13 remodels HORMA domains through N‐terminal engagement and unfolding publication-title: EMBO J doi: 10.15252/embj.201797291 – volume: 14 start-page: e1002369 year: 2016 ident: key 20180109025259_B44 article-title: Chromosome synapsis alleviates Mek1-dependent suppression of meiotic DNA repair publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002369 – volume: 103 start-page: 387 year: 2000 ident: key 20180109025259_B19 article-title: Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin publication-title: Cell doi: 10.1016/S0092-8674(00)00131-8 – volume: 400 start-page: 461 year: 1999 ident: key 20180109025259_B18 article-title: Cohesin Rec8 is required for reductional chromosome segregation at meiosis publication-title: Nature doi: 10.1038/22774 – volume: 15 start-page: 214 year: 2005 ident: key 20180109025259_B63 article-title: The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint publication-title: Curr. Biol. doi: 10.1016/j.cub.2005.01.038 – volume: 20 start-page: 3064 year: 2009 ident: key 20180109025259_B35 article-title: Rec8 guides canonical Spo11 distribution along yeast meiotic chromosomes publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E08-12-1223 – volume: 20 start-page: 6371 year: 2001 ident: key 20180109025259_B71 article-title: Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint publication-title: EMBO J doi: 10.1093/emboj/20.22.6371 – volume: 136 start-page: 957 year: 1997 ident: key 20180109025259_B28 article-title: The yeast Red1 protein localizes to the cores of meiotic chromosomes publication-title: J. Cell Biol. doi: 10.1083/jcb.136.5.957 – volume: 31 start-page: 487 year: 2014 ident: key 20180109025259_B52 article-title: The chromosome axis controls meiotic events through a hierarchical assembly of HORMA domain proteins publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.09.013 – volume: 14 start-page: 1137 year: 1994 ident: key 20180109025259_B25 article-title: The gene encoding a major component of the lateral elements of synaptonemal complexes of the rat is related to X-linked lymphocyte-regulated genes publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.14.2.1137 – volume: 16 start-page: 5804 year: 2005 ident: key 20180109025259_B46 article-title: Partner choice during meiosis is regulated by Hop1-promoted dimerization of Mek1 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E05-05-0465 – volume: 23 start-page: 284 year: 1998 ident: key 20180109025259_B57 article-title: The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(98)01257-2 – volume: 27 start-page: 5456 year: 2007 ident: key 20180109025259_B6 article-title: Mek1 kinase is regulated to suppress double-strand break repair between sister chromatids during budding yeast meiosis publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00416-07 – volume: 109 start-page: 62 year: 2000 ident: key 20180109025259_B50 article-title: A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1 publication-title: Chromosoma doi: 10.1007/s004120050413 – volume: 498 start-page: 297 year: 2009 ident: key 20180109025259_B87 article-title: Expression and purification of soluble His(6)-tagged TEV protease publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-196-3_19 – volume: 16 start-page: 1616 year: 2008 ident: key 20180109025259_B64 article-title: Protein metamorphosis: the two-state behavior of Mad2 publication-title: Structure doi: 10.1016/j.str.2008.10.002 – volume: 329 start-page: 53 year: 2014 ident: key 20180109025259_B4 article-title: A non-sister act: recombination template choice during meiosis publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2014.08.024 – volume: 21 start-page: 2496 year: 2002 ident: key 20180109025259_B66 article-title: Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint publication-title: EMBO J doi: 10.1093/emboj/21.10.2496 – volume: 108 start-page: 3187 year: 2011 ident: key 20180109025259_B79 article-title: p31comet promotes disassembly of the mitotic checkpoint complex in an ATP-dependent process publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.1100023108 – volume: 7 start-page: a016626 year: 2015 ident: key 20180109025259_B9 article-title: Recombination, Pairing, and Synapsis of Homologs during Meiosis publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a016626 – volume: 133 start-page: 785 year: 1993 ident: key 20180109025259_B88 article-title: A conditional allele of the Saccharomyces cerevisiae HOP1 gene is suppressed by overexpression of two other meiosis-specific genes: RED1 and REC104 publication-title: Genetics doi: 10.1093/genetics/133.4.785 – volume: 88 start-page: 375 year: 1997 ident: key 20180109025259_B2 article-title: Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family publication-title: Cell doi: 10.1016/S0092-8674(00)81876-0 – volume: 97 start-page: 313 year: 1999 ident: key 20180109025259_B47 article-title: Pch2 links chromatin silencing to meiotic checkpoint control publication-title: Cell doi: 10.1016/S0092-8674(00)80741-2 – volume: 98 start-page: 91 year: 1999 ident: key 20180109025259_B21 article-title: A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis publication-title: Cell doi: 10.1016/S0092-8674(00)80609-1 – volume: 20 start-page: 6646 year: 2000 ident: key 20180109025259_B24 article-title: Meiotic segregation, synapsis, and recombination checkpoint functions require physical interaction between the chromosomal proteins Red1p and Hop1p publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.18.6646-6658.2000 – volume: 132 start-page: 75 year: 1992 ident: key 20180109025259_B17 article-title: Meiotically induced rec7 and rec8 genes of Schizosaccharomyces pombe publication-title: Genetics doi: 10.1093/genetics/132.1.75 – volume: 5 start-page: e1000571 year: 2009 ident: key 20180109025259_B49 article-title: The pch2Δ; mutation in Baker's yeast alters meiotic crossover levels and confers a defect in crossover interference publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000571 – volume: 484 start-page: 208 year: 2012 ident: key 20180109025259_B73 article-title: Structure of the mitotic checkpoint complex publication-title: Nature doi: 10.1038/nature10896 – volume: 542 start-page: 498 year: 2017 ident: key 20180109025259_B74 article-title: Basis of catalytic assembly of the mitotic checkpoint complex publication-title: Nature doi: 10.1038/nature21384 – volume: 360 start-page: 637 year: 2005 ident: key 20180109025259_B92 article-title: Explaining the oligomerization properties of the spindle assembly checkpoint protein Mad2 publication-title: Philos. Trans. R. Soc. Lond., B, Biol. Sci. doi: 10.1098/rstb.2004.1618 – volume: 121 start-page: 445 year: 1989 ident: key 20180109025259_B53 article-title: HOP1: a yeast meiotic pairing gene publication-title: Genetics doi: 10.1093/genetics/121.3.445 – volume: 35 start-page: 1119 year: 2007 ident: key 20180109025259_B38 article-title: Meiotic association between Spo11 regulated by Rec102, Rec104 and Rec114 publication-title: Nucleci Acids Res. doi: 10.1093/nar/gkl1162 – volume: 13 start-page: 15 year: 2012 ident: key 20180109025259_B77 article-title: Identification of novel mitosis regulators through data mining with human centromere/kinetochore proteins as group queries publication-title: BMC Cell Biol doi: 10.1186/1471-2121-13-15 – volume: 21 start-page: 393 year: 2011 ident: key 20180109025259_B16 article-title: Checkpoint mechanisms: the puppet masters of meiotic prophase publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2011.03.004 – volume: 146 start-page: 372 year: 2011 ident: key 20180109025259_B29 article-title: Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination publication-title: Cell doi: 10.1016/j.cell.2011.07.003 – volume: 44 start-page: 7722 year: 2016 ident: key 20180109025259_B48 article-title: The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw506 – volume: 5 start-page: e1000557 year: 2009 ident: key 20180109025259_B12 article-title: Pch2 links chromosome axis remodeling at future crossover sites and crossover distribution during yeast meiosis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000557 – volume: 10 start-page: e0134297 year: 2015 ident: key 20180109025259_B43 article-title: Essential and checkpoint functions of budding yeast ATM and ATR during meiotic prophase are facilitated by differential phosphorylation of a meiotic adaptor protein, Hop1 publication-title: PLoS ONE doi: 10.1371/journal.pone.0134297 – volume: 17 start-page: 716 year: 2007 ident: key 20180109025259_B62 article-title: MAD contortions: conformational dimerization boosts spindle checkpoint signaling publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2007.08.011 – volume: 27 start-page: 440 year: 1995 ident: key 20180109025259_B26 article-title: Molecular cloning of the meiosis-induced rec10 gene of Schizosaccharomyces pombe publication-title: Curr. Genet. doi: 10.1007/BF00311213 – volume: 271 start-page: 121 year: 2004 ident: key 20180109025259_B51 article-title: An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis publication-title: Mol. Genet. Genomics doi: 10.1007/s00438-003-0934-z – volume: 143 start-page: 924 year: 2010 ident: key 20180109025259_B36 article-title: Sister cohesion and structural axis components mediate homolog bias of meiotic recombination publication-title: Cell doi: 10.1016/j.cell.2010.11.015 – volume: 136 start-page: 449 year: 1994 ident: key 20180109025259_B85 article-title: Insertional mutations in the yeast HOP1 gene: evidence for multimeric assembly in meiosis publication-title: Genetics doi: 10.1093/genetics/136.2.449 – volume: 26 start-page: 2572 year: 1998 ident: key 20180109025259_B22 article-title: SCP2: a major protein component of the axial elements of synaptonemal complexes of the rat publication-title: Nucleic Acids Res. doi: 10.1093/nar/26.11.2572 – volume: 9 start-page: e1003978 year: 2013 ident: key 20180109025259_B8 article-title: Meiotic crossover control by concerted action of Rad51-Dmc1 in homolog template bias and robust homeostatic regulation publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003978 – volume: 123 start-page: 675 year: 1989 ident: key 20180109025259_B40 article-title: MEI4, a yeast gene required for meiotic recombination publication-title: Genetics doi: 10.1093/genetics/123.4.675 – volume: 18 start-page: 1424 year: 1998 ident: key 20180109025259_B86 article-title: DNA-binding activities of Hop1 protein, a synaptonemal complex component from Saccharomyces cerevisiae publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.18.3.1424 – volume: 7 start-page: 224 year: 2000 ident: key 20180109025259_B68 article-title: Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20 publication-title: Nat. Struct. Biol. doi: 10.1038/73338 – volume: 289 start-page: 23928 year: 2014 ident: key 20180109025259_B78 article-title: Thyroid hormone receptor interacting protein 13 (TRIP13) AAA-ATPase is a novel mitotic checkpoint-silencing protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.585315 – volume: 9 start-page: 59 year: 2002 ident: key 20180109025259_B67 article-title: The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20 publication-title: Mol. Cell doi: 10.1016/S1097-2765(01)00435-X – volume: 132 start-page: 758 year: 2008 ident: key 20180109025259_B5 article-title: Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination publication-title: Cell doi: 10.1016/j.cell.2008.01.035 – volume: 316 start-page: 158 year: 2010 ident: key 20180109025259_B91 article-title: A novel mammalian HORMA domain-containing protein, HORMAD1, preferentially associates with unsynapsed meiotic chromosomes publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2009.08.007 – volume: 173 start-page: 1969 year: 2006 ident: key 20180109025259_B37 article-title: Saccharomyces cerevisiae Mer2, Mei4 and Rec114 form a complex required for meiotic double-strand break formation publication-title: Genetics doi: 10.1534/genetics.106.058768 – volume: 6 start-page: e1001062 year: 2010 ident: key 20180109025259_B94 article-title: Mouse TRIP13/PCH2 is required for recombination and normal higher-order chromosome structure during meiosis publication-title: PLoS Genet doi: 10.1371/journal.pgen.1001062 – volume: 111 start-page: 12019 year: 2014 ident: key 20180109025259_B81 article-title: Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31(comet) publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.1412901111 – volume: 510 start-page: 241 year: 2014 ident: key 20180109025259_B15 article-title: Homologue engagement controls meiotic DNA break number and distribution publication-title: Nature doi: 10.1038/nature13120 – volume: 19 start-page: 2727 year: 2005 ident: key 20180109025259_B56 article-title: HTP-1-dependent constraints coordinate homolog pairing and synapsis and promote chiasma formation during C. elegans meiosis publication-title: Genes Dev. doi: 10.1101/gad.1338505 – volume: 105 start-page: 3327 year: 2008 ident: key 20180109025259_B13 article-title: Yeast Pch2 promotes domainal axis organization, timely recombination progression, and arrest of defective recombinosomes during meiosis publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.0711864105 – volume: 90 start-page: 1123 year: 1997 ident: key 20180109025259_B34 article-title: Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway publication-title: Cell doi: 10.1016/S0092-8674(00)80378-5 – volume: 9 start-page: 436 year: 2010 ident: key 20180109025259_B3 article-title: Phosphorylation and the creation of interhomolog bias during meiosis in yeast publication-title: Cell Cycle doi: 10.4161/cc.9.3.10773 – volume: 19 start-page: 2744 year: 2005 ident: key 20180109025259_B55 article-title: HTP-1 coordinates synaptonemal complex assembly with homolog alignment during meiosis in C. elegans publication-title: Genes Dev. doi: 10.1101/gad.1348205 – volume: 85 start-page: 6057 year: 1988 ident: key 20180109025259_B23 article-title: RED1: a yeast gene required for the segregation of chromosomes during the reductional division of meiosis publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.85.16.6057 – volume: 11 start-page: e1005372 year: 2015 ident: key 20180109025259_B14 article-title: Arabidopsis PCH2 mediates meiotic chromosome remodeling and maturation of crossovers publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005372 – volume: 33 start-page: 603 year: 1999 ident: key 20180109025259_B10 article-title: Meiotic chromosomes: integrating structure and function publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.33.1.603 – volume: 4 start-page: 213 year: 2015 ident: key 20180109025259_B76 article-title: TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching publication-title: eLife – volume: 13 start-page: 2258 year: 1999 ident: key 20180109025259_B54 article-title: Synapsis and chiasma formation in Caenorhabditis elegans require HIM-3, a meiotic chromosome core component that functions in chromosome segregation publication-title: Genes Dev. doi: 10.1101/gad.13.17.2258 – volume: 211 start-page: 745 year: 2015 ident: key 20180109025259_B65 article-title: The multifaceted roles of the HORMA domain in cellular signaling publication-title: J. Cell Biol. doi: 10.1083/jcb.201509076 – volume: 211 start-page: 745 year: 2015 ident: key 20180109025259_B58 article-title: The multifaceted roles of the HORMA domain in cellular signaling publication-title: J. Cell Biol. doi: 10.1083/jcb.201509076 – volume: 98 start-page: 91 year: 1999 ident: key 20180109025259_B30 article-title: A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis publication-title: Cell doi: 10.1016/S0092-8674(00)80609-1 – volume: 31 start-page: 487 year: 2014 ident: key 20180109025259_B83 article-title: The chromosome axis controls meiotic events through a hierarchical assembly of HORMA domain proteins publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.09.013 – volume: 112 start-page: 11536 year: 2015 ident: key 20180109025259_B80 article-title: Mode of interaction of TRIP13 AAA-ATPase with the Mad2-binding protein p31comet and with mitotic checkpoint complexes publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.1515358112 – volume: 124 start-page: 3905 year: 2011 ident: key 20180109025259_B82 article-title: p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit publication-title: J. Cell Sci. doi: 10.1242/jcs.093286 – volume: 147 start-page: 33 year: 1997 ident: key 20180109025259_B33 article-title: Genetic interactions between HOP1, RED1 and MEK1 suggest that MEK1 regulates assembly of axial element components during meiosis in the yeast Saccharomyces cerevisiae publication-title: Genetics doi: 10.1093/genetics/147.1.33 – volume: 25 start-page: R1002 year: 2015 ident: key 20180109025259_B60 article-title: The molecular biology of spindle assembly checkpoint signaling dynamics publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.08.051 – volume: 25 start-page: 1273 year: 2006 ident: key 20180109025259_B90 article-title: Determinants of conformational dimerization of Mad2 and its inhibition by p31comet publication-title: EMBO J doi: 10.1038/sj.emboj.7601033 – volume: 22 start-page: 386 year: 2008 ident: key 20180109025259_B41 article-title: Cdc28-Clb5 (CDK-S) and Cdc7-Dbf4 (DDK) collaborate to initiate meiotic recombination in yeast publication-title: Genes Dev doi: 10.1101/gad.1626408 – volume: 201 start-page: 177 year: 2013 ident: key 20180109025259_B61 article-title: Panta rhei: the APC/C at steady state publication-title: J. Cell Biol. doi: 10.1083/jcb.201301130 – volume: 36 start-page: 393 year: 2009 ident: key 20180109025259_B7 article-title: Regulation of meiotic recombination via Mek1-mediated Rad54 phosphorylation publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.09.029 – volume: 40 start-page: 11416 year: 2012 ident: key 20180109025259_B45 article-title: Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis publication-title: Nucleci Acids Res. doi: 10.1093/nar/gks920 – volume: 6 start-page: e50 year: 2008 ident: key 20180109025259_B89 article-title: Insights into Mad2 regulation in the spindle checkpoint revealed by the crystal structure of the symmetric Mad2 dimer publication-title: PLoS Biol doi: 10.1371/journal.pbio.0060050 |
SSID | ssj0014154 |
Score | 2.515133 |
Snippet | Abstract
The HORMA domain is a highly conserved protein-protein interaction module found in eukaryotic signaling proteins including the spindle assembly... The HORMA domain is a highly conserved protein-protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint... The HORMA domain is a highly conserved protein–protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint... |
SourceID | pubmedcentral proquest crossref pubmed oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 279 |
SubjectTerms | Amino Acid Sequence Binding Sites - genetics DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Genome Integrity, Repair and M Phase Cell Cycle Checkpoints Mad2 Proteins - chemistry Mad2 Proteins - genetics Mad2 Proteins - metabolism Models, Molecular Nuclear Proteins - genetics Nuclear Proteins - metabolism Protein Binding Protein Domains Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Sequence Homology, Amino Acid |
Title | Conformational dynamics of the Hop1 HORMA domain reveal a common mechanism with the spindle checkpoint protein Mad2 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29186573 https://search.proquest.com/docview/1970639290 https://pubmed.ncbi.nlm.nih.gov/PMC5758881 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVJLu2ltEk_tklTFUJvjiNLsqzjsiQshW1KSWBvRpKl1qSWTbyB5t9nJNshm0MPvezFI7HoDcyb0cwTQie6EDZjmiTOOZkwVYlEOloluWIVNwoiatTZXn3Pl9fs25qvdxCfZmFi077R9an_05z6-nfsrewak059YumP1QIoBiRuJN1Fu-CgU4o-Xh1ARBo0o6LEJivGoTzI3FOvbtNfN38JeF0QAZakyLmgWxFpa8rtCdl83jP5JAhdvEavRvaI58O_fIN2rN9HB3MPmXNzj7_i2M8ZC-X76MViesvtAPVhsG8aU4QNquEd-h63DgMDxMu2I3h5-XM1x1XbqNrjoOwEhgqDR4Kn4saGEeG6b3Co3MZFfVcHhQYMsJubrq39BkfVB1i9UlX2Fl1fnF8tlsn43EJiGMk2CSdFJeFktYWskRaZEjoXGXdWG2m5UrQwOZgUWpGcUyeskw74ABBAceaYIfQd2vOttx8QNkA6FNFK20yx3CkJWWEFzIJJyilsP0Mn05GX3aCqUQ634bQEkMoRpBn6DHD82-LLBFUJRxouO5S37V1fEikC-8rk2Qy9H6B73GhCfobEFqiPBkFze_sLuGLU3h5d7-N_rzxEL4FzFbGKI4_Q3ub2zn4CXrPRx7EecBy9GX6vLtcPQtz7pg |
link.rule.ids | 230,315,730,783,787,867,888,1607,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcigXBC0fy1eNVHFLs07sOD6uVlQBmoJQK_UW2YldohInarYS_HsmTlJ1OXDgnLEV-Y01b-yZZ4AjnQoTMU0Da60MmKpEIG1cBYliFS8VRlSvs52fJdkF-3zJL3eAz70wvmi_1PWx-9kcu_qHr63smjKc68TCb_kaKQYmbjR8AA9xvy7ZnKRPlwcYk0bVKC-yydKpLQ9z99Cpm_Dq-hdFvxtkgCVNEy7irZi01ed2j27-XTV5LwydPIHHE38kq_E_n8KOcftwsHKYOze_yQfiKzr9Ufk-7K3n19wOoB9a--ZGRZygGl-i70lrCXJAkrUdJdnX7_mKVG2jakcGbSc0VAR9En2VNGZoEq77hgxnt35Q39WDRgNB4Mvrrq3dhnjdBxydqyp6BhcnH8_XWTA9uBCUjEabgNO0kri22mDeGKeREjoREbdGl9JwpeK0TNAk1YomPLbCWGmRESAFFEvLSho_h13XOvMSSIm0Q1GttIkUS6ySmBdWyC2YjHmM0y_gaF7yoht1NYrxPjwuEKRiAmkBhwjHvy3ez1AVuKTDdYdypr3tCyrFwL8iuVzAixG6u4lm5BcgtkC9MxhUt7e_oDN69e3J-V7998hD2MvO89Pi9NPZl9fwCBlY6s905BvY3dzcmrfIcjb6nffpP8x6_Os |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSNALghbo8qqRKm5p1rHz8HG17Wp5bKkQlXqL_KRRGydqthL8e8ZOUu1y4MB5x9bK30TzjT3zDUJHsshNwiSJrLU8YkLnEbdUR5lgOlUCImrQ2V6dZcsL9vkyvdwY9RWK9pWsjt1Nfeyqq1Bb2dYqHuvE4vPVHCgGJG4kbrWNH6JH8M1OszFRHx4QIC71ylFBaJMVQ2se5O-xE7fxz-tfBHzPSwFzUmRpTrfi0lav2wbl_LtyciMULZ6hpwOHxLP-vz5HD4zbQ_szB_lz_Rt_xKGqM1yX76En83Gi2z7qfHvf2KwIG-h-Gn2HG4uBB-Jl0xK8_PZ9NcO6qUXlsNd3AkOBwS_BX3FtfKNw1dXY39-GRV1beZ0GDOCr67ap3BoH7QdYvRI6eYEuFqc_5stoGLoQKUaSdZSSQnM4X2kgd6RFInKZ5UlqjVTcpELQQmVgUkhBspTa3FhugRUADcynlilCX6Id1zhzgLAC6iGIFNIkgmVWcMgNNfALxmlKYfsJOhqPvGx7bY2yfxOnJYBUDiBN0CHA8W-LDyNUJRypf_IQzjR3XUl47jlYwqcT9KqH7n6jEfkJyrdAvTfwytvbv4BDBgXuwQFf__fKQ_T4_GRRfv109uUN2gUSVoRrHf4W7axv78w7IDpr-T649B9sGP3- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conformational+dynamics+of+the+Hop1+HORMA+domain+reveal+a+common+mechanism+with+the+spindle+checkpoint+protein+Mad2&rft.jtitle=Nucleic+acids+research&rft.au=West%2C+Alan+M+V&rft.au=Komives%2C+Elizabeth+A&rft.au=Corbett%2C+Kevin+D&rft.date=2018-01-09&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=46&rft.issue=1&rft.spage=279&rft.epage=292&rft_id=info:doi/10.1093%2Fnar%2Fgkx1196&rft.externalDocID=10.1093%2Fnar%2Fgkx1196 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |