Data-Driven Artificial Intelligence Applications for Sustainable Precision Agriculture
One of the main challenges for the implementation of artificial intelligence (AI) in agriculture includes the low replicability and the corresponding difficulty in systematic data gathering, as no two fields are exactly alike. Therefore, the comparison of several pilot experiments in different field...
Saved in:
Published in | Agronomy (Basel) Vol. 11; no. 6; p. 1227 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the main challenges for the implementation of artificial intelligence (AI) in agriculture includes the low replicability and the corresponding difficulty in systematic data gathering, as no two fields are exactly alike. Therefore, the comparison of several pilot experiments in different fields, weather conditions and farming techniques enhances the collective knowledge. Thus, this work provides a summary of the most recent research activities in the form of research projects implemented and validated by the authors in several European countries, with the objective of presenting the already achieved results, the current investigations and the still open technical challenges. As an overall conclusion, it can be mentioned that even though in their primary stages in some cases, AI technologies improve decision support at farm level, monitoring conditions and optimizing production to allow farmers to apply the optimal number of inputs for each crop, thereby boosting yields and reducing water use and greenhouse gas emissions. Future extensions of this work will include new concepts based on autonomous and intelligent robots for plant and soil sample retrieval, and effective livestock management. |
---|---|
AbstractList | One of the main challenges for the implementation of artificial intelligence (AI) in agriculture includes the low replicability and the corresponding difficulty in systematic data gathering, as no two fields are exactly alike. Therefore, the comparison of several pilot experiments in different fields, weather conditions and farming techniques enhances the collective knowledge. Thus, this work provides a summary of the most recent research activities in the form of research projects implemented and validated by the authors in several European countries, with the objective of presenting the already achieved results, the current investigations and the still open technical challenges. As an overall conclusion, it can be mentioned that even though in their primary stages in some cases, AI technologies improve decision support at farm level, monitoring conditions and optimizing production to allow farmers to apply the optimal number of inputs for each crop, thereby boosting yields and reducing water use and greenhouse gas emissions. Future extensions of this work will include new concepts based on autonomous and intelligent robots for plant and soil sample retrieval, and effective livestock management. |
Author | Quartulli, Marco Pagani, Alain Lucat, Laurent Döllner, Jürgen Barriguinha, Andre Moysiadis, Theocharis Linaza, Maria Teresa Posada, Jorge Eisert, Peter G. Olaizola, Igor Bund, Jürgen |
Author_xml | – sequence: 1 givenname: Maria Teresa surname: Linaza fullname: Linaza, Maria Teresa – sequence: 2 givenname: Jorge orcidid: 0000-0001-7985-9915 surname: Posada fullname: Posada, Jorge – sequence: 3 givenname: Jürgen surname: Bund fullname: Bund, Jürgen – sequence: 4 givenname: Peter orcidid: 0000-0001-8378-4805 surname: Eisert fullname: Eisert, Peter – sequence: 5 givenname: Marco orcidid: 0000-0001-5735-2072 surname: Quartulli fullname: Quartulli, Marco – sequence: 6 givenname: Jürgen surname: Döllner fullname: Döllner, Jürgen – sequence: 7 givenname: Alain surname: Pagani fullname: Pagani, Alain – sequence: 8 givenname: Igor orcidid: 0000-0002-9965-2038 surname: G. Olaizola fullname: G. Olaizola, Igor – sequence: 9 givenname: Andre surname: Barriguinha fullname: Barriguinha, Andre – sequence: 10 givenname: Theocharis surname: Moysiadis fullname: Moysiadis, Theocharis – sequence: 11 givenname: Laurent surname: Lucat fullname: Lucat, Laurent |
BookMark | eNp1UU1rHDEMNSWFpmnuPQ700ss08ueMj0vSj4VAC0l6NVqPZ_Hitbe2p5B_XyfbQlioEEhI7z140ltyFlN0hLyn8IlzDVe4zSmm_SOloChjwytyzmDgveBanr3o35DLUnbQQlM-wnBOft5gxf4m-98udqtc_eytx9CtY3Uh-K2L1nWrwyF4i9WnWLo55e5uKRV9xE1w3Y_srC9t1a222dsl1CW7d-T1jKG4y7_1gjx8-Xx__a2__f51fb267a2grPYSNuOoJaXScjdMME9MjlopGPWoBpg2AueJO84tMgGTxYE6OinOW46UMn5B1kfdKeHOHLLfY340Cb15HqS8NdhM2eCMQwsD1QKsVsJRMWoQGnBiVNt5w-em9fGodcjp1-JKNXtfbLsCRpeWYpjiSoAaGDTohxPoLi05NqeGSSGkVCBFQ6kjyuZUSnazsb4-X7Fm9MFQME_fM6ffa0Q4If5z9l_KH420n8k |
CitedBy_id | crossref_primary_10_1016_j_foodchem_2022_134545 crossref_primary_10_48084_etasr_4355 crossref_primary_10_1088_1755_1315_1417_1_012046 crossref_primary_10_3390_info15110725 crossref_primary_10_1071_CP21594 crossref_primary_10_1016_j_dib_2023_109690 crossref_primary_10_1109_ACCESS_2025_3540317 crossref_primary_10_1109_ACCESS_2025_3529357 crossref_primary_10_1108_BIJ_01_2022_0006 crossref_primary_10_3390_machines10040235 crossref_primary_10_3390_plants13172402 crossref_primary_10_1016_j_aiia_2024_04_003 crossref_primary_10_3389_fsufs_2025_1497577 crossref_primary_10_1109_ACCESS_2022_3143524 crossref_primary_10_3390_fishes10030088 crossref_primary_10_3390_socsci12070398 crossref_primary_10_1016_j_jenvman_2024_123864 crossref_primary_10_1007_s00138_022_01333_7 crossref_primary_10_3390_agriculture13020447 crossref_primary_10_3390_plants12162962 crossref_primary_10_1142_S2424862223500331 crossref_primary_10_3389_frobt_2022_808484 crossref_primary_10_1007_s11270_024_07533_3 crossref_primary_10_1016_j_erss_2024_103877 crossref_primary_10_33225_pec_24_82_630 crossref_primary_10_3390_agronomy12102384 crossref_primary_10_1016_j_atech_2023_100254 crossref_primary_10_1371_journal_pone_0271340 crossref_primary_10_3390_app14083531 crossref_primary_10_3390_agriculture12030411 crossref_primary_10_1016_j_mtchem_2024_102416 crossref_primary_10_1016_j_fufo_2025_100553 crossref_primary_10_3389_fpls_2023_1251888 crossref_primary_10_3390_s23062891 crossref_primary_10_1016_j_cosust_2023_101290 crossref_primary_10_1109_ACCESS_2024_3352006 crossref_primary_10_1590_s1982_21702024000100011 crossref_primary_10_1016_j_robot_2023_104514 crossref_primary_10_1007_s13201_022_01851_9 crossref_primary_10_1016_j_envres_2023_117601 crossref_primary_10_32604_phyton_2024_052241 crossref_primary_10_1016_j_compag_2025_109919 crossref_primary_10_3390_life12091430 crossref_primary_10_3390_app12105106 crossref_primary_10_48084_etasr_7442 crossref_primary_10_3389_fenvs_2024_1336088 crossref_primary_10_1007_s42979_024_03432_w crossref_primary_10_1109_TPAMI_2024_3419548 crossref_primary_10_3390_app122412826 crossref_primary_10_1002_fft2_271 crossref_primary_10_1109_ACCESS_2025_3551117 crossref_primary_10_3390_machines12110750 crossref_primary_10_1016_j_compag_2023_108064 crossref_primary_10_1016_j_atech_2024_100483 crossref_primary_10_1007_s40030_024_00816_2 crossref_primary_10_1016_j_cogr_2023_04_001 crossref_primary_10_3390_rs13193960 crossref_primary_10_3390_rs17050906 crossref_primary_10_1109_JSTARS_2023_3345473 crossref_primary_10_1007_s12668_024_01597_5 crossref_primary_10_3390_app13010014 crossref_primary_10_1016_j_aiia_2023_04_002 crossref_primary_10_3390_agriculture12071024 crossref_primary_10_1007_s11540_024_09763_8 crossref_primary_10_1016_j_dib_2025_111486 crossref_primary_10_1016_j_jafr_2024_101048 crossref_primary_10_3390_s23083788 crossref_primary_10_1016_j_compag_2025_110037 crossref_primary_10_1590_1678_4324_2024230858 crossref_primary_10_1016_j_ecoinf_2024_102723 crossref_primary_10_3390_informatics9040080 crossref_primary_10_1111_jen_13227 crossref_primary_10_3390_agriengineering6030177 crossref_primary_10_1155_2022_1160258 crossref_primary_10_1016_j_aac_2022_10_001 crossref_primary_10_3390_drones8110664 crossref_primary_10_1080_19476337_2024_2393287 crossref_primary_10_1080_23311932_2025_2454354 crossref_primary_10_3390_foods13010150 crossref_primary_10_1016_j_fufo_2024_100353 crossref_primary_10_1016_j_rineng_2023_101297 crossref_primary_10_3390_s23249733 crossref_primary_10_4236_as_2025_163021 crossref_primary_10_51599_are_2024_10_02_04 crossref_primary_10_3390_agronomy11091789 crossref_primary_10_1016_j_hazadv_2024_100466 crossref_primary_10_15547_ast_2024_02_012 crossref_primary_10_3390_robotics13020033 |
Cites_doi | 10.1109/JSTARS.2019.2953489 10.1016/j.array.2019.100009 10.1016/j.compag.2020.105942 10.1109/WACV48630.2021.00180 10.1016/j.compag.2020.105694 10.1109/GIOTS49054.2020.9119611 10.1007/s11119-016-9490-5 10.1016/j.jterra.2020.06.006 10.3390/s18082674 10.1016/j.compind.2020.103187 10.20870/oeno-one.2020.54.4.3616 10.1177/0278364919841437 10.1016/j.compag.2020.105709 10.3390/rs10121867 10.1109/MIE.2013.2252957 10.1016/j.compag.2020.105246 10.1016/j.ifacol.2016.10.060 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI 7S9 L.6 DOA |
DOI | 10.3390/agronomy11061227 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2073-4395 |
ExternalDocumentID | oai_doaj_org_article_eac071940c964e14890490ad219cfb3f 10_3390_agronomy11061227 |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO KQ8 M0K MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PROAC PYCSY 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 ITC PUEGO |
ID | FETCH-LOGICAL-c412t-50b8895115c3e7d0fd2589660898670db4afd3e33ca240dca71e1d63363381123 |
IEDL.DBID | BENPR |
ISSN | 2073-4395 |
IngestDate | Wed Aug 27 01:25:06 EDT 2025 Fri Jul 11 03:58:04 EDT 2025 Mon Jun 30 11:20:43 EDT 2025 Thu Apr 24 23:01:06 EDT 2025 Tue Jul 01 03:20:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-50b8895115c3e7d0fd2589660898670db4afd3e33ca240dca71e1d63363381123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9965-2038 0000-0001-8378-4805 0000-0001-7985-9915 0000-0001-5735-2072 |
OpenAccessLink | https://www.proquest.com/docview/2544556054?pq-origsite=%requestingapplication% |
PQID | 2544556054 |
PQPubID | 2032440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_eac071940c964e14890490ad219cfb3f proquest_miscellaneous_2636406720 proquest_journals_2544556054 crossref_citationtrail_10_3390_agronomy11061227 crossref_primary_10_3390_agronomy11061227 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agronomy (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_13 Victorino (ref_21) 2020; 54 Cheein (ref_25) 2013; 7 Pylianidis (ref_16) 2021; 184 ref_19 Kassahun (ref_7) 2020; 177 ref_18 ref_15 Roshanianfard (ref_10) 2020; 91 Zhang (ref_9) 2020; 177 Noon (ref_8) 2020; 28 Munz (ref_2) 2020; 170 Lezoche (ref_5) 2020; 117 (ref_17) 2020; 88 Bacco (ref_11) 2019; 3 ref_24 ref_23 ref_22 ref_20 ref_1 Paraforos (ref_12) 2016; 49 ref_3 Yost (ref_4) 2017; 18 Pire (ref_26) 2019; 38 ref_28 ref_27 ref_6 Cai (ref_14) 2020; 12 |
References_xml | – ident: ref_28 – ident: ref_3 – volume: 12 start-page: 5153 year: 2020 ident: ref_14 article-title: Detecting In-Season Crop Nitrogen Stress of Corn for Field Trials Using UAV- and CubeSat-Based Multispectral Sensing publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. doi: 10.1109/JSTARS.2019.2953489 – volume: 3 start-page: 100009 year: 2019 ident: ref_11 article-title: The Digitisation of Agriculture: A Survey of Research Activities on Smart Farming publication-title: Array doi: 10.1016/j.array.2019.100009 – volume: 28 start-page: 100443 year: 2020 ident: ref_8 article-title: Use of Deep Learning Techniques for Identification of Plant Leaf Stresses: A Review publication-title: Sustain. Comput. Inform. Syst. – volume: 184 start-page: 105942 year: 2021 ident: ref_16 article-title: Introducing digital twins to agriculture publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105942 – ident: ref_1 – ident: ref_18 – ident: ref_27 doi: 10.1109/WACV48630.2021.00180 – ident: ref_23 – volume: 177 start-page: 105694 year: 2020 ident: ref_9 article-title: State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: A review publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105694 – ident: ref_24 doi: 10.1109/GIOTS49054.2020.9119611 – volume: 18 start-page: 823 year: 2017 ident: ref_4 article-title: Long-term impact of a precision agriculture system on grain crop production publication-title: Precis. Agric. doi: 10.1007/s11119-016-9490-5 – volume: 91 start-page: 155 year: 2020 ident: ref_10 article-title: A review of autonomous agricultural vehicles (The experience of Hokkaido University) publication-title: J. Terramechanics doi: 10.1016/j.jterra.2020.06.006 – ident: ref_6 doi: 10.3390/s18082674 – volume: 117 start-page: 103187 year: 2020 ident: ref_5 article-title: Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture publication-title: Comput. Ind. doi: 10.1016/j.compind.2020.103187 – volume: 54 start-page: 833 year: 2020 ident: ref_21 article-title: Yield components detection and image-based indicators for non-invasive grapevine yield prediction at different phenological phases publication-title: OENO One doi: 10.20870/oeno-one.2020.54.4.3616 – volume: 38 start-page: 633 year: 2019 ident: ref_26 article-title: The Rosario dataset: Multisensor data for localization and mapping in agricultural environments publication-title: Int. J. Robot. Res. doi: 10.1177/0278364919841437 – volume: 177 start-page: 105709 year: 2020 ident: ref_7 article-title: Crop yield prediction using machine learning: A systematic literature review publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105709 – ident: ref_15 – ident: ref_13 doi: 10.3390/rs10121867 – volume: 7 start-page: 48 year: 2013 ident: ref_25 article-title: Agricultural Robotics: Unmanned Robotic Service Units in Agricultural Tasks publication-title: IEEE Ind. Electron. Mag. doi: 10.1109/MIE.2013.2252957 – volume: 88 start-page: 15 year: 2020 ident: ref_17 article-title: Geospatial Artificial Intelligence: Potentials of Machine Learning for 3D Point Clouds and Geospatial Digital Twins publication-title: PFG J. Photogramm. Remote. Sens. Geoinf. Sci. – ident: ref_19 – ident: ref_22 – volume: 170 start-page: 105246 year: 2020 ident: ref_2 article-title: Exploring the characteristics and utilisation of Farm Management Information Systems (FMIS) in Germany publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105246 – ident: ref_20 – volume: 49 start-page: 324 year: 2016 ident: ref_12 article-title: A Farm Management Information System Using Future Internet Technologies publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.10.060 |
SSID | ssj0000913807 |
Score | 2.5630147 |
Snippet | One of the main challenges for the implementation of artificial intelligence (AI) in agriculture includes the low replicability and the corresponding... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1227 |
SubjectTerms | Agricultural practices Agricultural production Agriculture agronomy Algorithms Artificial intelligence Automation Climate change computer vision Crop diseases Crops data analysis Data collection Decision making Digitization Farm management Farmers Farms Fertilizers Food Greenhouse gases Harvest Livestock livestock husbandry Optimization Pesticides Plant diseases Precision agriculture Research projects Robotics Sensors soil Sustainable development Trends Water use Weather |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT4xWWcGLh9BsdrPdPVarVEERtNJb2Fd6kVRi-v-d3aQ1KOhFyCmZhDCZxzeZ3W8QutDWpiJRRUzSgsfMGR3rjJlY2tQJY0jBE793-OGRT6bsfpbNOqO-_Jqwhh64UdwAAgNkQckSIzlzAN6l71UpC55mCk0LH30h53WKqRCDJfFM6k1fkkJdP1DzKuwSIL4GSv0QmU4eCnT9P6JxSDG3O2i7xYZ41LzTLtpw5R7aGs2rlh_D7aPXsapVPK58jAqCDQEEvuswa-JRpymNAZTi569dUvipaqfq4M6DD9D09ublehK3oxFiw0hax1mihQBwRDJD3dAmhU0z4Yk2hRR8mFjNVGGpo9QoSNnWqCFxxHJK4RAAsegh6pWL0h0hDIjAEg2q1JQyrog20miiwTGldpyQCA1WispNyxvux1e85VA_eNXm31Ubocv1He8NZ8Yvslde92s5z3YdToAN5K0N5H_ZQIT6qy-Xty74kQfuNcBzGYvQ-foyOI_viKjSLZYgwylnvhmdHP_He5ygzdQveQk_afqoV1dLdwqYpdZnwTw_AUAN61I priority: 102 providerName: Directory of Open Access Journals |
Title | Data-Driven Artificial Intelligence Applications for Sustainable Precision Agriculture |
URI | https://www.proquest.com/docview/2544556054 https://www.proquest.com/docview/2636406720 https://doaj.org/article/eac071940c964e14890490ad219cfb3f |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB7RcKGHqqUgUihaJC49WFmvvY73VIUGRJGIUNtU3FZ-bS4oCUv4_8w4zkMgIe1pd2ytxp63_Q3AufW-0LlpGC8axWRwltlSOlb5ImjneKNyujt8O1LXY3lzX96nhNtTOla50olRUfuZoxx5L0JpoXku5c_5I6OuUVRdTS00PsAuqmCtO7B7cTm6-7POshDqpc77y_qkwPi-ZyZtvC3AKRYqqJnMlj2KsP1vtHI0NVef4VPyEbPBclG_wE6Y7sPHwaRNOBnhK_wfmoVhw5Z0VSRcAkFkv7cQNrPBVnE6Q-c0-7u5LZXdtam7TrY18QGMry7__bpmqUUCc5IXC1bmVmt0knjpROj7vPFFqQlwU1da9XNvpWm8CEI4g6bbO9PngXslBD4aXS1xCJ3pbBqOIEPPwHPbWGGFkMpw6ypnuUUBrWxQnHeht2JU7RJ-OLWxeKgxjiDW1q9Z24Uf6xHzJXbGO7QXxPs1HaFexxezdlInIarRSKBHVMncVUoGDOQqqlsaj1rX4Y83XThZrVydRPGp3mycLpytP6MQUWXETMPsGWmUUJKK0vm396c4hr2CDrXENMwJdBbtc_iOXsnCnqatdxqj-hdoFOVz |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEE8RKGAkOHCw4tc63gNCKWmV0DaqoEW9bf3aXFBStqkQf4rfyHgfaQRSb5X2tDu2VuPxPDyebwDeuRCEYbakXJSaqugddZnyNA8iGu95qVmqHT6a6cmp-nKWnW3Bn64WJl2r7HRirajD0qcz8kENpYXmOVOfLn7S1DUqZVe7FhqNWBzE378wZLv8OB3j-r4XYn_v5POEtl0FqFdcrGjGnDHoV_DMyzgMrAwiMwmj0uRGD1lwypZBRim9RWsXvB3yyIOWEh-D3onEee_AtpKaiR5s7-7Njr-uT3USyqZhwyYfKmXOBnZe1dUJPMVeIjWv2bB_dZuA_6xAbdr2H8KD1iclo0aIHsFWXDyG-6N51eJyxCfwfWxXlo6rpBtrwgZ4gkw3ED3JaCMZTtAZJt-uq7PIcdV28yEbEz-F01th3jPoLZaL-BwIeiKBu9JJJ6XSljufe8cdKoTcRc15HwYdowrf4pWnthk_CoxbEmuLf1nbhw_rERcNVscNtLuJ92u6hLJdv1hW86LdtAUaJfTAcsV8rlXEwDFPeVIbUMt7_PGyDzvdyhXt1r8srgW1D2_Xn3HTpkyMXcTlFdJoqVVKgrMXN0_xBu5OTo4Oi8Pp7OAl3BPpQk19BLQDvVV1FV-hR7Ryr1sxJHB-25L_F3L5Hz4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwqMpLpA9YJDhwsOL1rtfrA0IpadRQiCKgqDezL-eCktZNhfhr_Dpm_EgjkHqr5JM9u7JmZ-exs_MNwGvrfaJjU0Y8KVUkg7ORTaWLcp8E7RwvVUy1w5-n6uRMfjxPz7fgT1cLQ9cqO51YK2q_dHRGPqihtNA8p3JQttciZqPx-4vLiDpIUaa1a6fRiMhp-P0Lw7erd5MRrvWbJBkff_twErUdBiInebKK0thqjT4GT50ImY9Ln6Sa8Cp1rlUWeytN6UUQwhm0fN6ZjAfulRD4aPRUBM57D7Yziop6sH10PJ19WZ_wEOKmjrMmNypEHg_MvKorFTjFYQk1stmwhXXLgP8sQm3mxruw0_qnbNgI1CPYCovH8HA4r1qMjvAEvo_MykSjivRkTdiAULDJBronG24kxhk6xuzrTaUWm1VtZx-2MfFTOLsT5j2D3mK5CM-BoVfiuS2tsEJIZbh1ubPconLIbVCc92HQMapwLXY5tdD4WWAMQ6wt_mVtH96uR1w0uB230B4R79d0hLhdv1hW86LdwAUaKFzkXMYuVzJgEJlTztR41PgOf7zsw0G3ckWrBq6KG6Htw6v1Z9zAlJUxi7C8RhollKSEeLx3-xQv4T5KfPFpMj3dhwcJ3a2pT4MOoLeqrsMhOkcr-6KVQgY_7lrw_wKkJCNz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Artificial+Intelligence+Applications+for+Sustainable+Precision+Agriculture&rft.jtitle=Agronomy+%28Basel%29&rft.au=Linaza%2C+Maria+Teresa&rft.au=Posada%2C+Jorge&rft.au=Bund%2C+J%C3%BCrgen&rft.au=Eisert%2C+Peter&rft.date=2021-06-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=11&rft.issue=6&rft_id=info:doi/10.3390%2Fagronomy11061227&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |