Data-Driven Artificial Intelligence Applications for Sustainable Precision Agriculture

One of the main challenges for the implementation of artificial intelligence (AI) in agriculture includes the low replicability and the corresponding difficulty in systematic data gathering, as no two fields are exactly alike. Therefore, the comparison of several pilot experiments in different field...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 11; no. 6; p. 1227
Main Authors Linaza, Maria Teresa, Posada, Jorge, Bund, Jürgen, Eisert, Peter, Quartulli, Marco, Döllner, Jürgen, Pagani, Alain, G. Olaizola, Igor, Barriguinha, Andre, Moysiadis, Theocharis, Lucat, Laurent
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the main challenges for the implementation of artificial intelligence (AI) in agriculture includes the low replicability and the corresponding difficulty in systematic data gathering, as no two fields are exactly alike. Therefore, the comparison of several pilot experiments in different fields, weather conditions and farming techniques enhances the collective knowledge. Thus, this work provides a summary of the most recent research activities in the form of research projects implemented and validated by the authors in several European countries, with the objective of presenting the already achieved results, the current investigations and the still open technical challenges. As an overall conclusion, it can be mentioned that even though in their primary stages in some cases, AI technologies improve decision support at farm level, monitoring conditions and optimizing production to allow farmers to apply the optimal number of inputs for each crop, thereby boosting yields and reducing water use and greenhouse gas emissions. Future extensions of this work will include new concepts based on autonomous and intelligent robots for plant and soil sample retrieval, and effective livestock management.
AbstractList One of the main challenges for the implementation of artificial intelligence (AI) in agriculture includes the low replicability and the corresponding difficulty in systematic data gathering, as no two fields are exactly alike. Therefore, the comparison of several pilot experiments in different fields, weather conditions and farming techniques enhances the collective knowledge. Thus, this work provides a summary of the most recent research activities in the form of research projects implemented and validated by the authors in several European countries, with the objective of presenting the already achieved results, the current investigations and the still open technical challenges. As an overall conclusion, it can be mentioned that even though in their primary stages in some cases, AI technologies improve decision support at farm level, monitoring conditions and optimizing production to allow farmers to apply the optimal number of inputs for each crop, thereby boosting yields and reducing water use and greenhouse gas emissions. Future extensions of this work will include new concepts based on autonomous and intelligent robots for plant and soil sample retrieval, and effective livestock management.
Author Quartulli, Marco
Pagani, Alain
Lucat, Laurent
Döllner, Jürgen
Barriguinha, Andre
Moysiadis, Theocharis
Linaza, Maria Teresa
Posada, Jorge
Eisert, Peter
G. Olaizola, Igor
Bund, Jürgen
Author_xml – sequence: 1
  givenname: Maria Teresa
  surname: Linaza
  fullname: Linaza, Maria Teresa
– sequence: 2
  givenname: Jorge
  orcidid: 0000-0001-7985-9915
  surname: Posada
  fullname: Posada, Jorge
– sequence: 3
  givenname: Jürgen
  surname: Bund
  fullname: Bund, Jürgen
– sequence: 4
  givenname: Peter
  orcidid: 0000-0001-8378-4805
  surname: Eisert
  fullname: Eisert, Peter
– sequence: 5
  givenname: Marco
  orcidid: 0000-0001-5735-2072
  surname: Quartulli
  fullname: Quartulli, Marco
– sequence: 6
  givenname: Jürgen
  surname: Döllner
  fullname: Döllner, Jürgen
– sequence: 7
  givenname: Alain
  surname: Pagani
  fullname: Pagani, Alain
– sequence: 8
  givenname: Igor
  orcidid: 0000-0002-9965-2038
  surname: G. Olaizola
  fullname: G. Olaizola, Igor
– sequence: 9
  givenname: Andre
  surname: Barriguinha
  fullname: Barriguinha, Andre
– sequence: 10
  givenname: Theocharis
  surname: Moysiadis
  fullname: Moysiadis, Theocharis
– sequence: 11
  givenname: Laurent
  surname: Lucat
  fullname: Lucat, Laurent
BookMark eNp1UU1rHDEMNSWFpmnuPQ700ss08ueMj0vSj4VAC0l6NVqPZ_Hitbe2p5B_XyfbQlioEEhI7z140ltyFlN0hLyn8IlzDVe4zSmm_SOloChjwytyzmDgveBanr3o35DLUnbQQlM-wnBOft5gxf4m-98udqtc_eytx9CtY3Uh-K2L1nWrwyF4i9WnWLo55e5uKRV9xE1w3Y_srC9t1a222dsl1CW7d-T1jKG4y7_1gjx8-Xx__a2__f51fb267a2grPYSNuOoJaXScjdMME9MjlopGPWoBpg2AueJO84tMgGTxYE6OinOW46UMn5B1kfdKeHOHLLfY340Cb15HqS8NdhM2eCMQwsD1QKsVsJRMWoQGnBiVNt5w-em9fGodcjp1-JKNXtfbLsCRpeWYpjiSoAaGDTohxPoLi05NqeGSSGkVCBFQ6kjyuZUSnazsb4-X7Fm9MFQME_fM6ffa0Q4If5z9l_KH420n8k
CitedBy_id crossref_primary_10_1016_j_foodchem_2022_134545
crossref_primary_10_48084_etasr_4355
crossref_primary_10_1088_1755_1315_1417_1_012046
crossref_primary_10_3390_info15110725
crossref_primary_10_1071_CP21594
crossref_primary_10_1016_j_dib_2023_109690
crossref_primary_10_1109_ACCESS_2025_3540317
crossref_primary_10_1109_ACCESS_2025_3529357
crossref_primary_10_1108_BIJ_01_2022_0006
crossref_primary_10_3390_machines10040235
crossref_primary_10_3390_plants13172402
crossref_primary_10_1016_j_aiia_2024_04_003
crossref_primary_10_3389_fsufs_2025_1497577
crossref_primary_10_1109_ACCESS_2022_3143524
crossref_primary_10_3390_fishes10030088
crossref_primary_10_3390_socsci12070398
crossref_primary_10_1016_j_jenvman_2024_123864
crossref_primary_10_1007_s00138_022_01333_7
crossref_primary_10_3390_agriculture13020447
crossref_primary_10_3390_plants12162962
crossref_primary_10_1142_S2424862223500331
crossref_primary_10_3389_frobt_2022_808484
crossref_primary_10_1007_s11270_024_07533_3
crossref_primary_10_1016_j_erss_2024_103877
crossref_primary_10_33225_pec_24_82_630
crossref_primary_10_3390_agronomy12102384
crossref_primary_10_1016_j_atech_2023_100254
crossref_primary_10_1371_journal_pone_0271340
crossref_primary_10_3390_app14083531
crossref_primary_10_3390_agriculture12030411
crossref_primary_10_1016_j_mtchem_2024_102416
crossref_primary_10_1016_j_fufo_2025_100553
crossref_primary_10_3389_fpls_2023_1251888
crossref_primary_10_3390_s23062891
crossref_primary_10_1016_j_cosust_2023_101290
crossref_primary_10_1109_ACCESS_2024_3352006
crossref_primary_10_1590_s1982_21702024000100011
crossref_primary_10_1016_j_robot_2023_104514
crossref_primary_10_1007_s13201_022_01851_9
crossref_primary_10_1016_j_envres_2023_117601
crossref_primary_10_32604_phyton_2024_052241
crossref_primary_10_1016_j_compag_2025_109919
crossref_primary_10_3390_life12091430
crossref_primary_10_3390_app12105106
crossref_primary_10_48084_etasr_7442
crossref_primary_10_3389_fenvs_2024_1336088
crossref_primary_10_1007_s42979_024_03432_w
crossref_primary_10_1109_TPAMI_2024_3419548
crossref_primary_10_3390_app122412826
crossref_primary_10_1002_fft2_271
crossref_primary_10_1109_ACCESS_2025_3551117
crossref_primary_10_3390_machines12110750
crossref_primary_10_1016_j_compag_2023_108064
crossref_primary_10_1016_j_atech_2024_100483
crossref_primary_10_1007_s40030_024_00816_2
crossref_primary_10_1016_j_cogr_2023_04_001
crossref_primary_10_3390_rs13193960
crossref_primary_10_3390_rs17050906
crossref_primary_10_1109_JSTARS_2023_3345473
crossref_primary_10_1007_s12668_024_01597_5
crossref_primary_10_3390_app13010014
crossref_primary_10_1016_j_aiia_2023_04_002
crossref_primary_10_3390_agriculture12071024
crossref_primary_10_1007_s11540_024_09763_8
crossref_primary_10_1016_j_dib_2025_111486
crossref_primary_10_1016_j_jafr_2024_101048
crossref_primary_10_3390_s23083788
crossref_primary_10_1016_j_compag_2025_110037
crossref_primary_10_1590_1678_4324_2024230858
crossref_primary_10_1016_j_ecoinf_2024_102723
crossref_primary_10_3390_informatics9040080
crossref_primary_10_1111_jen_13227
crossref_primary_10_3390_agriengineering6030177
crossref_primary_10_1155_2022_1160258
crossref_primary_10_1016_j_aac_2022_10_001
crossref_primary_10_3390_drones8110664
crossref_primary_10_1080_19476337_2024_2393287
crossref_primary_10_1080_23311932_2025_2454354
crossref_primary_10_3390_foods13010150
crossref_primary_10_1016_j_fufo_2024_100353
crossref_primary_10_1016_j_rineng_2023_101297
crossref_primary_10_3390_s23249733
crossref_primary_10_4236_as_2025_163021
crossref_primary_10_51599_are_2024_10_02_04
crossref_primary_10_3390_agronomy11091789
crossref_primary_10_1016_j_hazadv_2024_100466
crossref_primary_10_15547_ast_2024_02_012
crossref_primary_10_3390_robotics13020033
Cites_doi 10.1109/JSTARS.2019.2953489
10.1016/j.array.2019.100009
10.1016/j.compag.2020.105942
10.1109/WACV48630.2021.00180
10.1016/j.compag.2020.105694
10.1109/GIOTS49054.2020.9119611
10.1007/s11119-016-9490-5
10.1016/j.jterra.2020.06.006
10.3390/s18082674
10.1016/j.compind.2020.103187
10.20870/oeno-one.2020.54.4.3616
10.1177/0278364919841437
10.1016/j.compag.2020.105709
10.3390/rs10121867
10.1109/MIE.2013.2252957
10.1016/j.compag.2020.105246
10.1016/j.ifacol.2016.10.060
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7S9
L.6
DOA
DOI 10.3390/agronomy11061227
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA

Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_eac071940c964e14890490ad219cfb3f
10_3390_agronomy11061227
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
KQ8
M0K
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
ITC
PUEGO
ID FETCH-LOGICAL-c412t-50b8895115c3e7d0fd2589660898670db4afd3e33ca240dca71e1d63363381123
IEDL.DBID BENPR
ISSN 2073-4395
IngestDate Wed Aug 27 01:25:06 EDT 2025
Fri Jul 11 03:58:04 EDT 2025
Mon Jun 30 11:20:43 EDT 2025
Thu Apr 24 23:01:06 EDT 2025
Tue Jul 01 03:20:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-50b8895115c3e7d0fd2589660898670db4afd3e33ca240dca71e1d63363381123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9965-2038
0000-0001-8378-4805
0000-0001-7985-9915
0000-0001-5735-2072
OpenAccessLink https://www.proquest.com/docview/2544556054?pq-origsite=%requestingapplication%
PQID 2544556054
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_eac071940c964e14890490ad219cfb3f
proquest_miscellaneous_2636406720
proquest_journals_2544556054
crossref_citationtrail_10_3390_agronomy11061227
crossref_primary_10_3390_agronomy11061227
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_13
Victorino (ref_21) 2020; 54
Cheein (ref_25) 2013; 7
Pylianidis (ref_16) 2021; 184
ref_19
Kassahun (ref_7) 2020; 177
ref_18
ref_15
Roshanianfard (ref_10) 2020; 91
Zhang (ref_9) 2020; 177
Noon (ref_8) 2020; 28
Munz (ref_2) 2020; 170
Lezoche (ref_5) 2020; 117
(ref_17) 2020; 88
Bacco (ref_11) 2019; 3
ref_24
ref_23
ref_22
ref_20
ref_1
Paraforos (ref_12) 2016; 49
ref_3
Yost (ref_4) 2017; 18
Pire (ref_26) 2019; 38
ref_28
ref_27
ref_6
Cai (ref_14) 2020; 12
References_xml – ident: ref_28
– ident: ref_3
– volume: 12
  start-page: 5153
  year: 2020
  ident: ref_14
  article-title: Detecting In-Season Crop Nitrogen Stress of Corn for Field Trials Using UAV- and CubeSat-Based Multispectral Sensing
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens.
  doi: 10.1109/JSTARS.2019.2953489
– volume: 3
  start-page: 100009
  year: 2019
  ident: ref_11
  article-title: The Digitisation of Agriculture: A Survey of Research Activities on Smart Farming
  publication-title: Array
  doi: 10.1016/j.array.2019.100009
– volume: 28
  start-page: 100443
  year: 2020
  ident: ref_8
  article-title: Use of Deep Learning Techniques for Identification of Plant Leaf Stresses: A Review
  publication-title: Sustain. Comput. Inform. Syst.
– volume: 184
  start-page: 105942
  year: 2021
  ident: ref_16
  article-title: Introducing digital twins to agriculture
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105942
– ident: ref_1
– ident: ref_18
– ident: ref_27
  doi: 10.1109/WACV48630.2021.00180
– ident: ref_23
– volume: 177
  start-page: 105694
  year: 2020
  ident: ref_9
  article-title: State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: A review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105694
– ident: ref_24
  doi: 10.1109/GIOTS49054.2020.9119611
– volume: 18
  start-page: 823
  year: 2017
  ident: ref_4
  article-title: Long-term impact of a precision agriculture system on grain crop production
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-016-9490-5
– volume: 91
  start-page: 155
  year: 2020
  ident: ref_10
  article-title: A review of autonomous agricultural vehicles (The experience of Hokkaido University)
  publication-title: J. Terramechanics
  doi: 10.1016/j.jterra.2020.06.006
– ident: ref_6
  doi: 10.3390/s18082674
– volume: 117
  start-page: 103187
  year: 2020
  ident: ref_5
  article-title: Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2020.103187
– volume: 54
  start-page: 833
  year: 2020
  ident: ref_21
  article-title: Yield components detection and image-based indicators for non-invasive grapevine yield prediction at different phenological phases
  publication-title: OENO One
  doi: 10.20870/oeno-one.2020.54.4.3616
– volume: 38
  start-page: 633
  year: 2019
  ident: ref_26
  article-title: The Rosario dataset: Multisensor data for localization and mapping in agricultural environments
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364919841437
– volume: 177
  start-page: 105709
  year: 2020
  ident: ref_7
  article-title: Crop yield prediction using machine learning: A systematic literature review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105709
– ident: ref_15
– ident: ref_13
  doi: 10.3390/rs10121867
– volume: 7
  start-page: 48
  year: 2013
  ident: ref_25
  article-title: Agricultural Robotics: Unmanned Robotic Service Units in Agricultural Tasks
  publication-title: IEEE Ind. Electron. Mag.
  doi: 10.1109/MIE.2013.2252957
– volume: 88
  start-page: 15
  year: 2020
  ident: ref_17
  article-title: Geospatial Artificial Intelligence: Potentials of Machine Learning for 3D Point Clouds and Geospatial Digital Twins
  publication-title: PFG J. Photogramm. Remote. Sens. Geoinf. Sci.
– ident: ref_19
– ident: ref_22
– volume: 170
  start-page: 105246
  year: 2020
  ident: ref_2
  article-title: Exploring the characteristics and utilisation of Farm Management Information Systems (FMIS) in Germany
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105246
– ident: ref_20
– volume: 49
  start-page: 324
  year: 2016
  ident: ref_12
  article-title: A Farm Management Information System Using Future Internet Technologies
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.10.060
SSID ssj0000913807
Score 2.5630147
Snippet One of the main challenges for the implementation of artificial intelligence (AI) in agriculture includes the low replicability and the corresponding...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1227
SubjectTerms Agricultural practices
Agricultural production
Agriculture
agronomy
Algorithms
Artificial intelligence
Automation
Climate change
computer vision
Crop diseases
Crops
data analysis
Data collection
Decision making
Digitization
Farm management
Farmers
Farms
Fertilizers
Food
Greenhouse gases
Harvest
Livestock
livestock husbandry
Optimization
Pesticides
Plant diseases
Precision agriculture
Research projects
Robotics
Sensors
soil
Sustainable development
Trends
Water use
Weather
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT4xWWcGLh9BsdrPdPVarVEERtNJb2Fd6kVRi-v-d3aQ1KOhFyCmZhDCZxzeZ3W8QutDWpiJRRUzSgsfMGR3rjJlY2tQJY0jBE793-OGRT6bsfpbNOqO-_Jqwhh64UdwAAgNkQckSIzlzAN6l71UpC55mCk0LH30h53WKqRCDJfFM6k1fkkJdP1DzKuwSIL4GSv0QmU4eCnT9P6JxSDG3O2i7xYZ41LzTLtpw5R7aGs2rlh_D7aPXsapVPK58jAqCDQEEvuswa-JRpymNAZTi569dUvipaqfq4M6DD9D09ublehK3oxFiw0hax1mihQBwRDJD3dAmhU0z4Yk2hRR8mFjNVGGpo9QoSNnWqCFxxHJK4RAAsegh6pWL0h0hDIjAEg2q1JQyrog20miiwTGldpyQCA1WispNyxvux1e85VA_eNXm31Ubocv1He8NZ8Yvslde92s5z3YdToAN5K0N5H_ZQIT6qy-Xty74kQfuNcBzGYvQ-foyOI_viKjSLZYgwylnvhmdHP_He5ygzdQveQk_afqoV1dLdwqYpdZnwTw_AUAN61I
  priority: 102
  providerName: Directory of Open Access Journals
Title Data-Driven Artificial Intelligence Applications for Sustainable Precision Agriculture
URI https://www.proquest.com/docview/2544556054
https://www.proquest.com/docview/2636406720
https://doaj.org/article/eac071940c964e14890490ad219cfb3f
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB7RcKGHqqUgUihaJC49WFmvvY73VIUGRJGIUNtU3FZ-bS4oCUv4_8w4zkMgIe1pd2ytxp63_Q3AufW-0LlpGC8axWRwltlSOlb5ImjneKNyujt8O1LXY3lzX96nhNtTOla50olRUfuZoxx5L0JpoXku5c_5I6OuUVRdTS00PsAuqmCtO7B7cTm6-7POshDqpc77y_qkwPi-ZyZtvC3AKRYqqJnMlj2KsP1vtHI0NVef4VPyEbPBclG_wE6Y7sPHwaRNOBnhK_wfmoVhw5Z0VSRcAkFkv7cQNrPBVnE6Q-c0-7u5LZXdtam7TrY18QGMry7__bpmqUUCc5IXC1bmVmt0knjpROj7vPFFqQlwU1da9XNvpWm8CEI4g6bbO9PngXslBD4aXS1xCJ3pbBqOIEPPwHPbWGGFkMpw6ypnuUUBrWxQnHeht2JU7RJ-OLWxeKgxjiDW1q9Z24Uf6xHzJXbGO7QXxPs1HaFexxezdlInIarRSKBHVMncVUoGDOQqqlsaj1rX4Y83XThZrVydRPGp3mycLpytP6MQUWXETMPsGWmUUJKK0vm396c4hr2CDrXENMwJdBbtc_iOXsnCnqatdxqj-hdoFOVz
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEE8RKGAkOHCw4tc63gNCKWmV0DaqoEW9bf3aXFBStqkQf4rfyHgfaQRSb5X2tDu2VuPxPDyebwDeuRCEYbakXJSaqugddZnyNA8iGu95qVmqHT6a6cmp-nKWnW3Bn64WJl2r7HRirajD0qcz8kENpYXmOVOfLn7S1DUqZVe7FhqNWBzE378wZLv8OB3j-r4XYn_v5POEtl0FqFdcrGjGnDHoV_DMyzgMrAwiMwmj0uRGD1lwypZBRim9RWsXvB3yyIOWEh-D3onEee_AtpKaiR5s7-7Njr-uT3USyqZhwyYfKmXOBnZe1dUJPMVeIjWv2bB_dZuA_6xAbdr2H8KD1iclo0aIHsFWXDyG-6N51eJyxCfwfWxXlo6rpBtrwgZ4gkw3ED3JaCMZTtAZJt-uq7PIcdV28yEbEz-F01th3jPoLZaL-BwIeiKBu9JJJ6XSljufe8cdKoTcRc15HwYdowrf4pWnthk_CoxbEmuLf1nbhw_rERcNVscNtLuJ92u6hLJdv1hW86LdtAUaJfTAcsV8rlXEwDFPeVIbUMt7_PGyDzvdyhXt1r8srgW1D2_Xn3HTpkyMXcTlFdJoqVVKgrMXN0_xBu5OTo4Oi8Pp7OAl3BPpQk19BLQDvVV1FV-hR7Ryr1sxJHB-25L_F3L5Hz4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwqMpLpA9YJDhwsOL1rtfrA0IpadRQiCKgqDezL-eCktZNhfhr_Dpm_EgjkHqr5JM9u7JmZ-exs_MNwGvrfaJjU0Y8KVUkg7ORTaWLcp8E7RwvVUy1w5-n6uRMfjxPz7fgT1cLQ9cqO51YK2q_dHRGPqihtNA8p3JQttciZqPx-4vLiDpIUaa1a6fRiMhp-P0Lw7erd5MRrvWbJBkff_twErUdBiInebKK0thqjT4GT50ImY9Ln6Sa8Cp1rlUWeytN6UUQwhm0fN6ZjAfulRD4aPRUBM57D7Yziop6sH10PJ19WZ_wEOKmjrMmNypEHg_MvKorFTjFYQk1stmwhXXLgP8sQm3mxruw0_qnbNgI1CPYCovH8HA4r1qMjvAEvo_MykSjivRkTdiAULDJBronG24kxhk6xuzrTaUWm1VtZx-2MfFTOLsT5j2D3mK5CM-BoVfiuS2tsEJIZbh1ubPconLIbVCc92HQMapwLXY5tdD4WWAMQ6wt_mVtH96uR1w0uB230B4R79d0hLhdv1hW86LdwAUaKFzkXMYuVzJgEJlTztR41PgOf7zsw0G3ckWrBq6KG6Htw6v1Z9zAlJUxi7C8RhollKSEeLx3-xQv4T5KfPFpMj3dhwcJ3a2pT4MOoLeqrsMhOkcr-6KVQgY_7lrw_wKkJCNz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Artificial+Intelligence+Applications+for+Sustainable+Precision+Agriculture&rft.jtitle=Agronomy+%28Basel%29&rft.au=Linaza%2C+Maria+Teresa&rft.au=Posada%2C+Jorge&rft.au=Bund%2C+J%C3%BCrgen&rft.au=Eisert%2C+Peter&rft.date=2021-06-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=11&rft.issue=6&rft_id=info:doi/10.3390%2Fagronomy11061227&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon