NgAgo possesses guided DNA nicking activity

Abstract Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (N...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 49; no. 17; pp. 9926 - 9937
Main Authors Lee, Kok Zhi, Mechikoff, Michael A, Kikla, Archana, Liu, Arren, Pandolfi, Paula, Fitzgerald, Kevin, Gimble, Frederick S, Solomon, Kevin V
Format Journal Article
LanguageEnglish
Published England Oxford University Press 27.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (NgAgo), has been the subject of debate regarding its potential in eukaryotic systems. Here, we revisit this enzyme and characterize its function in prokaryotes. NgAgo expresses poorly in non-halophilic hosts with most of the protein being insoluble and inactive even after refolding. However, we report that the soluble fraction does indeed act as a nicking DNA endonuclease. NgAgo shares canonical domains with other catalytically active pAgos but also contains a previously unrecognized single-stranded DNA binding domain (repA). Both repA and the canonical PIWI domains participate in DNA cleavage activities of NgAgo. NgAgo can be programmed with guides to nick targeted DNA in Escherichia coli and in vitro 1 nt outside the 3′ end of the guide sequence. We also found that these endonuclease activities are essential for enhanced NgAgo-guided homologous recombination, or gene-editing, in E. coli. Collectively, our results demonstrate the potential of NgAgo for gene-editing and provide new insight into seemingly contradictory reports.
AbstractList Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (NgAgo), has been the subject of debate regarding its potential in eukaryotic systems. Here, we revisit this enzyme and characterize its function in prokaryotes. NgAgo expresses poorly in non-halophilic hosts with most of the protein being insoluble and inactive even after refolding. However, we report that the soluble fraction does indeed act as a nicking DNA endonuclease. NgAgo shares canonical domains with other catalytically active pAgos but also contains a previously unrecognized single-stranded DNA binding domain (repA). Both repA and the canonical PIWI domains participate in DNA cleavage activities of NgAgo. NgAgo can be programmed with guides to nick targeted DNA in Escherichia coli and in vitro 1 nt outside the 3′ end of the guide sequence. We also found that these endonuclease activities are essential for enhanced NgAgo-guided homologous recombination, or gene-editing, in E. coli. Collectively, our results demonstrate the potential of NgAgo for gene-editing and provide new insight into seemingly contradictory reports.
Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (NgAgo), has been the subject of debate regarding its potential in eukaryotic systems. Here, we revisit this enzyme and characterize its function in prokaryotes. NgAgo expresses poorly in non-halophilic hosts with most of the protein being insoluble and inactive even after refolding. However, we report that the soluble fraction does indeed act as a nicking DNA endonuclease. NgAgo shares canonical domains with other catalytically active pAgos but also contains a previously unrecognized single-stranded DNA binding domain (repA). Both repA and the canonical PIWI domains participate in DNA cleavage activities of NgAgo. NgAgo can be programmed with guides to nick targeted DNA in Escherichia coli and in vitro 1 nt outside the 3' end of the guide sequence. We also found that these endonuclease activities are essential for enhanced NgAgo-guided homologous recombination, or gene-editing, in E. coli. Collectively, our results demonstrate the potential of NgAgo for gene-editing and provide new insight into seemingly contradictory reports.Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (NgAgo), has been the subject of debate regarding its potential in eukaryotic systems. Here, we revisit this enzyme and characterize its function in prokaryotes. NgAgo expresses poorly in non-halophilic hosts with most of the protein being insoluble and inactive even after refolding. However, we report that the soluble fraction does indeed act as a nicking DNA endonuclease. NgAgo shares canonical domains with other catalytically active pAgos but also contains a previously unrecognized single-stranded DNA binding domain (repA). Both repA and the canonical PIWI domains participate in DNA cleavage activities of NgAgo. NgAgo can be programmed with guides to nick targeted DNA in Escherichia coli and in vitro 1 nt outside the 3' end of the guide sequence. We also found that these endonuclease activities are essential for enhanced NgAgo-guided homologous recombination, or gene-editing, in E. coli. Collectively, our results demonstrate the potential of NgAgo for gene-editing and provide new insight into seemingly contradictory reports.
Abstract Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (NgAgo), has been the subject of debate regarding its potential in eukaryotic systems. Here, we revisit this enzyme and characterize its function in prokaryotes. NgAgo expresses poorly in non-halophilic hosts with most of the protein being insoluble and inactive even after refolding. However, we report that the soluble fraction does indeed act as a nicking DNA endonuclease. NgAgo shares canonical domains with other catalytically active pAgos but also contains a previously unrecognized single-stranded DNA binding domain (repA). Both repA and the canonical PIWI domains participate in DNA cleavage activities of NgAgo. NgAgo can be programmed with guides to nick targeted DNA in Escherichia coli and in vitro 1 nt outside the 3′ end of the guide sequence. We also found that these endonuclease activities are essential for enhanced NgAgo-guided homologous recombination, or gene-editing, in E. coli. Collectively, our results demonstrate the potential of NgAgo for gene-editing and provide new insight into seemingly contradictory reports.
Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (NgAgo), has been the subject of debate regarding its potential in eukaryotic systems. Here, we revisit this enzyme and characterize its function in prokaryotes. NgAgo expresses poorly in non-halophilic hosts with most of the protein being insoluble and inactive even after refolding. However, we report that the soluble fraction does indeed act as a nicking DNA endonuclease. NgAgo shares canonical domains with other catalytically active pAgos but also contains a previously unrecognized single-stranded DNA binding domain (repA). Both repA and the canonical PIWI domains participate in DNA cleavage activities of NgAgo. NgAgo can be programmed with guides to nick targeted DNA in Escherichia coli and in vitro 1 nt outside the 3′ end of the guide sequence. We also found that these endonuclease activities are essential for enhanced NgAgo-guided homologous recombination, or gene-editing, in E. coli . Collectively, our results demonstrate the potential of NgAgo for gene-editing and provide new insight into seemingly contradictory reports.
Author Liu, Arren
Mechikoff, Michael A
Solomon, Kevin V
Lee, Kok Zhi
Kikla, Archana
Gimble, Frederick S
Pandolfi, Paula
Fitzgerald, Kevin
Author_xml – sequence: 1
  givenname: Kok Zhi
  orcidid: 0000-0002-1836-2662
  surname: Lee
  fullname: Lee, Kok Zhi
– sequence: 2
  givenname: Michael A
  surname: Mechikoff
  fullname: Mechikoff, Michael A
– sequence: 3
  givenname: Archana
  surname: Kikla
  fullname: Kikla, Archana
– sequence: 4
  givenname: Arren
  orcidid: 0000-0002-9108-3344
  surname: Liu
  fullname: Liu, Arren
– sequence: 5
  givenname: Paula
  surname: Pandolfi
  fullname: Pandolfi, Paula
– sequence: 6
  givenname: Kevin
  surname: Fitzgerald
  fullname: Fitzgerald, Kevin
– sequence: 7
  givenname: Frederick S
  surname: Gimble
  fullname: Gimble, Frederick S
– sequence: 8
  givenname: Kevin V
  orcidid: 0000-0003-2904-9118
  surname: Solomon
  fullname: Solomon, Kevin V
  email: kvs@udel.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34478558$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtLw0AQhxep2IeevEtOIpTY3exsNrkIpT6h1Iuel83uJq5NszGPQv97U1qLCgoDc5hvfjN8Q9QrXGEQOif4muCYTgpZTbKlTDjjR2hAaBj4EIdBDw0wxcwnGKI-Gtb1O8YECIMT1KcAPGIsGqDxIptmzitdXZtteVlrtdHe7WLqFVYtbZF5UjV2bZvNKTpOZV6bs30fodf7u5fZoz9_fniaTee-AhI0PqS865KmzDCNsSIS8wAkxVpjoESSJAZmdKIDLLXiErjhoGOqNIU0CTEdoZtdbtkmK6OVKZpK5qKs7EpWG-GkFT8nhX0TmVuLCELAEHQBV_uAyn20pm7EytbK5LksjGtrEbAwpjzmnb0Ruvh-63Dky1AHjHeAqjpHlUkPCMFi6190_sXef0eTX7SyjWys2z5q8z92Lnc7ri3_Df8E2J2XQw
CitedBy_id crossref_primary_10_1038_s41467_024_48074_x
crossref_primary_10_1038_s41586_023_06665_6
crossref_primary_10_1016_j_tibtech_2023_06_010
crossref_primary_10_1016_j_cell_2022_03_012
crossref_primary_10_1016_j_heliyon_2024_e39323
crossref_primary_10_1016_j_trac_2024_118081
crossref_primary_10_1038_s41467_024_46215_w
crossref_primary_10_1186_s12915_023_01599_x
crossref_primary_10_1002_biot_202400180
crossref_primary_10_1021_acssensors_4c01631
crossref_primary_10_1186_s40643_024_00797_x
crossref_primary_10_1186_s40643_022_00539_x
crossref_primary_10_3390_ijms26031085
crossref_primary_10_1016_j_celrep_2024_114391
crossref_primary_10_1002_mlf2_12138
crossref_primary_10_1134_S0026893322060103
crossref_primary_10_1093_nar_gkad191
crossref_primary_10_1021_acssynbio_1c00340
crossref_primary_10_1016_j_tcb_2022_10_005
crossref_primary_10_1002_biot_202300352
crossref_primary_10_1093_nar_gkae820
crossref_primary_10_1093_nar_gkad188
crossref_primary_10_1016_j_trac_2024_118122
Cites_doi 10.1080/15476286.2020.1724716
10.1093/nar/gki408
10.1016/S0022-2836(66)80267-X
10.1038/cr.2016.134
10.1016/j.cell.2020.07.036
10.1371/journal.pbio.1000257
10.1038/nature03514
10.1371/journal.pone.0136963
10.3109/10409238.2010.488216
10.1038/nsmb777
10.1093/nar/gkaa1278
10.1038/s41421-019-0105-y
10.1128/JB.01292-08
10.1038/srep15096
10.1038/nmicrobiol.2017.35
10.1371/journal.pone.0203073
10.1074/jbc.M010118200
10.7717/peerj.8584
10.1073/pnas.1524385113
10.1093/nar/gkz306
10.1371/journal.pone.0177444
10.1371/journal.pone.0178768
10.1093/nar/gkv415
10.1093/nar/gkz040
10.1128/AEM.04023-14
10.1016/j.antiviral.2017.07.005
10.1038/nature12971
10.1016/j.jmb.2008.07.010
10.1016/j.jmb.2017.12.007
10.1038/nsmb.2577
10.1038/nature02519
10.1016/j.molcel.2017.01.033
10.1016/j.molcel.2017.12.007
10.1038/msb.2013.58
10.1007/s13238-016-0343-9
10.1021/acssynbio.6b00324
10.1074/jbc.M608619200
10.1093/nar/gkz379
10.1128/mBio.01935-18
10.1038/nprot.2015.053
10.1128/mBio.02096-17
10.12688/f1000research.18445.1
10.1038/nsmb.2879
10.1038/nsmb.2232
10.1128/jb.174.14.4842-4846.1992
10.1002/bit.26333
10.1038/ncomms11846
10.1073/pnas.1321032111
10.1038/nmicrobiol.2017.34
10.1016/j.celrep.2013.05.033
10.1016/j.tim.2013.12.003
10.1038/nature07666
10.1074/jbc.M112.441030
10.1038/nrmicro.2017.73
10.1128/AEM.02667-08
10.1038/nature.2017.22412
10.1006/jmbi.1998.1904
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021
The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkab757
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 9937
ExternalDocumentID PMC8464042
34478558
10_1093_nar_gkab757
10.1093/nar/gkab757
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: S1041
– fundername: ;
  grantid: 41000622
– fundername: ;
  grantid: 60000025; 60000029
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
6.Y
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABXVV
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACMRT
ACNCT
ACPQN
ACPRK
ACUTJ
ACZBC
ADBBV
ADHZD
AEGXH
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFULF
AFYAG
AGKRT
AGMDO
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
AOIJS
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
BTTYL
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
ESTFP
F20
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KC5
KQ8
KSI
M49
MBTAY
MVM
M~E
NTWIH
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
AAYXX
ABEJV
ABGNP
AMNDL
CITATION
OVT
ADIXU
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c412t-4f7412a3f5e5d00c1a0724a30dd0431a1b945edbd20adc7a47e74d93cd34fb603
IEDL.DBID TOX
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 14:11:22 EDT 2025
Fri Jul 11 16:50:17 EDT 2025
Wed Feb 19 02:28:01 EST 2025
Thu Apr 24 23:10:14 EDT 2025
Tue Jul 01 02:07:34 EDT 2025
Wed Aug 28 03:18:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-4f7412a3f5e5d00c1a0724a30dd0431a1b945edbd20adc7a47e74d93cd34fb603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2904-9118
0000-0002-1836-2662
0000-0002-9108-3344
OpenAccessLink https://dx.doi.org/10.1093/nar/gkab757
PMID 34478558
PQID 2569379709
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8464042
proquest_miscellaneous_2569379709
pubmed_primary_34478558
crossref_primary_10_1093_nar_gkab757
crossref_citationtrail_10_1093_nar_gkab757
oup_primary_10_1093_nar_gkab757
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-27
PublicationDateYYYYMMDD 2021-09-27
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-27
  day: 27
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Künne (2021092511344520400_B10) 2014; 22
Ma (2021092511344520400_B12) 2004; 429
Hegge (2021092511344520400_B1) 2018; 16
Wood (2021092511344520400_B57) 1966; 16
Swarts (2021092511344520400_B16) 2014; 21
Goodall (2021092511344520400_B52) 2018; 9
Marshall (2021092511344520400_B62) 2017; 114
Jiang (2021092511344520400_B33) 2015; 81
Sambrook (2021092511344520400_B31) 1989
Bushnell (2021092511344520400_B34) 2014
Zimmermann (2021092511344520400_B36) 2018; 430
Ryazansky (2021092511344520400_B17) 2018; 9
Jolly (2021092511344520400_B20) 2020; 182
Chatelier (2021092511344520400_B54) 2001; 276
Hur (2021092511344520400_B15) 2013; 288
Marshall (2021092511344520400_B49) 2018; 69
Jovanovic (2021092511344520400_B55) 1992; 174
Swarts (2021092511344520400_B2) 2014; 507
Cao (2021092511344520400_B41) 2019; 5
Miyoshi (2021092511344520400_B44) 2016; 7
Javidi-Parsijani (2021092511344520400_B24) 2017; 12
Tseng (2021092511344520400_B58) 2009; 75
Elcock (2021092511344520400_B29) 1998; 280
Faehnle (2021092511344520400_B7) 2013; 3
Lingel (2021092511344520400_B11) 2004; 11
Hegge (2021092511344520400_B39) 2019; 47
Liu (2021092511344520400_B42) 2021; 49
Rashid (2021092511344520400_B45) 2007; 282
Zander (2021092511344520400_B22) 2017; 2
Kwak (2021092511344520400_B8) 2012; 19
Müller-Santos (2021092511344520400_B48) 2009; 1791
Sunghyeok (2021092511344520400_B51) 2017
Tas (2021092511344520400_B32) 2015; 10
Ma (2021092511344520400_B9) 2005; 434
Olina (2021092511344520400_B38) 2020; 17
Wu (2021092511344520400_B56) 2017; 145
Rhodius (2021092511344520400_B61) 2013; 9
Khin (2021092511344520400_B27) 2017; 12
Reisch (2021092511344520400_B60) 2015; 5
Simmons (2021092511344520400_B53) 2009; 191
Willkomm (2021092511344520400_B3) 2017; 2
Cyranoski (2021092511344520400_B23) 2017
Söding (2021092511344520400_B37) 2005; 33
Flynn (2021092511344520400_B47) 2010; 45
Burgess (2021092511344520400_B26) 2016; 7
Kuzmenko (2021092511344520400_B43) 2019; 47
Sheng (2021092511344520400_B13) 2014; 111
Fu (2021092511344520400_B19) 2019; 47
Enghiad (2021092511344520400_B4) 2017; 6
Qin (2021092511344520400_B28) 2016; 26
Swarts (2021092511344520400_B50) 2017; 65
Wang (2021092511344520400_B14) 2008; 456
Niu (2021092511344520400_B59) 2008; 382
García-Quintans (2021092511344520400_B40) 2019; 8
Kaya (2021092511344520400_B5) 2016; 113
Tadeo (2021092511344520400_B30) 2009; 7
Swarts (2021092511344520400_B21) 2015; 43
Hunt (2021092511344520400_B18) 2018; 13
Moore (2021092511344520400_B46) 2020; 8
Wu (2021092511344520400_B25) 2017; 145
Hauptmann (2021092511344520400_B6) 2013; 20
Kelley (2021092511344520400_B35) 2015; 10
References_xml – volume: 17
  start-page: 677
  year: 2020
  ident: 2021092511344520400_B38
  article-title: Genome-wide DNA sampling by Ago nuclease from the cyanobacterium Synechococcus elongatus
  publication-title: RNA Biol
  doi: 10.1080/15476286.2020.1724716
– volume: 33
  start-page: W244
  year: 2005
  ident: 2021092511344520400_B37
  article-title: The HHpred interactive server for protein homology detection and structure prediction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki408
– volume: 16
  start-page: 118
  year: 1966
  ident: 2021092511344520400_B57
  article-title: Host specificity of DNA produced by Escherichia coli: bacterial mutations affecting the restriction and modification of DNA
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(66)80267-X
– volume: 26
  start-page: 1349
  year: 2016
  ident: 2021092511344520400_B28
  article-title: NgAgo-based fabp11a gene knockdown causes eye developmental defects in zebrafish
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.134
– volume: 182
  start-page: 1545
  year: 2020
  ident: 2021092511344520400_B20
  article-title: Thermus thermophilus Argonaute functions in the completion of DNA replication
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.036
– volume: 7
  start-page: e1000257
  year: 2009
  ident: 2021092511344520400_B30
  article-title: Structural basis for the amino acid composition of proteins from halophilic archea
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000257
– volume: 434
  start-page: 666
  year: 2005
  ident: 2021092511344520400_B9
  article-title: Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein
  publication-title: Nature
  doi: 10.1038/nature03514
– volume: 10
  start-page: e0136963
  year: 2015
  ident: 2021092511344520400_B32
  article-title: An integrated system for precise genome modification in Escherichia coli
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0136963
– volume: 45
  start-page: 266
  year: 2010
  ident: 2021092511344520400_B47
  article-title: Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409238.2010.488216
– volume: 11
  start-page: 576
  year: 2004
  ident: 2021092511344520400_B11
  article-title: Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb777
– volume: 49
  start-page: 1597
  year: 2021
  ident: 2021092511344520400_B42
  article-title: A programmable omnipotent Argonaute nuclease from mesophilic bacteria Kurthia massiliensis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1278
– volume: 5
  start-page: 38
  year: 2019
  ident: 2021092511344520400_B41
  article-title: Argonaute proteins from human gastrointestinal bacteria catalyze DNA-guided cleavage of single- and double-stranded DNA at 37°C
  publication-title: Cell Discov.
  doi: 10.1038/s41421-019-0105-y
– volume: 191
  start-page: 1152
  year: 2009
  ident: 2021092511344520400_B53
  article-title: Comparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01292-08
– volume: 5
  start-page: 15096
  year: 2015
  ident: 2021092511344520400_B60
  article-title: The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli
  publication-title: Sci. Rep.
  doi: 10.1038/srep15096
– volume: 2
  start-page: 17035
  year: 2017
  ident: 2021092511344520400_B3
  article-title: Structural and mechanistic insights into an archaeal DNA-guided Argonaute protein
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2017.35
– volume: 13
  start-page: e0203073
  year: 2018
  ident: 2021092511344520400_B18
  article-title: Single-stranded binding proteins and helicase enhance the activity of prokaryotic argonautes in vitro
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0203073
– volume: 276
  start-page: 10234
  year: 2001
  ident: 2021092511344520400_B54
  article-title: The RepE initiator is a double-stranded and single-stranded DNA-binding protein that forms an atypical open complex at the onset of replication of plasmid pAMβ1 from Gram-positive bacteria
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M010118200
– volume: 8
  start-page: e8584
  year: 2020
  ident: 2021092511344520400_B46
  article-title: Iroki: automatic customization and visualization of phylogenetic trees
  publication-title: PeerJ
  doi: 10.7717/peerj.8584
– volume: 113
  start-page: 4057
  year: 2016
  ident: 2021092511344520400_B5
  article-title: A bacterial Argonaute with noncanonical guide RNA specificity
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1524385113
– volume: 47
  start-page: 5809
  year: 2019
  ident: 2021092511344520400_B39
  article-title: DNA-guided DNA cleavage at moderate temperatures by Clostridium butyricum Argonaute
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz306
– volume: 12
  start-page: 14
  year: 2017
  ident: 2021092511344520400_B24
  article-title: No evidence of genome editing activity from Natronobacterium gregoryi Argonaute (NgAgo) in human cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0177444
– volume: 12
  start-page: e0178768
  year: 2017
  ident: 2021092511344520400_B27
  article-title: No evidence for genome editing in mouse zygotes and HEK293T human cell line using the DNA-guided Natronobacterium gregoryi Argonaute (NgAgo)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0178768
– volume: 43
  start-page: 5120
  year: 2015
  ident: 2021092511344520400_B21
  article-title: Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv415
– volume: 47
  start-page: 3568
  year: 2019
  ident: 2021092511344520400_B19
  article-title: The prokaryotic Argonaute proteins enhance homology sequence-directed recombination in bacteria
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz040
– volume: 81
  start-page: 2506
  year: 2015
  ident: 2021092511344520400_B33
  article-title: Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.04023-14
– volume-title: Molecular Cloning: A Laboratory Manual
  year: 1989
  ident: 2021092511344520400_B31
– volume: 145
  start-page: 20
  year: 2017
  ident: 2021092511344520400_B25
  article-title: NgAgo-gDNA system efficiently suppresses hepatitis B virus replication through accelerating decay of pregenomic RNA
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2017.07.005
– volume: 507
  start-page: 258
  year: 2014
  ident: 2021092511344520400_B2
  article-title: DNA-guided DNA interference by a prokaryotic Argonaute
  publication-title: Nature
  doi: 10.1038/nature12971
– volume: 382
  start-page: 188
  year: 2008
  ident: 2021092511344520400_B59
  article-title: Engineering variants of the I-SceI homing endonuclease with strand-specific and site-specific DNA-nicking activity
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2008.07.010
– volume: 430
  start-page: 2237
  year: 2018
  ident: 2021092511344520400_B36
  article-title: A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.12.007
– volume: 1791
  start-page: 719
  year: 2009
  ident: 2021092511344520400_B48
  article-title: First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui
  publication-title: Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids
– volume: 20
  start-page: 814
  year: 2013
  ident: 2021092511344520400_B6
  article-title: Turning catalytically inactive human Argonaute proteins into active slicer enzymes
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2577
– volume: 429
  start-page: 318
  year: 2004
  ident: 2021092511344520400_B12
  article-title: Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain
  publication-title: Nature
  doi: 10.1038/nature02519
– year: 2017
  ident: 2021092511344520400_B51
  article-title: DNA-dependent RNA cleavage by the Natronobacterium gregoryi Argonaute
– volume: 65
  start-page: 985
  year: 2017
  ident: 2021092511344520400_B50
  article-title: Autonomous generation and loading of DNA guides by bacterial Argonaute
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.01.033
– volume: 69
  start-page: 146
  year: 2018
  ident: 2021092511344520400_B49
  article-title: Rapid and scalable characterization of CRISPR technologies using an E. coli cell-free transcription-translation system
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.12.007
– volume: 9
  start-page: 702
  year: 2013
  ident: 2021092511344520400_B61
  article-title: Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2013.58
– volume: 7
  start-page: 913
  year: 2016
  ident: 2021092511344520400_B26
  article-title: Questions about NgAgo
  publication-title: Protein & Cell
  doi: 10.1007/s13238-016-0343-9
– volume: 6
  start-page: 752
  year: 2017
  ident: 2021092511344520400_B4
  article-title: Programmable DNA-guided artificial restriction enzymes
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.6b00324
– volume: 145
  start-page: 20
  year: 2017
  ident: 2021092511344520400_B56
  article-title: NgAgo-gDNA system efficiently suppresses hepatitis B virus replication through accelerating decay of pregenomic RNA
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2017.07.005
– volume: 282
  start-page: 13824
  year: 2007
  ident: 2021092511344520400_B45
  article-title: Structure of Aquifex aeolicus argonaute highlights conformational flexibility of the PAZ domain as a potential regulator of RNA-induced silencing complex function
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M608619200
– volume: 47
  start-page: 5822
  year: 2019
  ident: 2021092511344520400_B43
  article-title: Programmable DNA cleavage by Ago nucleases from mesophilic bacteria Clostridium butyricum and Limnothrix rosea
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz379
– volume: 9
  start-page: e01935-18
  year: 2018
  ident: 2021092511344520400_B17
  article-title: The expanded universe of prokaryotic Argonaute proteins
  publication-title: mBio
  doi: 10.1128/mBio.01935-18
– volume: 10
  start-page: 845
  year: 2015
  ident: 2021092511344520400_B35
  article-title: The Phyre2 web portal for protein modeling, prediction and analysis
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2015.053
– volume: 9
  start-page: e02096-17
  year: 2018
  ident: 2021092511344520400_B52
  article-title: The essential genome of Escherichia coli K-12
  publication-title: mBio
  doi: 10.1128/mBio.02096-17
– volume: 8
  start-page: 321
  year: 2019
  ident: 2021092511344520400_B40
  article-title: DNA interference by a mesophilic Argonaute protein, CbcAgo
  publication-title: F1000Res
  doi: 10.12688/f1000research.18445.1
– volume: 21
  start-page: 743
  year: 2014
  ident: 2021092511344520400_B16
  article-title: The evolutionary journey of Argonaute proteins
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2879
– volume: 19
  start-page: 145
  year: 2012
  ident: 2021092511344520400_B8
  article-title: The N domain of Argonaute drives duplex unwinding during RISC assembly
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2232
– volume: 174
  start-page: 4842
  year: 1992
  ident: 2021092511344520400_B55
  article-title: The replication initiator operon of promiscuous plasmid RK2 encodes a gene that complements an Escherichia coli mutant defective in single-stranded DNA-binding protein
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.174.14.4842-4846.1992
– volume: 114
  start-page: 2137
  year: 2017
  ident: 2021092511344520400_B62
  article-title: Short DNA containing χ sites enhances DNA stability and gene expression in E. coli cell-free transcription-translation systems
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26333
– volume: 7
  start-page: 11846
  year: 2016
  ident: 2021092511344520400_B44
  article-title: Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11846
– volume: 111
  start-page: 652
  year: 2014
  ident: 2021092511344520400_B13
  article-title: Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1321032111
– volume-title: BBMap: A Fast, Accurate, Splice-Aware Aligner Lawrence Berkeley National Lab
  year: 2014
  ident: 2021092511344520400_B34
– volume: 2
  start-page: 17034
  year: 2017
  ident: 2021092511344520400_B22
  article-title: Guide-independent DNA cleavage by archaeal Argonaute from Methanocaldococcus jannaschii
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2017.34
– volume: 3
  start-page: 1901
  year: 2013
  ident: 2021092511344520400_B7
  article-title: The making of a slicer: activation of human Argonaute-1
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.05.033
– volume: 22
  start-page: 74
  year: 2014
  ident: 2021092511344520400_B10
  article-title: Planting the seed: target recognition of short guide RNAs
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2013.12.003
– volume: 456
  start-page: 921
  year: 2008
  ident: 2021092511344520400_B14
  article-title: Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex
  publication-title: Nature
  doi: 10.1038/nature07666
– volume: 288
  start-page: 7829
  year: 2013
  ident: 2021092511344520400_B15
  article-title: Regulation of Argonaute slicer activity by guide RNA 3′end interactions with the N-terminal lobe
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.441030
– volume: 16
  start-page: 5
  year: 2018
  ident: 2021092511344520400_B1
  article-title: Prokaryotic Argonaute proteins: novel genome-editing tools
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2017.73
– volume: 75
  start-page: 3137
  year: 2009
  ident: 2021092511344520400_B58
  article-title: Metabolic engineering of Escherichia coli for enhanced production of (R)-and (S)-3-hydroxybutyrate
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02667-08
– year: 2017
  ident: 2021092511344520400_B23
  article-title: Authors retract controversial NgAgo gene-editing study
  publication-title: Nat. News
  doi: 10.1038/nature.2017.22412
– volume: 280
  start-page: 731
  year: 1998
  ident: 2021092511344520400_B29
  article-title: Electrostatic contributions to the stability of halophilic proteins
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1998.1904
SSID ssj0014154
Score 2.4882526
Snippet Abstract Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their...
Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9926
SubjectTerms Argonaute Proteins - metabolism
DNA Cleavage
DNA Helicases - genetics
DNA, Bacterial - genetics
DNA, Bacterial - metabolism
Escherichia coli - genetics
Gene Editing - methods
Homologous Recombination - genetics
Molecular Biology
Natronobacterium - enzymology
Natronobacterium - genetics
Natronobacterium - metabolism
Trans-Activators - genetics
Title NgAgo possesses guided DNA nicking activity
URI https://www.ncbi.nlm.nih.gov/pubmed/34478558
https://www.proquest.com/docview/2569379709
https://pubmed.ncbi.nlm.nih.gov/PMC8464042
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLaAC1wQjNd4jCAhDqBqaes07XEaQwiJcdmk3aqkScYEdNMeB_49SdtNDCE4x6kqu-rn5LM_A1ybSFhUjdBLglh6KBG9mEn0ZGgECziNsSDan7vRYx-fBmxQFcjOfqHwk7CZi2lz-CYkZ65p3MKvk8jvvQxWZIHFoFIlqhDVxLhqw_uxdw141prZvuWUP0sjv2HNwx7sVkkiaZVR3YcNndfgoJXbA_LHJ7khRdlmcR9eg-32cmTbAdx1h63hmEzGBZOrZ2S4GCmtyH23RfJR5m7FiWtkcPMiDqH_0Om1H71qGoKXoR_MPTQW_AMRGqaZojTzBeUBipAq5QRyhC8TZFpJFVChMi6Qa44qCTMVopERDY9gKx_n-gQIN0FmTZVALTHxtWTaRIrKyESxopGpw-3SVWlWSYW7iRXvaUlZh6n1a1r5tQ7XK-NJqZDxu9ml9fnfFlfLeKTWb464ELkeL2apTctsFpVwmtThuIzP6kFOsTBmLK4DX4vcysDpZ6-v5KPXQkfbpl5o_1mn_77ZGewErpTFkVH8HLbm04W-sLnIXDZgk9NOozjJN4qv8gvrUt-H
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NgAgo+possesses+guided+DNA+nicking+activity&rft.jtitle=Nucleic+acids+research&rft.au=Lee%2C+Kok+Zhi&rft.au=Mechikoff%2C+Michael+A&rft.au=Kikla%2C+Archana&rft.au=Liu%2C+Arren&rft.date=2021-09-27&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=49&rft.issue=17&rft.spage=9926&rft.epage=9937&rft_id=info:doi/10.1093%2Fnar%2Fgkab757&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gkab757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon