NgAgo possesses guided DNA nicking activity
Abstract Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (N...
Saved in:
Published in | Nucleic acids research Vol. 49; no. 17; pp. 9926 - 9937 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
27.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (NgAgo), has been the subject of debate regarding its potential in eukaryotic systems. Here, we revisit this enzyme and characterize its function in prokaryotes. NgAgo expresses poorly in non-halophilic hosts with most of the protein being insoluble and inactive even after refolding. However, we report that the soluble fraction does indeed act as a nicking DNA endonuclease. NgAgo shares canonical domains with other catalytically active pAgos but also contains a previously unrecognized single-stranded DNA binding domain (repA). Both repA and the canonical PIWI domains participate in DNA cleavage activities of NgAgo. NgAgo can be programmed with guides to nick targeted DNA in Escherichia coli and in vitro 1 nt outside the 3′ end of the guide sequence. We also found that these endonuclease activities are essential for enhanced NgAgo-guided homologous recombination, or gene-editing, in E. coli. Collectively, our results demonstrate the potential of NgAgo for gene-editing and provide new insight into seemingly contradictory reports. |
---|---|
AbstractList | Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (NgAgo), has been the subject of debate regarding its potential in eukaryotic systems. Here, we revisit this enzyme and characterize its function in prokaryotes. NgAgo expresses poorly in non-halophilic hosts with most of the protein being insoluble and inactive even after refolding. However, we report that the soluble fraction does indeed act as a nicking DNA endonuclease. NgAgo shares canonical domains with other catalytically active pAgos but also contains a previously unrecognized single-stranded DNA binding domain (repA). Both repA and the canonical PIWI domains participate in DNA cleavage activities of NgAgo. NgAgo can be programmed with guides to nick targeted DNA in Escherichia coli and in vitro 1 nt outside the 3′ end of the guide sequence. We also found that these endonuclease activities are essential for enhanced NgAgo-guided homologous recombination, or gene-editing, in E. coli. Collectively, our results demonstrate the potential of NgAgo for gene-editing and provide new insight into seemingly contradictory reports. Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (NgAgo), has been the subject of debate regarding its potential in eukaryotic systems. Here, we revisit this enzyme and characterize its function in prokaryotes. NgAgo expresses poorly in non-halophilic hosts with most of the protein being insoluble and inactive even after refolding. However, we report that the soluble fraction does indeed act as a nicking DNA endonuclease. NgAgo shares canonical domains with other catalytically active pAgos but also contains a previously unrecognized single-stranded DNA binding domain (repA). Both repA and the canonical PIWI domains participate in DNA cleavage activities of NgAgo. NgAgo can be programmed with guides to nick targeted DNA in Escherichia coli and in vitro 1 nt outside the 3' end of the guide sequence. We also found that these endonuclease activities are essential for enhanced NgAgo-guided homologous recombination, or gene-editing, in E. coli. Collectively, our results demonstrate the potential of NgAgo for gene-editing and provide new insight into seemingly contradictory reports.Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (NgAgo), has been the subject of debate regarding its potential in eukaryotic systems. Here, we revisit this enzyme and characterize its function in prokaryotes. NgAgo expresses poorly in non-halophilic hosts with most of the protein being insoluble and inactive even after refolding. However, we report that the soluble fraction does indeed act as a nicking DNA endonuclease. NgAgo shares canonical domains with other catalytically active pAgos but also contains a previously unrecognized single-stranded DNA binding domain (repA). Both repA and the canonical PIWI domains participate in DNA cleavage activities of NgAgo. NgAgo can be programmed with guides to nick targeted DNA in Escherichia coli and in vitro 1 nt outside the 3' end of the guide sequence. We also found that these endonuclease activities are essential for enhanced NgAgo-guided homologous recombination, or gene-editing, in E. coli. Collectively, our results demonstrate the potential of NgAgo for gene-editing and provide new insight into seemingly contradictory reports. Abstract Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (NgAgo), has been the subject of debate regarding its potential in eukaryotic systems. Here, we revisit this enzyme and characterize its function in prokaryotes. NgAgo expresses poorly in non-halophilic hosts with most of the protein being insoluble and inactive even after refolding. However, we report that the soluble fraction does indeed act as a nicking DNA endonuclease. NgAgo shares canonical domains with other catalytically active pAgos but also contains a previously unrecognized single-stranded DNA binding domain (repA). Both repA and the canonical PIWI domains participate in DNA cleavage activities of NgAgo. NgAgo can be programmed with guides to nick targeted DNA in Escherichia coli and in vitro 1 nt outside the 3′ end of the guide sequence. We also found that these endonuclease activities are essential for enhanced NgAgo-guided homologous recombination, or gene-editing, in E. coli. Collectively, our results demonstrate the potential of NgAgo for gene-editing and provide new insight into seemingly contradictory reports. Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (NgAgo), has been the subject of debate regarding its potential in eukaryotic systems. Here, we revisit this enzyme and characterize its function in prokaryotes. NgAgo expresses poorly in non-halophilic hosts with most of the protein being insoluble and inactive even after refolding. However, we report that the soluble fraction does indeed act as a nicking DNA endonuclease. NgAgo shares canonical domains with other catalytically active pAgos but also contains a previously unrecognized single-stranded DNA binding domain (repA). Both repA and the canonical PIWI domains participate in DNA cleavage activities of NgAgo. NgAgo can be programmed with guides to nick targeted DNA in Escherichia coli and in vitro 1 nt outside the 3′ end of the guide sequence. We also found that these endonuclease activities are essential for enhanced NgAgo-guided homologous recombination, or gene-editing, in E. coli . Collectively, our results demonstrate the potential of NgAgo for gene-editing and provide new insight into seemingly contradictory reports. |
Author | Liu, Arren Mechikoff, Michael A Solomon, Kevin V Lee, Kok Zhi Kikla, Archana Gimble, Frederick S Pandolfi, Paula Fitzgerald, Kevin |
Author_xml | – sequence: 1 givenname: Kok Zhi orcidid: 0000-0002-1836-2662 surname: Lee fullname: Lee, Kok Zhi – sequence: 2 givenname: Michael A surname: Mechikoff fullname: Mechikoff, Michael A – sequence: 3 givenname: Archana surname: Kikla fullname: Kikla, Archana – sequence: 4 givenname: Arren orcidid: 0000-0002-9108-3344 surname: Liu fullname: Liu, Arren – sequence: 5 givenname: Paula surname: Pandolfi fullname: Pandolfi, Paula – sequence: 6 givenname: Kevin surname: Fitzgerald fullname: Fitzgerald, Kevin – sequence: 7 givenname: Frederick S surname: Gimble fullname: Gimble, Frederick S – sequence: 8 givenname: Kevin V orcidid: 0000-0003-2904-9118 surname: Solomon fullname: Solomon, Kevin V email: kvs@udel.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34478558$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtLw0AQhxep2IeevEtOIpTY3exsNrkIpT6h1Iuel83uJq5NszGPQv97U1qLCgoDc5hvfjN8Q9QrXGEQOif4muCYTgpZTbKlTDjjR2hAaBj4EIdBDw0wxcwnGKI-Gtb1O8YECIMT1KcAPGIsGqDxIptmzitdXZtteVlrtdHe7WLqFVYtbZF5UjV2bZvNKTpOZV6bs30fodf7u5fZoz9_fniaTee-AhI0PqS865KmzDCNsSIS8wAkxVpjoESSJAZmdKIDLLXiErjhoGOqNIU0CTEdoZtdbtkmK6OVKZpK5qKs7EpWG-GkFT8nhX0TmVuLCELAEHQBV_uAyn20pm7EytbK5LksjGtrEbAwpjzmnb0Ruvh-63Dky1AHjHeAqjpHlUkPCMFi6190_sXef0eTX7SyjWys2z5q8z92Lnc7ri3_Df8E2J2XQw |
CitedBy_id | crossref_primary_10_1038_s41467_024_48074_x crossref_primary_10_1038_s41586_023_06665_6 crossref_primary_10_1016_j_tibtech_2023_06_010 crossref_primary_10_1016_j_cell_2022_03_012 crossref_primary_10_1016_j_heliyon_2024_e39323 crossref_primary_10_1016_j_trac_2024_118081 crossref_primary_10_1038_s41467_024_46215_w crossref_primary_10_1186_s12915_023_01599_x crossref_primary_10_1002_biot_202400180 crossref_primary_10_1021_acssensors_4c01631 crossref_primary_10_1186_s40643_024_00797_x crossref_primary_10_1186_s40643_022_00539_x crossref_primary_10_3390_ijms26031085 crossref_primary_10_1016_j_celrep_2024_114391 crossref_primary_10_1002_mlf2_12138 crossref_primary_10_1134_S0026893322060103 crossref_primary_10_1093_nar_gkad191 crossref_primary_10_1021_acssynbio_1c00340 crossref_primary_10_1016_j_tcb_2022_10_005 crossref_primary_10_1002_biot_202300352 crossref_primary_10_1093_nar_gkae820 crossref_primary_10_1093_nar_gkad188 crossref_primary_10_1016_j_trac_2024_118122 |
Cites_doi | 10.1080/15476286.2020.1724716 10.1093/nar/gki408 10.1016/S0022-2836(66)80267-X 10.1038/cr.2016.134 10.1016/j.cell.2020.07.036 10.1371/journal.pbio.1000257 10.1038/nature03514 10.1371/journal.pone.0136963 10.3109/10409238.2010.488216 10.1038/nsmb777 10.1093/nar/gkaa1278 10.1038/s41421-019-0105-y 10.1128/JB.01292-08 10.1038/srep15096 10.1038/nmicrobiol.2017.35 10.1371/journal.pone.0203073 10.1074/jbc.M010118200 10.7717/peerj.8584 10.1073/pnas.1524385113 10.1093/nar/gkz306 10.1371/journal.pone.0177444 10.1371/journal.pone.0178768 10.1093/nar/gkv415 10.1093/nar/gkz040 10.1128/AEM.04023-14 10.1016/j.antiviral.2017.07.005 10.1038/nature12971 10.1016/j.jmb.2008.07.010 10.1016/j.jmb.2017.12.007 10.1038/nsmb.2577 10.1038/nature02519 10.1016/j.molcel.2017.01.033 10.1016/j.molcel.2017.12.007 10.1038/msb.2013.58 10.1007/s13238-016-0343-9 10.1021/acssynbio.6b00324 10.1074/jbc.M608619200 10.1093/nar/gkz379 10.1128/mBio.01935-18 10.1038/nprot.2015.053 10.1128/mBio.02096-17 10.12688/f1000research.18445.1 10.1038/nsmb.2879 10.1038/nsmb.2232 10.1128/jb.174.14.4842-4846.1992 10.1002/bit.26333 10.1038/ncomms11846 10.1073/pnas.1321032111 10.1038/nmicrobiol.2017.34 10.1016/j.celrep.2013.05.033 10.1016/j.tim.2013.12.003 10.1038/nature07666 10.1074/jbc.M112.441030 10.1038/nrmicro.2017.73 10.1128/AEM.02667-08 10.1038/nature.2017.22412 10.1006/jmbi.1998.1904 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021 The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. 2021 – notice: The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkab757 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 9937 |
ExternalDocumentID | PMC8464042 34478558 10_1093_nar_gkab757 10.1093/nar/gkab757 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: S1041 – fundername: ; grantid: 41000622 – fundername: ; grantid: 60000025; 60000029 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 6.Y 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP AAWDT AAYJJ ABPTD ABQLI ABQTQ ABSAR ABSMQ ABXVV ACFRR ACGFO ACGFS ACIPB ACIWK ACMRT ACNCT ACPQN ACPRK ACUTJ ACZBC ADBBV ADHZD AEGXH AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFULF AFYAG AGKRT AGMDO AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD AOIJS AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ BTTYL C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN ESTFP F20 F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KC5 KQ8 KSI M49 MBTAY MVM M~E NTWIH NU- OAWHX OBC OBS OEB OES OJQWA OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROX ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM AAYXX ABEJV ABGNP AMNDL CITATION OVT ADIXU CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c412t-4f7412a3f5e5d00c1a0724a30dd0431a1b945edbd20adc7a47e74d93cd34fb603 |
IEDL.DBID | TOX |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 14:11:22 EDT 2025 Fri Jul 11 16:50:17 EDT 2025 Wed Feb 19 02:28:01 EST 2025 Thu Apr 24 23:10:14 EDT 2025 Tue Jul 01 02:07:34 EDT 2025 Wed Aug 28 03:18:36 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-4f7412a3f5e5d00c1a0724a30dd0431a1b945edbd20adc7a47e74d93cd34fb603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2904-9118 0000-0002-1836-2662 0000-0002-9108-3344 |
OpenAccessLink | https://dx.doi.org/10.1093/nar/gkab757 |
PMID | 34478558 |
PQID | 2569379709 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8464042 proquest_miscellaneous_2569379709 pubmed_primary_34478558 crossref_primary_10_1093_nar_gkab757 crossref_citationtrail_10_1093_nar_gkab757 oup_primary_10_1093_nar_gkab757 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-27 |
PublicationDateYYYYMMDD | 2021-09-27 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Künne (2021092511344520400_B10) 2014; 22 Ma (2021092511344520400_B12) 2004; 429 Hegge (2021092511344520400_B1) 2018; 16 Wood (2021092511344520400_B57) 1966; 16 Swarts (2021092511344520400_B16) 2014; 21 Goodall (2021092511344520400_B52) 2018; 9 Marshall (2021092511344520400_B62) 2017; 114 Jiang (2021092511344520400_B33) 2015; 81 Sambrook (2021092511344520400_B31) 1989 Bushnell (2021092511344520400_B34) 2014 Zimmermann (2021092511344520400_B36) 2018; 430 Ryazansky (2021092511344520400_B17) 2018; 9 Jolly (2021092511344520400_B20) 2020; 182 Chatelier (2021092511344520400_B54) 2001; 276 Hur (2021092511344520400_B15) 2013; 288 Marshall (2021092511344520400_B49) 2018; 69 Jovanovic (2021092511344520400_B55) 1992; 174 Swarts (2021092511344520400_B2) 2014; 507 Cao (2021092511344520400_B41) 2019; 5 Miyoshi (2021092511344520400_B44) 2016; 7 Javidi-Parsijani (2021092511344520400_B24) 2017; 12 Tseng (2021092511344520400_B58) 2009; 75 Elcock (2021092511344520400_B29) 1998; 280 Faehnle (2021092511344520400_B7) 2013; 3 Lingel (2021092511344520400_B11) 2004; 11 Hegge (2021092511344520400_B39) 2019; 47 Liu (2021092511344520400_B42) 2021; 49 Rashid (2021092511344520400_B45) 2007; 282 Zander (2021092511344520400_B22) 2017; 2 Kwak (2021092511344520400_B8) 2012; 19 Müller-Santos (2021092511344520400_B48) 2009; 1791 Sunghyeok (2021092511344520400_B51) 2017 Tas (2021092511344520400_B32) 2015; 10 Ma (2021092511344520400_B9) 2005; 434 Olina (2021092511344520400_B38) 2020; 17 Wu (2021092511344520400_B56) 2017; 145 Rhodius (2021092511344520400_B61) 2013; 9 Khin (2021092511344520400_B27) 2017; 12 Reisch (2021092511344520400_B60) 2015; 5 Simmons (2021092511344520400_B53) 2009; 191 Willkomm (2021092511344520400_B3) 2017; 2 Cyranoski (2021092511344520400_B23) 2017 Söding (2021092511344520400_B37) 2005; 33 Flynn (2021092511344520400_B47) 2010; 45 Burgess (2021092511344520400_B26) 2016; 7 Kuzmenko (2021092511344520400_B43) 2019; 47 Sheng (2021092511344520400_B13) 2014; 111 Fu (2021092511344520400_B19) 2019; 47 Enghiad (2021092511344520400_B4) 2017; 6 Qin (2021092511344520400_B28) 2016; 26 Swarts (2021092511344520400_B50) 2017; 65 Wang (2021092511344520400_B14) 2008; 456 Niu (2021092511344520400_B59) 2008; 382 García-Quintans (2021092511344520400_B40) 2019; 8 Kaya (2021092511344520400_B5) 2016; 113 Tadeo (2021092511344520400_B30) 2009; 7 Swarts (2021092511344520400_B21) 2015; 43 Hunt (2021092511344520400_B18) 2018; 13 Moore (2021092511344520400_B46) 2020; 8 Wu (2021092511344520400_B25) 2017; 145 Hauptmann (2021092511344520400_B6) 2013; 20 Kelley (2021092511344520400_B35) 2015; 10 |
References_xml | – volume: 17 start-page: 677 year: 2020 ident: 2021092511344520400_B38 article-title: Genome-wide DNA sampling by Ago nuclease from the cyanobacterium Synechococcus elongatus publication-title: RNA Biol doi: 10.1080/15476286.2020.1724716 – volume: 33 start-page: W244 year: 2005 ident: 2021092511344520400_B37 article-title: The HHpred interactive server for protein homology detection and structure prediction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki408 – volume: 16 start-page: 118 year: 1966 ident: 2021092511344520400_B57 article-title: Host specificity of DNA produced by Escherichia coli: bacterial mutations affecting the restriction and modification of DNA publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(66)80267-X – volume: 26 start-page: 1349 year: 2016 ident: 2021092511344520400_B28 article-title: NgAgo-based fabp11a gene knockdown causes eye developmental defects in zebrafish publication-title: Cell Res. doi: 10.1038/cr.2016.134 – volume: 182 start-page: 1545 year: 2020 ident: 2021092511344520400_B20 article-title: Thermus thermophilus Argonaute functions in the completion of DNA replication publication-title: Cell doi: 10.1016/j.cell.2020.07.036 – volume: 7 start-page: e1000257 year: 2009 ident: 2021092511344520400_B30 article-title: Structural basis for the amino acid composition of proteins from halophilic archea publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000257 – volume: 434 start-page: 666 year: 2005 ident: 2021092511344520400_B9 article-title: Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein publication-title: Nature doi: 10.1038/nature03514 – volume: 10 start-page: e0136963 year: 2015 ident: 2021092511344520400_B32 article-title: An integrated system for precise genome modification in Escherichia coli publication-title: PLoS One doi: 10.1371/journal.pone.0136963 – volume: 45 start-page: 266 year: 2010 ident: 2021092511344520400_B47 article-title: Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.3109/10409238.2010.488216 – volume: 11 start-page: 576 year: 2004 ident: 2021092511344520400_B11 article-title: Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb777 – volume: 49 start-page: 1597 year: 2021 ident: 2021092511344520400_B42 article-title: A programmable omnipotent Argonaute nuclease from mesophilic bacteria Kurthia massiliensis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1278 – volume: 5 start-page: 38 year: 2019 ident: 2021092511344520400_B41 article-title: Argonaute proteins from human gastrointestinal bacteria catalyze DNA-guided cleavage of single- and double-stranded DNA at 37°C publication-title: Cell Discov. doi: 10.1038/s41421-019-0105-y – volume: 191 start-page: 1152 year: 2009 ident: 2021092511344520400_B53 article-title: Comparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction publication-title: J. Bacteriol. doi: 10.1128/JB.01292-08 – volume: 5 start-page: 15096 year: 2015 ident: 2021092511344520400_B60 article-title: The no-SCAR (Scarless Cas9 Assisted Recombineering) system for genome editing in Escherichia coli publication-title: Sci. Rep. doi: 10.1038/srep15096 – volume: 2 start-page: 17035 year: 2017 ident: 2021092511344520400_B3 article-title: Structural and mechanistic insights into an archaeal DNA-guided Argonaute protein publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2017.35 – volume: 13 start-page: e0203073 year: 2018 ident: 2021092511344520400_B18 article-title: Single-stranded binding proteins and helicase enhance the activity of prokaryotic argonautes in vitro publication-title: PLoS One doi: 10.1371/journal.pone.0203073 – volume: 276 start-page: 10234 year: 2001 ident: 2021092511344520400_B54 article-title: The RepE initiator is a double-stranded and single-stranded DNA-binding protein that forms an atypical open complex at the onset of replication of plasmid pAMβ1 from Gram-positive bacteria publication-title: J. Biol. Chem. doi: 10.1074/jbc.M010118200 – volume: 8 start-page: e8584 year: 2020 ident: 2021092511344520400_B46 article-title: Iroki: automatic customization and visualization of phylogenetic trees publication-title: PeerJ doi: 10.7717/peerj.8584 – volume: 113 start-page: 4057 year: 2016 ident: 2021092511344520400_B5 article-title: A bacterial Argonaute with noncanonical guide RNA specificity publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1524385113 – volume: 47 start-page: 5809 year: 2019 ident: 2021092511344520400_B39 article-title: DNA-guided DNA cleavage at moderate temperatures by Clostridium butyricum Argonaute publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz306 – volume: 12 start-page: 14 year: 2017 ident: 2021092511344520400_B24 article-title: No evidence of genome editing activity from Natronobacterium gregoryi Argonaute (NgAgo) in human cells publication-title: PLoS One doi: 10.1371/journal.pone.0177444 – volume: 12 start-page: e0178768 year: 2017 ident: 2021092511344520400_B27 article-title: No evidence for genome editing in mouse zygotes and HEK293T human cell line using the DNA-guided Natronobacterium gregoryi Argonaute (NgAgo) publication-title: PLoS One doi: 10.1371/journal.pone.0178768 – volume: 43 start-page: 5120 year: 2015 ident: 2021092511344520400_B21 article-title: Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv415 – volume: 47 start-page: 3568 year: 2019 ident: 2021092511344520400_B19 article-title: The prokaryotic Argonaute proteins enhance homology sequence-directed recombination in bacteria publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz040 – volume: 81 start-page: 2506 year: 2015 ident: 2021092511344520400_B33 article-title: Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.04023-14 – volume-title: Molecular Cloning: A Laboratory Manual year: 1989 ident: 2021092511344520400_B31 – volume: 145 start-page: 20 year: 2017 ident: 2021092511344520400_B25 article-title: NgAgo-gDNA system efficiently suppresses hepatitis B virus replication through accelerating decay of pregenomic RNA publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2017.07.005 – volume: 507 start-page: 258 year: 2014 ident: 2021092511344520400_B2 article-title: DNA-guided DNA interference by a prokaryotic Argonaute publication-title: Nature doi: 10.1038/nature12971 – volume: 382 start-page: 188 year: 2008 ident: 2021092511344520400_B59 article-title: Engineering variants of the I-SceI homing endonuclease with strand-specific and site-specific DNA-nicking activity publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.07.010 – volume: 430 start-page: 2237 year: 2018 ident: 2021092511344520400_B36 article-title: A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.12.007 – volume: 1791 start-page: 719 year: 2009 ident: 2021092511344520400_B48 article-title: First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui publication-title: Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids – volume: 20 start-page: 814 year: 2013 ident: 2021092511344520400_B6 article-title: Turning catalytically inactive human Argonaute proteins into active slicer enzymes publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2577 – volume: 429 start-page: 318 year: 2004 ident: 2021092511344520400_B12 article-title: Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain publication-title: Nature doi: 10.1038/nature02519 – year: 2017 ident: 2021092511344520400_B51 article-title: DNA-dependent RNA cleavage by the Natronobacterium gregoryi Argonaute – volume: 65 start-page: 985 year: 2017 ident: 2021092511344520400_B50 article-title: Autonomous generation and loading of DNA guides by bacterial Argonaute publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.01.033 – volume: 69 start-page: 146 year: 2018 ident: 2021092511344520400_B49 article-title: Rapid and scalable characterization of CRISPR technologies using an E. coli cell-free transcription-translation system publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.12.007 – volume: 9 start-page: 702 year: 2013 ident: 2021092511344520400_B61 article-title: Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2013.58 – volume: 7 start-page: 913 year: 2016 ident: 2021092511344520400_B26 article-title: Questions about NgAgo publication-title: Protein & Cell doi: 10.1007/s13238-016-0343-9 – volume: 6 start-page: 752 year: 2017 ident: 2021092511344520400_B4 article-title: Programmable DNA-guided artificial restriction enzymes publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.6b00324 – volume: 145 start-page: 20 year: 2017 ident: 2021092511344520400_B56 article-title: NgAgo-gDNA system efficiently suppresses hepatitis B virus replication through accelerating decay of pregenomic RNA publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2017.07.005 – volume: 282 start-page: 13824 year: 2007 ident: 2021092511344520400_B45 article-title: Structure of Aquifex aeolicus argonaute highlights conformational flexibility of the PAZ domain as a potential regulator of RNA-induced silencing complex function publication-title: J. Biol. Chem. doi: 10.1074/jbc.M608619200 – volume: 47 start-page: 5822 year: 2019 ident: 2021092511344520400_B43 article-title: Programmable DNA cleavage by Ago nucleases from mesophilic bacteria Clostridium butyricum and Limnothrix rosea publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz379 – volume: 9 start-page: e01935-18 year: 2018 ident: 2021092511344520400_B17 article-title: The expanded universe of prokaryotic Argonaute proteins publication-title: mBio doi: 10.1128/mBio.01935-18 – volume: 10 start-page: 845 year: 2015 ident: 2021092511344520400_B35 article-title: The Phyre2 web portal for protein modeling, prediction and analysis publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.053 – volume: 9 start-page: e02096-17 year: 2018 ident: 2021092511344520400_B52 article-title: The essential genome of Escherichia coli K-12 publication-title: mBio doi: 10.1128/mBio.02096-17 – volume: 8 start-page: 321 year: 2019 ident: 2021092511344520400_B40 article-title: DNA interference by a mesophilic Argonaute protein, CbcAgo publication-title: F1000Res doi: 10.12688/f1000research.18445.1 – volume: 21 start-page: 743 year: 2014 ident: 2021092511344520400_B16 article-title: The evolutionary journey of Argonaute proteins publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2879 – volume: 19 start-page: 145 year: 2012 ident: 2021092511344520400_B8 article-title: The N domain of Argonaute drives duplex unwinding during RISC assembly publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2232 – volume: 174 start-page: 4842 year: 1992 ident: 2021092511344520400_B55 article-title: The replication initiator operon of promiscuous plasmid RK2 encodes a gene that complements an Escherichia coli mutant defective in single-stranded DNA-binding protein publication-title: J. Bacteriol. doi: 10.1128/jb.174.14.4842-4846.1992 – volume: 114 start-page: 2137 year: 2017 ident: 2021092511344520400_B62 article-title: Short DNA containing χ sites enhances DNA stability and gene expression in E. coli cell-free transcription-translation systems publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26333 – volume: 7 start-page: 11846 year: 2016 ident: 2021092511344520400_B44 article-title: Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute publication-title: Nat. Commun. doi: 10.1038/ncomms11846 – volume: 111 start-page: 652 year: 2014 ident: 2021092511344520400_B13 article-title: Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1321032111 – volume-title: BBMap: A Fast, Accurate, Splice-Aware Aligner Lawrence Berkeley National Lab year: 2014 ident: 2021092511344520400_B34 – volume: 2 start-page: 17034 year: 2017 ident: 2021092511344520400_B22 article-title: Guide-independent DNA cleavage by archaeal Argonaute from Methanocaldococcus jannaschii publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2017.34 – volume: 3 start-page: 1901 year: 2013 ident: 2021092511344520400_B7 article-title: The making of a slicer: activation of human Argonaute-1 publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.05.033 – volume: 22 start-page: 74 year: 2014 ident: 2021092511344520400_B10 article-title: Planting the seed: target recognition of short guide RNAs publication-title: Trends Microbiol. doi: 10.1016/j.tim.2013.12.003 – volume: 456 start-page: 921 year: 2008 ident: 2021092511344520400_B14 article-title: Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex publication-title: Nature doi: 10.1038/nature07666 – volume: 288 start-page: 7829 year: 2013 ident: 2021092511344520400_B15 article-title: Regulation of Argonaute slicer activity by guide RNA 3′end interactions with the N-terminal lobe publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.441030 – volume: 16 start-page: 5 year: 2018 ident: 2021092511344520400_B1 article-title: Prokaryotic Argonaute proteins: novel genome-editing tools publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2017.73 – volume: 75 start-page: 3137 year: 2009 ident: 2021092511344520400_B58 article-title: Metabolic engineering of Escherichia coli for enhanced production of (R)-and (S)-3-hydroxybutyrate publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02667-08 – year: 2017 ident: 2021092511344520400_B23 article-title: Authors retract controversial NgAgo gene-editing study publication-title: Nat. News doi: 10.1038/nature.2017.22412 – volume: 280 start-page: 731 year: 1998 ident: 2021092511344520400_B29 article-title: Electrostatic contributions to the stability of halophilic proteins publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.1904 |
SSID | ssj0014154 |
Score | 2.4882526 |
Snippet | Abstract
Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their... Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9926 |
SubjectTerms | Argonaute Proteins - metabolism DNA Cleavage DNA Helicases - genetics DNA, Bacterial - genetics DNA, Bacterial - metabolism Escherichia coli - genetics Gene Editing - methods Homologous Recombination - genetics Molecular Biology Natronobacterium - enzymology Natronobacterium - genetics Natronobacterium - metabolism Trans-Activators - genetics |
Title | NgAgo possesses guided DNA nicking activity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34478558 https://www.proquest.com/docview/2569379709 https://pubmed.ncbi.nlm.nih.gov/PMC8464042 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLaAC1wQjNd4jCAhDqBqaes07XEaQwiJcdmk3aqkScYEdNMeB_49SdtNDCE4x6kqu-rn5LM_A1ybSFhUjdBLglh6KBG9mEn0ZGgECziNsSDan7vRYx-fBmxQFcjOfqHwk7CZi2lz-CYkZ65p3MKvk8jvvQxWZIHFoFIlqhDVxLhqw_uxdw141prZvuWUP0sjv2HNwx7sVkkiaZVR3YcNndfgoJXbA_LHJ7khRdlmcR9eg-32cmTbAdx1h63hmEzGBZOrZ2S4GCmtyH23RfJR5m7FiWtkcPMiDqH_0Om1H71qGoKXoR_MPTQW_AMRGqaZojTzBeUBipAq5QRyhC8TZFpJFVChMi6Qa44qCTMVopERDY9gKx_n-gQIN0FmTZVALTHxtWTaRIrKyESxopGpw-3SVWlWSYW7iRXvaUlZh6n1a1r5tQ7XK-NJqZDxu9ml9fnfFlfLeKTWb464ELkeL2apTctsFpVwmtThuIzP6kFOsTBmLK4DX4vcysDpZ6-v5KPXQkfbpl5o_1mn_77ZGewErpTFkVH8HLbm04W-sLnIXDZgk9NOozjJN4qv8gvrUt-H |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NgAgo+possesses+guided+DNA+nicking+activity&rft.jtitle=Nucleic+acids+research&rft.au=Lee%2C+Kok+Zhi&rft.au=Mechikoff%2C+Michael+A&rft.au=Kikla%2C+Archana&rft.au=Liu%2C+Arren&rft.date=2021-09-27&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=49&rft.issue=17&rft.spage=9926&rft.epage=9937&rft_id=info:doi/10.1093%2Fnar%2Fgkab757&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gkab757 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |