Least squares estimator for non-ergodic Ornstein–Uhlenbeck processes driven by Gaussian processes

The statistical analysis for equations driven by fractional Gaussian process (fGp) is relatively recent. The development of stochastic calculus with respect to the fGp allowed to study such models. In the present paper we consider the drift parameter estimation problem for the non-ergodic Ornstein–U...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Korean Statistical Society Vol. 45; no. 3; pp. 329 - 341
Main Authors El Machkouri, Mohamed, Es-Sebaiy, Khalifa, Ouknine, Youssef
Format Journal Article
LanguageEnglish
Published Singapore Elsevier B.V 01.09.2016
Springer Singapore
Elsevier
한국통계학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The statistical analysis for equations driven by fractional Gaussian process (fGp) is relatively recent. The development of stochastic calculus with respect to the fGp allowed to study such models. In the present paper we consider the drift parameter estimation problem for the non-ergodic Ornstein–Uhlenbeck process defined as dXt=θXtdt+dGt,t≥0 with an unknown parameter θ>0, where G is a Gaussian process. We provide sufficient conditions, based on the properties of G, ensuring the strong consistency and the asymptotic distribution of our estimator θ˜t of θ based on the observation {Xs,s∈[0,t]} as t→∞. Our approach offers an elementary, unifying proof of Belfadli (2011), and it allows to extend the result of Belfadli (2011) to the case when G is a fractional Brownian motion with Hurst parameter H∈(0,1). We also discuss the cases of subfractional Brownian motion and bifractional Brownian motion.
AbstractList The statistical analysis for equations driven by fractional Gaussian process (fGp) is relatively recent. The development of stochastic calculus with respect to the fGp allowed to study such models. In the present paper we consider the drift parameter estimation problem for the non-ergodic Ornstein–Uhlenbeck process defined as dXt = θXt dt + dGt , t ≥ 0 with an unknown parameter θ > 0, where G is a Gaussian process. We provide sufficient conditions, based on the properties of G, ensuring the strong consistency and the asymptotic distribution of our estimatorθt of θ based on the observation {Xs, s ∈ [0, t]} as t → ∞. Our approach offers an elementary, unifying proof of Belfadli (2011), and it allows to extend the result of Belfadli (2011) to the case when G is a fractional Brownian motion with Hurst parameter H ∈ (0, 1). We also discuss the cases of subfractional Brownian motion and bifractional Brownian motion. KCI Citation Count: 1
The statistical analysis for equations driven by fractional Gaussian process (fGp) is relatively recent. The development of stochastic calculus with respect to the fGp allowed to study such models. In the present paper we consider the drift parameter estimation problem for the non-ergodic Ornstein-Uhlenbeck process defined as dX t = θX t dt + dG t , t ≥ 0 with an unknown parameter θ > 0, where G is a Gaussian process. We provide sufficient conditions, based on the properties of G , ensuring the strong consistency and the asymptotic distribution of our estimator θ̃ t of θ based on the observation { X s , s ∈ [0, t ]} as t → ∞. Our approach offers an elementary, unifying proof of Belfadli (2011), and it allows to extend the result of Belfadli (2011) to the case when G is a fractional Brownian motion with Hurst parameter H ∈ (0, 1). We also discuss the cases of subfractional Brownian motion and bifractional Brownian motion.
The statistical analysis for equations driven by fractional Gaussian process (fGp) is relatively recent. The development of stochastic calculus with respect to the fGp allowed to study such models. In the present paper we consider the drift parameter estimation problem for the non-ergodic Ornstein–Uhlenbeck process defined as dXt=θXtdt+dGt,t≥0 with an unknown parameter θ>0, where G is a Gaussian process. We provide sufficient conditions, based on the properties of G, ensuring the strong consistency and the asymptotic distribution of our estimator θ˜t of θ based on the observation {Xs,s∈[0,t]} as t→∞. Our approach offers an elementary, unifying proof of Belfadli (2011), and it allows to extend the result of Belfadli (2011) to the case when G is a fractional Brownian motion with Hurst parameter H∈(0,1). We also discuss the cases of subfractional Brownian motion and bifractional Brownian motion.
Author El Machkouri, Mohamed
Es-Sebaiy, Khalifa
Ouknine, Youssef
Author_xml – sequence: 1
  givenname: Mohamed
  surname: El Machkouri
  fullname: El Machkouri, Mohamed
  email: mohamed.elmachkouri@univ-rouen.fr
  organization: Laboratoire de Mathématiques Raphaël Salem UMR CNRS 6085, Université de Rouen, France
– sequence: 2
  givenname: Khalifa
  surname: Es-Sebaiy
  fullname: Es-Sebaiy, Khalifa
  email: k.essebaiy@uca.ma
  organization: National School of Applied Sciences-Marrakesh, Cadi Ayyad University, Av. Abdelkrim Khattabi, 40000, Guéliz-Marrakech, Morocco
– sequence: 3
  givenname: Youssef
  surname: Ouknine
  fullname: Ouknine, Youssef
  email: ouknine@uca.ma
  organization: National School of Applied Sciences-Marrakesh, Cadi Ayyad University, Av. Abdelkrim Khattabi, 40000, Guéliz-Marrakech, Morocco
BackLink https://hal.science/hal-02375093$$DView record in HAL
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002151107$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kMFO3DAQhq0KpC7QF-gp1x4SZsaxyUq9rFALSCshVXC2HGeyOLt1qJ1diRvv0Dfsk-BlUblxsEay_88z852IozAGFuIrQoWA-nyohnVKFQGqCqkCwE9iRgCqpEbLIzFDIl1KnNNncZLSAKBrJJgJt2SbpiL92drIqeA0-d92GmPR55OblBxXY-ddcRtDmtiHf89_7x82HFp26-Ixjo5TymAX_Y5D0T4VV3abkrfh_fFMHPd2k_jLWz0V9z9_3F1el8vbq5vLxbJ0eZaprB00rKDVZGvdsQal6o76pq2hkUSoGtuoWjJpicxdQ8hOuQahRdadI3kqvh3-DbE3a-fNaP1rXY1mHc3i192NQZgrqOV79sFuzGPMS8en1_z1Ymn2d0DyQsFc7jBn6ZB1cUwpcv8fQDB7_WYwe_1mr98gmaw_Q_IApRwOK45mGLcx5P0_pr4fKM6edj5TyXkOjjsf2U2mG_1H-AsD0qHD
CitedBy_id crossref_primary_10_1007_s00184_021_00854_x
crossref_primary_10_1155_2021_1451692
crossref_primary_10_1080_17442508_2021_1959587
crossref_primary_10_15559_21_VMSTA179
crossref_primary_10_1142_S0219493720500239
crossref_primary_10_1515_rose_2022_2079
crossref_primary_10_1007_s00362_019_01113_y
crossref_primary_10_1137_S0040585X97T98957X
crossref_primary_10_15559_21_VMSTA176
crossref_primary_10_1142_S0219493720500112
crossref_primary_10_1515_rose_2021_2065
crossref_primary_10_3934_math_2021738
crossref_primary_10_1016_j_econlet_2019_01_020
crossref_primary_10_1080_03610926_2019_1630436
crossref_primary_10_1080_17442508_2018_1424853
crossref_primary_10_1017_S0266466618000051
crossref_primary_10_1016_j_jkss_2017_06_002
crossref_primary_10_1090_tpms_1190
crossref_primary_10_1007_s40304_021_00245_8
crossref_primary_10_1016_j_spa_2018_08_010
crossref_primary_10_3390_fractalfract5040192
crossref_primary_10_1214_17_BJPS353
crossref_primary_10_30757_ALEA_v16_23
crossref_primary_10_1111_obes_12395
crossref_primary_10_1007_s10473_021_0218_x
crossref_primary_10_1186_s13662_017_1420_y
crossref_primary_10_3390_econometrics8030032
crossref_primary_10_1080_03610926_2023_2293650
crossref_primary_10_1080_03610926_2018_1543774
crossref_primary_10_1080_03610926_2023_2240917
crossref_primary_10_1214_17_EJS1237
crossref_primary_10_1515_rose_2020_2032
crossref_primary_10_1007_s10255_024_1083_x
crossref_primary_10_1007_s10114_023_2157_z
crossref_primary_10_1140_epjp_s13360_021_01738_9
crossref_primary_10_1007_s00362_024_01579_5
crossref_primary_10_1515_rose_2017_0018
crossref_primary_10_1007_s10260_020_00528_4
crossref_primary_10_1080_10485252_2023_2288842
crossref_primary_10_1214_21_EJS1967
crossref_primary_10_3390_e24050594
crossref_primary_10_1016_j_matcom_2023_01_015
crossref_primary_10_1080_07362994_2021_2022495
crossref_primary_10_1016_j_jspi_2018_01_003
crossref_primary_10_4213_tvp5238
crossref_primary_10_1142_S0219493723500296
crossref_primary_10_1007_s10473_019_0406_0
crossref_primary_10_1007_s11203_016_9147_z
crossref_primary_10_3390_a11120197
crossref_primary_10_1142_S0219025723500042
Cites_doi 10.1016/j.jspi.2012.10.013
10.1016/j.spl.2010.02.018
10.1007/s11203-014-9111-8
10.1023/A:1021220818545
10.1214/009053606000001541
10.31390/cosa.5.2.05
10.1007/BF02401743
ContentType Journal Article
Copyright 2015 The Korean Statistical Society
Korean Statistical Society 2015
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 The Korean Statistical Society
– notice: Korean Statistical Society 2015
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
ACYCR
DOI 10.1016/j.jkss.2015.12.001
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Korean Citation Index (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 2005-2863
EndPage 341
ExternalDocumentID oai_kci_go_kr_ARTI_1095043
oai_HAL_hal_02375093v1
10_1016_j_jkss_2015_12_001
S1226319215300417
GroupedDBID --K
--M
.UV
.~1
0R~
1B1
1~.
1~5
2JY
4.4
406
457
4G.
5GY
5VS
7-5
71M
8P~
9ZL
AAAKF
AACDK
AACTN
AAEDT
AAFGU
AAHNG
AAIKJ
AAJBT
AAKOC
AALRI
AAOAW
AAQFI
AASML
AATNV
AAXUO
ABAKF
ABAOU
ABECU
ABFGW
ABKAS
ABMQK
ABTEG
ABTKH
ABTMW
ABUCO
ABXDB
ACAOD
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACOKC
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADEZE
ADMDM
ADMUD
ADOXG
ADTPH
ADYFF
AEFQL
AEFTE
AEKER
AEMSY
AENEX
AESKC
AESTI
AEVTX
AFNRJ
AFTJW
AGGBP
AGHFR
AGMZJ
AGQEE
AGUBO
AGYEJ
AIGIU
AIGVJ
AILAN
AIMYW
AITUG
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMXSW
ARUGR
BGNMA
BLXMC
CS3
DPUIP
DU5
EBLON
EBS
EJD
EO9
EP2
EP3
F5P
FDB
FIGPU
FIRID
FNLPD
FNPLU
GBLVA
HAMUX
HZ~
IKXTQ
IWAJR
J1W
JZLTJ
LLZTM
M41
M4Y
MHUIS
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q38
RIG
ROL
RPZ
RSV
SDF
SDG
SES
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
SSZ
T5K
UOJIU
UTJUX
ZMTXR
~G-
AAYFA
ABYKQ
AJBFU
AAYXX
ACDTI
CITATION
SJYHP
1XC
ACYCR
ID FETCH-LOGICAL-c412t-4c08e50b62a46de60554d2f8b408322158a8543e2631eed821ec5c810b1e6dc23
IEDL.DBID .~1
ISSN 1226-3192
IngestDate Tue Nov 21 21:37:32 EST 2023
Wed Sep 11 06:39:37 EDT 2024
Thu Sep 12 17:35:19 EDT 2024
Sat Dec 16 12:04:41 EST 2023
Thu May 30 20:25:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords secondary
Parameter estimation
Non-ergodic Gaussian Ornstein–Uhlenbeck process
primary
Non-ergodic Gaussian Ornstein-Uhlenbeck process
secondary 60G18
primary 62F12
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-4c08e50b62a46de60554d2f8b408322158a8543e2631eed821ec5c810b1e6dc23
Notes G704-000337.2016.45.3.010
ORCID 0000-0001-8531-1163
0000-0003-4915-6850
PageCount 13
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_1095043
hal_primary_oai_HAL_hal_02375093v1
crossref_primary_10_1016_j_jkss_2015_12_001
springer_journals_10_1016_j_jkss_2015_12_001
elsevier_sciencedirect_doi_10_1016_j_jkss_2015_12_001
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of the Korean Statistical Society
PublicationTitleAbbrev J. Korean Stat. Soc
PublicationYear 2016
Publisher Elsevier B.V
Springer Singapore
Elsevier
한국통계학회
Publisher_xml – name: Elsevier B.V
– name: Springer Singapore
– name: Elsevier
– name: 한국통계학회
References Kleptsyna, Le Breton (br000060) 2002; 5
Young (br000085) 1936
Tudor, Viens (br000080) 2007; 35
Cénac, Es-Sebaiy (br000025) 2015; 35
Mendy (br000070) 2013; 143
Es-Sebaiy, K., & Viens, F. (2015). Parameter estimation for SDEs related to stationary Gaussian processes, preprint.
Hu, Nualart (br000050) 2010; 80
.
Belfadli, Es-Sebaiy, Ouknine (br000020) 2011; 1
Bardina, Es-Sebaiy (br000015) 2011; 5
El Onsy, B., Es-Sebaiy, K., & Viens, F. (2014). Parameter estimation for a partially observed Ornstein–Uhlenbeck process with long-memory noise, preprint.
El Onsy, B., Es-Sebaiy, K., & Tudor, C. (2014). Statistical analysis of the non-ergodic fractional Ornstein–Uhlenbeck process of the second kind, preprint.
Es-Sebaiy, Nourdin (br000040) 2013; Vol. 34
Azmoodeh, Morlanes (br000005) 2013
Nourdin (br000075) 2012; Vol. 4
Azmoodeh, Viitasaari (br000010) 2015; 18
Lifshits, M., & Volkova, K. (2015). Bifractional Brownian motion: Existence and Border cases, preprint.
Hu, Song (br000055) 2013; Vol. 34
Hu, Song, Viens (CR11) 2013
Bardina, Es-Sebaiy (CR3) 2011; 5
Lifshits, Volkova (CR13) 2015
Cénac, Es-Sebaiy (CR5) 2015; 35
Azmoodeh, Morlanes (CR1) 2013
Hu, Nualart (CR10) 2010; 80
Kleptsyna, Le Breton (CR12) 2002; 5
El Onsy, Es-Sebaiy, Tudor (CR6) 2014
Es-Sebaiy, Nourdin (CR8) 2013
Belfadli, Es-Sebaiy, Ouknine (CR4) 2011; 1
El Onsy, Es-Sebaiy, Viens (CR7) 2014
Tudor, Viens (CR16) 2007; 35
Es-Sebaiy, Viens (CR9) 2015
Young (CR17) 1936
Nourdin (CR15) 2012
Azmoodeh, Viitasaari (CR2) 2015; 18
Mendy (CR14) 2013; 143
Nourdin (10.1016/j.jkss.2015.12.001_br000075) 2012; Vol. 4
Hu (10.1016/j.jkss.2015.12.001_br000055) 2013; Vol. 34
Azmoodeh (10.1016/j.jkss.2015.12.001_br000005) 2013
Es-Sebaiy (10.1016/j.jkss.2015.12.001_br000040) 2013; Vol. 34
Cénac (10.1016/j.jkss.2015.12.001_br000025) 2015; 35
Belfadli (10.1016/j.jkss.2015.12.001_br000020) 2011; 1
Young (10.1016/j.jkss.2015.12.001_br000085) 1936
10.1016/j.jkss.2015.12.001_br000065
Azmoodeh (10.1016/j.jkss.2015.12.001_br000010) 2015; 18
10.1016/j.jkss.2015.12.001_br000030
10.1016/j.jkss.2015.12.001_br000035
Hu (10.1016/j.jkss.2015.12.001_br000050) 2010; 80
Kleptsyna (10.1016/j.jkss.2015.12.001_br000060) 2002; 5
Tudor (10.1016/j.jkss.2015.12.001_br000080) 2007; 35
Bardina (10.1016/j.jkss.2015.12.001_br000015) 2011; 5
10.1016/j.jkss.2015.12.001_br000045
Mendy (10.1016/j.jkss.2015.12.001_br000070) 2013; 143
References_xml – volume: Vol. 34
  start-page: 427
  year: 2013
  end-page: 442
  ident: br000055
  article-title: Parameter estimation for fractional Ornstein–Uhlenbeck processes with discrete observations
  publication-title: Malliavin calculus and stochastic analysis: A Festschrift in honor of David Nualart
  contributor:
    fullname: Song
– volume: 18
  start-page: 205
  year: 2015
  end-page: 227
  ident: br000010
  article-title: Parameter estimation based on discrete observations of fractional Ornstein–Uhlenbeck process of the second kind
  publication-title: Statistical Inference for Stochastic Processes
  contributor:
    fullname: Viitasaari
– volume: 35
  start-page: 285
  year: 2015
  end-page: 300
  ident: br000025
  article-title: Almost sure central limit theorems for random ratios and applications to LSE for fractional Ornstein–Uhlenbeck processes
  publication-title: Probability and Mathematical Statistics
  contributor:
    fullname: Es-Sebaiy
– volume: 143
  start-page: 663
  year: 2013
  end-page: 674
  ident: br000070
  article-title: Parametric estimation for sub-fractional Ornstein–Uhlenbeck process
  publication-title: Journal of Statistical Planning and Inference
  contributor:
    fullname: Mendy
– volume: 5
  start-page: 333
  year: 2011
  end-page: 340
  ident: br000015
  article-title: An extension of bifractional Brownian motion
  publication-title: Communications on Stochastic Analysis
  contributor:
    fullname: Es-Sebaiy
– volume: 35
  start-page: 1183
  year: 2007
  end-page: 1212
  ident: br000080
  article-title: Statistical aspects of the fractional stochastic calculus
  publication-title: The Annals of Statistics
  contributor:
    fullname: Viens
– volume: 1
  start-page: 1
  year: 2011
  end-page: 16
  ident: br000020
  article-title: Parameter estimation for fractional Ornstein–Uhlenbeck processes: Non-ergodic case
  publication-title: Frontiers in Science and Engineering
  contributor:
    fullname: Ouknine
– volume: 80
  start-page: 1030
  year: 2010
  end-page: 1038
  ident: br000050
  article-title: Parameter estimation for fractional Ornstein–Uhlenbeck processes
  publication-title: Statistics & Probability Letters
  contributor:
    fullname: Nualart
– year: 2013
  ident: br000005
  article-title: Drift parameter estimation for fractional Ornstein–Uhlenbeck process of the second kind
  publication-title: Statistics: A Journal of Theoretical and Applied Statistics
  contributor:
    fullname: Morlanes
– volume: Vol. 34
  start-page: 385
  year: 2013
  end-page: 412
  ident: br000040
  article-title: Parameter estimation for
  publication-title: Springer proceedings in mathematics and statistics
  contributor:
    fullname: Nourdin
– start-page: 251
  year: 1936
  end-page: 282
  ident: br000085
  article-title: An inequality of the Hölder type connected with Stieltjes integration
  publication-title: Acta Mathematica
  contributor:
    fullname: Young
– volume: Vol. 4
  year: 2012
  ident: br000075
  article-title: Selected aspects of fractional Brownian motion
  publication-title: Bocconi & springer series
  contributor:
    fullname: Nourdin
– volume: 5
  start-page: 229
  year: 2002
  end-page: 241
  ident: br000060
  article-title: Statistical analysis of the fractional Ornstein–Uhlenbeck type process
  publication-title: Statistical Inference for Stochastic Processes
  contributor:
    fullname: Le Breton
– volume: 143
  start-page: 663
  year: 2013
  end-page: 674
  ident: CR14
  article-title: Parametric estimation for sub-fractional Ornstein-Uhlenbeck process
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/j.jspi.2012.10.013
  contributor:
    fullname: Mendy
– year: 2014
  ident: CR6
  publication-title: Statistical analysis of the non-ergodic fractional Ornstein-Uhlenbeck process of the second kind, preprint
  contributor:
    fullname: Tudor
– volume: 80
  start-page: 1030
  year: 2010
  end-page: 1038
  ident: CR10
  article-title: Parameter estimation for fractional Ornstein-Uhlenbeck processes
  publication-title: Statistics & Probability Letters
  doi: 10.1016/j.spl.2010.02.018
  contributor:
    fullname: Nualart
– volume: 18
  start-page: 205
  issue: 3
  year: 2015
  end-page: 227
  ident: CR2
  article-title: Parameter estimation based on discrete observations of fractional Ornstein-Uhlenbeck process of the second kind
  publication-title: Statistical Inference for Stochastic Processes
  doi: 10.1007/s11203-014-9111-8
  contributor:
    fullname: Viitasaari
– volume: 35
  start-page: 285
  issue: 2
  year: 2015
  end-page: 300
  ident: CR5
  article-title: Almost sure central limit theorems for random ratios and applications to LSE for fractional Ornstein-Uhlenbeck processes
  publication-title: Probability and Mathematical Statistics
  contributor:
    fullname: Es-Sebaiy
– year: 2015
  ident: CR9
  publication-title: Parameter estimation for SDEs related to stationary Gaussian processes, preprint
  contributor:
    fullname: Viens
– volume: 1
  start-page: 1
  issue: 1
  year: 2011
  end-page: 16
  ident: CR4
  article-title: Parameter estimation for fractional Ornstein-Uhlenbeck processes: Non-ergodic case
  publication-title: Frontiers in Science and Engineering
  contributor:
    fullname: Ouknine
– start-page: 427
  year: 2013
  end-page: 442
  ident: CR11
  article-title: Parameter estimation for fractional Ornstein-Uhlenbeck processes with discrete observations
  publication-title: Springer proceedings in mathematics and statistics: Vol. 34. Malliavin calculus and stochastic analysis: A Festschrift in honor of David Nualart
  contributor:
    fullname: Viens
– year: 2013
  ident: CR1
  article-title: Drift parameter estimation for fractional Ornstein-Uhlenbeck process of the second kind
  publication-title: Statistics: A Journal of Theoretical and Applied Statistics
  contributor:
    fullname: Morlanes
– year: 2014
  ident: CR7
  publication-title: Parameter estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise, preprint
  contributor:
    fullname: Viens
– volume: 5
  start-page: 229
  year: 2002
  end-page: 241
  ident: CR12
  article-title: Statistical analysis of the fractional Ornstein-Uhlenbeck type process
  publication-title: Statistical Inference for Stochastic Processes
  doi: 10.1023/A:1021220818545
  contributor:
    fullname: Le Breton
– year: 2012
  ident: CR15
  article-title: Selected aspects of fractional Brownian motion
  publication-title: Bocconi & springer series: Vol. 4
  contributor:
    fullname: Nourdin
– volume: 35
  start-page: 1183
  issue: 3
  year: 2007
  end-page: 1212
  ident: CR16
  article-title: Statistical aspects of the fractional stochastic calculus
  publication-title: The Annals of Statistics
  doi: 10.1214/009053606000001541
  contributor:
    fullname: Viens
– year: 2015
  ident: CR13
  publication-title: Bifractional Brownian motion: Existence and Border cases, preprint
  contributor:
    fullname: Volkova
– start-page: 385
  year: 2013
  end-page: 412
  ident: CR8
  article-title: Parameter estimation for α-fractional bridges
  publication-title: Springer proceedings in mathematics and statistics: Vol. 34
  contributor:
    fullname: Nourdin
– volume: 5
  start-page: 333
  year: 2011
  end-page: 340
  ident: CR3
  article-title: An extension of bifractional Brownian motion
  publication-title: Communications on Stochastic Analysis
  doi: 10.31390/cosa.5.2.05
  contributor:
    fullname: Es-Sebaiy
– start-page: 251
  year: 1936
  end-page: 282
  ident: CR17
  article-title: An inequality of the Hölder type connected with Stieltjes integration
  publication-title: Acta Mathematica
  contributor:
    fullname: Young
– volume: 5
  start-page: 229
  year: 2002
  ident: 10.1016/j.jkss.2015.12.001_br000060
  article-title: Statistical analysis of the fractional Ornstein–Uhlenbeck type process
  publication-title: Statistical Inference for Stochastic Processes
  doi: 10.1023/A:1021220818545
  contributor:
    fullname: Kleptsyna
– volume: Vol. 4
  year: 2012
  ident: 10.1016/j.jkss.2015.12.001_br000075
  article-title: Selected aspects of fractional Brownian motion
  contributor:
    fullname: Nourdin
– ident: 10.1016/j.jkss.2015.12.001_br000045
– volume: 80
  start-page: 1030
  year: 2010
  ident: 10.1016/j.jkss.2015.12.001_br000050
  article-title: Parameter estimation for fractional Ornstein–Uhlenbeck processes
  publication-title: Statistics & Probability Letters
  doi: 10.1016/j.spl.2010.02.018
  contributor:
    fullname: Hu
– volume: 35
  start-page: 285
  issue: 2
  year: 2015
  ident: 10.1016/j.jkss.2015.12.001_br000025
  article-title: Almost sure central limit theorems for random ratios and applications to LSE for fractional Ornstein–Uhlenbeck processes
  publication-title: Probability and Mathematical Statistics
  contributor:
    fullname: Cénac
– volume: 1
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.jkss.2015.12.001_br000020
  article-title: Parameter estimation for fractional Ornstein–Uhlenbeck processes: Non-ergodic case
  publication-title: Frontiers in Science and Engineering
  contributor:
    fullname: Belfadli
– volume: Vol. 34
  start-page: 385
  year: 2013
  ident: 10.1016/j.jkss.2015.12.001_br000040
  article-title: Parameter estimation for α-fractional bridges
  contributor:
    fullname: Es-Sebaiy
– volume: 18
  start-page: 205
  issue: 3
  year: 2015
  ident: 10.1016/j.jkss.2015.12.001_br000010
  article-title: Parameter estimation based on discrete observations of fractional Ornstein–Uhlenbeck process of the second kind
  publication-title: Statistical Inference for Stochastic Processes
  doi: 10.1007/s11203-014-9111-8
  contributor:
    fullname: Azmoodeh
– year: 2013
  ident: 10.1016/j.jkss.2015.12.001_br000005
  article-title: Drift parameter estimation for fractional Ornstein–Uhlenbeck process of the second kind
  publication-title: Statistics: A Journal of Theoretical and Applied Statistics
  contributor:
    fullname: Azmoodeh
– volume: 5
  start-page: 333
  year: 2011
  ident: 10.1016/j.jkss.2015.12.001_br000015
  article-title: An extension of bifractional Brownian motion
  publication-title: Communications on Stochastic Analysis
  doi: 10.31390/cosa.5.2.05
  contributor:
    fullname: Bardina
– ident: 10.1016/j.jkss.2015.12.001_br000035
– ident: 10.1016/j.jkss.2015.12.001_br000065
– volume: 35
  start-page: 1183
  issue: 3
  year: 2007
  ident: 10.1016/j.jkss.2015.12.001_br000080
  article-title: Statistical aspects of the fractional stochastic calculus
  publication-title: The Annals of Statistics
  doi: 10.1214/009053606000001541
  contributor:
    fullname: Tudor
– start-page: 251
  year: 1936
  ident: 10.1016/j.jkss.2015.12.001_br000085
  article-title: An inequality of the Hölder type connected with Stieltjes integration
  publication-title: Acta Mathematica
  doi: 10.1007/BF02401743
  contributor:
    fullname: Young
– volume: Vol. 34
  start-page: 427
  year: 2013
  ident: 10.1016/j.jkss.2015.12.001_br000055
  article-title: Parameter estimation for fractional Ornstein–Uhlenbeck processes with discrete observations
  contributor:
    fullname: Hu
– ident: 10.1016/j.jkss.2015.12.001_br000030
– volume: 143
  start-page: 663
  year: 2013
  ident: 10.1016/j.jkss.2015.12.001_br000070
  article-title: Parametric estimation for sub-fractional Ornstein–Uhlenbeck process
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/j.jspi.2012.10.013
  contributor:
    fullname: Mendy
SSID ssj0064120
ssib023362471
Score 2.3735085
Snippet The statistical analysis for equations driven by fractional Gaussian process (fGp) is relatively recent. The development of stochastic calculus with respect to...
SourceID nrf
hal
crossref
springer
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 329
SubjectTerms Applied Statistics
Bayesian Inference
Mathematics
Non-ergodic Gaussian Ornstein–Uhlenbeck process
Parameter estimation
Probability
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
통계학
Title Least squares estimator for non-ergodic Ornstein–Uhlenbeck processes driven by Gaussian processes
URI https://dx.doi.org/10.1016/j.jkss.2015.12.001
https://link.springer.com/article/10.1016/j.jkss.2015.12.001
https://hal.science/hal-02375093
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002151107
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of the Korean Statistical Society, 2016, 45(3), , pp.329-341
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUKp14QqyibLMQNTLPYlnusEKUglgNU4mYljgMhUErSInFB_AN_yJcwk6UIgThwipKMY2tsj9_EM8-E7MQ2UpJLw2zIJeNCREx5QYc51jFChbLjckwUPjuX_QE_uRbXDXJQ58JgWGVl-0ubXljr6km70mZ7lCTtSxeQg490XqJgjcKMcg6LEYzp_ddpmIfkJTUjCjOUrhJnyhivuzRHym5XFL8Eq4NhflmcZm4xSnJmmMU_NkyLdag3T-YqAEm7ZRsXSMMOF0kTMWNJubxEzCmex0PzpwnmFlGk0XhA15oCPqXg7TObgTOaGHqRATa0yfDj7X1we4-hXialozJzAApGGVpCGr7Qo2CSY7Ll18tlMugdXh30WXWWAjOggTHjxlFWOKH0Ai4jC06M4JEXq5A7OKddoQIluG9RpbBsKs-1RhjlOqFrZWQ8f4XMQgvtKqGGG19FNsAcVR77RvmWwxcB2ImOsJHTIru1EvWopMzQdSzZnUaVa1S5dj0MqGsRUetZf-t4DTb9z3Lb0CnTCpAlu9891fgMYAjiIP8ZhaDPdGqSQgCvN486zTQ4C8e4-Y78bS2yV3epriZw_kfFa_9s8Dppwp0s49M2yOw4m9hNADTjcKsYsZ8XjfLN
link.rule.ids 230,315,786,790,891,4521,27955,27956,45618
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB0l9ACXCgqIFFosxA1M9sM2zhGhQihJOEAkbtau14ElbQibBIlL1f_Qf9hf0pn9CKpAHDitZHvX1ng9frP75hlgd-ASrYSy3MVCcSFlwnUQtbjnPCt1rFq-oEThbk-1--L7tbyuwXGVC0O0ytL3Fz4999ZlSbO0ZnOcps1LH5FDSHJeMleNOqzDB0IDxOs6-DXneShRaDNSa07Ny8yZguR1N5yQZrcv82-C5ckwr-xO9VuiSdZH2eDFH9N8IzpZho8lgmRHxSBXoOZGn2CJQGOhubwKtkMH8rDJw4ySixjpaPyk2JohQGUY7nOXYTSaWnaRITh06ejv7z_92x_E9bJDNi5SB_DGJCNXyOIndhrNJpRt-Vy5Bv2Tb1fHbV4epsAtWmDKhfW0k16sgkioxGEUI0USDHQsPFrUvtSRliJ0ZFPcN3XgOyut9r3YdyqxQbgOCzhCtwHMChvqxEWUpCoGodWhE_hERHayJV3iNWCvMqIZF5oZpiKT3RkyuSGTGz8gRl0DZGVn89_MG3Tqb963g5My74BksttHHUNliEMICIWP1AjnzAxtmjeg6829GWYGo4Uz-vtOAm4N2K-m1JQrePJGx5_fOeBtWGxfdTumc9Y734QlrFEFWW0LFqbZzH1BdDONv-Zv7z9nefX0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Least+squares+estimator+for+non-ergodic+Ornstein%E2%80%93Uhlenbeck+processes+driven+by+Gaussian+processes&rft.jtitle=Journal+of+the+Korean+Statistical+Society&rft.au=El+Machkouri%2C+Mohamed&rft.au=Es-Sebaiy%2C+Khalifa&rft.au=Ouknine%2C+Youssef&rft.date=2016-09-01&rft.pub=Elsevier+B.V&rft.issn=1226-3192&rft.volume=45&rft.issue=3&rft.spage=329&rft.epage=341&rft_id=info:doi/10.1016%2Fj.jkss.2015.12.001&rft.externalDocID=S1226319215300417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-3192&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-3192&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-3192&client=summon