Laying it on thick: a study in secondary growth
Abstract The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world’s biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors...
Saved in:
Published in | Journal of experimental botany Vol. 73; no. 3; pp. 665 - 679 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
UK
Oxford University Press
27.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world’s biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors from which conductive xylem and phloem are derived. The cambium is a somewhat unusual stem cell population in two respects, making it an interesting subject for developmental research. Firstly, it arises post-germination, and thus represents a model for understanding stem cell initiation beyond embryogenesis. Secondly, xylem and phloem differentiate on opposing sides of cambial stem cells, making them bifacial in nature. Recent discoveries in Arabidopsis thaliana have provided insight into the molecular mechanisms that regulate the initiation, patterning, and maintenance of the cambium. In this review, the roles of intercellular signalling via mobile transcription factors, peptide–receptor modules, and phytohormones are described. Crosstalk between these regulatory pathways is becoming increasingly apparent, yet the underlying mechanisms are not fully understood. Future study of the interaction between multiple independently identified regulators, as well as the functions of their orthologues in trees, will deepen our understanding of radial growth in plants.
We review the literature describing the molecular mechanisms by which the vascular cambium is initiated and maintained in Arabidopsis. |
---|---|
AbstractList | The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world's biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors from which conductive xylem and phloem are derived. The cambium is a somewhat unusual stem cell population in two respects, making it an interesting subject for developmental research. Firstly, it arises post-germination, and thus represents a model for understanding stem cell initiation beyond embryogenesis. Secondly, xylem and phloem differentiate on opposing sides of cambial stem cells, making them bifacial in nature. Recent discoveries in Arabidopsis thaliana have provided insight into the molecular mechanisms that regulate the initiation, patterning, and maintenance of the cambium. In this review, the roles of intercellular signalling via mobile transcription factors, peptide-receptor modules, and phytohormones are described. Crosstalk between these regulatory pathways is becoming increasingly apparent, yet the underlying mechanisms are not fully understood. Future study of the interaction between multiple independently identified regulators, as well as the functions of their orthologues in trees, will deepen our understanding of radial growth in plants.The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world's biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors from which conductive xylem and phloem are derived. The cambium is a somewhat unusual stem cell population in two respects, making it an interesting subject for developmental research. Firstly, it arises post-germination, and thus represents a model for understanding stem cell initiation beyond embryogenesis. Secondly, xylem and phloem differentiate on opposing sides of cambial stem cells, making them bifacial in nature. Recent discoveries in Arabidopsis thaliana have provided insight into the molecular mechanisms that regulate the initiation, patterning, and maintenance of the cambium. In this review, the roles of intercellular signalling via mobile transcription factors, peptide-receptor modules, and phytohormones are described. Crosstalk between these regulatory pathways is becoming increasingly apparent, yet the underlying mechanisms are not fully understood. Future study of the interaction between multiple independently identified regulators, as well as the functions of their orthologues in trees, will deepen our understanding of radial growth in plants. The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world’s biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors from which conductive xylem and phloem are derived. The cambium is a somewhat unusual stem cell population in two respects, making it an interesting subject for developmental research. Firstly, it arises post-germination, and thus represents a model for understanding stem cell initiation beyond embryogenesis. Secondly, xylem and phloem differentiate on opposing sides of cambial stem cells, making them bifacial in nature. Recent discoveries in Arabidopsis thaliana have provided insight into the molecular mechanisms that regulate the initiation, patterning, and maintenance of the cambium. In this review, the roles of intercellular signalling via mobile transcription factors, peptide–receptor modules, and phytohormones are described. Crosstalk between these regulatory pathways is becoming increasingly apparent, yet the underlying mechanisms are not fully understood. Future study of the interaction between multiple independently identified regulators, as well as the functions of their orthologues in trees, will deepen our understanding of radial growth in plants. We review the literature describing the molecular mechanisms by which the vascular cambium is initiated and maintained in Arabidopsis. The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world's biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors from which conductive xylem and phloem are derived. The cambium is a somewhat unusual stem cell population in two respects, making it an interesting subject for developmental research. Firstly, it arises post-germination, and thus represents a model for understanding stem cell initiation beyond embryogenesis. Secondly, xylem and phloem differentiate on opposing sides of cambial stem cells, making them bifacial in nature. Recent discoveries in Arabidopsis thaliana have provided insight into the molecular mechanisms that regulate the initiation, patterning, and maintenance of the cambium. In this review, the roles of intercellular signalling via mobile transcription factors, peptide-receptor modules, and phytohormones are described. Crosstalk between these regulatory pathways is becoming increasingly apparent, yet the underlying mechanisms are not fully understood. Future study of the interaction between multiple independently identified regulators, as well as the functions of their orthologues in trees, will deepen our understanding of radial growth in plants. Abstract The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world’s biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors from which conductive xylem and phloem are derived. The cambium is a somewhat unusual stem cell population in two respects, making it an interesting subject for developmental research. Firstly, it arises post-germination, and thus represents a model for understanding stem cell initiation beyond embryogenesis. Secondly, xylem and phloem differentiate on opposing sides of cambial stem cells, making them bifacial in nature. Recent discoveries in Arabidopsis thaliana have provided insight into the molecular mechanisms that regulate the initiation, patterning, and maintenance of the cambium. In this review, the roles of intercellular signalling via mobile transcription factors, peptide–receptor modules, and phytohormones are described. Crosstalk between these regulatory pathways is becoming increasingly apparent, yet the underlying mechanisms are not fully understood. Future study of the interaction between multiple independently identified regulators, as well as the functions of their orthologues in trees, will deepen our understanding of radial growth in plants. We review the literature describing the molecular mechanisms by which the vascular cambium is initiated and maintained in Arabidopsis. |
Author | Etchells, J Peter Turley, Emma K |
AuthorAffiliation | 1 Department of Biosciences, Durham University , South Road, Durham DH1 3LE , UK 3 University of Manchester , UK 2 The Sainsbury Laboratory, Norwich Research Park , Norwich NR4 7UH , UK |
AuthorAffiliation_xml | – name: 1 Department of Biosciences, Durham University , South Road, Durham DH1 3LE , UK – name: 3 University of Manchester , UK – name: 2 The Sainsbury Laboratory, Norwich Research Park , Norwich NR4 7UH , UK |
Author_xml | – sequence: 1 givenname: Emma K surname: Turley fullname: Turley, Emma K organization: Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK – sequence: 2 givenname: J Peter orcidid: 0000-0002-8524-4949 surname: Etchells fullname: Etchells, J Peter email: peter.etchells@durham.ac.uk organization: Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34655214$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctLAzEQxoNU7ENP3iUnEWRtks1j14MgxRcUvOg5ZLNpm7pN6iar9r93S2tRQQ_DwMxvvhnm64OO884AcIzRBUZ5Opx_FENTq4Iytgd6mHKUEJriDughREiCcia6oB_CHCHEEGMHoJtSzhjBtAeGY7WybgpthN7BOLP65RIqGGJTrqB1MBjtXanqFZzW_j3ODsH-RFXBHG3zADzf3jyN7pPx493D6HqcaIpJTKjgXGcKs0IhIVRKWRuiwIUhGReIKc1FW-Oc5liUlOGSKGW0npS8EKnB6QBcbXSXTbEwpTYu1qqSy9ou2mOkV1b-7Dg7k1P_JjORp5kgrcDZVqD2r40JUS5s0KaqlDO-CZKwjGQ4ozht0ZPvu3ZLvr7UAucbQNc-hNpMdghGcu2BbD2QWw9aGv-itY0qWr8-1FZ_zJxuZnyz_Ff8E6akmBg |
CitedBy_id | crossref_primary_10_1016_j_genrep_2023_101799 crossref_primary_10_1016_j_pbi_2024_102544 crossref_primary_10_1093_jxb_erae410 crossref_primary_10_1111_nph_18881 crossref_primary_10_1016_j_pbi_2023_102404 crossref_primary_10_3390_agronomy13082142 crossref_primary_10_1016_j_scienta_2023_112185 crossref_primary_10_1016_j_scienta_2025_114003 crossref_primary_10_1093_treephys_tpad156 crossref_primary_10_3390_ijms241914976 crossref_primary_10_3390_f14040823 crossref_primary_10_1007_s12374_022_09355_4 crossref_primary_10_3389_fpls_2022_864422 crossref_primary_10_3389_fpls_2022_970342 crossref_primary_10_3390_f14061102 crossref_primary_10_1007_s11240_023_02478_7 crossref_primary_10_1016_j_envexpbot_2024_105785 crossref_primary_10_1080_03071375_2024_2358675 crossref_primary_10_3389_fpls_2024_1369241 crossref_primary_10_48130_forres_0024_0030 crossref_primary_10_1016_j_cub_2024_10_046 crossref_primary_10_1016_j_pbi_2023_102451 |
Cites_doi | 10.1073/pnas.1111902108 10.1104/pp.19.01259 10.1186/1471-2229-13-94 10.1093/pcp/pct076 10.1016/j.cub.2017.03.056 10.1111/nph.14521 10.1073/pnas.1711842115 10.1111/j.1365-313X.2005.02440.x 10.1101/gad.297580.117 10.1038/nature25184 10.1111/jipb.12846 10.1126/science.1128691 10.4161/psb.4.7.8970 10.1016/j.cub.2020.05.046 10.1105/tpc.112.104695 10.4161/psb.5.6.11665 10.1038/ncomms4504 10.1126/science.1109710 10.1016/j.cub.2008.02.070 10.1038/s41467-018-03256-2 10.3389/fpls.2020.00762 10.1371/journal.pone.0065183 10.1073/pnas.0808444105 10.1104/pp.17.00765 10.1093/jxb/erab089 10.1016/j.devcel.2010.03.012 10.3389/fpls.2016.00296 10.1105/tpc.107.055798 10.1016/j.molp.2016.07.004 10.1016/j.cub.2016.05.053 10.4161/psb.22437 10.1093/plphys/kiaa098 10.1105/tpc.19.00562 10.1073/pnas.152342599 10.1016/j.molp.2014.10.008 10.3732/ajb.89.6.908 10.1016/j.tplants.2018.01.003 10.1105/tpc.110.076083 10.1038/nrm.2015.6 10.1093/pcp/pcp180 10.1016/j.cub.2018.12.041 10.1016/j.cub.2015.07.068 10.1073/pnas.1407337111 10.1038/nature23317 10.1111/jipb.12108 10.1146/annurev-arplant-050718-100402 10.1242/dev.171355 10.1016/j.pbi.2019.08.008 10.1104/pp.109.149641 10.1104/pp.010926 10.1016/j.cub.2016.07.014 10.1242/dev.044941 10.1104/pp.110.167007 10.1126/science.1255215 10.1073/pnas.0603522103 10.1016/j.cub.2007.05.049 10.1073/pnas.1117537109 10.1242/dev.177105 10.1146/annurev.cellbio.18.012502.083431 10.1371/journal.pgen.1001312 10.1038/s41477-018-0180-3 10.1155/2016/3631647 10.1371/journal.pgen.1002997 10.1105/tpc.114.132407 10.1111/nph.17255 10.1073/pnas.1807863116 10.1111/nph.13642 10.1111/pbi.12484 10.1073/pnas.0805619105 10.1073/pnas.93.17.9282 10.1105/tpc.17.00153 10.1093/emboj/17.5.1405 10.1111/nph.16331 10.1093/jxb/ery230 10.1126/science.1128436 10.1199/tab.0177 10.1038/s41586-018-0837-0 10.1104/pp.113.218198 10.1101/gad.179895.111 10.1111/nph.14335 10.1242/dev.004788 10.1016/j.cub.2015.02.023 10.1038/s41598-017-02651-x 10.1101/sqb.2012.77.014886 10.1105/tpc.110.078634 10.1093/jxb/ert196 10.1038/ncomms12383 10.1016/j.cub.2011.04.017 10.1105/tpc.111.086637 10.1093/jxb/eraa423 10.1038/cr.2016.45 10.1105/tpc.111.087874 10.1038/nature08977 10.1111/tpj.13513 10.1016/j.pbi.2015.10.011 10.1126/science.1253736 10.1111/nph.15128 10.1104/pp.115.2.577 10.3390/biom10060959 10.1111/nph.16289 10.1073/pnas.0809395105 10.1104/pp.105.063495 10.1034/j.1399-3054.2002.1140413.x 10.1242/dev.01028 10.1038/nature08682 10.1016/j.cub.2021.05.036 10.1016/S0092-8674(00)80700-X 10.1016/j.devcel.2012.12.013 10.1016/j.devcel.2005.12.001 10.1093/jxb/err438 10.1016/j.pbi.2017.12.009 10.1242/dev.006296 10.1111/j.1365-313X.2010.04283.x 10.1186/1746-4811-8-30 10.1111/jipb.12044 10.1007/s00709-021-01633-1 10.1038/emboj.2012.301 10.1111/j.1469-8137.2010.03236.x 10.3389/fpls.2016.00897 10.1111/tpj.14670 10.1104/pp.17.01232 10.1038/s41586-018-0839-y 10.1105/tpc.111.084020 10.1098/rsos.190126 10.1016/j.cub.2014.07.050 10.1016/j.plantsci.2019.110322 10.1126/science.aax0848 10.1093/pcp/pcy012 10.1038/nature08836 10.1038/35095061 10.1111/nph.14631 10.1038/sj.emboj.7600340 10.1038/nature14561 10.1093/bioinformatics/btm113 10.1111/tpj.13169 10.1073/pnas.0805617106 10.1038/s41477-019-0522-9 10.1038/sdata.2019.25 10.1111/nph.17200 10.1242/dev.091314 10.1093/jxb/ert354 10.1016/j.pbi.2020.07.001 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2021 The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2021 – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/jxb/erab455 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access (Activated by CARLI) url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1460-2431 |
EndPage | 679 |
ExternalDocumentID | PMC8793872 34655214 10_1093_jxb_erab455 10.1093/jxb/erab455 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/V008129/1 – fundername: ; grantid: BB/V008129/1 |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29K 2WC 2~F 3O- 4.4 482 48X 53G 5GY 5VS 5WA 5WD 6.Y 70D AAHBH AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAVLN AAWDT AAXTN ABBHK ABEUO ABIXL ABJNI ABLJU ABMNT ABNKS ABPPZ ABPTD ABQLI ABQTQ ABSAR ABSMQ ABWST ABXSQ ABXVV ABZBJ ACFRR ACGFO ACGFS ACGOD ACIWK ACMRT ACNCT ACPQN ACPRK ACUFI ACUTJ ACZBC ADACV ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADOCK ADQBN ADRIX ADRTK ADULT ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AETEA AEUPB AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFSHK AFXEN AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AHMBA AHXPO AI. AIAGR AIJHB AJEEA AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD APIBT APJGH APWMN AQDSO AQVQM ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC C1A CAG CDBKE COF CS3 CXTWN CZ4 D-I DAKXR DATOO DFGAJ DIK DILTD DU5 D~K E3Z EBS ECGQY EE~ EJD ELUNK ESX F20 F5P F9B FEDTE FHSFR FLUFQ FOEOM FQBLK G8K GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ H~9 IOX IPSME J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JXSIZ KAQDR KBUDW KC5 KOP KQ8 KSI KSN M-Z M49 MBTAY ML0 MVM N9A NEJ NGC NLBLG NOMLY NTWIH NU- NVLIB O0~ O9- OAWHX OBOKY ODMLO OHT OJQWA OJZSN OK1 OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO SA0 TCN TEORI TLC TN5 TOX TR2 UHB UKR UPT VH1 W8F WH7 WOQ X7H XOL YAYTL YKOAZ YQT YSK YXANX YZZ ZCG ZKX ~02 ~91 ~KM AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ABXZS ADNBA AGORE AHGBF AJBYB AJNCP ALXQX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c412t-4766c8a15ba077a345a347b1be286705ac6745a664917d451d2aaeccfd6b73e13 |
IEDL.DBID | TOX |
ISSN | 0022-0957 1460-2431 |
IngestDate | Thu Aug 21 14:00:45 EDT 2025 Fri Jul 11 09:42:48 EDT 2025 Thu Apr 03 06:58:30 EDT 2025 Tue Jul 01 03:05:50 EDT 2025 Thu Apr 24 23:11:18 EDT 2025 Wed Aug 28 03:30:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | xylem stem cells cambium cytokinin auxin Arabidopsis transcription factors phloem procambium signalling |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-4766c8a15ba077a345a347b1be286705ac6745a664917d451d2aaeccfd6b73e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8524-4949 |
OpenAccessLink | https://dx.doi.org/10.1093/jxb/erab455 |
PMID | 34655214 |
PQID | 2582818413 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8793872 proquest_miscellaneous_2582818413 pubmed_primary_34655214 crossref_primary_10_1093_jxb_erab455 crossref_citationtrail_10_1093_jxb_erab455 oup_primary_10_1093_jxb_erab455 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-27 |
PublicationDateYYYYMMDD | 2022-01-27 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | UK |
PublicationPlace_xml | – name: UK – name: England |
PublicationTitle | Journal of experimental botany |
PublicationTitleAlternate | J Exp Bot |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Miyashima (2022012715034188800_CIT0079) 2013; 32 Mallory (2022012715034188800_CIT0073) 2004; 23 Zhu (2022012715034188800_CIT0145) 2007; 23 Hoang (2022012715034188800_CIT0046) 2020; 30 Whitford (2022012715034188800_CIT0135) 2008; 105 Bossinger (2022012715034188800_CIT0012) 2018; 69 Etchells (2022012715034188800_CIT0033) 2010; 5 Qiang (2022012715034188800_CIT0090) 2013; 55 Busch (2022012715034188800_CIT0014) 2010; 18 Pillitteri (2022012715034188800_CIT0089) 2007; 134 Lee (2022012715034188800_CIT0063) 2012; 26 Etchells (2022012715034188800_CIT0029) 2013; 140 Chandrasekara (2022012715034188800_CIT0020) 2016; 2016 Suer (2022012715034188800_CIT0114) 2011; 23 Sasidharan (2022012715034188800_CIT0098) 2018; 176 Ji (2022012715034188800_CIT0053) 2010; 152 Ito (2022012715034188800_CIT0050) 2006; 313 Lin (2022012715034188800_CIT0068) 2017; 31 Takata (2022012715034188800_CIT0118) 2012; 8 Chaffey (2022012715034188800_CIT0019) 2002; 114 Sablowski (2022012715034188800_CIT0096) 2014; 65 Uchida (2022012715034188800_CIT0127) 2012; 109 Leyser (2022012715034188800_CIT0066) 2018; 176 Shuai (2022012715034188800_CIT0106) 2002; 129 Becraft (2022012715034188800_CIT0008) 2002; 18 Kondo (2022012715034188800_CIT0057) 2010; 51 Weijers (2022012715034188800_CIT0134) 2006; 10 Hardtke (2022012715034188800_CIT0041) 1998; 17 Smet (2022012715034188800_CIT0109) 2019; 29 Sehr (2022012715034188800_CIT0101) 2010; 63 Tameshige (2022012715034188800_CIT0120) 2016; 26 Hilleary (2022012715034188800_CIT0043) 2018; 43 Lehmann (2022012715034188800_CIT0065) 2016; 29 Zhang (2022012715034188800_CIT0143) 2016; 9 Dubois (2022012715034188800_CIT0026) 2018; 23 Stahl (2022012715034188800_CIT0113) 2009; 4 Taiz (2022012715034188800_CIT0117) 2002 Ohashi-Ito (2022012715034188800_CIT0088) 2014; 24 Kucukoglu (2022012715034188800_CIT0060) 2020; 226 Miyawaki (2022012715034188800_CIT0080) 2006; 103 Cai (2022012715034188800_CIT0016) 2017; 214 Kondo (2022012715034188800_CIT0058) 2015; 8 Fischer (2022012715034188800_CIT0034) 2019; 70 Bagdassarian (2022012715034188800_CIT0004) 2020; 57 Uchida (2022012715034188800_CIT0128) 2013; 64 Shpak (2022012715034188800_CIT0103) 2013; 55 Wunderling (2022012715034188800_CIT0137) 2018; 219 Nilsson (2022012715034188800_CIT0086) 2008; 20 Campilho (2022012715034188800_CIT0017) 2020; 53 Sundell (2022012715034188800_CIT0116) 2017; 29 Ye (2022012715034188800_CIT0140) 2021; 31 Agusti (2022012715034188800_CIT0003) 2011; 7 Wang (2022012715034188800_CIT0132) 2013; 13 Trewavas (2022012715034188800_CIT0124) 2021; 258 Jordá (2022012715034188800_CIT0055) 2016; 7 Bollhöner (2022012715034188800_CIT0011) 2012; 63 Gursanscky (2022012715034188800_CIT0039) 2016; 86 Ren (2022012715034188800_CIT0092) 2019; 61 Kucukoglu (2022012715034188800_CIT0061) 2017; 215 Maheshwari (2022012715034188800_CIT0072) 2016; 7 Ragni (2022012715034188800_CIT0091) 2011; 23 Tuskan (2022012715034188800_CIT0126) 2006; 313 Nakajima (2022012715034188800_CIT0083) 2001; 413 Yang (2022012715034188800_CIT0139) 2020; 71 Ohashi-Ito (2022012715034188800_CIT0087) 2007; 134 Wang (2022012715034188800_CIT0133) 2019; 146 Shpak (2022012715034188800_CIT0104) 2004; 131 Meng (2022012715034188800_CIT0076) 2013; 24 Morita (2022012715034188800_CIT0081) 2016; 7 Han (2022012715034188800_CIT0040) 2018; 4 Kondo (2022012715034188800_CIT0059) 2014; 5 Rodriguez-Villalon (2022012715034188800_CIT0095) 2014; 111 Smit (2022012715034188800_CIT0111) 2020; 32 Woodward (2022012715034188800_CIT0136) 2005; 139 Agusti (2022012715034188800_CIT0002) 2011; 108 Sibout (2022012715034188800_CIT0107) 2008; 18 Takata (2022012715034188800_CIT0119) 2013; 8 Abrash (2022012715034188800_CIT0001) 2011; 23 Ikematsu (2022012715034188800_CIT0048) 2017; 213 Sugano (2022012715034188800_CIT0115) 2010; 463 Wang (2022012715034188800_CIT0131) 2020; 291 Esau (2022012715034188800_CIT0027) 1977 Etchells (2022012715034188800_CIT0032) 2010; 137 He (2022012715034188800_CIT0042) 2002; 99 Johns (2022012715034188800_CIT0054) 2021; 185 Long (2022012715034188800_CIT0070) 2015; 27 Denis (2022012715034188800_CIT0025) 2017; 90 Fisher (2022012715034188800_CIT0035) 2007; 17 Mott (2022012715034188800_CIT0082) 2019; 6 Hoang (2022012715034188800_CIT0047) 2020; 11 Tuominen (2022012715034188800_CIT0125) 1997; 115 De Rybel (2022012715034188800_CIT0023) 2016; 17 Lee (2022012715034188800_CIT0064) 2012; 77 Baum (2022012715034188800_CIT0007) 2002; 89 Llorente (2022012715034188800_CIT0069) 2005; 43 Etchells (2022012715034188800_CIT0028) 2015; 25 Fukuda (2022012715034188800_CIT0037) 2020; 182 Spicer (2022012715034188800_CIT0112) 2010; 186 Furuta (2022012715034188800_CIT0038) 2014; 345 Yang (2022012715034188800_CIT0138) 2020; 226 Bastin (2022012715034188800_CIT0006) 2019; 365 Hirakawa (2022012715034188800_CIT0045) 2008; 105 Hirakawa (2022012715034188800_CIT0044) 2010; 22 Robischon (2022012715034188800_CIT0094) 2011; 155 Lee (2022012715034188800_CIT0062) 2015; 522 Long (2022012715034188800_CIT0071) 2017; 548 Schlereth (2022012715034188800_CIT0099) 2010; 464 Saito (2022012715034188800_CIT0097) 2018; 59 Torii (2022012715034188800_CIT0123) 1996; 8 Ben-Targem (2022012715034188800_CIT0009) 2021; 72 Bar-On (2022012715034188800_CIT0005) 2018; 115 Etchells (2022012715034188800_CIT0030) 2012; 8 Chen (2022012715034188800_CIT0021) 2013; 162 Zhang (2022012715034188800_CIT0142) 2016; 26 Schoof (2022012715034188800_CIT0100) 2000; 100 Jewaria (2022012715034188800_CIT0052) 2013; 54 Shi (2022012715034188800_CIT0102) 2019; 146 Nieminen (2022012715034188800_CIT0085) 2008; 105 Bishopp (2022012715034188800_CIT0010) 2011; 21 Nieminen (2022012715034188800_CIT0084) 2015; 13 Koizumi (2022012715034188800_CIT0056) 2012; 7 Riyazuddin (2022012715034188800_CIT0093) 2020; 10 Shpak (2022012715034188800_CIT0105) 2005; 309 Milhinhos (2022012715034188800_CIT0077) 2019; 116 Miyashima (2022012715034188800_CIT0078) 2019; 565 Brackmann (2022012715034188800_CIT0013) 2018; 9 Jeon (2022012715034188800_CIT0051) 2016; 14 Li (2022012715034188800_CIT0067) 2017; 7 Thamm (2022012715034188800_CIT0121) 2019; 6 De Rybel (2022012715034188800_CIT0022) 2014; 345 Matsumoto-Kitano (2022012715034188800_CIT0074) 2008; 105 Zhang (2022012715034188800_CIT0144) 2019; 5 Smetana (2022012715034188800_CIT0110) 2019; 565 Immanen (2022012715034188800_CIT0049) 2016; 26 Meng (2022012715034188800_CIT0075) 2015; 25 Cai (2022012715034188800_CIT0015) 2021; 230 Smakowska-Luzan (2022012715034188800_CIT0108) 2018; 553 Etchells (2022012715034188800_CIT0031) 2016; 209 Carlsbecker (2022012715034188800_CIT0018) 2010; 465 Tonn (2022012715034188800_CIT0122) 2017; 27 Yordanov (2022012715034188800_CIT0141) 2010; 22 De Rybel (2022012715034188800_CIT0024) 2013; 24 Fu (2022012715034188800_CIT0036) 2021; 230 Wallner (2022012715034188800_CIT0130) 2020; 102 Uggla (2022012715034188800_CIT0129) 1996; 93 |
References_xml | – volume: 108 start-page: 20242 year: 2011 ident: 2022012715034188800_CIT0002 article-title: Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.1111902108 – volume: 182 start-page: 1636 year: 2020 ident: 2022012715034188800_CIT0037 article-title: Peptide signaling pathways in vascular differentiation. publication-title: Plant Physiology doi: 10.1104/pp.19.01259 – volume: 13 start-page: 94 year: 2013 ident: 2022012715034188800_CIT0132 article-title: The Arabidopsis LRR-RLK, PXC1, is a regulator of secondary wall formation correlated with the TDIF–PXY/TDR–WOX4 signaling pathway. publication-title: BMC Plant Biology doi: 10.1186/1471-2229-13-94 – volume: 54 start-page: 1253 year: 2013 ident: 2022012715034188800_CIT0052 article-title: Differential effects of the peptides Stomagen, EPF1 and EPF2 on activation of MAP kinase MPK6 and the SPCH protein level. publication-title: Plant & Cell Physiology doi: 10.1093/pcp/pct076 – volume-title: Plant physiology year: 2002 ident: 2022012715034188800_CIT0117 – volume: 8 start-page: 735 year: 1996 ident: 2022012715034188800_CIT0123 article-title: The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. publication-title: The Plant Cell – volume: 27 start-page: R878 year: 2017 ident: 2022012715034188800_CIT0122 article-title: Radial plant growth. publication-title: Current Biology doi: 10.1016/j.cub.2017.03.056 – volume: 214 start-page: 1579 year: 2017 ident: 2022012715034188800_CIT0016 article-title: ERECTA signaling controls Arabidopsis inflorescence architecture through chromatin-mediated activation of PRE1 expression. publication-title: New Phytologist doi: 10.1111/nph.14521 – volume: 115 start-page: 6506 year: 2018 ident: 2022012715034188800_CIT0005 article-title: The biomass distribution on Earth. publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.1711842115 – volume: 43 start-page: 165 year: 2005 ident: 2022012715034188800_CIT0069 article-title: ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2005.02440.x – volume: 31 start-page: 927 year: 2017 ident: 2022012715034188800_CIT0068 article-title: A receptor-like protein acts as a specificity switch for the regulation of stomatal development. publication-title: Genes & Development doi: 10.1101/gad.297580.117 – volume: 553 start-page: 342 year: 2018 ident: 2022012715034188800_CIT0108 article-title: An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. publication-title: Nature doi: 10.1038/nature25184 – volume: 61 start-page: 1043 year: 2019 ident: 2022012715034188800_CIT0092 article-title: CLE25 peptide regulates phloem initiation in Arabidopsis through a CLERK–CLV2 receptor complex. publication-title: Journal of Integrative Plant Biology doi: 10.1111/jipb.12846 – volume: 313 start-page: 1596 year: 2006 ident: 2022012715034188800_CIT0126 article-title: The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). publication-title: Science doi: 10.1126/science.1128691 – volume: 4 start-page: 634 year: 2009 ident: 2022012715034188800_CIT0113 article-title: Is the Arabidopsis root niche protected by sequestration of the CLE40 signal by its putative receptor ACR4? publication-title: Plant Signaling & Behavior doi: 10.4161/psb.4.7.8970 – volume: 30 start-page: 2887 year: 2020 ident: 2022012715034188800_CIT0046 article-title: Identification of conserved gene-regulatory networks that integrate environmental sensing and growth in the root cambium. publication-title: Current Biology doi: 10.1016/j.cub.2020.05.046 – volume: 24 start-page: 4948 year: 2013 ident: 2022012715034188800_CIT0076 article-title: A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation. publication-title: The Plant Cell doi: 10.1105/tpc.112.104695 – volume: 5 start-page: 730 year: 2010 ident: 2022012715034188800_CIT0033 article-title: Orientation of vascular cell divisions in Arabidopsis. publication-title: Plant Signaling & Behavior doi: 10.4161/psb.5.6.11665 – volume: 5 start-page: 3504 year: 2014 ident: 2022012715034188800_CIT0059 article-title: Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF–TDR signalling. publication-title: Nature Communications doi: 10.1038/ncomms4504 – volume: 309 start-page: 290 year: 2005 ident: 2022012715034188800_CIT0105 article-title: Stomatal patterning and differentiation by synergistic interactions of receptor kinases. publication-title: Science doi: 10.1126/science.1109710 – volume: 18 start-page: 458 year: 2008 ident: 2022012715034188800_CIT0107 article-title: Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root. publication-title: Current Biology doi: 10.1016/j.cub.2008.02.070 – volume: 9 start-page: 875 year: 2018 ident: 2022012715034188800_CIT0013 article-title: Spatial specificity of auxin responses coordinates wood formation. publication-title: Nature Communications doi: 10.1038/s41467-018-03256-2 – volume: 11 start-page: 762 year: 2020 ident: 2022012715034188800_CIT0047 article-title: Gene regulatory network guided investigations and engineering of storage root development in root crops. publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2020.00762 – volume: 8 start-page: e65183 year: 2013 ident: 2022012715034188800_CIT0119 article-title: Evolutionary relationship and structural characterization of the EPF/EPFL gene family. publication-title: PLoS One doi: 10.1371/journal.pone.0065183 – volume: 105 start-page: 15208 year: 2008 ident: 2022012715034188800_CIT0045 article-title: Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.0808444105 – volume: 176 start-page: 465 year: 2018 ident: 2022012715034188800_CIT0066 article-title: Auxin signaling. publication-title: Plant Physiology doi: 10.1104/pp.17.00765 – volume: 72 start-page: 3647 year: 2021 ident: 2022012715034188800_CIT0009 article-title: Auxin and gibberellin signaling cross-talk promotes hypocotyl xylem expansion and cambium homeostasis. publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erab089 – volume: 18 start-page: 849 year: 2010 ident: 2022012715034188800_CIT0014 article-title: Transcriptional control of a plant stem cell niche. publication-title: Developmental Cell doi: 10.1016/j.devcel.2010.03.012 – volume: 7 start-page: 296 year: 2016 ident: 2022012715034188800_CIT0072 article-title: Agrobacterium-mediated stable genetic transformation of Populus angustifolia and Populus balsamifera. publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.00296 – volume: 20 start-page: 843 year: 2008 ident: 2022012715034188800_CIT0086 article-title: Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. publication-title: The Plant Cell doi: 10.1105/tpc.107.055798 – volume: 9 start-page: 1406 year: 2016 ident: 2022012715034188800_CIT0143 article-title: SERK family receptor-like kinases function as co-receptors with PXY for plant vascular development. publication-title: Molecular Plant doi: 10.1016/j.molp.2016.07.004 – volume: 26 start-page: 1990 year: 2016 ident: 2022012715034188800_CIT0049 article-title: Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. publication-title: Current Biology doi: 10.1016/j.cub.2016.05.053 – volume: 7 start-page: 1573 year: 2012 ident: 2022012715034188800_CIT0056 article-title: SCARECROW reinforces SHORT-ROOT signaling and inhibits periclinal cell divisions in the ground tissue by maintaining SHR at high levels in the endodermis. publication-title: Plant Signaling & Behavior doi: 10.4161/psb.22437 – volume: 185 start-page: 694 year: 2021 ident: 2022012715034188800_CIT0054 article-title: The fast and the furious: rapid long-range signaling in plants. publication-title: Plant Physiology doi: 10.1093/plphys/kiaa098 – volume: 32 start-page: 319 year: 2020 ident: 2022012715034188800_CIT0111 article-title: A PXY-mediated transcriptional network integrates signaling mechanisms to control vascular development in Arabidopsis. publication-title: The Plant Cell doi: 10.1105/tpc.19.00562 – volume: 99 start-page: 10185 year: 2002 ident: 2022012715034188800_CIT0042 article-title: The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.152342599 – volume: 8 start-page: 612 year: 2015 ident: 2022012715034188800_CIT0058 article-title: A novel system for xylem cell differentiation in Arabidopsis thaliana. publication-title: Molecular Plant doi: 10.1016/j.molp.2014.10.008 – volume: 89 start-page: 908 year: 2002 ident: 2022012715034188800_CIT0007 article-title: Apical organization and maturation of the cortex and vascular cylinder in Arabidopsis thaliana (Brassicaceae) roots. publication-title: American Journal of Botany doi: 10.3732/ajb.89.6.908 – volume: 23 start-page: 311 year: 2018 ident: 2022012715034188800_CIT0026 article-title: The pivotal role of ethylene in plant growth. publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2018.01.003 – volume: 22 start-page: 2618 year: 2010 ident: 2022012715034188800_CIT0044 article-title: TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. publication-title: The Plant Cell doi: 10.1105/tpc.110.076083 – volume: 17 start-page: 30 year: 2016 ident: 2022012715034188800_CIT0023 article-title: Plant vascular development: from early specification to differentiation. publication-title: Nature Reviews. Molecular Cell Biology doi: 10.1038/nrm.2015.6 – volume: 51 start-page: 1 year: 2010 ident: 2022012715034188800_CIT0057 article-title: Stomatal density is controlled by a mesophyll-derived signaling molecule. publication-title: Plant & Cell Physiology doi: 10.1093/pcp/pcp180 – volume: 29 start-page: 520 year: 2019 ident: 2022012715034188800_CIT0109 article-title: DOF2.1 controls cytokinin-dependent vascular cell proliferation downstream of TMO5/LHW. publication-title: Current Biology doi: 10.1016/j.cub.2018.12.041 – volume: 25 start-page: 2361 year: 2015 ident: 2022012715034188800_CIT0075 article-title: Differential function of Arabidopsis SERK family receptor-like kinases in stomatal patterning. publication-title: Current Biology doi: 10.1016/j.cub.2015.07.068 – volume: 111 start-page: 11551 year: 2014 ident: 2022012715034188800_CIT0095 article-title: Molecular genetic framework for protophloem formation. publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.1407337111 – volume: 548 start-page: 97 year: 2017 ident: 2022012715034188800_CIT0071 article-title: In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis roots. publication-title: Nature doi: 10.1038/nature23317 – volume: 55 start-page: 1238 year: 2013 ident: 2022012715034188800_CIT0103 article-title: Diverse roles of ERECTA family genes in plant development. publication-title: Journal of Integrative Plant Biology doi: 10.1111/jipb.12108 – volume: 70 start-page: 293 year: 2019 ident: 2022012715034188800_CIT0034 article-title: The dynamics of cambial stem cell activity. publication-title: Annual Review of Plant Biology doi: 10.1146/annurev-arplant-050718-100402 – volume: 146 start-page: 1 year: 2019 ident: 2022012715034188800_CIT0102 article-title: Bifacial cambium stem cells generate xylem and phloem during radial plant growth publication-title: Development doi: 10.1242/dev.171355 – volume: 53 start-page: 10 year: 2020 ident: 2022012715034188800_CIT0017 article-title: The development of the periderm: the final frontier between a plant and its environment. publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2019.08.008 – volume: 152 start-page: 1346 year: 2010 ident: 2022012715034188800_CIT0053 article-title: WOX4 promotes procambial development. publication-title: Plant Physiology doi: 10.1104/pp.109.149641 – volume: 129 start-page: 747 year: 2002 ident: 2022012715034188800_CIT0106 article-title: The lateral organ boundaries gene defines a novel, plant-specific gene family. publication-title: Plant Physiology doi: 10.1104/pp.010926 – volume: 26 start-page: 2478 year: 2016 ident: 2022012715034188800_CIT0120 article-title: A secreted peptide and its receptors shape the auxin response pattern and leaf margin morphogenesis. publication-title: Current Biology doi: 10.1016/j.cub.2016.07.014 – volume: 137 start-page: 767 year: 2010 ident: 2022012715034188800_CIT0032 article-title: The PXY–CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. publication-title: Development doi: 10.1242/dev.044941 – volume: 155 start-page: 1214 year: 2011 ident: 2022012715034188800_CIT0094 article-title: The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems. publication-title: Plant Physiology doi: 10.1104/pp.110.167007 – volume: 345 start-page: 1255215 year: 2014 ident: 2022012715034188800_CIT0022 article-title: Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis. publication-title: Science doi: 10.1126/science.1255215 – volume: 103 start-page: 16598 year: 2006 ident: 2022012715034188800_CIT0080 article-title: Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.0603522103 – volume: 17 start-page: 1061 year: 2007 ident: 2022012715034188800_CIT0035 article-title: PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. publication-title: Current Biology doi: 10.1016/j.cub.2007.05.049 – volume: 109 start-page: 6337 year: 2012 ident: 2022012715034188800_CIT0127 article-title: Regulation of inflorescence architecture by intertissue layer ligand–receptor communication between endodermis and phloem. publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.1117537109 – volume: 146 start-page: 177105 year: 2019 ident: 2022012715034188800_CIT0133 article-title: Organ-specific genetic interactions between paralogues of the PXY and ER receptor kinases enforce radial patterning in Arabidopsis vascular tissue publication-title: Development doi: 10.1242/dev.177105 – volume: 18 start-page: 163 year: 2002 ident: 2022012715034188800_CIT0008 article-title: Receptor kinase signaling in plant development. publication-title: Annual Review of Cell and Developmental Biology doi: 10.1146/annurev.cellbio.18.012502.083431 – volume: 7 start-page: e1001312 year: 2011 ident: 2022012715034188800_CIT0003 article-title: Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth. publication-title: PLoS Genetics doi: 10.1371/journal.pgen.1001312 – volume: 4 start-page: 605 year: 2018 ident: 2022012715034188800_CIT0040 article-title: BIL1-mediated MP phosphorylation integrates PXY and cytokinin signalling in secondary growth. publication-title: Nature Plants doi: 10.1038/s41477-018-0180-3 – volume: 2016 start-page: 3631647 year: 2016 ident: 2022012715034188800_CIT0020 article-title: Roots and tuber crops as functional foods: a review on phytochemical constituents and their potential health benefits. publication-title: International Journal of Food Science doi: 10.1155/2016/3631647 – volume: 8 start-page: e1002997 year: 2012 ident: 2022012715034188800_CIT0030 article-title: Plant vascular cell division is maintained by an interaction between PXY and ethylene signalling. publication-title: PLoS Genetics doi: 10.1371/journal.pgen.1002997 – volume: 27 start-page: 1185 year: 2015 ident: 2022012715034188800_CIT0070 article-title: Arabidopsis BIRD zinc finger proteins jointly stabilize tissue boundaries by confining the cell fate regulator SHORT-ROOT and contributing to fate specification. publication-title: The Plant Cell doi: 10.1105/tpc.114.132407 – volume: 230 start-page: 1476 year: 2021 ident: 2022012715034188800_CIT0036 article-title: Cytokinin signaling localized in phloem noncell-autonomously regulates cambial activity during secondary growth of Populus stems. publication-title: New Phytologist doi: 10.1111/nph.17255 – volume: 116 start-page: 18710 year: 2019 ident: 2022012715034188800_CIT0077 article-title: SOBIR1/EVR prevents precocious initiation of fiber differentiation during wood development through a mechanism involving BP and ERECTA. publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.1807863116 – volume: 209 start-page: 474 year: 2016 ident: 2022012715034188800_CIT0031 article-title: A brief history of the TDIF–PXY signalling module: balancing meristem identity and differentiation during vascular development. publication-title: New Phytologist doi: 10.1111/nph.13642 – volume: 14 start-page: 1161 year: 2016 ident: 2022012715034188800_CIT0051 article-title: Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar. publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.12484 – volume: 105 start-page: 20027 year: 2008 ident: 2022012715034188800_CIT0074 article-title: Cytokinins are central regulators of cambial activity. publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.0805619105 – volume: 93 start-page: 9282 year: 1996 ident: 2022012715034188800_CIT0129 article-title: Auxin as a positional signal in pattern formation in plants. publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.93.17.9282 – volume: 29 start-page: 1585 year: 2017 ident: 2022012715034188800_CIT0116 article-title: AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. publication-title: The Plant Cell doi: 10.1105/tpc.17.00153 – volume: 17 start-page: 1405 year: 1998 ident: 2022012715034188800_CIT0041 article-title: The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. publication-title: The EMBO Journal doi: 10.1093/emboj/17.5.1405 – volume: 226 start-page: 75 year: 2020 ident: 2022012715034188800_CIT0060 article-title: Peptide encoding Populus CLV3/ESR-RELATED 47 (PttCLE47) promotes cambial development and secondary xylem formation in hybrid aspen. publication-title: New Phytologist doi: 10.1111/nph.16331 – volume: 69 start-page: 4339 year: 2018 ident: 2022012715034188800_CIT0012 article-title: Sector analysis reveals patterns of cambium differentiation in poplar stems. publication-title: Journal of Experimental Botany doi: 10.1093/jxb/ery230 – volume: 313 start-page: 842 year: 2006 ident: 2022012715034188800_CIT0050 article-title: Dodeca-CLE peptides as suppressors of plant stem cell differentiation. publication-title: Science doi: 10.1126/science.1128436 – volume: 13 start-page: e0177 year: 2015 ident: 2022012715034188800_CIT0084 article-title: Vascular cambium development. publication-title: The Arabidopsis Book doi: 10.1199/tab.0177 – volume: 565 start-page: 485 year: 2019 ident: 2022012715034188800_CIT0110 article-title: High levels of auxin signalling define the stem-cell organizer of the vascular cambium. publication-title: Nature doi: 10.1038/s41586-018-0837-0 – volume: 162 start-page: 1978 year: 2013 ident: 2022012715034188800_CIT0021 article-title: ERECTA family genes regulate auxin transport in the shoot apical meristem and forming leaf primordia. publication-title: Plant Physiology doi: 10.1104/pp.113.218198 – volume: 26 start-page: 126 year: 2012 ident: 2022012715034188800_CIT0063 article-title: Direct interaction of ligand–receptor pairs specifying stomatal patterning. publication-title: Genes & Development doi: 10.1101/gad.179895.111 – volume: 213 start-page: 1697 year: 2017 ident: 2022012715034188800_CIT0048 article-title: ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl. publication-title: New Phytologist doi: 10.1111/nph.14335 – volume: 134 start-page: 3099 year: 2007 ident: 2022012715034188800_CIT0089 article-title: Haploinsufficiency after successive loss of signaling reveals a role for ERECTA-family genes in Arabidopsis ovule development. publication-title: Development doi: 10.1242/dev.004788 – volume: 25 start-page: 1050 year: 2015 ident: 2022012715034188800_CIT0028 article-title: Wood formation in trees is increased by manipulating PXY-regulated cell division. publication-title: Current Biology doi: 10.1016/j.cub.2015.02.023 – volume: 7 start-page: 2638 year: 2017 ident: 2022012715034188800_CIT0067 article-title: Simple, rapid and efficient transformation of genotype Nisqually-1: a basic tool for the first sequenced model tree. publication-title: Scientific Reports doi: 10.1038/s41598-017-02651-x – volume: 77 start-page: 83 year: 2012 ident: 2022012715034188800_CIT0064 article-title: A tale of two systems: peptide ligand–receptor pairs in plant development. publication-title: Cold Spring Harbor Symposia on Quantitative Biology doi: 10.1101/sqb.2012.77.014886 – volume: 22 start-page: 3662 year: 2010 ident: 2022012715034188800_CIT0141 article-title: Members of the LATERAL ORGAN BOUNDARIES DOMAIN transcription factor family are involved in the regulation of secondary growth in Populus. publication-title: The Plant Cell doi: 10.1105/tpc.110.078634 – volume: 64 start-page: 5335 year: 2013 ident: 2022012715034188800_CIT0128 article-title: Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases. publication-title: Journal of Experimental Botany doi: 10.1093/jxb/ert196 – volume: 7 start-page: 12383 year: 2016 ident: 2022012715034188800_CIT0081 article-title: Crystal structure of the plant receptor-like kinase TDR in complex with the TDIF peptide. publication-title: Nature Communications doi: 10.1038/ncomms12383 – volume: 21 start-page: 917 year: 2011 ident: 2022012715034188800_CIT0010 article-title: A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. publication-title: Current Biology doi: 10.1016/j.cub.2011.04.017 – volume: 23 start-page: 2864 year: 2011 ident: 2022012715034188800_CIT0001 article-title: Generation of signaling specificity in Arabidopsis by spatially restricted buffering of ligand–receptor interactions. publication-title: The Plant cell doi: 10.1105/tpc.111.086637 – volume: 71 start-page: 7160 year: 2020 ident: 2022012715034188800_CIT0139 article-title: Activation of ACS7 in Arabidopsis affects vascular development and demonstrates a link between ethylene synthesis and cambial activity. publication-title: Journal of Experimental Botany doi: 10.1093/jxb/eraa423 – volume: 26 start-page: 543 year: 2016 ident: 2022012715034188800_CIT0142 article-title: Crystal structure of PXY–TDIF complex reveals a conserved recognition mechanism among CLE peptide–receptor pairs. publication-title: Cell Research doi: 10.1038/cr.2016.45 – volume: 23 start-page: 3247 year: 2011 ident: 2022012715034188800_CIT0114 article-title: WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. publication-title: The Plant Cell doi: 10.1105/tpc.111.087874 – volume: 465 start-page: 316 year: 2010 ident: 2022012715034188800_CIT0018 article-title: Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. publication-title: Nature doi: 10.1038/nature08977 – volume: 90 start-page: 560 year: 2017 ident: 2022012715034188800_CIT0025 article-title: WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis. publication-title: The Plant Journal doi: 10.1111/tpj.13513 – volume: 29 start-page: 9 year: 2016 ident: 2022012715034188800_CIT0065 article-title: Secondary growth of the Arabidopsis hypocotyl–vascular development in dimensions. publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2015.10.011 – volume: 345 start-page: 933 year: 2014 ident: 2022012715034188800_CIT0038 article-title: Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation. publication-title: Science doi: 10.1126/science.1253736 – volume: 219 start-page: 216 year: 2018 ident: 2022012715034188800_CIT0137 article-title: A molecular framework to study periderm formation in Arabidopsis. publication-title: New Phytologist doi: 10.1111/nph.15128 – volume: 115 start-page: 577 year: 1997 ident: 2022012715034188800_CIT0125 article-title: A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. publication-title: Plant Physiology doi: 10.1104/pp.115.2.577 – volume: 10 start-page: 959 year: 2020 ident: 2022012715034188800_CIT0093 article-title: Ethylene: a master regulator of salinity stress tolerance in plants publication-title: Biomolecules doi: 10.3390/biom10060959 – volume: 226 start-page: 59 year: 2020 ident: 2022012715034188800_CIT0138 article-title: A membrane-associated NAC domain transcription factor XVP interacts with TDIF co-receptor and regulates vascular meristem activity. publication-title: New Phytologist doi: 10.1111/nph.16289 – volume: 105 start-page: 18625 year: 2008 ident: 2022012715034188800_CIT0135 article-title: Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.0809395105 – volume: 139 start-page: 192 year: 2005 ident: 2022012715034188800_CIT0136 article-title: Interaction of auxin and ERECTA in elaborating Arabidopsis inflorescence architecture revealed by the activation tagging of a new member of the YUCCA family putative flavin monooxygenases. publication-title: Plant Physiology doi: 10.1104/pp.105.063495 – volume: 114 start-page: 594 year: 2002 ident: 2022012715034188800_CIT0019 article-title: Secondary xylem development in Arabidopsis: a model for wood formation. publication-title: Physiologia Plantarum doi: 10.1034/j.1399-3054.2002.1140413.x – volume: 131 start-page: 1491 year: 2004 ident: 2022012715034188800_CIT0104 article-title: Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation. publication-title: Development doi: 10.1242/dev.01028 – volume: 463 start-page: 241 year: 2010 ident: 2022012715034188800_CIT0115 article-title: Stomagen positively regulates stomatal density in Arabidopsis. publication-title: Nature doi: 10.1038/nature08682 – volume: 31 start-page: 3365 year: 2021 ident: 2022012715034188800_CIT0140 article-title: Cytokinins initiate secondary growth in the Arabidopsis root through a set of LBD genes. publication-title: Current Biology doi: 10.1016/j.cub.2021.05.036 – volume: 100 start-page: 635 year: 2000 ident: 2022012715034188800_CIT0100 article-title: The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. publication-title: Cell doi: 10.1016/S0092-8674(00)80700-X – volume: 24 start-page: 426 year: 2013 ident: 2022012715034188800_CIT0024 article-title: A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. publication-title: Developmental Cell doi: 10.1016/j.devcel.2012.12.013 – volume-title: Anatomy of seed plants year: 1977 ident: 2022012715034188800_CIT0027 – volume: 10 start-page: 265 year: 2006 ident: 2022012715034188800_CIT0134 article-title: Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. publication-title: Developmental Cell doi: 10.1016/j.devcel.2005.12.001 – volume: 63 start-page: 1081 year: 2012 ident: 2022012715034188800_CIT0011 article-title: Xylem cell death: emerging understanding of regulation and function. publication-title: Journal of Experimental Botany doi: 10.1093/jxb/err438 – volume: 43 start-page: 57 year: 2018 ident: 2022012715034188800_CIT0043 article-title: Systemic signaling in response to wounding and pathogens. publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2017.12.009 – volume: 134 start-page: 2959 year: 2007 ident: 2022012715034188800_CIT0087 article-title: Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY. publication-title: Development doi: 10.1242/dev.006296 – volume: 63 start-page: 811 year: 2010 ident: 2022012715034188800_CIT0101 article-title: Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2010.04283.x – volume: 8 start-page: 30 year: 2012 ident: 2022012715034188800_CIT0118 article-title: A simple and efficient transient transformation for hybrid aspen (Populus tremula × P. tremuloides). publication-title: Plant Methods doi: 10.1186/1746-4811-8-30 – volume: 55 start-page: 389 year: 2013 ident: 2022012715034188800_CIT0090 article-title: CLE peptides in vascular development. publication-title: Journal of Integrative Plant Biology doi: 10.1111/jipb.12044 – volume: 258 start-page: 673 year: 2021 ident: 2022012715034188800_CIT0124 article-title: Awareness and integrated information theory identify plant meristems as sites of conscious activity. publication-title: Protoplasma doi: 10.1007/s00709-021-01633-1 – volume: 32 start-page: 178 year: 2013 ident: 2022012715034188800_CIT0079 article-title: Stem cell function during plant vascular development. publication-title: The EMBO Journal doi: 10.1038/emboj.2012.301 – volume: 186 start-page: 577 year: 2010 ident: 2022012715034188800_CIT0112 article-title: Evolution of development of vascular cambia and secondary growth. publication-title: New Phytologist doi: 10.1111/j.1469-8137.2010.03236.x – volume: 7 start-page: 1 year: 2016 ident: 2022012715034188800_CIT0055 article-title: ERECTA and BAK1 receptor like kinases interact to regulate immune responses in Arabidopsis publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.00897 – volume: 102 start-page: 903 year: 2020 ident: 2022012715034188800_CIT0130 article-title: SUPPRESSOR OF MAX2 1-LIKE 5 promotes secondary phloem formation during radial stem growth. publication-title: The Plant Journal doi: 10.1111/tpj.14670 – volume: 176 start-page: 1106 year: 2018 ident: 2022012715034188800_CIT0098 article-title: Signal dynamics and interactions during flooding stress. publication-title: Plant Physiology doi: 10.1104/pp.17.01232 – volume: 565 start-page: 490 year: 2019 ident: 2022012715034188800_CIT0078 article-title: Mobile PEAR transcription factors integrate positional cues to prime cambial growth. publication-title: Nature doi: 10.1038/s41586-018-0839-y – volume: 23 start-page: 1322 year: 2011 ident: 2022012715034188800_CIT0091 article-title: Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. publication-title: The Plant cell doi: 10.1105/tpc.111.084020 – volume: 6 start-page: 190126 year: 2019 ident: 2022012715034188800_CIT0121 article-title: A simple mathematical model of allometric exponential growth describes the early three-dimensional growth dynamics of secondary xylem in Arabidopsis roots. publication-title: Royal Society Open Science doi: 10.1098/rsos.190126 – volume: 24 start-page: 2053 year: 2014 ident: 2022012715034188800_CIT0088 article-title: A bHLH complex activates vascular cell division via cytokinin action in root apical meristem. publication-title: Current Biology doi: 10.1016/j.cub.2014.07.050 – volume: 291 start-page: 110322 year: 2020 ident: 2022012715034188800_CIT0131 article-title: Regulation of vascular cambium activity. publication-title: Plant Science doi: 10.1016/j.plantsci.2019.110322 – volume: 365 start-page: 76 year: 2019 ident: 2022012715034188800_CIT0006 article-title: The global tree restoration potential. publication-title: Science doi: 10.1126/science.aax0848 – volume: 59 start-page: 590 year: 2018 ident: 2022012715034188800_CIT0097 article-title: BES1 and BZR1 redundantly promote phloem and xylem differentiation. publication-title: Plant & Cell Physiology doi: 10.1093/pcp/pcy012 – volume: 464 start-page: 913 year: 2010 ident: 2022012715034188800_CIT0099 article-title: MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. publication-title: Nature doi: 10.1038/nature08836 – volume: 413 start-page: 307 year: 2001 ident: 2022012715034188800_CIT0083 article-title: Intercellular movement of the putative transcription factor SHR in root patterning. publication-title: Nature doi: 10.1038/35095061 – volume: 215 start-page: 642 year: 2017 ident: 2022012715034188800_CIT0061 article-title: WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees. publication-title: New Phytologist doi: 10.1111/nph.14631 – volume: 23 start-page: 3356 year: 2004 ident: 2022012715034188800_CIT0073 article-title: MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5ʹ region. publication-title: The EMBO Journal doi: 10.1038/sj.emboj.7600340 – volume: 522 start-page: 439 year: 2015 ident: 2022012715034188800_CIT0062 article-title: Competitive binding of antagonistic peptides fine-tunes stomatal patterning. publication-title: Nature doi: 10.1038/nature14561 – volume: 23 start-page: 1307 year: 2007 ident: 2022012715034188800_CIT0145 article-title: DPTF: a database of poplar transcription factors. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm113 – volume: 86 start-page: 210 year: 2016 ident: 2022012715034188800_CIT0039 article-title: MOL1 is required for cambium homeostasis in Arabidopsis. publication-title: The Plant Journal doi: 10.1111/tpj.13169 – volume: 105 start-page: 20032 year: 2008 ident: 2022012715034188800_CIT0085 article-title: Cytokinin signaling regulates cambial development in poplar. publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.0805617106 – volume: 5 start-page: 1033 year: 2019 ident: 2022012715034188800_CIT0144 article-title: Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. publication-title: Nature Plants doi: 10.1038/s41477-019-0522-9 – volume: 6 start-page: 190025 year: 2019 ident: 2022012715034188800_CIT0082 article-title: Map of physical interactions between extracellular domains of Arabidopsis leucine-rich repeat receptor kinases. publication-title: Scientific Data doi: 10.1038/sdata.2019.25 – volume: 230 start-page: 737 year: 2021 ident: 2022012715034188800_CIT0015 article-title: ERECTA signaling regulates plant immune responses via chromatin-mediated promotion of WRKY33 binding to target genes. publication-title: New Phytologist doi: 10.1111/nph.17200 – volume: 140 start-page: 2224 year: 2013 ident: 2022012715034188800_CIT0029 article-title: WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. publication-title: Development doi: 10.1242/dev.091314 – volume: 65 start-page: 2703 year: 2014 ident: 2022012715034188800_CIT0096 article-title: Interplay between cell growth and cell cycle in plants. publication-title: Journal of Experimental Botany doi: 10.1093/jxb/ert354 – volume: 57 start-page: 96 year: 2020 ident: 2022012715034188800_CIT0004 article-title: Connections in the cambium, receptors in the ring. publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2020.07.001 |
SSID | ssj0005055 |
Score | 2.494964 |
SecondaryResourceType | review_article |
Snippet | Abstract
The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge... The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 665 |
SubjectTerms | Arabidopsis - metabolism Cambium Gene Expression Regulation, Plant Meristem - metabolism Phloem - physiology Review Papers Xylem - physiology |
Title | Laying it on thick: a study in secondary growth |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34655214 https://www.proquest.com/docview/2582818413 https://pubmed.ncbi.nlm.nih.gov/PMC8793872 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6kePAivq2PukJPQmj2kWzqTcVS35cWegv7iq1KIm0K9t8726bVlKKHXJLZsMwMO98wM98iVCfCTxJmwAJGaY9zxjylSNNr2oQwwy2cmW52-Ok5bHf5fS_oFQ2yoxUl_CZrvH2phh1KxQM3Sw7h11Hkd156P50cfhDMScEBMYhiDG9pbSnwlIbZfmHK5dbIX7GmtYU2C5CIr2ZW3UZrNt1B69cZALnJLmo8SjebhAc5zlLs-tXfL7HEU6JYPEjxyOW4Rg4n-BVy7Ly_h7qt285N2yvuPfA0JzT3uAhDHUkSKOkLIRkP4BGKKEujUPiB1KGAd2HIIdcyPCCGSgmmSEyoBLOE7aNKmqX2EGEmNZUiIZpEllvTVBoyLMUt10JpYVgVXcyVEuuCFNzdTfERz4rTLAYNxoUGq6i-EP6ccWGsFjsD7f4tcT7XfAze7EoUMrXZeBRTV8WDpJPAzg5mllj8iDmqN0p4FYmSjRYCjim7_CUd9KeM2RGcQpGgR__u7Bht0KkbEY-KE1TJh2N7CqgjVzXA23cPtannfQMSQddm |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laying+it+on+thick%3A+a+study+in+secondary+growth&rft.jtitle=Journal+of+experimental+botany&rft.au=Turley%2C+Emma+K&rft.au=Etchells%2C+J+Peter&rft.date=2022-01-27&rft.pub=Oxford+University+Press&rft.issn=0022-0957&rft.eissn=1460-2431&rft.volume=73&rft.issue=3&rft.spage=665&rft.epage=679&rft_id=info:doi/10.1093%2Fjxb%2Ferab455&rft.externalDocID=10.1093%2Fjxb%2Ferab455 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon |