Laying it on thick: a study in secondary growth

Abstract The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world’s biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 73; no. 3; pp. 665 - 679
Main Authors Turley, Emma K, Etchells, J Peter
Format Journal Article
LanguageEnglish
Published UK Oxford University Press 27.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world’s biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors from which conductive xylem and phloem are derived. The cambium is a somewhat unusual stem cell population in two respects, making it an interesting subject for developmental research. Firstly, it arises post-germination, and thus represents a model for understanding stem cell initiation beyond embryogenesis. Secondly, xylem and phloem differentiate on opposing sides of cambial stem cells, making them bifacial in nature. Recent discoveries in Arabidopsis thaliana have provided insight into the molecular mechanisms that regulate the initiation, patterning, and maintenance of the cambium. In this review, the roles of intercellular signalling via mobile transcription factors, peptide–receptor modules, and phytohormones are described. Crosstalk between these regulatory pathways is becoming increasingly apparent, yet the underlying mechanisms are not fully understood. Future study of the interaction between multiple independently identified regulators, as well as the functions of their orthologues in trees, will deepen our understanding of radial growth in plants. We review the literature describing the molecular mechanisms by which the vascular cambium is initiated and maintained in Arabidopsis.
AbstractList The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world's biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors from which conductive xylem and phloem are derived. The cambium is a somewhat unusual stem cell population in two respects, making it an interesting subject for developmental research. Firstly, it arises post-germination, and thus represents a model for understanding stem cell initiation beyond embryogenesis. Secondly, xylem and phloem differentiate on opposing sides of cambial stem cells, making them bifacial in nature. Recent discoveries in Arabidopsis thaliana have provided insight into the molecular mechanisms that regulate the initiation, patterning, and maintenance of the cambium. In this review, the roles of intercellular signalling via mobile transcription factors, peptide-receptor modules, and phytohormones are described. Crosstalk between these regulatory pathways is becoming increasingly apparent, yet the underlying mechanisms are not fully understood. Future study of the interaction between multiple independently identified regulators, as well as the functions of their orthologues in trees, will deepen our understanding of radial growth in plants.The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world's biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors from which conductive xylem and phloem are derived. The cambium is a somewhat unusual stem cell population in two respects, making it an interesting subject for developmental research. Firstly, it arises post-germination, and thus represents a model for understanding stem cell initiation beyond embryogenesis. Secondly, xylem and phloem differentiate on opposing sides of cambial stem cells, making them bifacial in nature. Recent discoveries in Arabidopsis thaliana have provided insight into the molecular mechanisms that regulate the initiation, patterning, and maintenance of the cambium. In this review, the roles of intercellular signalling via mobile transcription factors, peptide-receptor modules, and phytohormones are described. Crosstalk between these regulatory pathways is becoming increasingly apparent, yet the underlying mechanisms are not fully understood. Future study of the interaction between multiple independently identified regulators, as well as the functions of their orthologues in trees, will deepen our understanding of radial growth in plants.
The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world’s biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors from which conductive xylem and phloem are derived. The cambium is a somewhat unusual stem cell population in two respects, making it an interesting subject for developmental research. Firstly, it arises post-germination, and thus represents a model for understanding stem cell initiation beyond embryogenesis. Secondly, xylem and phloem differentiate on opposing sides of cambial stem cells, making them bifacial in nature. Recent discoveries in Arabidopsis thaliana have provided insight into the molecular mechanisms that regulate the initiation, patterning, and maintenance of the cambium. In this review, the roles of intercellular signalling via mobile transcription factors, peptide–receptor modules, and phytohormones are described. Crosstalk between these regulatory pathways is becoming increasingly apparent, yet the underlying mechanisms are not fully understood. Future study of the interaction between multiple independently identified regulators, as well as the functions of their orthologues in trees, will deepen our understanding of radial growth in plants. We review the literature describing the molecular mechanisms by which the vascular cambium is initiated and maintained in Arabidopsis.
The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world's biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors from which conductive xylem and phloem are derived. The cambium is a somewhat unusual stem cell population in two respects, making it an interesting subject for developmental research. Firstly, it arises post-germination, and thus represents a model for understanding stem cell initiation beyond embryogenesis. Secondly, xylem and phloem differentiate on opposing sides of cambial stem cells, making them bifacial in nature. Recent discoveries in Arabidopsis thaliana have provided insight into the molecular mechanisms that regulate the initiation, patterning, and maintenance of the cambium. In this review, the roles of intercellular signalling via mobile transcription factors, peptide-receptor modules, and phytohormones are described. Crosstalk between these regulatory pathways is becoming increasingly apparent, yet the underlying mechanisms are not fully understood. Future study of the interaction between multiple independently identified regulators, as well as the functions of their orthologues in trees, will deepen our understanding of radial growth in plants.
Abstract The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world’s biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors from which conductive xylem and phloem are derived. The cambium is a somewhat unusual stem cell population in two respects, making it an interesting subject for developmental research. Firstly, it arises post-germination, and thus represents a model for understanding stem cell initiation beyond embryogenesis. Secondly, xylem and phloem differentiate on opposing sides of cambial stem cells, making them bifacial in nature. Recent discoveries in Arabidopsis thaliana have provided insight into the molecular mechanisms that regulate the initiation, patterning, and maintenance of the cambium. In this review, the roles of intercellular signalling via mobile transcription factors, peptide–receptor modules, and phytohormones are described. Crosstalk between these regulatory pathways is becoming increasingly apparent, yet the underlying mechanisms are not fully understood. Future study of the interaction between multiple independently identified regulators, as well as the functions of their orthologues in trees, will deepen our understanding of radial growth in plants. We review the literature describing the molecular mechanisms by which the vascular cambium is initiated and maintained in Arabidopsis.
Author Etchells, J Peter
Turley, Emma K
AuthorAffiliation 1 Department of Biosciences, Durham University , South Road, Durham DH1 3LE , UK
3 University of Manchester , UK
2 The Sainsbury Laboratory, Norwich Research Park , Norwich NR4 7UH , UK
AuthorAffiliation_xml – name: 1 Department of Biosciences, Durham University , South Road, Durham DH1 3LE , UK
– name: 3 University of Manchester , UK
– name: 2 The Sainsbury Laboratory, Norwich Research Park , Norwich NR4 7UH , UK
Author_xml – sequence: 1
  givenname: Emma K
  surname: Turley
  fullname: Turley, Emma K
  organization: Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
– sequence: 2
  givenname: J Peter
  orcidid: 0000-0002-8524-4949
  surname: Etchells
  fullname: Etchells, J Peter
  email: peter.etchells@durham.ac.uk
  organization: Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34655214$$D View this record in MEDLINE/PubMed
BookMark eNp9kctLAzEQxoNU7ENP3iUnEWRtks1j14MgxRcUvOg5ZLNpm7pN6iar9r93S2tRQQ_DwMxvvhnm64OO884AcIzRBUZ5Opx_FENTq4Iytgd6mHKUEJriDughREiCcia6oB_CHCHEEGMHoJtSzhjBtAeGY7WybgpthN7BOLP65RIqGGJTrqB1MBjtXanqFZzW_j3ODsH-RFXBHG3zADzf3jyN7pPx493D6HqcaIpJTKjgXGcKs0IhIVRKWRuiwIUhGReIKc1FW-Oc5liUlOGSKGW0npS8EKnB6QBcbXSXTbEwpTYu1qqSy9ou2mOkV1b-7Dg7k1P_JjORp5kgrcDZVqD2r40JUS5s0KaqlDO-CZKwjGQ4ozht0ZPvu3ZLvr7UAucbQNc-hNpMdghGcu2BbD2QWw9aGv-itY0qWr8-1FZ_zJxuZnyz_Ff8E6akmBg
CitedBy_id crossref_primary_10_1016_j_genrep_2023_101799
crossref_primary_10_1016_j_pbi_2024_102544
crossref_primary_10_1093_jxb_erae410
crossref_primary_10_1111_nph_18881
crossref_primary_10_1016_j_pbi_2023_102404
crossref_primary_10_3390_agronomy13082142
crossref_primary_10_1016_j_scienta_2023_112185
crossref_primary_10_1016_j_scienta_2025_114003
crossref_primary_10_1093_treephys_tpad156
crossref_primary_10_3390_ijms241914976
crossref_primary_10_3390_f14040823
crossref_primary_10_1007_s12374_022_09355_4
crossref_primary_10_3389_fpls_2022_864422
crossref_primary_10_3389_fpls_2022_970342
crossref_primary_10_3390_f14061102
crossref_primary_10_1007_s11240_023_02478_7
crossref_primary_10_1016_j_envexpbot_2024_105785
crossref_primary_10_1080_03071375_2024_2358675
crossref_primary_10_3389_fpls_2024_1369241
crossref_primary_10_48130_forres_0024_0030
crossref_primary_10_1016_j_cub_2024_10_046
crossref_primary_10_1016_j_pbi_2023_102451
Cites_doi 10.1073/pnas.1111902108
10.1104/pp.19.01259
10.1186/1471-2229-13-94
10.1093/pcp/pct076
10.1016/j.cub.2017.03.056
10.1111/nph.14521
10.1073/pnas.1711842115
10.1111/j.1365-313X.2005.02440.x
10.1101/gad.297580.117
10.1038/nature25184
10.1111/jipb.12846
10.1126/science.1128691
10.4161/psb.4.7.8970
10.1016/j.cub.2020.05.046
10.1105/tpc.112.104695
10.4161/psb.5.6.11665
10.1038/ncomms4504
10.1126/science.1109710
10.1016/j.cub.2008.02.070
10.1038/s41467-018-03256-2
10.3389/fpls.2020.00762
10.1371/journal.pone.0065183
10.1073/pnas.0808444105
10.1104/pp.17.00765
10.1093/jxb/erab089
10.1016/j.devcel.2010.03.012
10.3389/fpls.2016.00296
10.1105/tpc.107.055798
10.1016/j.molp.2016.07.004
10.1016/j.cub.2016.05.053
10.4161/psb.22437
10.1093/plphys/kiaa098
10.1105/tpc.19.00562
10.1073/pnas.152342599
10.1016/j.molp.2014.10.008
10.3732/ajb.89.6.908
10.1016/j.tplants.2018.01.003
10.1105/tpc.110.076083
10.1038/nrm.2015.6
10.1093/pcp/pcp180
10.1016/j.cub.2018.12.041
10.1016/j.cub.2015.07.068
10.1073/pnas.1407337111
10.1038/nature23317
10.1111/jipb.12108
10.1146/annurev-arplant-050718-100402
10.1242/dev.171355
10.1016/j.pbi.2019.08.008
10.1104/pp.109.149641
10.1104/pp.010926
10.1016/j.cub.2016.07.014
10.1242/dev.044941
10.1104/pp.110.167007
10.1126/science.1255215
10.1073/pnas.0603522103
10.1016/j.cub.2007.05.049
10.1073/pnas.1117537109
10.1242/dev.177105
10.1146/annurev.cellbio.18.012502.083431
10.1371/journal.pgen.1001312
10.1038/s41477-018-0180-3
10.1155/2016/3631647
10.1371/journal.pgen.1002997
10.1105/tpc.114.132407
10.1111/nph.17255
10.1073/pnas.1807863116
10.1111/nph.13642
10.1111/pbi.12484
10.1073/pnas.0805619105
10.1073/pnas.93.17.9282
10.1105/tpc.17.00153
10.1093/emboj/17.5.1405
10.1111/nph.16331
10.1093/jxb/ery230
10.1126/science.1128436
10.1199/tab.0177
10.1038/s41586-018-0837-0
10.1104/pp.113.218198
10.1101/gad.179895.111
10.1111/nph.14335
10.1242/dev.004788
10.1016/j.cub.2015.02.023
10.1038/s41598-017-02651-x
10.1101/sqb.2012.77.014886
10.1105/tpc.110.078634
10.1093/jxb/ert196
10.1038/ncomms12383
10.1016/j.cub.2011.04.017
10.1105/tpc.111.086637
10.1093/jxb/eraa423
10.1038/cr.2016.45
10.1105/tpc.111.087874
10.1038/nature08977
10.1111/tpj.13513
10.1016/j.pbi.2015.10.011
10.1126/science.1253736
10.1111/nph.15128
10.1104/pp.115.2.577
10.3390/biom10060959
10.1111/nph.16289
10.1073/pnas.0809395105
10.1104/pp.105.063495
10.1034/j.1399-3054.2002.1140413.x
10.1242/dev.01028
10.1038/nature08682
10.1016/j.cub.2021.05.036
10.1016/S0092-8674(00)80700-X
10.1016/j.devcel.2012.12.013
10.1016/j.devcel.2005.12.001
10.1093/jxb/err438
10.1016/j.pbi.2017.12.009
10.1242/dev.006296
10.1111/j.1365-313X.2010.04283.x
10.1186/1746-4811-8-30
10.1111/jipb.12044
10.1007/s00709-021-01633-1
10.1038/emboj.2012.301
10.1111/j.1469-8137.2010.03236.x
10.3389/fpls.2016.00897
10.1111/tpj.14670
10.1104/pp.17.01232
10.1038/s41586-018-0839-y
10.1105/tpc.111.084020
10.1098/rsos.190126
10.1016/j.cub.2014.07.050
10.1016/j.plantsci.2019.110322
10.1126/science.aax0848
10.1093/pcp/pcy012
10.1038/nature08836
10.1038/35095061
10.1111/nph.14631
10.1038/sj.emboj.7600340
10.1038/nature14561
10.1093/bioinformatics/btm113
10.1111/tpj.13169
10.1073/pnas.0805617106
10.1038/s41477-019-0522-9
10.1038/sdata.2019.25
10.1111/nph.17200
10.1242/dev.091314
10.1093/jxb/ert354
10.1016/j.pbi.2020.07.001
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2021
The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology. 2021
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/jxb/erab455
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access (Activated by CARLI)
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1460-2431
EndPage 679
ExternalDocumentID PMC8793872
34655214
10_1093_jxb_erab455
10.1093/jxb/erab455
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/V008129/1
– fundername: ;
  grantid: BB/V008129/1
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
2~F
3O-
4.4
482
48X
53G
5GY
5VS
5WA
5WD
6.Y
70D
AAHBH
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAXTN
ABBHK
ABEUO
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABWST
ABXSQ
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACMRT
ACNCT
ACPQN
ACPRK
ACUFI
ACUTJ
ACZBC
ADACV
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFSHK
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQVQM
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
C1A
CAG
CDBKE
COF
CS3
CXTWN
CZ4
D-I
DAKXR
DATOO
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
ECGQY
EE~
EJD
ELUNK
ESX
F20
F5P
F9B
FEDTE
FHSFR
FLUFQ
FOEOM
FQBLK
G8K
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
H~9
IOX
IPSME
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JXSIZ
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NEJ
NGC
NLBLG
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TLC
TN5
TOX
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7H
XOL
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
ZCG
ZKX
~02
~91
~KM
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ABXZS
ADNBA
AGORE
AHGBF
AJBYB
AJNCP
ALXQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c412t-4766c8a15ba077a345a347b1be286705ac6745a664917d451d2aaeccfd6b73e13
IEDL.DBID TOX
ISSN 0022-0957
1460-2431
IngestDate Thu Aug 21 14:00:45 EDT 2025
Fri Jul 11 09:42:48 EDT 2025
Thu Apr 03 06:58:30 EDT 2025
Tue Jul 01 03:05:50 EDT 2025
Thu Apr 24 23:11:18 EDT 2025
Wed Aug 28 03:30:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords xylem
stem cells
cambium
cytokinin
auxin
Arabidopsis
transcription factors
phloem
procambium
signalling
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-4766c8a15ba077a345a347b1be286705ac6745a664917d451d2aaeccfd6b73e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8524-4949
OpenAccessLink https://dx.doi.org/10.1093/jxb/erab455
PMID 34655214
PQID 2582818413
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8793872
proquest_miscellaneous_2582818413
pubmed_primary_34655214
crossref_primary_10_1093_jxb_erab455
crossref_citationtrail_10_1093_jxb_erab455
oup_primary_10_1093_jxb_erab455
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-27
PublicationDateYYYYMMDD 2022-01-27
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-27
  day: 27
PublicationDecade 2020
PublicationPlace UK
PublicationPlace_xml – name: UK
– name: England
PublicationTitle Journal of experimental botany
PublicationTitleAlternate J Exp Bot
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Miyashima (2022012715034188800_CIT0079) 2013; 32
Mallory (2022012715034188800_CIT0073) 2004; 23
Zhu (2022012715034188800_CIT0145) 2007; 23
Hoang (2022012715034188800_CIT0046) 2020; 30
Whitford (2022012715034188800_CIT0135) 2008; 105
Bossinger (2022012715034188800_CIT0012) 2018; 69
Etchells (2022012715034188800_CIT0033) 2010; 5
Qiang (2022012715034188800_CIT0090) 2013; 55
Busch (2022012715034188800_CIT0014) 2010; 18
Pillitteri (2022012715034188800_CIT0089) 2007; 134
Lee (2022012715034188800_CIT0063) 2012; 26
Etchells (2022012715034188800_CIT0029) 2013; 140
Chandrasekara (2022012715034188800_CIT0020) 2016; 2016
Suer (2022012715034188800_CIT0114) 2011; 23
Sasidharan (2022012715034188800_CIT0098) 2018; 176
Ji (2022012715034188800_CIT0053) 2010; 152
Ito (2022012715034188800_CIT0050) 2006; 313
Lin (2022012715034188800_CIT0068) 2017; 31
Takata (2022012715034188800_CIT0118) 2012; 8
Chaffey (2022012715034188800_CIT0019) 2002; 114
Sablowski (2022012715034188800_CIT0096) 2014; 65
Uchida (2022012715034188800_CIT0127) 2012; 109
Leyser (2022012715034188800_CIT0066) 2018; 176
Shuai (2022012715034188800_CIT0106) 2002; 129
Becraft (2022012715034188800_CIT0008) 2002; 18
Kondo (2022012715034188800_CIT0057) 2010; 51
Weijers (2022012715034188800_CIT0134) 2006; 10
Hardtke (2022012715034188800_CIT0041) 1998; 17
Smet (2022012715034188800_CIT0109) 2019; 29
Sehr (2022012715034188800_CIT0101) 2010; 63
Tameshige (2022012715034188800_CIT0120) 2016; 26
Hilleary (2022012715034188800_CIT0043) 2018; 43
Lehmann (2022012715034188800_CIT0065) 2016; 29
Zhang (2022012715034188800_CIT0143) 2016; 9
Dubois (2022012715034188800_CIT0026) 2018; 23
Stahl (2022012715034188800_CIT0113) 2009; 4
Taiz (2022012715034188800_CIT0117) 2002
Ohashi-Ito (2022012715034188800_CIT0088) 2014; 24
Kucukoglu (2022012715034188800_CIT0060) 2020; 226
Miyawaki (2022012715034188800_CIT0080) 2006; 103
Cai (2022012715034188800_CIT0016) 2017; 214
Kondo (2022012715034188800_CIT0058) 2015; 8
Fischer (2022012715034188800_CIT0034) 2019; 70
Bagdassarian (2022012715034188800_CIT0004) 2020; 57
Uchida (2022012715034188800_CIT0128) 2013; 64
Shpak (2022012715034188800_CIT0103) 2013; 55
Wunderling (2022012715034188800_CIT0137) 2018; 219
Nilsson (2022012715034188800_CIT0086) 2008; 20
Campilho (2022012715034188800_CIT0017) 2020; 53
Sundell (2022012715034188800_CIT0116) 2017; 29
Ye (2022012715034188800_CIT0140) 2021; 31
Agusti (2022012715034188800_CIT0003) 2011; 7
Wang (2022012715034188800_CIT0132) 2013; 13
Trewavas (2022012715034188800_CIT0124) 2021; 258
Jordá (2022012715034188800_CIT0055) 2016; 7
Bollhöner (2022012715034188800_CIT0011) 2012; 63
Gursanscky (2022012715034188800_CIT0039) 2016; 86
Ren (2022012715034188800_CIT0092) 2019; 61
Kucukoglu (2022012715034188800_CIT0061) 2017; 215
Maheshwari (2022012715034188800_CIT0072) 2016; 7
Ragni (2022012715034188800_CIT0091) 2011; 23
Tuskan (2022012715034188800_CIT0126) 2006; 313
Nakajima (2022012715034188800_CIT0083) 2001; 413
Yang (2022012715034188800_CIT0139) 2020; 71
Ohashi-Ito (2022012715034188800_CIT0087) 2007; 134
Wang (2022012715034188800_CIT0133) 2019; 146
Shpak (2022012715034188800_CIT0104) 2004; 131
Meng (2022012715034188800_CIT0076) 2013; 24
Morita (2022012715034188800_CIT0081) 2016; 7
Han (2022012715034188800_CIT0040) 2018; 4
Kondo (2022012715034188800_CIT0059) 2014; 5
Rodriguez-Villalon (2022012715034188800_CIT0095) 2014; 111
Smit (2022012715034188800_CIT0111) 2020; 32
Woodward (2022012715034188800_CIT0136) 2005; 139
Agusti (2022012715034188800_CIT0002) 2011; 108
Sibout (2022012715034188800_CIT0107) 2008; 18
Takata (2022012715034188800_CIT0119) 2013; 8
Abrash (2022012715034188800_CIT0001) 2011; 23
Ikematsu (2022012715034188800_CIT0048) 2017; 213
Sugano (2022012715034188800_CIT0115) 2010; 463
Wang (2022012715034188800_CIT0131) 2020; 291
Esau (2022012715034188800_CIT0027) 1977
Etchells (2022012715034188800_CIT0032) 2010; 137
He (2022012715034188800_CIT0042) 2002; 99
Johns (2022012715034188800_CIT0054) 2021; 185
Long (2022012715034188800_CIT0070) 2015; 27
Denis (2022012715034188800_CIT0025) 2017; 90
Fisher (2022012715034188800_CIT0035) 2007; 17
Mott (2022012715034188800_CIT0082) 2019; 6
Hoang (2022012715034188800_CIT0047) 2020; 11
Tuominen (2022012715034188800_CIT0125) 1997; 115
De Rybel (2022012715034188800_CIT0023) 2016; 17
Lee (2022012715034188800_CIT0064) 2012; 77
Baum (2022012715034188800_CIT0007) 2002; 89
Llorente (2022012715034188800_CIT0069) 2005; 43
Etchells (2022012715034188800_CIT0028) 2015; 25
Fukuda (2022012715034188800_CIT0037) 2020; 182
Spicer (2022012715034188800_CIT0112) 2010; 186
Furuta (2022012715034188800_CIT0038) 2014; 345
Yang (2022012715034188800_CIT0138) 2020; 226
Bastin (2022012715034188800_CIT0006) 2019; 365
Hirakawa (2022012715034188800_CIT0045) 2008; 105
Hirakawa (2022012715034188800_CIT0044) 2010; 22
Robischon (2022012715034188800_CIT0094) 2011; 155
Lee (2022012715034188800_CIT0062) 2015; 522
Long (2022012715034188800_CIT0071) 2017; 548
Schlereth (2022012715034188800_CIT0099) 2010; 464
Saito (2022012715034188800_CIT0097) 2018; 59
Torii (2022012715034188800_CIT0123) 1996; 8
Ben-Targem (2022012715034188800_CIT0009) 2021; 72
Bar-On (2022012715034188800_CIT0005) 2018; 115
Etchells (2022012715034188800_CIT0030) 2012; 8
Chen (2022012715034188800_CIT0021) 2013; 162
Zhang (2022012715034188800_CIT0142) 2016; 26
Schoof (2022012715034188800_CIT0100) 2000; 100
Jewaria (2022012715034188800_CIT0052) 2013; 54
Shi (2022012715034188800_CIT0102) 2019; 146
Nieminen (2022012715034188800_CIT0085) 2008; 105
Bishopp (2022012715034188800_CIT0010) 2011; 21
Nieminen (2022012715034188800_CIT0084) 2015; 13
Koizumi (2022012715034188800_CIT0056) 2012; 7
Riyazuddin (2022012715034188800_CIT0093) 2020; 10
Shpak (2022012715034188800_CIT0105) 2005; 309
Milhinhos (2022012715034188800_CIT0077) 2019; 116
Miyashima (2022012715034188800_CIT0078) 2019; 565
Brackmann (2022012715034188800_CIT0013) 2018; 9
Jeon (2022012715034188800_CIT0051) 2016; 14
Li (2022012715034188800_CIT0067) 2017; 7
Thamm (2022012715034188800_CIT0121) 2019; 6
De Rybel (2022012715034188800_CIT0022) 2014; 345
Matsumoto-Kitano (2022012715034188800_CIT0074) 2008; 105
Zhang (2022012715034188800_CIT0144) 2019; 5
Smetana (2022012715034188800_CIT0110) 2019; 565
Immanen (2022012715034188800_CIT0049) 2016; 26
Meng (2022012715034188800_CIT0075) 2015; 25
Cai (2022012715034188800_CIT0015) 2021; 230
Smakowska-Luzan (2022012715034188800_CIT0108) 2018; 553
Etchells (2022012715034188800_CIT0031) 2016; 209
Carlsbecker (2022012715034188800_CIT0018) 2010; 465
Tonn (2022012715034188800_CIT0122) 2017; 27
Yordanov (2022012715034188800_CIT0141) 2010; 22
De Rybel (2022012715034188800_CIT0024) 2013; 24
Fu (2022012715034188800_CIT0036) 2021; 230
Wallner (2022012715034188800_CIT0130) 2020; 102
Uggla (2022012715034188800_CIT0129) 1996; 93
References_xml – volume: 108
  start-page: 20242
  year: 2011
  ident: 2022012715034188800_CIT0002
  article-title: Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants.
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.1111902108
– volume: 182
  start-page: 1636
  year: 2020
  ident: 2022012715034188800_CIT0037
  article-title: Peptide signaling pathways in vascular differentiation.
  publication-title: Plant Physiology
  doi: 10.1104/pp.19.01259
– volume: 13
  start-page: 94
  year: 2013
  ident: 2022012715034188800_CIT0132
  article-title: The Arabidopsis LRR-RLK, PXC1, is a regulator of secondary wall formation correlated with the TDIF–PXY/TDR–WOX4 signaling pathway.
  publication-title: BMC Plant Biology
  doi: 10.1186/1471-2229-13-94
– volume: 54
  start-page: 1253
  year: 2013
  ident: 2022012715034188800_CIT0052
  article-title: Differential effects of the peptides Stomagen, EPF1 and EPF2 on activation of MAP kinase MPK6 and the SPCH protein level.
  publication-title: Plant & Cell Physiology
  doi: 10.1093/pcp/pct076
– volume-title: Plant physiology
  year: 2002
  ident: 2022012715034188800_CIT0117
– volume: 8
  start-page: 735
  year: 1996
  ident: 2022012715034188800_CIT0123
  article-title: The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats.
  publication-title: The Plant Cell
– volume: 27
  start-page: R878
  year: 2017
  ident: 2022012715034188800_CIT0122
  article-title: Radial plant growth.
  publication-title: Current Biology
  doi: 10.1016/j.cub.2017.03.056
– volume: 214
  start-page: 1579
  year: 2017
  ident: 2022012715034188800_CIT0016
  article-title: ERECTA signaling controls Arabidopsis inflorescence architecture through chromatin-mediated activation of PRE1 expression.
  publication-title: New Phytologist
  doi: 10.1111/nph.14521
– volume: 115
  start-page: 6506
  year: 2018
  ident: 2022012715034188800_CIT0005
  article-title: The biomass distribution on Earth.
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.1711842115
– volume: 43
  start-page: 165
  year: 2005
  ident: 2022012715034188800_CIT0069
  article-title: ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina.
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2005.02440.x
– volume: 31
  start-page: 927
  year: 2017
  ident: 2022012715034188800_CIT0068
  article-title: A receptor-like protein acts as a specificity switch for the regulation of stomatal development.
  publication-title: Genes & Development
  doi: 10.1101/gad.297580.117
– volume: 553
  start-page: 342
  year: 2018
  ident: 2022012715034188800_CIT0108
  article-title: An extracellular network of Arabidopsis leucine-rich repeat receptor kinases.
  publication-title: Nature
  doi: 10.1038/nature25184
– volume: 61
  start-page: 1043
  year: 2019
  ident: 2022012715034188800_CIT0092
  article-title: CLE25 peptide regulates phloem initiation in Arabidopsis through a CLERK–CLV2 receptor complex.
  publication-title: Journal of Integrative Plant Biology
  doi: 10.1111/jipb.12846
– volume: 313
  start-page: 1596
  year: 2006
  ident: 2022012715034188800_CIT0126
  article-title: The genome of black cottonwood, Populus trichocarpa (Torr. & Gray).
  publication-title: Science
  doi: 10.1126/science.1128691
– volume: 4
  start-page: 634
  year: 2009
  ident: 2022012715034188800_CIT0113
  article-title: Is the Arabidopsis root niche protected by sequestration of the CLE40 signal by its putative receptor ACR4?
  publication-title: Plant Signaling & Behavior
  doi: 10.4161/psb.4.7.8970
– volume: 30
  start-page: 2887
  year: 2020
  ident: 2022012715034188800_CIT0046
  article-title: Identification of conserved gene-regulatory networks that integrate environmental sensing and growth in the root cambium.
  publication-title: Current Biology
  doi: 10.1016/j.cub.2020.05.046
– volume: 24
  start-page: 4948
  year: 2013
  ident: 2022012715034188800_CIT0076
  article-title: A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation.
  publication-title: The Plant Cell
  doi: 10.1105/tpc.112.104695
– volume: 5
  start-page: 730
  year: 2010
  ident: 2022012715034188800_CIT0033
  article-title: Orientation of vascular cell divisions in Arabidopsis.
  publication-title: Plant Signaling & Behavior
  doi: 10.4161/psb.5.6.11665
– volume: 5
  start-page: 3504
  year: 2014
  ident: 2022012715034188800_CIT0059
  article-title: Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF–TDR signalling.
  publication-title: Nature Communications
  doi: 10.1038/ncomms4504
– volume: 309
  start-page: 290
  year: 2005
  ident: 2022012715034188800_CIT0105
  article-title: Stomatal patterning and differentiation by synergistic interactions of receptor kinases.
  publication-title: Science
  doi: 10.1126/science.1109710
– volume: 18
  start-page: 458
  year: 2008
  ident: 2022012715034188800_CIT0107
  article-title: Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root.
  publication-title: Current Biology
  doi: 10.1016/j.cub.2008.02.070
– volume: 9
  start-page: 875
  year: 2018
  ident: 2022012715034188800_CIT0013
  article-title: Spatial specificity of auxin responses coordinates wood formation.
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-03256-2
– volume: 11
  start-page: 762
  year: 2020
  ident: 2022012715034188800_CIT0047
  article-title: Gene regulatory network guided investigations and engineering of storage root development in root crops.
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2020.00762
– volume: 8
  start-page: e65183
  year: 2013
  ident: 2022012715034188800_CIT0119
  article-title: Evolutionary relationship and structural characterization of the EPF/EPFL gene family.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0065183
– volume: 105
  start-page: 15208
  year: 2008
  ident: 2022012715034188800_CIT0045
  article-title: Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system.
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.0808444105
– volume: 176
  start-page: 465
  year: 2018
  ident: 2022012715034188800_CIT0066
  article-title: Auxin signaling.
  publication-title: Plant Physiology
  doi: 10.1104/pp.17.00765
– volume: 72
  start-page: 3647
  year: 2021
  ident: 2022012715034188800_CIT0009
  article-title: Auxin and gibberellin signaling cross-talk promotes hypocotyl xylem expansion and cambium homeostasis.
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erab089
– volume: 18
  start-page: 849
  year: 2010
  ident: 2022012715034188800_CIT0014
  article-title: Transcriptional control of a plant stem cell niche.
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2010.03.012
– volume: 7
  start-page: 296
  year: 2016
  ident: 2022012715034188800_CIT0072
  article-title: Agrobacterium-mediated stable genetic transformation of Populus angustifolia and Populus balsamifera.
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.00296
– volume: 20
  start-page: 843
  year: 2008
  ident: 2022012715034188800_CIT0086
  article-title: Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen.
  publication-title: The Plant Cell
  doi: 10.1105/tpc.107.055798
– volume: 9
  start-page: 1406
  year: 2016
  ident: 2022012715034188800_CIT0143
  article-title: SERK family receptor-like kinases function as co-receptors with PXY for plant vascular development.
  publication-title: Molecular Plant
  doi: 10.1016/j.molp.2016.07.004
– volume: 26
  start-page: 1990
  year: 2016
  ident: 2022012715034188800_CIT0049
  article-title: Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity.
  publication-title: Current Biology
  doi: 10.1016/j.cub.2016.05.053
– volume: 7
  start-page: 1573
  year: 2012
  ident: 2022012715034188800_CIT0056
  article-title: SCARECROW reinforces SHORT-ROOT signaling and inhibits periclinal cell divisions in the ground tissue by maintaining SHR at high levels in the endodermis.
  publication-title: Plant Signaling & Behavior
  doi: 10.4161/psb.22437
– volume: 185
  start-page: 694
  year: 2021
  ident: 2022012715034188800_CIT0054
  article-title: The fast and the furious: rapid long-range signaling in plants.
  publication-title: Plant Physiology
  doi: 10.1093/plphys/kiaa098
– volume: 32
  start-page: 319
  year: 2020
  ident: 2022012715034188800_CIT0111
  article-title: A PXY-mediated transcriptional network integrates signaling mechanisms to control vascular development in Arabidopsis.
  publication-title: The Plant Cell
  doi: 10.1105/tpc.19.00562
– volume: 99
  start-page: 10185
  year: 2002
  ident: 2022012715034188800_CIT0042
  article-title: The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis.
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.152342599
– volume: 8
  start-page: 612
  year: 2015
  ident: 2022012715034188800_CIT0058
  article-title: A novel system for xylem cell differentiation in Arabidopsis thaliana.
  publication-title: Molecular Plant
  doi: 10.1016/j.molp.2014.10.008
– volume: 89
  start-page: 908
  year: 2002
  ident: 2022012715034188800_CIT0007
  article-title: Apical organization and maturation of the cortex and vascular cylinder in Arabidopsis thaliana (Brassicaceae) roots.
  publication-title: American Journal of Botany
  doi: 10.3732/ajb.89.6.908
– volume: 23
  start-page: 311
  year: 2018
  ident: 2022012715034188800_CIT0026
  article-title: The pivotal role of ethylene in plant growth.
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2018.01.003
– volume: 22
  start-page: 2618
  year: 2010
  ident: 2022012715034188800_CIT0044
  article-title: TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis.
  publication-title: The Plant Cell
  doi: 10.1105/tpc.110.076083
– volume: 17
  start-page: 30
  year: 2016
  ident: 2022012715034188800_CIT0023
  article-title: Plant vascular development: from early specification to differentiation.
  publication-title: Nature Reviews. Molecular Cell Biology
  doi: 10.1038/nrm.2015.6
– volume: 51
  start-page: 1
  year: 2010
  ident: 2022012715034188800_CIT0057
  article-title: Stomatal density is controlled by a mesophyll-derived signaling molecule.
  publication-title: Plant & Cell Physiology
  doi: 10.1093/pcp/pcp180
– volume: 29
  start-page: 520
  year: 2019
  ident: 2022012715034188800_CIT0109
  article-title: DOF2.1 controls cytokinin-dependent vascular cell proliferation downstream of TMO5/LHW.
  publication-title: Current Biology
  doi: 10.1016/j.cub.2018.12.041
– volume: 25
  start-page: 2361
  year: 2015
  ident: 2022012715034188800_CIT0075
  article-title: Differential function of Arabidopsis SERK family receptor-like kinases in stomatal patterning.
  publication-title: Current Biology
  doi: 10.1016/j.cub.2015.07.068
– volume: 111
  start-page: 11551
  year: 2014
  ident: 2022012715034188800_CIT0095
  article-title: Molecular genetic framework for protophloem formation.
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.1407337111
– volume: 548
  start-page: 97
  year: 2017
  ident: 2022012715034188800_CIT0071
  article-title: In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis roots.
  publication-title: Nature
  doi: 10.1038/nature23317
– volume: 55
  start-page: 1238
  year: 2013
  ident: 2022012715034188800_CIT0103
  article-title: Diverse roles of ERECTA family genes in plant development.
  publication-title: Journal of Integrative Plant Biology
  doi: 10.1111/jipb.12108
– volume: 70
  start-page: 293
  year: 2019
  ident: 2022012715034188800_CIT0034
  article-title: The dynamics of cambial stem cell activity.
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev-arplant-050718-100402
– volume: 146
  start-page: 1
  year: 2019
  ident: 2022012715034188800_CIT0102
  article-title: Bifacial cambium stem cells generate xylem and phloem during radial plant growth
  publication-title: Development
  doi: 10.1242/dev.171355
– volume: 53
  start-page: 10
  year: 2020
  ident: 2022012715034188800_CIT0017
  article-title: The development of the periderm: the final frontier between a plant and its environment.
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2019.08.008
– volume: 152
  start-page: 1346
  year: 2010
  ident: 2022012715034188800_CIT0053
  article-title: WOX4 promotes procambial development.
  publication-title: Plant Physiology
  doi: 10.1104/pp.109.149641
– volume: 129
  start-page: 747
  year: 2002
  ident: 2022012715034188800_CIT0106
  article-title: The lateral organ boundaries gene defines a novel, plant-specific gene family.
  publication-title: Plant Physiology
  doi: 10.1104/pp.010926
– volume: 26
  start-page: 2478
  year: 2016
  ident: 2022012715034188800_CIT0120
  article-title: A secreted peptide and its receptors shape the auxin response pattern and leaf margin morphogenesis.
  publication-title: Current Biology
  doi: 10.1016/j.cub.2016.07.014
– volume: 137
  start-page: 767
  year: 2010
  ident: 2022012715034188800_CIT0032
  article-title: The PXY–CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division.
  publication-title: Development
  doi: 10.1242/dev.044941
– volume: 155
  start-page: 1214
  year: 2011
  ident: 2022012715034188800_CIT0094
  article-title: The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems.
  publication-title: Plant Physiology
  doi: 10.1104/pp.110.167007
– volume: 345
  start-page: 1255215
  year: 2014
  ident: 2022012715034188800_CIT0022
  article-title: Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis.
  publication-title: Science
  doi: 10.1126/science.1255215
– volume: 103
  start-page: 16598
  year: 2006
  ident: 2022012715034188800_CIT0080
  article-title: Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis.
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.0603522103
– volume: 17
  start-page: 1061
  year: 2007
  ident: 2022012715034188800_CIT0035
  article-title: PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development.
  publication-title: Current Biology
  doi: 10.1016/j.cub.2007.05.049
– volume: 109
  start-page: 6337
  year: 2012
  ident: 2022012715034188800_CIT0127
  article-title: Regulation of inflorescence architecture by intertissue layer ligand–receptor communication between endodermis and phloem.
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.1117537109
– volume: 146
  start-page: 177105
  year: 2019
  ident: 2022012715034188800_CIT0133
  article-title: Organ-specific genetic interactions between paralogues of the PXY and ER receptor kinases enforce radial patterning in Arabidopsis vascular tissue
  publication-title: Development
  doi: 10.1242/dev.177105
– volume: 18
  start-page: 163
  year: 2002
  ident: 2022012715034188800_CIT0008
  article-title: Receptor kinase signaling in plant development.
  publication-title: Annual Review of Cell and Developmental Biology
  doi: 10.1146/annurev.cellbio.18.012502.083431
– volume: 7
  start-page: e1001312
  year: 2011
  ident: 2022012715034188800_CIT0003
  article-title: Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth.
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.1001312
– volume: 4
  start-page: 605
  year: 2018
  ident: 2022012715034188800_CIT0040
  article-title: BIL1-mediated MP phosphorylation integrates PXY and cytokinin signalling in secondary growth.
  publication-title: Nature Plants
  doi: 10.1038/s41477-018-0180-3
– volume: 2016
  start-page: 3631647
  year: 2016
  ident: 2022012715034188800_CIT0020
  article-title: Roots and tuber crops as functional foods: a review on phytochemical constituents and their potential health benefits.
  publication-title: International Journal of Food Science
  doi: 10.1155/2016/3631647
– volume: 8
  start-page: e1002997
  year: 2012
  ident: 2022012715034188800_CIT0030
  article-title: Plant vascular cell division is maintained by an interaction between PXY and ethylene signalling.
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.1002997
– volume: 27
  start-page: 1185
  year: 2015
  ident: 2022012715034188800_CIT0070
  article-title: Arabidopsis BIRD zinc finger proteins jointly stabilize tissue boundaries by confining the cell fate regulator SHORT-ROOT and contributing to fate specification.
  publication-title: The Plant Cell
  doi: 10.1105/tpc.114.132407
– volume: 230
  start-page: 1476
  year: 2021
  ident: 2022012715034188800_CIT0036
  article-title: Cytokinin signaling localized in phloem noncell-autonomously regulates cambial activity during secondary growth of Populus stems.
  publication-title: New Phytologist
  doi: 10.1111/nph.17255
– volume: 116
  start-page: 18710
  year: 2019
  ident: 2022012715034188800_CIT0077
  article-title: SOBIR1/EVR prevents precocious initiation of fiber differentiation during wood development through a mechanism involving BP and ERECTA.
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.1807863116
– volume: 209
  start-page: 474
  year: 2016
  ident: 2022012715034188800_CIT0031
  article-title: A brief history of the TDIF–PXY signalling module: balancing meristem identity and differentiation during vascular development.
  publication-title: New Phytologist
  doi: 10.1111/nph.13642
– volume: 14
  start-page: 1161
  year: 2016
  ident: 2022012715034188800_CIT0051
  article-title: Developing xylem-preferential expression of PdGA20ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar.
  publication-title: Plant Biotechnology Journal
  doi: 10.1111/pbi.12484
– volume: 105
  start-page: 20027
  year: 2008
  ident: 2022012715034188800_CIT0074
  article-title: Cytokinins are central regulators of cambial activity.
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.0805619105
– volume: 93
  start-page: 9282
  year: 1996
  ident: 2022012715034188800_CIT0129
  article-title: Auxin as a positional signal in pattern formation in plants.
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.93.17.9282
– volume: 29
  start-page: 1585
  year: 2017
  ident: 2022012715034188800_CIT0116
  article-title: AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula.
  publication-title: The Plant Cell
  doi: 10.1105/tpc.17.00153
– volume: 17
  start-page: 1405
  year: 1998
  ident: 2022012715034188800_CIT0041
  article-title: The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development.
  publication-title: The EMBO Journal
  doi: 10.1093/emboj/17.5.1405
– volume: 226
  start-page: 75
  year: 2020
  ident: 2022012715034188800_CIT0060
  article-title: Peptide encoding Populus CLV3/ESR-RELATED 47 (PttCLE47) promotes cambial development and secondary xylem formation in hybrid aspen.
  publication-title: New Phytologist
  doi: 10.1111/nph.16331
– volume: 69
  start-page: 4339
  year: 2018
  ident: 2022012715034188800_CIT0012
  article-title: Sector analysis reveals patterns of cambium differentiation in poplar stems.
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ery230
– volume: 313
  start-page: 842
  year: 2006
  ident: 2022012715034188800_CIT0050
  article-title: Dodeca-CLE peptides as suppressors of plant stem cell differentiation.
  publication-title: Science
  doi: 10.1126/science.1128436
– volume: 13
  start-page: e0177
  year: 2015
  ident: 2022012715034188800_CIT0084
  article-title: Vascular cambium development.
  publication-title: The Arabidopsis Book
  doi: 10.1199/tab.0177
– volume: 565
  start-page: 485
  year: 2019
  ident: 2022012715034188800_CIT0110
  article-title: High levels of auxin signalling define the stem-cell organizer of the vascular cambium.
  publication-title: Nature
  doi: 10.1038/s41586-018-0837-0
– volume: 162
  start-page: 1978
  year: 2013
  ident: 2022012715034188800_CIT0021
  article-title: ERECTA family genes regulate auxin transport in the shoot apical meristem and forming leaf primordia.
  publication-title: Plant Physiology
  doi: 10.1104/pp.113.218198
– volume: 26
  start-page: 126
  year: 2012
  ident: 2022012715034188800_CIT0063
  article-title: Direct interaction of ligand–receptor pairs specifying stomatal patterning.
  publication-title: Genes & Development
  doi: 10.1101/gad.179895.111
– volume: 213
  start-page: 1697
  year: 2017
  ident: 2022012715034188800_CIT0048
  article-title: ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl.
  publication-title: New Phytologist
  doi: 10.1111/nph.14335
– volume: 134
  start-page: 3099
  year: 2007
  ident: 2022012715034188800_CIT0089
  article-title: Haploinsufficiency after successive loss of signaling reveals a role for ERECTA-family genes in Arabidopsis ovule development.
  publication-title: Development
  doi: 10.1242/dev.004788
– volume: 25
  start-page: 1050
  year: 2015
  ident: 2022012715034188800_CIT0028
  article-title: Wood formation in trees is increased by manipulating PXY-regulated cell division.
  publication-title: Current Biology
  doi: 10.1016/j.cub.2015.02.023
– volume: 7
  start-page: 2638
  year: 2017
  ident: 2022012715034188800_CIT0067
  article-title: Simple, rapid and efficient transformation of genotype Nisqually-1: a basic tool for the first sequenced model tree.
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-02651-x
– volume: 77
  start-page: 83
  year: 2012
  ident: 2022012715034188800_CIT0064
  article-title: A tale of two systems: peptide ligand–receptor pairs in plant development.
  publication-title: Cold Spring Harbor Symposia on Quantitative Biology
  doi: 10.1101/sqb.2012.77.014886
– volume: 22
  start-page: 3662
  year: 2010
  ident: 2022012715034188800_CIT0141
  article-title: Members of the LATERAL ORGAN BOUNDARIES DOMAIN transcription factor family are involved in the regulation of secondary growth in Populus.
  publication-title: The Plant Cell
  doi: 10.1105/tpc.110.078634
– volume: 64
  start-page: 5335
  year: 2013
  ident: 2022012715034188800_CIT0128
  article-title: Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases.
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ert196
– volume: 7
  start-page: 12383
  year: 2016
  ident: 2022012715034188800_CIT0081
  article-title: Crystal structure of the plant receptor-like kinase TDR in complex with the TDIF peptide.
  publication-title: Nature Communications
  doi: 10.1038/ncomms12383
– volume: 21
  start-page: 917
  year: 2011
  ident: 2022012715034188800_CIT0010
  article-title: A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots.
  publication-title: Current Biology
  doi: 10.1016/j.cub.2011.04.017
– volume: 23
  start-page: 2864
  year: 2011
  ident: 2022012715034188800_CIT0001
  article-title: Generation of signaling specificity in Arabidopsis by spatially restricted buffering of ligand–receptor interactions.
  publication-title: The Plant cell
  doi: 10.1105/tpc.111.086637
– volume: 71
  start-page: 7160
  year: 2020
  ident: 2022012715034188800_CIT0139
  article-title: Activation of ACS7 in Arabidopsis affects vascular development and demonstrates a link between ethylene synthesis and cambial activity.
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eraa423
– volume: 26
  start-page: 543
  year: 2016
  ident: 2022012715034188800_CIT0142
  article-title: Crystal structure of PXY–TDIF complex reveals a conserved recognition mechanism among CLE peptide–receptor pairs.
  publication-title: Cell Research
  doi: 10.1038/cr.2016.45
– volume: 23
  start-page: 3247
  year: 2011
  ident: 2022012715034188800_CIT0114
  article-title: WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis.
  publication-title: The Plant Cell
  doi: 10.1105/tpc.111.087874
– volume: 465
  start-page: 316
  year: 2010
  ident: 2022012715034188800_CIT0018
  article-title: Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate.
  publication-title: Nature
  doi: 10.1038/nature08977
– volume: 90
  start-page: 560
  year: 2017
  ident: 2022012715034188800_CIT0025
  article-title: WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis.
  publication-title: The Plant Journal
  doi: 10.1111/tpj.13513
– volume: 29
  start-page: 9
  year: 2016
  ident: 2022012715034188800_CIT0065
  article-title: Secondary growth of the Arabidopsis hypocotyl–vascular development in dimensions.
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2015.10.011
– volume: 345
  start-page: 933
  year: 2014
  ident: 2022012715034188800_CIT0038
  article-title: Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation.
  publication-title: Science
  doi: 10.1126/science.1253736
– volume: 219
  start-page: 216
  year: 2018
  ident: 2022012715034188800_CIT0137
  article-title: A molecular framework to study periderm formation in Arabidopsis.
  publication-title: New Phytologist
  doi: 10.1111/nph.15128
– volume: 115
  start-page: 577
  year: 1997
  ident: 2022012715034188800_CIT0125
  article-title: A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen.
  publication-title: Plant Physiology
  doi: 10.1104/pp.115.2.577
– volume: 10
  start-page: 959
  year: 2020
  ident: 2022012715034188800_CIT0093
  article-title: Ethylene: a master regulator of salinity stress tolerance in plants
  publication-title: Biomolecules
  doi: 10.3390/biom10060959
– volume: 226
  start-page: 59
  year: 2020
  ident: 2022012715034188800_CIT0138
  article-title: A membrane-associated NAC domain transcription factor XVP interacts with TDIF co-receptor and regulates vascular meristem activity.
  publication-title: New Phytologist
  doi: 10.1111/nph.16289
– volume: 105
  start-page: 18625
  year: 2008
  ident: 2022012715034188800_CIT0135
  article-title: Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells.
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.0809395105
– volume: 139
  start-page: 192
  year: 2005
  ident: 2022012715034188800_CIT0136
  article-title: Interaction of auxin and ERECTA in elaborating Arabidopsis inflorescence architecture revealed by the activation tagging of a new member of the YUCCA family putative flavin monooxygenases.
  publication-title: Plant Physiology
  doi: 10.1104/pp.105.063495
– volume: 114
  start-page: 594
  year: 2002
  ident: 2022012715034188800_CIT0019
  article-title: Secondary xylem development in Arabidopsis: a model for wood formation.
  publication-title: Physiologia Plantarum
  doi: 10.1034/j.1399-3054.2002.1140413.x
– volume: 131
  start-page: 1491
  year: 2004
  ident: 2022012715034188800_CIT0104
  article-title: Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation.
  publication-title: Development
  doi: 10.1242/dev.01028
– volume: 463
  start-page: 241
  year: 2010
  ident: 2022012715034188800_CIT0115
  article-title: Stomagen positively regulates stomatal density in Arabidopsis.
  publication-title: Nature
  doi: 10.1038/nature08682
– volume: 31
  start-page: 3365
  year: 2021
  ident: 2022012715034188800_CIT0140
  article-title: Cytokinins initiate secondary growth in the Arabidopsis root through a set of LBD genes.
  publication-title: Current Biology
  doi: 10.1016/j.cub.2021.05.036
– volume: 100
  start-page: 635
  year: 2000
  ident: 2022012715034188800_CIT0100
  article-title: The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes.
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80700-X
– volume: 24
  start-page: 426
  year: 2013
  ident: 2022012715034188800_CIT0024
  article-title: A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis.
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2012.12.013
– volume-title: Anatomy of seed plants
  year: 1977
  ident: 2022012715034188800_CIT0027
– volume: 10
  start-page: 265
  year: 2006
  ident: 2022012715034188800_CIT0134
  article-title: Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis.
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2005.12.001
– volume: 63
  start-page: 1081
  year: 2012
  ident: 2022012715034188800_CIT0011
  article-title: Xylem cell death: emerging understanding of regulation and function.
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/err438
– volume: 43
  start-page: 57
  year: 2018
  ident: 2022012715034188800_CIT0043
  article-title: Systemic signaling in response to wounding and pathogens.
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2017.12.009
– volume: 134
  start-page: 2959
  year: 2007
  ident: 2022012715034188800_CIT0087
  article-title: Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY.
  publication-title: Development
  doi: 10.1242/dev.006296
– volume: 63
  start-page: 811
  year: 2010
  ident: 2022012715034188800_CIT0101
  article-title: Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation.
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2010.04283.x
– volume: 8
  start-page: 30
  year: 2012
  ident: 2022012715034188800_CIT0118
  article-title: A simple and efficient transient transformation for hybrid aspen (Populus tremula × P. tremuloides).
  publication-title: Plant Methods
  doi: 10.1186/1746-4811-8-30
– volume: 55
  start-page: 389
  year: 2013
  ident: 2022012715034188800_CIT0090
  article-title: CLE peptides in vascular development.
  publication-title: Journal of Integrative Plant Biology
  doi: 10.1111/jipb.12044
– volume: 258
  start-page: 673
  year: 2021
  ident: 2022012715034188800_CIT0124
  article-title: Awareness and integrated information theory identify plant meristems as sites of conscious activity.
  publication-title: Protoplasma
  doi: 10.1007/s00709-021-01633-1
– volume: 32
  start-page: 178
  year: 2013
  ident: 2022012715034188800_CIT0079
  article-title: Stem cell function during plant vascular development.
  publication-title: The EMBO Journal
  doi: 10.1038/emboj.2012.301
– volume: 186
  start-page: 577
  year: 2010
  ident: 2022012715034188800_CIT0112
  article-title: Evolution of development of vascular cambia and secondary growth.
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2010.03236.x
– volume: 7
  start-page: 1
  year: 2016
  ident: 2022012715034188800_CIT0055
  article-title: ERECTA and BAK1 receptor like kinases interact to regulate immune responses in Arabidopsis
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.00897
– volume: 102
  start-page: 903
  year: 2020
  ident: 2022012715034188800_CIT0130
  article-title: SUPPRESSOR OF MAX2 1-LIKE 5 promotes secondary phloem formation during radial stem growth.
  publication-title: The Plant Journal
  doi: 10.1111/tpj.14670
– volume: 176
  start-page: 1106
  year: 2018
  ident: 2022012715034188800_CIT0098
  article-title: Signal dynamics and interactions during flooding stress.
  publication-title: Plant Physiology
  doi: 10.1104/pp.17.01232
– volume: 565
  start-page: 490
  year: 2019
  ident: 2022012715034188800_CIT0078
  article-title: Mobile PEAR transcription factors integrate positional cues to prime cambial growth.
  publication-title: Nature
  doi: 10.1038/s41586-018-0839-y
– volume: 23
  start-page: 1322
  year: 2011
  ident: 2022012715034188800_CIT0091
  article-title: Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion.
  publication-title: The Plant cell
  doi: 10.1105/tpc.111.084020
– volume: 6
  start-page: 190126
  year: 2019
  ident: 2022012715034188800_CIT0121
  article-title: A simple mathematical model of allometric exponential growth describes the early three-dimensional growth dynamics of secondary xylem in Arabidopsis roots.
  publication-title: Royal Society Open Science
  doi: 10.1098/rsos.190126
– volume: 24
  start-page: 2053
  year: 2014
  ident: 2022012715034188800_CIT0088
  article-title: A bHLH complex activates vascular cell division via cytokinin action in root apical meristem.
  publication-title: Current Biology
  doi: 10.1016/j.cub.2014.07.050
– volume: 291
  start-page: 110322
  year: 2020
  ident: 2022012715034188800_CIT0131
  article-title: Regulation of vascular cambium activity.
  publication-title: Plant Science
  doi: 10.1016/j.plantsci.2019.110322
– volume: 365
  start-page: 76
  year: 2019
  ident: 2022012715034188800_CIT0006
  article-title: The global tree restoration potential.
  publication-title: Science
  doi: 10.1126/science.aax0848
– volume: 59
  start-page: 590
  year: 2018
  ident: 2022012715034188800_CIT0097
  article-title: BES1 and BZR1 redundantly promote phloem and xylem differentiation.
  publication-title: Plant & Cell Physiology
  doi: 10.1093/pcp/pcy012
– volume: 464
  start-page: 913
  year: 2010
  ident: 2022012715034188800_CIT0099
  article-title: MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor.
  publication-title: Nature
  doi: 10.1038/nature08836
– volume: 413
  start-page: 307
  year: 2001
  ident: 2022012715034188800_CIT0083
  article-title: Intercellular movement of the putative transcription factor SHR in root patterning.
  publication-title: Nature
  doi: 10.1038/35095061
– volume: 215
  start-page: 642
  year: 2017
  ident: 2022012715034188800_CIT0061
  article-title: WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees.
  publication-title: New Phytologist
  doi: 10.1111/nph.14631
– volume: 23
  start-page: 3356
  year: 2004
  ident: 2022012715034188800_CIT0073
  article-title: MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5ʹ region.
  publication-title: The EMBO Journal
  doi: 10.1038/sj.emboj.7600340
– volume: 522
  start-page: 439
  year: 2015
  ident: 2022012715034188800_CIT0062
  article-title: Competitive binding of antagonistic peptides fine-tunes stomatal patterning.
  publication-title: Nature
  doi: 10.1038/nature14561
– volume: 23
  start-page: 1307
  year: 2007
  ident: 2022012715034188800_CIT0145
  article-title: DPTF: a database of poplar transcription factors.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm113
– volume: 86
  start-page: 210
  year: 2016
  ident: 2022012715034188800_CIT0039
  article-title: MOL1 is required for cambium homeostasis in Arabidopsis.
  publication-title: The Plant Journal
  doi: 10.1111/tpj.13169
– volume: 105
  start-page: 20032
  year: 2008
  ident: 2022012715034188800_CIT0085
  article-title: Cytokinin signaling regulates cambial development in poplar.
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.0805617106
– volume: 5
  start-page: 1033
  year: 2019
  ident: 2022012715034188800_CIT0144
  article-title: Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots.
  publication-title: Nature Plants
  doi: 10.1038/s41477-019-0522-9
– volume: 6
  start-page: 190025
  year: 2019
  ident: 2022012715034188800_CIT0082
  article-title: Map of physical interactions between extracellular domains of Arabidopsis leucine-rich repeat receptor kinases.
  publication-title: Scientific Data
  doi: 10.1038/sdata.2019.25
– volume: 230
  start-page: 737
  year: 2021
  ident: 2022012715034188800_CIT0015
  article-title: ERECTA signaling regulates plant immune responses via chromatin-mediated promotion of WRKY33 binding to target genes.
  publication-title: New Phytologist
  doi: 10.1111/nph.17200
– volume: 140
  start-page: 2224
  year: 2013
  ident: 2022012715034188800_CIT0029
  article-title: WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation.
  publication-title: Development
  doi: 10.1242/dev.091314
– volume: 65
  start-page: 2703
  year: 2014
  ident: 2022012715034188800_CIT0096
  article-title: Interplay between cell growth and cell cycle in plants.
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ert354
– volume: 57
  start-page: 96
  year: 2020
  ident: 2022012715034188800_CIT0004
  article-title: Connections in the cambium, receptors in the ring.
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2020.07.001
SSID ssj0005055
Score 2.494964
SecondaryResourceType review_article
Snippet Abstract The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge...
The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 665
SubjectTerms Arabidopsis - metabolism
Cambium
Gene Expression Regulation, Plant
Meristem - metabolism
Phloem - physiology
Review Papers
Xylem - physiology
Title Laying it on thick: a study in secondary growth
URI https://www.ncbi.nlm.nih.gov/pubmed/34655214
https://www.proquest.com/docview/2582818413
https://pubmed.ncbi.nlm.nih.gov/PMC8793872
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6kePAivq2PukJPQmj2kWzqTcVS35cWegv7iq1KIm0K9t8726bVlKKHXJLZsMwMO98wM98iVCfCTxJmwAJGaY9zxjylSNNr2oQwwy2cmW52-Ok5bHf5fS_oFQ2yoxUl_CZrvH2phh1KxQM3Sw7h11Hkd156P50cfhDMScEBMYhiDG9pbSnwlIbZfmHK5dbIX7GmtYU2C5CIr2ZW3UZrNt1B69cZALnJLmo8SjebhAc5zlLs-tXfL7HEU6JYPEjxyOW4Rg4n-BVy7Ly_h7qt285N2yvuPfA0JzT3uAhDHUkSKOkLIRkP4BGKKEujUPiB1KGAd2HIIdcyPCCGSgmmSEyoBLOE7aNKmqX2EGEmNZUiIZpEllvTVBoyLMUt10JpYVgVXcyVEuuCFNzdTfERz4rTLAYNxoUGq6i-EP6ccWGsFjsD7f4tcT7XfAze7EoUMrXZeBRTV8WDpJPAzg5mllj8iDmqN0p4FYmSjRYCjim7_CUd9KeM2RGcQpGgR__u7Bht0KkbEY-KE1TJh2N7CqgjVzXA23cPtannfQMSQddm
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laying+it+on+thick%3A+a+study+in+secondary+growth&rft.jtitle=Journal+of+experimental+botany&rft.au=Turley%2C+Emma+K&rft.au=Etchells%2C+J+Peter&rft.date=2022-01-27&rft.pub=Oxford+University+Press&rft.issn=0022-0957&rft.eissn=1460-2431&rft.volume=73&rft.issue=3&rft.spage=665&rft.epage=679&rft_id=info:doi/10.1093%2Fjxb%2Ferab455&rft.externalDocID=10.1093%2Fjxb%2Ferab455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon