The effective field theory of dark matter direct detection

We extend and explore the general non-relativistic effective theory of dark matter (DM) direct detection. We describe the basic non-relativistic building blocks of operators and discuss their symmetry properties, writing down all Galilean-invariant operators up to quadratic order in momentum transfe...

Full description

Saved in:
Bibliographic Details
Published inJournal of cosmology and astroparticle physics Vol. 2013; no. 2; p. 4
Main Authors Fitzpatrick, A. Liam, Haxton, Wick, Katz, Emanuel, Lubbers, Nicholas, Xu, Yiming
Format Journal Article
LanguageEnglish
Published United States Institute of Physics (IOP) 01.02.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We extend and explore the general non-relativistic effective theory of dark matter (DM) direct detection. We describe the basic non-relativistic building blocks of operators and discuss their symmetry properties, writing down all Galilean-invariant operators up to quadratic order in momentum transfer arising from exchange of particles of spin 1 or less. Any DM particle theory can be translated into the coefficients of an effective operator and any effective operator can be simply related to most general description of the nuclear response. We find several operators which lead to novel nuclear responses. These responses differ significantly from the standard minimal WIMP cases in their relative coupling strengths to various elements, changing how the results from different experiments should be compared against each other. Response functions are evaluated for common DM targets - F, Na, Ge, I, and Xe - using standard shell model techniques. We point out that each of the nuclear responses is familiar from past studies of semi-leptonic electroweak interactions, and thus potentially testable in weak interaction studies. We provide tables of the full set of required matrix elements at finite momentum transfer for a range of common elements, making a careful and fully model-independent analysis possible. Finally, we discuss embedding non-relativistic effective theory operators into UV models of dark matter.
AbstractList We extend and explore the general non-relativistic effective theory of dark matter (DM) direct detection. We describe the basic non-relativistic building blocks of operators and discuss their symmetry properties, writing down all Galilean-invariant operators up to quadratic order in momentum transfer arising from exchange of particles of spin 1 or less. Any DM particle theory can be translated into the coefficients of an effective operator and any effective operator can be simply related to most general description of the nuclear response. We find several operators which lead to novel nuclear responses. These responses differ significantly from the standard minimal WIMP cases in their relative coupling strengths to various elements, changing how the results from different experiments should be compared against each other. Response functions are evaluated for common DM targets - F, Na, Ge, I, and Xe - using standard shell model techniques. We point out that each of the nuclear responses is familiar from past studies of semi-leptonic electroweak interactions, and thus potentially testable in weak interaction studies. We provide tables of the full set of required matrix elements at finite momentum transfer for a range of common elements, making a careful and fully model-independent analysis possible. Finally, we discuss embedding non-relativistic effective theory operators into UV models of dark matter.
Author Katz, Emanuel
Haxton, Wick
Lubbers, Nicholas
Xu, Yiming
Fitzpatrick, A. Liam
Author_xml – sequence: 1
  givenname: A. Liam
  surname: Fitzpatrick
  fullname: Fitzpatrick, A. Liam
– sequence: 2
  givenname: Wick
  surname: Haxton
  fullname: Haxton, Wick
– sequence: 3
  givenname: Emanuel
  surname: Katz
  fullname: Katz, Emanuel
– sequence: 4
  givenname: Nicholas
  surname: Lubbers
  fullname: Lubbers, Nicholas
– sequence: 5
  givenname: Yiming
  surname: Xu
  fullname: Xu, Yiming
BackLink https://www.osti.gov/servlets/purl/1074218$$D View this record in Osti.gov
BookMark eNqNkc1KAzEUhYNUsFUfQRhcuRnnJjOZBF1J8Q8Kbuo6xMwNjU4nNUmFvr0ZKiJudJVL-M49yTkzMhn8gIScUbikIGVFG8FLwWlbMaB1BawCaA7I9Pt-8mM-IrMYXwFYW9dySq6WKyzQWjTJfWBhHfZdkVbow67wtuh0eCvWOiUMRedCpooO0wj74YQcWt1HPP06j8nz3e1y_lAunu4f5zeL0jSUpbKhbQOdMC3ltn3RppaojdAtp5ZpY1HwhkpZo2WGS7BCc0BNkYGpWwDJ6mNyvt_rY3IqGpf9V8YPQ36GoiAaRmWGLvbQJvj3Lcak1i4a7Hs9oN9GRVshIXMC_oPmaFjNaUav96gJPsaAVmV3PX4-Be367K7GBtSYrhrTVWMDCpjKDWQ1_6XeBLfWYfeH7hPe4okk
CitedBy_id crossref_primary_10_1016_j_physrep_2020_10_004
crossref_primary_10_1103_PhysRevD_106_043028
crossref_primary_10_1103_PhysRevD_103_043541
crossref_primary_10_1007_JHEP10_2018_065
crossref_primary_10_1007_JHEP06_2024_165
crossref_primary_10_1088_1475_7516_2023_11_077
crossref_primary_10_1103_PhysRevD_109_103010
crossref_primary_10_1088_1475_7516_2015_08_046
crossref_primary_10_1007_JHEP08_2019_030
crossref_primary_10_1103_PhysRevD_102_123025
crossref_primary_10_1103_PhysRevD_102_123028
crossref_primary_10_1146_annurev_nucl_101918_023450
crossref_primary_10_1088_1475_7516_2017_04_031
crossref_primary_10_1103_PhysRevC_111_034311
crossref_primary_10_1088_1475_7516_2021_05_016
crossref_primary_10_1103_PhysRevD_107_075031
crossref_primary_10_1103_PhysRevD_110_L051701
crossref_primary_10_1103_PhysRevD_92_096013
crossref_primary_10_1007_JHEP03_2018_117
crossref_primary_10_1007_JHEP04_2022_080
crossref_primary_10_1016_j_physletb_2021_136275
crossref_primary_10_1103_PhysRevD_105_035016
crossref_primary_10_1142_S0217751X16430041
crossref_primary_10_1103_PhysRevD_95_075036
crossref_primary_10_1007_JHEP07_2024_218
crossref_primary_10_1007_JHEP09_2022_175
crossref_primary_10_1088_1475_7516_2015_08_022
crossref_primary_10_1007_JHEP10_2024_109
crossref_primary_10_1088_1475_7516_2017_05_046
crossref_primary_10_1007_JHEP02_2025_127
crossref_primary_10_1103_PhysRevD_89_015011
crossref_primary_10_1088_1475_7516_2023_03_052
crossref_primary_10_1103_PhysRevD_94_023527
crossref_primary_10_1007_JHEP02_2018_174
crossref_primary_10_3847_2041_8213_abd807
crossref_primary_10_1088_1475_7516_2014_07_055
crossref_primary_10_1016_j_astropartphys_2019_02_006
crossref_primary_10_1103_PhysRevD_104_083023
crossref_primary_10_1007_JHEP03_2020_036
crossref_primary_10_1103_PhysRevD_87_114510
crossref_primary_10_1088_1475_7516_2016_02_009
crossref_primary_10_1103_PhysRevD_89_072013
crossref_primary_10_1088_1475_7516_2016_09_018
crossref_primary_10_1103_PhysRevD_91_043520
crossref_primary_10_1103_RevModPhys_85_1561
crossref_primary_10_1103_PhysRevD_104_083019
crossref_primary_10_1007_JHEP11_2013_171
crossref_primary_10_1088_1674_1137_ad77b3
crossref_primary_10_1103_PhysRevD_96_063012
crossref_primary_10_1142_S021773231440001X
crossref_primary_10_1088_1475_7516_2016_08_009
crossref_primary_10_1088_1475_7516_2017_11_016
crossref_primary_10_1088_1475_7516_2018_07_033
crossref_primary_10_1103_PhysRevD_89_013010
crossref_primary_10_1103_PhysRevD_96_063010
crossref_primary_10_1103_PhysRevLett_118_251301
crossref_primary_10_1103_PhysRevD_98_123003
crossref_primary_10_1103_PhysRevLett_120_152002
crossref_primary_10_1140_epjc_s10052_016_4208_4
crossref_primary_10_1088_1475_7516_2019_08_010
crossref_primary_10_1103_PhysRevD_92_063515
crossref_primary_10_1016_j_nuclphysb_2013_11_016
crossref_primary_10_1007_s11433_020_1666_8
crossref_primary_10_1088_1475_7516_2015_07_026
crossref_primary_10_1103_PhysRevD_91_043505
crossref_primary_10_1103_PhysRevD_97_083002
crossref_primary_10_1103_PhysRevD_108_116023
crossref_primary_10_1103_PhysRevD_98_103525
crossref_primary_10_1088_1475_7516_2020_12_014
crossref_primary_10_1103_PhysRevD_104_036005
crossref_primary_10_1134_S1547477123030561
crossref_primary_10_1103_PhysRevLett_114_231303
crossref_primary_10_1016_j_ppnp_2013_03_001
crossref_primary_10_1088_1475_7516_2017_11_021
crossref_primary_10_1103_PhysRevD_103_122005
crossref_primary_10_1103_PhysRevD_108_062003
crossref_primary_10_1016_j_dark_2014_10_006
crossref_primary_10_1088_1475_7516_2018_07_016
crossref_primary_10_1103_PhysRevC_110_034002
crossref_primary_10_1088_1475_7516_2016_10_032
crossref_primary_10_1088_1475_7516_2017_05_007
crossref_primary_10_1103_PhysRevD_98_083510
crossref_primary_10_1103_PhysRevC_99_025501
crossref_primary_10_1007_JHEP01_2025_074
crossref_primary_10_3390_instruments5020021
crossref_primary_10_1103_PhysRevLett_121_081301
crossref_primary_10_1088_1475_7516_2019_09_020
crossref_primary_10_1016_j_physletb_2015_05_041
crossref_primary_10_1103_PhysRevLett_114_011301
crossref_primary_10_1088_1475_7516_2018_07_028
crossref_primary_10_1088_1475_7516_2020_12_030
crossref_primary_10_1088_1742_6596_1468_1_012015
crossref_primary_10_1088_1475_7516_2020_05_011
crossref_primary_10_1103_PhysRevD_108_096004
crossref_primary_10_1088_1742_6596_2156_1_012069
crossref_primary_10_1103_PhysRevD_97_103002
crossref_primary_10_21468_SciPostPhysProc_2_001
crossref_primary_10_1088_1475_7516_2015_07_041
crossref_primary_10_1103_PhysRevD_89_074505
crossref_primary_10_1007_s11433_021_1679_4
crossref_primary_10_1103_PhysRevD_87_075014
crossref_primary_10_1088_1361_6633_ac5f63
crossref_primary_10_1140_epjc_s10052_019_7126_4
crossref_primary_10_1140_epja_i2019_12889_8
crossref_primary_10_1140_epjc_s10052_020_8069_5
crossref_primary_10_1140_epjc_s10052_020_08795_x
crossref_primary_10_1140_epjc_s10052_019_6979_x
crossref_primary_10_1103_PhysRevC_107_035504
crossref_primary_10_1103_PhysRevD_91_121302
crossref_primary_10_1103_PhysRevD_108_L011901
crossref_primary_10_1007_JHEP09_2016_096
crossref_primary_10_1088_1475_7516_2018_07_009
crossref_primary_10_1088_1361_6633_aab913
crossref_primary_10_1146_annurev_nucl_020821_035016
crossref_primary_10_1103_PhysRevLett_121_181101
crossref_primary_10_1103_PhysRevD_111_063045
crossref_primary_10_1103_PhysRevD_111_L011702
crossref_primary_10_1007_JHEP04_2015_054
crossref_primary_10_1103_PhysRevD_98_075018
crossref_primary_10_1088_1475_7516_2014_04_019
crossref_primary_10_1140_epjc_s10052_018_5584_8
crossref_primary_10_1103_PhysRevD_101_062002
crossref_primary_10_1103_PhysRevD_89_123521
crossref_primary_10_1103_PhysRevD_100_063013
crossref_primary_10_1103_PhysRevD_103_015017
crossref_primary_10_1088_1475_7516_2015_03_032
crossref_primary_10_1103_PhysRevD_104_035024
crossref_primary_10_1007_JHEP09_2021_090
crossref_primary_10_1140_epjc_s10052_018_6513_6
crossref_primary_10_1142_S0217732317502108
crossref_primary_10_1007_JHEP04_2019_089
crossref_primary_10_1088_1748_0221_19_05_P05052
crossref_primary_10_1016_j_physrep_2016_02_007
crossref_primary_10_1088_1475_7516_2013_09_022
crossref_primary_10_1103_PhysRevD_96_083002
crossref_primary_10_1103_PhysRevD_99_043014
crossref_primary_10_1088_1475_7516_2016_05_039
crossref_primary_10_1088_1475_7516_2018_08_011
crossref_primary_10_1103_PhysRevD_102_082001
crossref_primary_10_1007_JHEP07_2015_133
crossref_primary_10_1088_1475_7516_2018_08_017
crossref_primary_10_1088_1475_7516_2017_09_032
crossref_primary_10_1007_JHEP07_2024_279
crossref_primary_10_1016_j_ppnp_2021_103904
crossref_primary_10_1103_PhysRevD_94_063001
crossref_primary_10_1007_JHEP01_2016_010
crossref_primary_10_1140_epjc_s10052_014_2981_5
crossref_primary_10_1103_PhysRevD_89_085026
crossref_primary_10_1007_JHEP10_2020_084
crossref_primary_10_1103_PhysRevD_91_092004
crossref_primary_10_1103_PhysRevD_94_023509
crossref_primary_10_1103_PhysRevD_90_094027
crossref_primary_10_3847_1538_4357_aca020
crossref_primary_10_1007_JHEP12_2017_010
crossref_primary_10_1103_PhysRevD_106_042004
crossref_primary_10_1103_PhysRevD_106_063003
crossref_primary_10_1103_PhysRevD_99_023523
crossref_primary_10_1007_JHEP06_2014_081
crossref_primary_10_1103_PhysRevD_109_092003
crossref_primary_10_1088_1475_7516_2015_12_057
crossref_primary_10_1103_PhysRevD_90_063510
crossref_primary_10_1016_j_physrep_2013_05_004
crossref_primary_10_1103_PhysRevD_89_016017
crossref_primary_10_1140_epjc_s10052_018_6523_4
crossref_primary_10_1088_1475_7516_2016_11_007
crossref_primary_10_1103_PhysRevLett_133_221801
crossref_primary_10_1007_JHEP11_2021_055
crossref_primary_10_1088_1475_7516_2022_06_026
crossref_primary_10_1103_PhysRevD_90_015026
crossref_primary_10_1007_JHEP03_2020_089
crossref_primary_10_1103_PhysRevResearch_5_043262
crossref_primary_10_1007_JHEP04_2022_146
crossref_primary_10_1146_annurev_nucl_111722_025122
crossref_primary_10_1016_j_dark_2022_101149
crossref_primary_10_1007_JHEP04_2015_105
crossref_primary_10_1016_j_dark_2023_101221
crossref_primary_10_1016_j_nuclphysa_2019_121624
crossref_primary_10_1103_PhysRevD_103_035029
crossref_primary_10_1103_PhysRevC_89_065501
crossref_primary_10_1103_PhysRevD_89_043519
crossref_primary_10_1103_PhysRevD_97_023007
crossref_primary_10_1126_sciadv_abk2699
crossref_primary_10_3847_1538_4357_ab095b
crossref_primary_10_1007_JHEP07_2022_111
crossref_primary_10_1103_PhysRevD_107_083022
crossref_primary_10_1103_PhysRevD_99_075026
crossref_primary_10_1088_1475_7516_2025_02_007
crossref_primary_10_1103_PhysRevD_101_052002
crossref_primary_10_1103_PhysRevD_95_095010
crossref_primary_10_1088_1475_7516_2016_12_016
crossref_primary_10_1103_PhysRevD_102_083009
crossref_primary_10_1103_PhysRevD_97_023025
crossref_primary_10_1103_PhysRevD_94_123009
crossref_primary_10_1103_PhysRevC_106_044003
crossref_primary_10_1007_JHEP09_2021_063
crossref_primary_10_1103_PhysRevD_106_052013
crossref_primary_10_1139_cjp_2024_0128
crossref_primary_10_1016_j_physletb_2013_11_069
crossref_primary_10_1007_JHEP11_2016_069
crossref_primary_10_1140_epjc_s10052_022_11062_w
crossref_primary_10_1103_PhysRevLett_116_161302
crossref_primary_10_1103_PhysRevD_107_035003
crossref_primary_10_1088_1475_7516_2017_01_059
crossref_primary_10_1103_PhysRevD_103_023019
crossref_primary_10_1103_PhysRevD_95_082003
crossref_primary_10_1038_s41586_023_05982_0
crossref_primary_10_1103_PhysRevD_91_035009
crossref_primary_10_1103_PhysRevD_95_035020
crossref_primary_10_1103_PhysRevD_90_015011
crossref_primary_10_1103_PhysRevD_111_033003
crossref_primary_10_1140_epjc_s10052_023_11826_y
crossref_primary_10_1155_2018_6031362
crossref_primary_10_1007_JHEP11_2024_076
crossref_primary_10_1007_JHEP03_2015_171
crossref_primary_10_1103_PhysRevD_101_063026
crossref_primary_10_1103_PhysRevD_109_075036
crossref_primary_10_1103_PhysRevD_104_103521
crossref_primary_10_1103_PhysRevD_93_052014
crossref_primary_10_1103_PhysRevD_99_023013
crossref_primary_10_1103_PhysRevD_99_023012
crossref_primary_10_1140_epjc_s10052_021_09712_6
crossref_primary_10_1088_1475_7516_2015_04_042
crossref_primary_10_1088_1475_7516_2018_10_039
crossref_primary_10_1088_1475_7516_2020_07_036
crossref_primary_10_1103_PhysRevD_99_103018
crossref_primary_10_1103_PhysRevD_99_103019
crossref_primary_10_1103_PhysRevD_95_103011
crossref_primary_10_1103_PhysRevD_99_094008
crossref_primary_10_1016_j_physrep_2019_11_003
crossref_primary_10_1088_1475_7516_2015_04_052
crossref_primary_10_3390_sym10110546
crossref_primary_10_1103_PhysRevD_105_042006
crossref_primary_10_1007_JHEP06_2022_086
crossref_primary_10_1103_PhysRevD_108_112006
crossref_primary_10_1103_PhysRevD_95_103005
crossref_primary_10_1088_1475_7516_2019_11_008
crossref_primary_10_1140_epjc_s10052_018_5935_5
crossref_primary_10_1088_1475_7516_2025_01_007
crossref_primary_10_1103_PhysRevD_95_051701
crossref_primary_10_1103_PhysRevD_102_115043
crossref_primary_10_1103_PhysRevLett_130_131901
crossref_primary_10_1007_JHEP01_2019_036
crossref_primary_10_1103_PhysRevD_104_123015
crossref_primary_10_21468_SciPostPhysProc_12_020
crossref_primary_10_1088_1674_1137_43_11_113102
crossref_primary_10_1007_JHEP11_2017_196
crossref_primary_10_1103_PhysRevD_93_075018
crossref_primary_10_1103_PhysRevD_88_116009
crossref_primary_10_1155_2018_5012043
crossref_primary_10_1088_1475_7516_2014_09_045
crossref_primary_10_1088_1475_7516_2017_01_012
crossref_primary_10_1088_1475_7516_2014_09_049
crossref_primary_10_1103_PhysRevD_100_022001
crossref_primary_10_1016_j_physletb_2014_10_058
crossref_primary_10_1103_PhysRevD_100_022004
crossref_primary_10_1007_JHEP09_2016_042
crossref_primary_10_1088_1475_7516_2014_02_050
crossref_primary_10_1088_1475_7516_2025_01_038
crossref_primary_10_1103_PhysRevC_103_034606
crossref_primary_10_1088_1475_7516_2025_01_035
crossref_primary_10_1088_1361_6633_ac5754
crossref_primary_10_1007_JHEP07_2022_091
crossref_primary_10_1088_1475_7516_2025_02_072
crossref_primary_10_1088_1475_7516_2019_05_023
crossref_primary_10_1088_1475_7516_2023_07_053
crossref_primary_10_1103_PhysRevD_88_014502
crossref_primary_10_1140_epjc_s10052_023_11399_w
crossref_primary_10_1088_1475_7516_2014_09_040
crossref_primary_10_1088_1475_7516_2022_04_002
crossref_primary_10_1088_1742_6596_718_4_042012
crossref_primary_10_1140_epjc_s10052_021_09012_z
crossref_primary_10_1103_PhysRevD_100_055039
crossref_primary_10_1016_j_astropartphys_2023_102851
crossref_primary_10_1088_1475_7516_2019_12_053
crossref_primary_10_1007_JHEP11_2017_059
crossref_primary_10_1088_1475_7516_2021_08_031
crossref_primary_10_1016_j_astropartphys_2023_102854
crossref_primary_10_1088_1475_7516_2017_02_044
crossref_primary_10_1103_PhysRevResearch_3_033149
crossref_primary_10_1088_1475_7516_2018_03_042
crossref_primary_10_1103_PhysRevD_109_015010
crossref_primary_10_3390_universe7040081
crossref_primary_10_1140_epjc_s10052_018_5662_y
crossref_primary_10_1103_PhysRevD_101_015012
crossref_primary_10_1016_j_cpc_2022_108597
crossref_primary_10_1007_JHEP05_2019_096
crossref_primary_10_1007_JHEP08_2024_052
crossref_primary_10_1088_1475_7516_2013_10_048
crossref_primary_10_1103_PhysRevC_104_064322
crossref_primary_10_1017_hpl_2024_70
crossref_primary_10_1140_epjc_s10052_021_09010_1
crossref_primary_10_1007_JHEP12_2015_120
crossref_primary_10_1140_epjc_s10052_023_12168_5
crossref_primary_10_1140_epjc_s10052_024_12410_8
crossref_primary_10_1103_PhysRevD_97_043006
crossref_primary_10_1103_PhysRevD_92_023513
crossref_primary_10_1016_j_dark_2017_09_008
crossref_primary_10_21468_SciPostPhysLectNotes_38
crossref_primary_10_1103_PhysRevD_106_083012
crossref_primary_10_1140_epjc_s10052_017_5155_4
crossref_primary_10_1103_RevModPhys_92_025004
crossref_primary_10_21468_SciPostPhysProc_12_062
crossref_primary_10_1088_1475_7516_2021_07_012
crossref_primary_10_1088_1742_6596_718_4_042065
crossref_primary_10_1103_PhysRevC_96_035805
crossref_primary_10_1007_JHEP07_2021_081
crossref_primary_10_1007_JHEP03_2025_165
crossref_primary_10_1088_1742_6596_2156_1_012027
crossref_primary_10_1140_epjc_s10052_016_4323_2
crossref_primary_10_1088_1475_7516_2014_12_025
crossref_primary_10_1103_PhysRevResearch_2_033195
crossref_primary_10_1007_JHEP11_2017_025
crossref_primary_10_1142_S0217751X17300162
crossref_primary_10_1103_PhysRevD_109_112017
crossref_primary_10_1103_PhysRevD_99_055031
crossref_primary_10_1088_1475_7516_2013_10_019
crossref_primary_10_1007_JHEP11_2017_024
crossref_primary_10_1016_j_astropartphys_2019_07_001
crossref_primary_10_1016_j_dark_2014_07_001
crossref_primary_10_1103_PhysRevD_90_035004
crossref_primary_10_1088_1475_7516_2017_02_009
crossref_primary_10_1103_PhysRevD_94_035028
crossref_primary_10_1016_j_dark_2018_11_009
crossref_primary_10_1016_j_physletb_2025_139389
crossref_primary_10_1007_JHEP07_2019_015
crossref_primary_10_1103_PhysRevD_94_115026
crossref_primary_10_1007_s10909_022_02784_y
crossref_primary_10_1103_PhysRevD_91_103535
crossref_primary_10_1007_JHEP08_2016_111
crossref_primary_10_1103_PhysRevLett_130_261002
crossref_primary_10_1103_PhysRevD_91_095020
crossref_primary_10_1103_PhysRevD_106_115019
crossref_primary_10_1088_1475_7516_2017_02_002
crossref_primary_10_21468_SciPostPhysLectNotes_55
crossref_primary_10_1103_PhysRevD_99_055045
crossref_primary_10_1088_1361_6633_aa6e5c
crossref_primary_10_1103_PhysRevD_94_063505
crossref_primary_10_1007_JHEP10_2016_071
crossref_primary_10_1140_epjc_s10052_024_12973_6
crossref_primary_10_1007_JHEP05_2015_009
crossref_primary_10_1088_1361_6471_ac841a
crossref_primary_10_1103_PhysRevD_111_035002
crossref_primary_10_1103_PhysRevD_104_063017
crossref_primary_10_1103_PhysRevD_108_103031
crossref_primary_10_1103_PhysRevD_104_063018
crossref_primary_10_3390_particles4010010
crossref_primary_10_1007_JHEP09_2019_083
crossref_primary_10_1103_PhysRevC_104_024305
crossref_primary_10_1088_1475_7516_2018_12_013
crossref_primary_10_1103_PhysRevD_88_083506
crossref_primary_10_1088_1475_7516_2019_06_048
crossref_primary_10_1088_1475_7516_2017_10_005
crossref_primary_10_1103_PhysRevD_108_063022
crossref_primary_10_1103_PhysRevLett_128_072502
crossref_primary_10_1109_TNS_2020_2974517
crossref_primary_10_1103_PhysRevD_95_043007
crossref_primary_10_1007_JHEP03_2016_149
crossref_primary_10_1051_epjconf_201713708011
crossref_primary_10_1088_1475_7516_2018_05_074
crossref_primary_10_1007_JHEP08_2022_093
crossref_primary_10_1103_PhysRevD_93_095008
crossref_primary_10_1007_JHEP02_2021_056
crossref_primary_10_3390_universe7080313
crossref_primary_10_1007_JHEP06_2019_052
crossref_primary_10_1103_PhysRevD_88_083516
crossref_primary_10_1088_1475_7516_2018_11_018
crossref_primary_10_1103_PhysRevD_98_123524
crossref_primary_10_1088_1475_7516_2016_02_050
crossref_primary_10_1007_JHEP08_2022_265
crossref_primary_10_1088_1475_7516_2024_07_051
crossref_primary_10_21468_SciPostPhys_11_1_006
crossref_primary_10_1103_PhysRevD_106_035031
crossref_primary_10_3390_universe6080118
crossref_primary_10_1142_S0217751X1730006X
crossref_primary_10_1007_JHEP10_2017_165
crossref_primary_10_1088_1475_7516_2017_10_039
crossref_primary_10_1088_1475_7516_2023_04_020
crossref_primary_10_1140_epjc_s10052_023_11817_z
crossref_primary_10_1103_PhysRevLett_115_171803
crossref_primary_10_1155_2014_681312
crossref_primary_10_1103_PhysRevD_100_082006
crossref_primary_10_1140_epjc_s10052_024_13477_z
crossref_primary_10_1103_PhysRevD_97_112002
crossref_primary_10_1088_1475_7516_2017_10_031
crossref_primary_10_1016_j_dark_2016_01_002
crossref_primary_10_1103_PhysRevD_96_042004
crossref_primary_10_1103_PhysRevLett_122_071301
crossref_primary_10_1088_1475_7516_2023_03_011
crossref_primary_10_1016_j_physletb_2022_137259
crossref_primary_10_1088_1475_7516_2018_11_039
crossref_primary_10_1007_JHEP05_2016_089
crossref_primary_10_1103_PhysRevD_104_062005
crossref_primary_10_1103_PhysRevD_97_103532
crossref_primary_10_1007_JHEP11_2019_013
crossref_primary_10_1103_PhysRevD_97_103530
crossref_primary_10_3389_fspas_2018_00030
crossref_primary_10_1103_PhysRevD_95_115024
crossref_primary_10_1103_PhysRevD_105_015001
crossref_primary_10_1088_1475_7516_2024_12_037
crossref_primary_10_1088_1475_7516_2022_02_022
crossref_primary_10_1007_JHEP06_2018_037
Cites_doi 10.1146/annurev.ns.38.120188.000333
10.1142/S0218301392000023
10.1016/j.physletb.2010.12.008
10.1103/PhysRevD.82.023533
10.1088/1475-7516/2010/03/029
10.1103/PhysRevD.80.075018
10.1103/PhysRevD.80.095002
10.1140/epjc/s10052-008-0662-y
10.1103/PhysRevLett.100.052503
10.1016/0370-1573(90)90081-C
10.1103/PhysRevLett.106.131301
10.1016/0370-2693(86)91377-8
10.1103/PhysRevD.82.075004
10.1016/j.nuclphysa.2008.12.005
10.1016/j.cpc.2008.02.018
10.1088/1475-7516/2010/01/020
10.1016/0092-640X(79)90003-2
10.1103/PhysRevC.18.539
10.1103/PhysRevD.79.015014
10.1016/B978-0-12-360602-0.50010-5
10.1088/1475-7516/2010/11/042
10.1088/1475-7516/2010/01/006
10.1016/S0370-2693(00)00358-0
10.1016/0370-2693(94)90830-3
10.1016/0375-9474(79)90435-4
ContentType Journal Article
CorporateAuthor SLAC National Accelerator Lab., Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Lab., Menlo Park, CA (United States)
DBID AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
OIOZB
OTOTI
DOI 10.1088/1475-7516/2013/02/004
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1475-7516
EndPage 4
ExternalDocumentID 1074218
10_1088_1475_7516_2013_02_004
GroupedDBID 1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
AAYXX
ABCXL
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ADEQX
ADWVK
AEFHF
AENEX
AERVB
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
ER.
IHE
IJHAN
IOP
IZVLO
J9A
JCGBZ
KOT
LAP
M45
MV1
N5L
N9A
NT-
NT.
P2P
PJBAE
RIN
RO9
ROL
RPA
S3P
SY9
VSI
W28
XPP
ZMT
7TG
KL.
8FD
H8D
L7M
HAK
KNG
OIOZB
OTOTI
RW3
UCJ
ID FETCH-LOGICAL-c412t-41640d7c615f6bac38eac7a651f2acfe7541883ef2c580f7a50ea1e20c3600823
ISSN 1475-7516
IngestDate Fri May 19 01:42:28 EDT 2023
Fri Jul 11 04:13:27 EDT 2025
Fri Jul 11 06:20:14 EDT 2025
Tue Jul 01 03:49:06 EDT 2025
Thu Apr 24 22:53:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-41640d7c615f6bac38eac7a651f2acfe7541883ef2c580f7a50ea1e20c3600823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
SLAC-PUB-15419
USDOE Office of Science (SC)
AC02-76SF00515
OpenAccessLink https://www.osti.gov/servlets/purl/1074218
PQID 1673382351
PQPubID 23462
PageCount 1
ParticipantIDs osti_scitechconnect_1074218
proquest_miscellaneous_1678018370
proquest_miscellaneous_1673382351
crossref_citationtrail_10_1088_1475_7516_2013_02_004
crossref_primary_10_1088_1475_7516_2013_02_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of cosmology and astroparticle physics
PublicationYear 2013
Publisher Institute of Physics (IOP)
Publisher_xml – name: Institute of Physics (IOP)
References 22
23
25
26
27
S. Chang (5) 2010; 2010
B. Feldstein (4) 2010; 2010
J. Fan (3) 2010; 2010
B. Feldstein (6) 2010; 2010
10
11
12
A.L. Fitzpatrick (16)
13
14
15
17
W.C. Haxton (24) 1992
19
1
2
J.D. Walecka (18) 1975
7
8
9
M.E. Peskin (28) 1995
20
21
References_xml – ident: 21
  doi: 10.1146/annurev.ns.38.120188.000333
– ident: 17
  doi: 10.1142/S0218301392000023
– ident: 8
  doi: 10.1016/j.physletb.2010.12.008
– ident: 7
  doi: 10.1103/PhysRevD.82.023533
– volume: 2010
  start-page: 029
  issn: 1475-7516
  year: 2010
  ident: 6
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2010/03/029
– ident: 11
  doi: 10.1103/PhysRevD.80.075018
– ident: 12
  doi: 10.1103/PhysRevD.80.095002
– ident: 1
  doi: 10.1140/epjc/s10052-008-0662-y
– ident: 22
  doi: 10.1103/PhysRevLett.100.052503
– ident: 27
  doi: 10.1016/0370-1573(90)90081-C
– ident: 2
  doi: 10.1103/PhysRevLett.106.131301
– ident: 9
  doi: 10.1016/0370-2693(86)91377-8
– ident: 13
  doi: 10.1103/PhysRevD.82.075004
– ident: 23
  doi: 10.1016/j.nuclphysa.2008.12.005
– year: 1992
  ident: 24
  publication-title: Proc. Int. Conf. on Nuclear Structure at High Angular Momentum, AECL-10613, vol. 2, ch. Shape Co-existence, Polarizabilities, and Large-Basis Shell-Model Techniques
– ident: 26
  doi: 10.1016/j.cpc.2008.02.018
– volume: 2010
  start-page: 020
  issn: 1475-7516
  year: 2010
  ident: 4
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2010/01/020
– year: 1995
  ident: 28
  publication-title: An Introduction to quantum field theory
– ident: 19
  doi: 10.1016/0092-640X(79)90003-2
– ident: 25
  doi: 10.1103/PhysRevC.18.539
– ident: 10
  doi: 10.1103/PhysRevD.79.015014
– start-page: 113
  year: 1975
  ident: 18
  publication-title: Muon Physics
  doi: 10.1016/B978-0-12-360602-0.50010-5
– volume: 2010
  start-page: 042
  issn: 1475-7516
  year: 2010
  ident: 3
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2010/11/042
– volume: 2010
  start-page: 006
  issn: 1475-7516
  year: 2010
  ident: 5
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2010/01/006
– ident: 16
– ident: 14
  doi: 10.1016/S0370-2693(00)00358-0
– ident: 15
  doi: 10.1016/0370-2693(94)90830-3
– ident: 20
  doi: 10.1016/0375-9474(79)90435-4
SSID ssj0026338
Score 2.5513756
Snippet We extend and explore the general non-relativistic effective theory of dark matter (DM) direct detection. We describe the basic non-relativistic building...
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4
SubjectTerms ASTRONOMY AND ASTROPHYSICS
Cosmology
Dark matter
Exchange
Germanium
HEPPH
Mathematical analysis
Momentum transfer
Operators
Phenomenology-HEP
Tables
Title The effective field theory of dark matter direct detection
URI https://www.proquest.com/docview/1673382351
https://www.proquest.com/docview/1678018370
https://www.osti.gov/servlets/purl/1074218
Volume 2013
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5a99JL6ZO4ScsWSi9GsVZaPZxbKA6huEkPNvVt2SeExFKwZSj59Z3ZlaWGpG3aixCLVoKZTzOzuzPfEPLRaOWs0XlkeTGJuLNJpKRikSkNL2LFuTK43_H1LD9d8C_LbNn3bPXVJY061Df31pX8j1ZhDPSKVbL_oNnupTAA96BfuIKG4fpgHYeEDE_ejclooTLRH5sbub4crTx_5ih4rpGxjU-9qn4Tk-p6s-pJmeSmWcOaOny33QPpy0Uumptrz-9_GezL7EKuenv2o03L_75j3Ze-_7rfrp6uZLW1XWrHbKtU26kNcIlr7Vt7EdgXosvrCOaTF1lUZKwlt75nLJhJ9ou_DYyldyw5WD_PBdBOxsIV-KDnwfApkbx3YLtD-7NzcbKYzcR8upw_Jk8SWDj4ks7zb90SPE99b_PutbuarrIcd2Nj_NA4TpD36Va0MqjB6t7x2T4QmT8nz1pt0eOglhfkka1ekr1j1BXWp9BP1N-36npFjgAltEMJ9SihASW0dhRRQgNKaEAJ7VDymixOpvPPp1HbMSPSnCVNBNE1j02hIUx1uZI6LcGvFjLPmEukdrbIOCvL1LpEZ2XsCpnFVjKbxDrN_ZnrGzKo6sruEWpNbNmETxLtUu6kncSp5I6lBrwnhx9_SPhOMkK3dPLY1eRK-LSGshQoUIECFShQEScCBDokh92068Cn8rcJ-yh2AQEhshprTP_SjcA8YohOh-TDThsC7CIedsnK1tuNYHmR4hl3xv74DARoSP_09gHP7JOnPeYPyKBZb-07iEgb9d6D7CeXH4hv
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effective+field+theory+of+dark+matter+direct+detection&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Fitzpatrick%2C+A+Liam&rft.au=Haxton%2C+Wick&rft.au=Katz%2C+Emanuel&rft.au=Lubbers%2C+Nicholas&rft.date=2013-02-01&rft.issn=1475-7516&rft.eissn=1475-7516&rft.spage=1&rft.epage=49&rft_id=info:doi/10.1088%2F1475-7516%2F2013%2F02%2F004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon