The effective field theory of dark matter direct detection
We extend and explore the general non-relativistic effective theory of dark matter (DM) direct detection. We describe the basic non-relativistic building blocks of operators and discuss their symmetry properties, writing down all Galilean-invariant operators up to quadratic order in momentum transfe...
Saved in:
Published in | Journal of cosmology and astroparticle physics Vol. 2013; no. 2; p. 4 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Institute of Physics (IOP)
01.02.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We extend and explore the general non-relativistic effective theory of dark matter (DM) direct detection. We describe the basic non-relativistic building blocks of operators and discuss their symmetry properties, writing down all Galilean-invariant operators up to quadratic order in momentum transfer arising from exchange of particles of spin 1 or less. Any DM particle theory can be translated into the coefficients of an effective operator and any effective operator can be simply related to most general description of the nuclear response. We find several operators which lead to novel nuclear responses. These responses differ significantly from the standard minimal WIMP cases in their relative coupling strengths to various elements, changing how the results from different experiments should be compared against each other. Response functions are evaluated for common DM targets - F, Na, Ge, I, and Xe - using standard shell model techniques. We point out that each of the nuclear responses is familiar from past studies of semi-leptonic electroweak interactions, and thus potentially testable in weak interaction studies. We provide tables of the full set of required matrix elements at finite momentum transfer for a range of common elements, making a careful and fully model-independent analysis possible. Finally, we discuss embedding non-relativistic effective theory operators into UV models of dark matter. |
---|---|
AbstractList | We extend and explore the general non-relativistic effective theory of dark matter (DM) direct detection. We describe the basic non-relativistic building blocks of operators and discuss their symmetry properties, writing down all Galilean-invariant operators up to quadratic order in momentum transfer arising from exchange of particles of spin 1 or less. Any DM particle theory can be translated into the coefficients of an effective operator and any effective operator can be simply related to most general description of the nuclear response. We find several operators which lead to novel nuclear responses. These responses differ significantly from the standard minimal WIMP cases in their relative coupling strengths to various elements, changing how the results from different experiments should be compared against each other. Response functions are evaluated for common DM targets - F, Na, Ge, I, and Xe - using standard shell model techniques. We point out that each of the nuclear responses is familiar from past studies of semi-leptonic electroweak interactions, and thus potentially testable in weak interaction studies. We provide tables of the full set of required matrix elements at finite momentum transfer for a range of common elements, making a careful and fully model-independent analysis possible. Finally, we discuss embedding non-relativistic effective theory operators into UV models of dark matter. |
Author | Katz, Emanuel Haxton, Wick Lubbers, Nicholas Xu, Yiming Fitzpatrick, A. Liam |
Author_xml | – sequence: 1 givenname: A. Liam surname: Fitzpatrick fullname: Fitzpatrick, A. Liam – sequence: 2 givenname: Wick surname: Haxton fullname: Haxton, Wick – sequence: 3 givenname: Emanuel surname: Katz fullname: Katz, Emanuel – sequence: 4 givenname: Nicholas surname: Lubbers fullname: Lubbers, Nicholas – sequence: 5 givenname: Yiming surname: Xu fullname: Xu, Yiming |
BackLink | https://www.osti.gov/servlets/purl/1074218$$D View this record in Osti.gov |
BookMark | eNqNkc1KAzEUhYNUsFUfQRhcuRnnJjOZBF1J8Q8Kbuo6xMwNjU4nNUmFvr0ZKiJudJVL-M49yTkzMhn8gIScUbikIGVFG8FLwWlbMaB1BawCaA7I9Pt-8mM-IrMYXwFYW9dySq6WKyzQWjTJfWBhHfZdkVbow67wtuh0eCvWOiUMRedCpooO0wj74YQcWt1HPP06j8nz3e1y_lAunu4f5zeL0jSUpbKhbQOdMC3ltn3RppaojdAtp5ZpY1HwhkpZo2WGS7BCc0BNkYGpWwDJ6mNyvt_rY3IqGpf9V8YPQ36GoiAaRmWGLvbQJvj3Lcak1i4a7Hs9oN9GRVshIXMC_oPmaFjNaUav96gJPsaAVmV3PX4-Be367K7GBtSYrhrTVWMDCpjKDWQ1_6XeBLfWYfeH7hPe4okk |
CitedBy_id | crossref_primary_10_1016_j_physrep_2020_10_004 crossref_primary_10_1103_PhysRevD_106_043028 crossref_primary_10_1103_PhysRevD_103_043541 crossref_primary_10_1007_JHEP10_2018_065 crossref_primary_10_1007_JHEP06_2024_165 crossref_primary_10_1088_1475_7516_2023_11_077 crossref_primary_10_1103_PhysRevD_109_103010 crossref_primary_10_1088_1475_7516_2015_08_046 crossref_primary_10_1007_JHEP08_2019_030 crossref_primary_10_1103_PhysRevD_102_123025 crossref_primary_10_1103_PhysRevD_102_123028 crossref_primary_10_1146_annurev_nucl_101918_023450 crossref_primary_10_1088_1475_7516_2017_04_031 crossref_primary_10_1103_PhysRevC_111_034311 crossref_primary_10_1088_1475_7516_2021_05_016 crossref_primary_10_1103_PhysRevD_107_075031 crossref_primary_10_1103_PhysRevD_110_L051701 crossref_primary_10_1103_PhysRevD_92_096013 crossref_primary_10_1007_JHEP03_2018_117 crossref_primary_10_1007_JHEP04_2022_080 crossref_primary_10_1016_j_physletb_2021_136275 crossref_primary_10_1103_PhysRevD_105_035016 crossref_primary_10_1142_S0217751X16430041 crossref_primary_10_1103_PhysRevD_95_075036 crossref_primary_10_1007_JHEP07_2024_218 crossref_primary_10_1007_JHEP09_2022_175 crossref_primary_10_1088_1475_7516_2015_08_022 crossref_primary_10_1007_JHEP10_2024_109 crossref_primary_10_1088_1475_7516_2017_05_046 crossref_primary_10_1007_JHEP02_2025_127 crossref_primary_10_1103_PhysRevD_89_015011 crossref_primary_10_1088_1475_7516_2023_03_052 crossref_primary_10_1103_PhysRevD_94_023527 crossref_primary_10_1007_JHEP02_2018_174 crossref_primary_10_3847_2041_8213_abd807 crossref_primary_10_1088_1475_7516_2014_07_055 crossref_primary_10_1016_j_astropartphys_2019_02_006 crossref_primary_10_1103_PhysRevD_104_083023 crossref_primary_10_1007_JHEP03_2020_036 crossref_primary_10_1103_PhysRevD_87_114510 crossref_primary_10_1088_1475_7516_2016_02_009 crossref_primary_10_1103_PhysRevD_89_072013 crossref_primary_10_1088_1475_7516_2016_09_018 crossref_primary_10_1103_PhysRevD_91_043520 crossref_primary_10_1103_RevModPhys_85_1561 crossref_primary_10_1103_PhysRevD_104_083019 crossref_primary_10_1007_JHEP11_2013_171 crossref_primary_10_1088_1674_1137_ad77b3 crossref_primary_10_1103_PhysRevD_96_063012 crossref_primary_10_1142_S021773231440001X crossref_primary_10_1088_1475_7516_2016_08_009 crossref_primary_10_1088_1475_7516_2017_11_016 crossref_primary_10_1088_1475_7516_2018_07_033 crossref_primary_10_1103_PhysRevD_89_013010 crossref_primary_10_1103_PhysRevD_96_063010 crossref_primary_10_1103_PhysRevLett_118_251301 crossref_primary_10_1103_PhysRevD_98_123003 crossref_primary_10_1103_PhysRevLett_120_152002 crossref_primary_10_1140_epjc_s10052_016_4208_4 crossref_primary_10_1088_1475_7516_2019_08_010 crossref_primary_10_1103_PhysRevD_92_063515 crossref_primary_10_1016_j_nuclphysb_2013_11_016 crossref_primary_10_1007_s11433_020_1666_8 crossref_primary_10_1088_1475_7516_2015_07_026 crossref_primary_10_1103_PhysRevD_91_043505 crossref_primary_10_1103_PhysRevD_97_083002 crossref_primary_10_1103_PhysRevD_108_116023 crossref_primary_10_1103_PhysRevD_98_103525 crossref_primary_10_1088_1475_7516_2020_12_014 crossref_primary_10_1103_PhysRevD_104_036005 crossref_primary_10_1134_S1547477123030561 crossref_primary_10_1103_PhysRevLett_114_231303 crossref_primary_10_1016_j_ppnp_2013_03_001 crossref_primary_10_1088_1475_7516_2017_11_021 crossref_primary_10_1103_PhysRevD_103_122005 crossref_primary_10_1103_PhysRevD_108_062003 crossref_primary_10_1016_j_dark_2014_10_006 crossref_primary_10_1088_1475_7516_2018_07_016 crossref_primary_10_1103_PhysRevC_110_034002 crossref_primary_10_1088_1475_7516_2016_10_032 crossref_primary_10_1088_1475_7516_2017_05_007 crossref_primary_10_1103_PhysRevD_98_083510 crossref_primary_10_1103_PhysRevC_99_025501 crossref_primary_10_1007_JHEP01_2025_074 crossref_primary_10_3390_instruments5020021 crossref_primary_10_1103_PhysRevLett_121_081301 crossref_primary_10_1088_1475_7516_2019_09_020 crossref_primary_10_1016_j_physletb_2015_05_041 crossref_primary_10_1103_PhysRevLett_114_011301 crossref_primary_10_1088_1475_7516_2018_07_028 crossref_primary_10_1088_1475_7516_2020_12_030 crossref_primary_10_1088_1742_6596_1468_1_012015 crossref_primary_10_1088_1475_7516_2020_05_011 crossref_primary_10_1103_PhysRevD_108_096004 crossref_primary_10_1088_1742_6596_2156_1_012069 crossref_primary_10_1103_PhysRevD_97_103002 crossref_primary_10_21468_SciPostPhysProc_2_001 crossref_primary_10_1088_1475_7516_2015_07_041 crossref_primary_10_1103_PhysRevD_89_074505 crossref_primary_10_1007_s11433_021_1679_4 crossref_primary_10_1103_PhysRevD_87_075014 crossref_primary_10_1088_1361_6633_ac5f63 crossref_primary_10_1140_epjc_s10052_019_7126_4 crossref_primary_10_1140_epja_i2019_12889_8 crossref_primary_10_1140_epjc_s10052_020_8069_5 crossref_primary_10_1140_epjc_s10052_020_08795_x crossref_primary_10_1140_epjc_s10052_019_6979_x crossref_primary_10_1103_PhysRevC_107_035504 crossref_primary_10_1103_PhysRevD_91_121302 crossref_primary_10_1103_PhysRevD_108_L011901 crossref_primary_10_1007_JHEP09_2016_096 crossref_primary_10_1088_1475_7516_2018_07_009 crossref_primary_10_1088_1361_6633_aab913 crossref_primary_10_1146_annurev_nucl_020821_035016 crossref_primary_10_1103_PhysRevLett_121_181101 crossref_primary_10_1103_PhysRevD_111_063045 crossref_primary_10_1103_PhysRevD_111_L011702 crossref_primary_10_1007_JHEP04_2015_054 crossref_primary_10_1103_PhysRevD_98_075018 crossref_primary_10_1088_1475_7516_2014_04_019 crossref_primary_10_1140_epjc_s10052_018_5584_8 crossref_primary_10_1103_PhysRevD_101_062002 crossref_primary_10_1103_PhysRevD_89_123521 crossref_primary_10_1103_PhysRevD_100_063013 crossref_primary_10_1103_PhysRevD_103_015017 crossref_primary_10_1088_1475_7516_2015_03_032 crossref_primary_10_1103_PhysRevD_104_035024 crossref_primary_10_1007_JHEP09_2021_090 crossref_primary_10_1140_epjc_s10052_018_6513_6 crossref_primary_10_1142_S0217732317502108 crossref_primary_10_1007_JHEP04_2019_089 crossref_primary_10_1088_1748_0221_19_05_P05052 crossref_primary_10_1016_j_physrep_2016_02_007 crossref_primary_10_1088_1475_7516_2013_09_022 crossref_primary_10_1103_PhysRevD_96_083002 crossref_primary_10_1103_PhysRevD_99_043014 crossref_primary_10_1088_1475_7516_2016_05_039 crossref_primary_10_1088_1475_7516_2018_08_011 crossref_primary_10_1103_PhysRevD_102_082001 crossref_primary_10_1007_JHEP07_2015_133 crossref_primary_10_1088_1475_7516_2018_08_017 crossref_primary_10_1088_1475_7516_2017_09_032 crossref_primary_10_1007_JHEP07_2024_279 crossref_primary_10_1016_j_ppnp_2021_103904 crossref_primary_10_1103_PhysRevD_94_063001 crossref_primary_10_1007_JHEP01_2016_010 crossref_primary_10_1140_epjc_s10052_014_2981_5 crossref_primary_10_1103_PhysRevD_89_085026 crossref_primary_10_1007_JHEP10_2020_084 crossref_primary_10_1103_PhysRevD_91_092004 crossref_primary_10_1103_PhysRevD_94_023509 crossref_primary_10_1103_PhysRevD_90_094027 crossref_primary_10_3847_1538_4357_aca020 crossref_primary_10_1007_JHEP12_2017_010 crossref_primary_10_1103_PhysRevD_106_042004 crossref_primary_10_1103_PhysRevD_106_063003 crossref_primary_10_1103_PhysRevD_99_023523 crossref_primary_10_1007_JHEP06_2014_081 crossref_primary_10_1103_PhysRevD_109_092003 crossref_primary_10_1088_1475_7516_2015_12_057 crossref_primary_10_1103_PhysRevD_90_063510 crossref_primary_10_1016_j_physrep_2013_05_004 crossref_primary_10_1103_PhysRevD_89_016017 crossref_primary_10_1140_epjc_s10052_018_6523_4 crossref_primary_10_1088_1475_7516_2016_11_007 crossref_primary_10_1103_PhysRevLett_133_221801 crossref_primary_10_1007_JHEP11_2021_055 crossref_primary_10_1088_1475_7516_2022_06_026 crossref_primary_10_1103_PhysRevD_90_015026 crossref_primary_10_1007_JHEP03_2020_089 crossref_primary_10_1103_PhysRevResearch_5_043262 crossref_primary_10_1007_JHEP04_2022_146 crossref_primary_10_1146_annurev_nucl_111722_025122 crossref_primary_10_1016_j_dark_2022_101149 crossref_primary_10_1007_JHEP04_2015_105 crossref_primary_10_1016_j_dark_2023_101221 crossref_primary_10_1016_j_nuclphysa_2019_121624 crossref_primary_10_1103_PhysRevD_103_035029 crossref_primary_10_1103_PhysRevC_89_065501 crossref_primary_10_1103_PhysRevD_89_043519 crossref_primary_10_1103_PhysRevD_97_023007 crossref_primary_10_1126_sciadv_abk2699 crossref_primary_10_3847_1538_4357_ab095b crossref_primary_10_1007_JHEP07_2022_111 crossref_primary_10_1103_PhysRevD_107_083022 crossref_primary_10_1103_PhysRevD_99_075026 crossref_primary_10_1088_1475_7516_2025_02_007 crossref_primary_10_1103_PhysRevD_101_052002 crossref_primary_10_1103_PhysRevD_95_095010 crossref_primary_10_1088_1475_7516_2016_12_016 crossref_primary_10_1103_PhysRevD_102_083009 crossref_primary_10_1103_PhysRevD_97_023025 crossref_primary_10_1103_PhysRevD_94_123009 crossref_primary_10_1103_PhysRevC_106_044003 crossref_primary_10_1007_JHEP09_2021_063 crossref_primary_10_1103_PhysRevD_106_052013 crossref_primary_10_1139_cjp_2024_0128 crossref_primary_10_1016_j_physletb_2013_11_069 crossref_primary_10_1007_JHEP11_2016_069 crossref_primary_10_1140_epjc_s10052_022_11062_w crossref_primary_10_1103_PhysRevLett_116_161302 crossref_primary_10_1103_PhysRevD_107_035003 crossref_primary_10_1088_1475_7516_2017_01_059 crossref_primary_10_1103_PhysRevD_103_023019 crossref_primary_10_1103_PhysRevD_95_082003 crossref_primary_10_1038_s41586_023_05982_0 crossref_primary_10_1103_PhysRevD_91_035009 crossref_primary_10_1103_PhysRevD_95_035020 crossref_primary_10_1103_PhysRevD_90_015011 crossref_primary_10_1103_PhysRevD_111_033003 crossref_primary_10_1140_epjc_s10052_023_11826_y crossref_primary_10_1155_2018_6031362 crossref_primary_10_1007_JHEP11_2024_076 crossref_primary_10_1007_JHEP03_2015_171 crossref_primary_10_1103_PhysRevD_101_063026 crossref_primary_10_1103_PhysRevD_109_075036 crossref_primary_10_1103_PhysRevD_104_103521 crossref_primary_10_1103_PhysRevD_93_052014 crossref_primary_10_1103_PhysRevD_99_023013 crossref_primary_10_1103_PhysRevD_99_023012 crossref_primary_10_1140_epjc_s10052_021_09712_6 crossref_primary_10_1088_1475_7516_2015_04_042 crossref_primary_10_1088_1475_7516_2018_10_039 crossref_primary_10_1088_1475_7516_2020_07_036 crossref_primary_10_1103_PhysRevD_99_103018 crossref_primary_10_1103_PhysRevD_99_103019 crossref_primary_10_1103_PhysRevD_95_103011 crossref_primary_10_1103_PhysRevD_99_094008 crossref_primary_10_1016_j_physrep_2019_11_003 crossref_primary_10_1088_1475_7516_2015_04_052 crossref_primary_10_3390_sym10110546 crossref_primary_10_1103_PhysRevD_105_042006 crossref_primary_10_1007_JHEP06_2022_086 crossref_primary_10_1103_PhysRevD_108_112006 crossref_primary_10_1103_PhysRevD_95_103005 crossref_primary_10_1088_1475_7516_2019_11_008 crossref_primary_10_1140_epjc_s10052_018_5935_5 crossref_primary_10_1088_1475_7516_2025_01_007 crossref_primary_10_1103_PhysRevD_95_051701 crossref_primary_10_1103_PhysRevD_102_115043 crossref_primary_10_1103_PhysRevLett_130_131901 crossref_primary_10_1007_JHEP01_2019_036 crossref_primary_10_1103_PhysRevD_104_123015 crossref_primary_10_21468_SciPostPhysProc_12_020 crossref_primary_10_1088_1674_1137_43_11_113102 crossref_primary_10_1007_JHEP11_2017_196 crossref_primary_10_1103_PhysRevD_93_075018 crossref_primary_10_1103_PhysRevD_88_116009 crossref_primary_10_1155_2018_5012043 crossref_primary_10_1088_1475_7516_2014_09_045 crossref_primary_10_1088_1475_7516_2017_01_012 crossref_primary_10_1088_1475_7516_2014_09_049 crossref_primary_10_1103_PhysRevD_100_022001 crossref_primary_10_1016_j_physletb_2014_10_058 crossref_primary_10_1103_PhysRevD_100_022004 crossref_primary_10_1007_JHEP09_2016_042 crossref_primary_10_1088_1475_7516_2014_02_050 crossref_primary_10_1088_1475_7516_2025_01_038 crossref_primary_10_1103_PhysRevC_103_034606 crossref_primary_10_1088_1475_7516_2025_01_035 crossref_primary_10_1088_1361_6633_ac5754 crossref_primary_10_1007_JHEP07_2022_091 crossref_primary_10_1088_1475_7516_2025_02_072 crossref_primary_10_1088_1475_7516_2019_05_023 crossref_primary_10_1088_1475_7516_2023_07_053 crossref_primary_10_1103_PhysRevD_88_014502 crossref_primary_10_1140_epjc_s10052_023_11399_w crossref_primary_10_1088_1475_7516_2014_09_040 crossref_primary_10_1088_1475_7516_2022_04_002 crossref_primary_10_1088_1742_6596_718_4_042012 crossref_primary_10_1140_epjc_s10052_021_09012_z crossref_primary_10_1103_PhysRevD_100_055039 crossref_primary_10_1016_j_astropartphys_2023_102851 crossref_primary_10_1088_1475_7516_2019_12_053 crossref_primary_10_1007_JHEP11_2017_059 crossref_primary_10_1088_1475_7516_2021_08_031 crossref_primary_10_1016_j_astropartphys_2023_102854 crossref_primary_10_1088_1475_7516_2017_02_044 crossref_primary_10_1103_PhysRevResearch_3_033149 crossref_primary_10_1088_1475_7516_2018_03_042 crossref_primary_10_1103_PhysRevD_109_015010 crossref_primary_10_3390_universe7040081 crossref_primary_10_1140_epjc_s10052_018_5662_y crossref_primary_10_1103_PhysRevD_101_015012 crossref_primary_10_1016_j_cpc_2022_108597 crossref_primary_10_1007_JHEP05_2019_096 crossref_primary_10_1007_JHEP08_2024_052 crossref_primary_10_1088_1475_7516_2013_10_048 crossref_primary_10_1103_PhysRevC_104_064322 crossref_primary_10_1017_hpl_2024_70 crossref_primary_10_1140_epjc_s10052_021_09010_1 crossref_primary_10_1007_JHEP12_2015_120 crossref_primary_10_1140_epjc_s10052_023_12168_5 crossref_primary_10_1140_epjc_s10052_024_12410_8 crossref_primary_10_1103_PhysRevD_97_043006 crossref_primary_10_1103_PhysRevD_92_023513 crossref_primary_10_1016_j_dark_2017_09_008 crossref_primary_10_21468_SciPostPhysLectNotes_38 crossref_primary_10_1103_PhysRevD_106_083012 crossref_primary_10_1140_epjc_s10052_017_5155_4 crossref_primary_10_1103_RevModPhys_92_025004 crossref_primary_10_21468_SciPostPhysProc_12_062 crossref_primary_10_1088_1475_7516_2021_07_012 crossref_primary_10_1088_1742_6596_718_4_042065 crossref_primary_10_1103_PhysRevC_96_035805 crossref_primary_10_1007_JHEP07_2021_081 crossref_primary_10_1007_JHEP03_2025_165 crossref_primary_10_1088_1742_6596_2156_1_012027 crossref_primary_10_1140_epjc_s10052_016_4323_2 crossref_primary_10_1088_1475_7516_2014_12_025 crossref_primary_10_1103_PhysRevResearch_2_033195 crossref_primary_10_1007_JHEP11_2017_025 crossref_primary_10_1142_S0217751X17300162 crossref_primary_10_1103_PhysRevD_109_112017 crossref_primary_10_1103_PhysRevD_99_055031 crossref_primary_10_1088_1475_7516_2013_10_019 crossref_primary_10_1007_JHEP11_2017_024 crossref_primary_10_1016_j_astropartphys_2019_07_001 crossref_primary_10_1016_j_dark_2014_07_001 crossref_primary_10_1103_PhysRevD_90_035004 crossref_primary_10_1088_1475_7516_2017_02_009 crossref_primary_10_1103_PhysRevD_94_035028 crossref_primary_10_1016_j_dark_2018_11_009 crossref_primary_10_1016_j_physletb_2025_139389 crossref_primary_10_1007_JHEP07_2019_015 crossref_primary_10_1103_PhysRevD_94_115026 crossref_primary_10_1007_s10909_022_02784_y crossref_primary_10_1103_PhysRevD_91_103535 crossref_primary_10_1007_JHEP08_2016_111 crossref_primary_10_1103_PhysRevLett_130_261002 crossref_primary_10_1103_PhysRevD_91_095020 crossref_primary_10_1103_PhysRevD_106_115019 crossref_primary_10_1088_1475_7516_2017_02_002 crossref_primary_10_21468_SciPostPhysLectNotes_55 crossref_primary_10_1103_PhysRevD_99_055045 crossref_primary_10_1088_1361_6633_aa6e5c crossref_primary_10_1103_PhysRevD_94_063505 crossref_primary_10_1007_JHEP10_2016_071 crossref_primary_10_1140_epjc_s10052_024_12973_6 crossref_primary_10_1007_JHEP05_2015_009 crossref_primary_10_1088_1361_6471_ac841a crossref_primary_10_1103_PhysRevD_111_035002 crossref_primary_10_1103_PhysRevD_104_063017 crossref_primary_10_1103_PhysRevD_108_103031 crossref_primary_10_1103_PhysRevD_104_063018 crossref_primary_10_3390_particles4010010 crossref_primary_10_1007_JHEP09_2019_083 crossref_primary_10_1103_PhysRevC_104_024305 crossref_primary_10_1088_1475_7516_2018_12_013 crossref_primary_10_1103_PhysRevD_88_083506 crossref_primary_10_1088_1475_7516_2019_06_048 crossref_primary_10_1088_1475_7516_2017_10_005 crossref_primary_10_1103_PhysRevD_108_063022 crossref_primary_10_1103_PhysRevLett_128_072502 crossref_primary_10_1109_TNS_2020_2974517 crossref_primary_10_1103_PhysRevD_95_043007 crossref_primary_10_1007_JHEP03_2016_149 crossref_primary_10_1051_epjconf_201713708011 crossref_primary_10_1088_1475_7516_2018_05_074 crossref_primary_10_1007_JHEP08_2022_093 crossref_primary_10_1103_PhysRevD_93_095008 crossref_primary_10_1007_JHEP02_2021_056 crossref_primary_10_3390_universe7080313 crossref_primary_10_1007_JHEP06_2019_052 crossref_primary_10_1103_PhysRevD_88_083516 crossref_primary_10_1088_1475_7516_2018_11_018 crossref_primary_10_1103_PhysRevD_98_123524 crossref_primary_10_1088_1475_7516_2016_02_050 crossref_primary_10_1007_JHEP08_2022_265 crossref_primary_10_1088_1475_7516_2024_07_051 crossref_primary_10_21468_SciPostPhys_11_1_006 crossref_primary_10_1103_PhysRevD_106_035031 crossref_primary_10_3390_universe6080118 crossref_primary_10_1142_S0217751X1730006X crossref_primary_10_1007_JHEP10_2017_165 crossref_primary_10_1088_1475_7516_2017_10_039 crossref_primary_10_1088_1475_7516_2023_04_020 crossref_primary_10_1140_epjc_s10052_023_11817_z crossref_primary_10_1103_PhysRevLett_115_171803 crossref_primary_10_1155_2014_681312 crossref_primary_10_1103_PhysRevD_100_082006 crossref_primary_10_1140_epjc_s10052_024_13477_z crossref_primary_10_1103_PhysRevD_97_112002 crossref_primary_10_1088_1475_7516_2017_10_031 crossref_primary_10_1016_j_dark_2016_01_002 crossref_primary_10_1103_PhysRevD_96_042004 crossref_primary_10_1103_PhysRevLett_122_071301 crossref_primary_10_1088_1475_7516_2023_03_011 crossref_primary_10_1016_j_physletb_2022_137259 crossref_primary_10_1088_1475_7516_2018_11_039 crossref_primary_10_1007_JHEP05_2016_089 crossref_primary_10_1103_PhysRevD_104_062005 crossref_primary_10_1103_PhysRevD_97_103532 crossref_primary_10_1007_JHEP11_2019_013 crossref_primary_10_1103_PhysRevD_97_103530 crossref_primary_10_3389_fspas_2018_00030 crossref_primary_10_1103_PhysRevD_95_115024 crossref_primary_10_1103_PhysRevD_105_015001 crossref_primary_10_1088_1475_7516_2024_12_037 crossref_primary_10_1088_1475_7516_2022_02_022 crossref_primary_10_1007_JHEP06_2018_037 |
Cites_doi | 10.1146/annurev.ns.38.120188.000333 10.1142/S0218301392000023 10.1016/j.physletb.2010.12.008 10.1103/PhysRevD.82.023533 10.1088/1475-7516/2010/03/029 10.1103/PhysRevD.80.075018 10.1103/PhysRevD.80.095002 10.1140/epjc/s10052-008-0662-y 10.1103/PhysRevLett.100.052503 10.1016/0370-1573(90)90081-C 10.1103/PhysRevLett.106.131301 10.1016/0370-2693(86)91377-8 10.1103/PhysRevD.82.075004 10.1016/j.nuclphysa.2008.12.005 10.1016/j.cpc.2008.02.018 10.1088/1475-7516/2010/01/020 10.1016/0092-640X(79)90003-2 10.1103/PhysRevC.18.539 10.1103/PhysRevD.79.015014 10.1016/B978-0-12-360602-0.50010-5 10.1088/1475-7516/2010/11/042 10.1088/1475-7516/2010/01/006 10.1016/S0370-2693(00)00358-0 10.1016/0370-2693(94)90830-3 10.1016/0375-9474(79)90435-4 |
ContentType | Journal Article |
CorporateAuthor | SLAC National Accelerator Lab., Menlo Park, CA (United States) |
CorporateAuthor_xml | – name: SLAC National Accelerator Lab., Menlo Park, CA (United States) |
DBID | AAYXX CITATION 7TG KL. 8FD H8D L7M OIOZB OTOTI |
DOI | 10.1088/1475-7516/2013/02/004 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1475-7516 |
EndPage | 4 |
ExternalDocumentID | 1074218 10_1088_1475_7516_2013_02_004 |
GroupedDBID | 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI AAYXX ABCXL ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP ADEQX ADWVK AEFHF AENEX AERVB AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN ER. IHE IJHAN IOP IZVLO J9A JCGBZ KOT LAP M45 MV1 N5L N9A NT- NT. P2P PJBAE RIN RO9 ROL RPA S3P SY9 VSI W28 XPP ZMT 7TG KL. 8FD H8D L7M HAK KNG OIOZB OTOTI RW3 UCJ |
ID | FETCH-LOGICAL-c412t-41640d7c615f6bac38eac7a651f2acfe7541883ef2c580f7a50ea1e20c3600823 |
ISSN | 1475-7516 |
IngestDate | Fri May 19 01:42:28 EDT 2023 Fri Jul 11 04:13:27 EDT 2025 Fri Jul 11 06:20:14 EDT 2025 Tue Jul 01 03:49:06 EDT 2025 Thu Apr 24 22:53:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c412t-41640d7c615f6bac38eac7a651f2acfe7541883ef2c580f7a50ea1e20c3600823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 SLAC-PUB-15419 USDOE Office of Science (SC) AC02-76SF00515 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1074218 |
PQID | 1673382351 |
PQPubID | 23462 |
PageCount | 1 |
ParticipantIDs | osti_scitechconnect_1074218 proquest_miscellaneous_1678018370 proquest_miscellaneous_1673382351 crossref_citationtrail_10_1088_1475_7516_2013_02_004 crossref_primary_10_1088_1475_7516_2013_02_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-01 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of cosmology and astroparticle physics |
PublicationYear | 2013 |
Publisher | Institute of Physics (IOP) |
Publisher_xml | – name: Institute of Physics (IOP) |
References | 22 23 25 26 27 S. Chang (5) 2010; 2010 B. Feldstein (4) 2010; 2010 J. Fan (3) 2010; 2010 B. Feldstein (6) 2010; 2010 10 11 12 A.L. Fitzpatrick (16) 13 14 15 17 W.C. Haxton (24) 1992 19 1 2 J.D. Walecka (18) 1975 7 8 9 M.E. Peskin (28) 1995 20 21 |
References_xml | – ident: 21 doi: 10.1146/annurev.ns.38.120188.000333 – ident: 17 doi: 10.1142/S0218301392000023 – ident: 8 doi: 10.1016/j.physletb.2010.12.008 – ident: 7 doi: 10.1103/PhysRevD.82.023533 – volume: 2010 start-page: 029 issn: 1475-7516 year: 2010 ident: 6 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2010/03/029 – ident: 11 doi: 10.1103/PhysRevD.80.075018 – ident: 12 doi: 10.1103/PhysRevD.80.095002 – ident: 1 doi: 10.1140/epjc/s10052-008-0662-y – ident: 22 doi: 10.1103/PhysRevLett.100.052503 – ident: 27 doi: 10.1016/0370-1573(90)90081-C – ident: 2 doi: 10.1103/PhysRevLett.106.131301 – ident: 9 doi: 10.1016/0370-2693(86)91377-8 – ident: 13 doi: 10.1103/PhysRevD.82.075004 – ident: 23 doi: 10.1016/j.nuclphysa.2008.12.005 – year: 1992 ident: 24 publication-title: Proc. Int. Conf. on Nuclear Structure at High Angular Momentum, AECL-10613, vol. 2, ch. Shape Co-existence, Polarizabilities, and Large-Basis Shell-Model Techniques – ident: 26 doi: 10.1016/j.cpc.2008.02.018 – volume: 2010 start-page: 020 issn: 1475-7516 year: 2010 ident: 4 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2010/01/020 – year: 1995 ident: 28 publication-title: An Introduction to quantum field theory – ident: 19 doi: 10.1016/0092-640X(79)90003-2 – ident: 25 doi: 10.1103/PhysRevC.18.539 – ident: 10 doi: 10.1103/PhysRevD.79.015014 – start-page: 113 year: 1975 ident: 18 publication-title: Muon Physics doi: 10.1016/B978-0-12-360602-0.50010-5 – volume: 2010 start-page: 042 issn: 1475-7516 year: 2010 ident: 3 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2010/11/042 – volume: 2010 start-page: 006 issn: 1475-7516 year: 2010 ident: 5 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2010/01/006 – ident: 16 – ident: 14 doi: 10.1016/S0370-2693(00)00358-0 – ident: 15 doi: 10.1016/0370-2693(94)90830-3 – ident: 20 doi: 10.1016/0375-9474(79)90435-4 |
SSID | ssj0026338 |
Score | 2.5513756 |
Snippet | We extend and explore the general non-relativistic effective theory of dark matter (DM) direct detection. We describe the basic non-relativistic building... |
SourceID | osti proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 4 |
SubjectTerms | ASTRONOMY AND ASTROPHYSICS Cosmology Dark matter Exchange Germanium HEPPH Mathematical analysis Momentum transfer Operators Phenomenology-HEP Tables |
Title | The effective field theory of dark matter direct detection |
URI | https://www.proquest.com/docview/1673382351 https://www.proquest.com/docview/1678018370 https://www.osti.gov/servlets/purl/1074218 |
Volume | 2013 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5a99JL6ZO4ScsWSi9GsVZaPZxbKA6huEkPNvVt2SeExFKwZSj59Z3ZlaWGpG3aixCLVoKZTzOzuzPfEPLRaOWs0XlkeTGJuLNJpKRikSkNL2LFuTK43_H1LD9d8C_LbNn3bPXVJY061Df31pX8j1ZhDPSKVbL_oNnupTAA96BfuIKG4fpgHYeEDE_ejclooTLRH5sbub4crTx_5ih4rpGxjU-9qn4Tk-p6s-pJmeSmWcOaOny33QPpy0Uumptrz-9_GezL7EKuenv2o03L_75j3Ze-_7rfrp6uZLW1XWrHbKtU26kNcIlr7Vt7EdgXosvrCOaTF1lUZKwlt75nLJhJ9ou_DYyldyw5WD_PBdBOxsIV-KDnwfApkbx3YLtD-7NzcbKYzcR8upw_Jk8SWDj4ks7zb90SPE99b_PutbuarrIcd2Nj_NA4TpD36Va0MqjB6t7x2T4QmT8nz1pt0eOglhfkka1ekr1j1BXWp9BP1N-36npFjgAltEMJ9SihASW0dhRRQgNKaEAJ7VDymixOpvPPp1HbMSPSnCVNBNE1j02hIUx1uZI6LcGvFjLPmEukdrbIOCvL1LpEZ2XsCpnFVjKbxDrN_ZnrGzKo6sruEWpNbNmETxLtUu6kncSp5I6lBrwnhx9_SPhOMkK3dPLY1eRK-LSGshQoUIECFShQEScCBDokh92068Cn8rcJ-yh2AQEhshprTP_SjcA8YohOh-TDThsC7CIedsnK1tuNYHmR4hl3xv74DARoSP_09gHP7JOnPeYPyKBZb-07iEgb9d6D7CeXH4hv |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effective+field+theory+of+dark+matter+direct+detection&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Fitzpatrick%2C+A+Liam&rft.au=Haxton%2C+Wick&rft.au=Katz%2C+Emanuel&rft.au=Lubbers%2C+Nicholas&rft.date=2013-02-01&rft.issn=1475-7516&rft.eissn=1475-7516&rft.spage=1&rft.epage=49&rft_id=info:doi/10.1088%2F1475-7516%2F2013%2F02%2F004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon |