Chromospheric emission from nanoflare heating in RADYN simulations
Context. Heating signatures from small-scale magnetic reconnection events in the solar atmosphere have proven to be difficult to detect through observations. Numerical models that reproduce flaring conditions are essential in understanding how nanoflares may act as a heating mechanism of the corona....
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 659; p. A186 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
EDP Sciences
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Context.
Heating signatures from small-scale magnetic reconnection events in the solar atmosphere have proven to be difficult to detect through observations. Numerical models that reproduce flaring conditions are essential in understanding how nanoflares may act as a heating mechanism of the corona.
Aims.
We study the effects of non-thermal electrons in synthetic spectra from 1D hydrodynamic RADYN simulations of nanoflare heated loops to investigate the diagnostic potential of chromospheric emission from small-scale events.
Methods.
The Mg
II
h and k, Ca
II
H and K, Ca
II
854.2 nm, and H
α
and H
β
chromospheric lines were synthesised from various RADYN models of coronal loops subject to electron beams of nanoflare energies. The contribution function to the line intensity was computed to better understand how the atmospheric response to the non-thermal electrons affects the formation of spectral lines and the detailed shape of their spectral profiles.
Results.
The spectral line signatures arising from the electron beams highly depend on the density of the loop and the lower cutoff energy of the electrons. Low-energy (5 keV) electrons deposit their energy in the corona and transition region, producing strong plasma flows that cause both redshifts and blueshifts of the chromospheric spectra. Higher-energy (10 and 15 keV) electrons deposit their energy in the lower transition region and chromosphere, resulting in increased emission from local heating. Our results indicate that effects from small-scale events can be observed with ground-based telescopes, expanding the list of possible diagnostics for the presence and properties of nanoflares. |
---|---|
AbstractList | Context. Heating signatures from small-scale magnetic reconnection events in the solar atmosphere have proven to be difficult to detect through observations. Numerical models that reproduce flaring conditions are essential in understanding how nanoflares may act as a heating mechanism of the corona.
Aims. We study the effects of non-thermal electrons in synthetic spectra from 1D hydrodynamic RADYN simulations of nanoflare heated loops to investigate the diagnostic potential of chromospheric emission from small-scale events.
Methods. The Mg II h and k, Ca II H and K, Ca II 854.2 nm, and H α and H β chromospheric lines were synthesised from various RADYN models of coronal loops subject to electron beams of nanoflare energies. The contribution function to the line intensity was computed to better understand how the atmospheric response to the non-thermal electrons affects the formation of spectral lines and the detailed shape of their spectral profiles.
Results. The spectral line signatures arising from the electron beams highly depend on the density of the loop and the lower cutoff energy of the electrons. Low-energy (5 keV) electrons deposit their energy in the corona and transition region, producing strong plasma flows that cause both redshifts and blueshifts of the chromospheric spectra. Higher-energy (10 and 15 keV) electrons deposit their energy in the lower transition region and chromosphere, resulting in increased emission from local heating. Our results indicate that effects from small-scale events can be observed with ground-based telescopes, expanding the list of possible diagnostics for the presence and properties of nanoflares. Context. Heating signatures from small-scale magnetic reconnection events in the solar atmosphere have proven to be difficult to detect through observations. Numerical models that reproduce flaring conditions are essential in understanding how nanoflares may act as a heating mechanism of the corona. Aims. We study the effects of non-thermal electrons in synthetic spectra from 1D hydrodynamic RADYN simulations of nanoflare heated loops to investigate the diagnostic potential of chromospheric emission from small-scale events. Methods. The Mg II h and k, Ca II H and K, Ca II 854.2 nm, and Hα and Hβ chromospheric lines were synthesised from various RADYN models of coronal loops subject to electron beams of nanoflare energies. The contribution function to the line intensity was computed to better understand how the atmospheric response to the non-thermal electrons affects the formation of spectral lines and the detailed shape of their spectral profiles. Results. The spectral line signatures arising from the electron beams highly depend on the density of the loop and the lower cutoff energy of the electrons. Low-energy (5 keV) electrons deposit their energy in the corona and transition region, producing strong plasma flows that cause both redshifts and blueshifts of the chromospheric spectra. Higher-energy (10 and 15 keV) electrons deposit their energy in the lower transition region and chromosphere, resulting in increased emission from local heating. Our results indicate that effects from small-scale events can be observed with ground-based telescopes, expanding the list of possible diagnostics for the presence and properties of nanoflares. Context. Heating signatures from small-scale magnetic reconnection events in the solar atmosphere have proven to be difficult to detect through observations. Numerical models that reproduce flaring conditions are essential in understanding how nanoflares may act as a heating mechanism of the corona. Aims. We study the effects of non-thermal electrons in synthetic spectra from 1D hydrodynamic RADYN simulations of nanoflare heated loops to investigate the diagnostic potential of chromospheric emission from small-scale events. Methods. The Mg II h and k, Ca II H and K, Ca II 854.2 nm, and H α and H β chromospheric lines were synthesised from various RADYN models of coronal loops subject to electron beams of nanoflare energies. The contribution function to the line intensity was computed to better understand how the atmospheric response to the non-thermal electrons affects the formation of spectral lines and the detailed shape of their spectral profiles. Results. The spectral line signatures arising from the electron beams highly depend on the density of the loop and the lower cutoff energy of the electrons. Low-energy (5 keV) electrons deposit their energy in the corona and transition region, producing strong plasma flows that cause both redshifts and blueshifts of the chromospheric spectra. Higher-energy (10 and 15 keV) electrons deposit their energy in the lower transition region and chromosphere, resulting in increased emission from local heating. Our results indicate that effects from small-scale events can be observed with ground-based telescopes, expanding the list of possible diagnostics for the presence and properties of nanoflares. |
Author | Rouppe van der Voort, L. Testa, P. Carlsson, M. Gudiksen, B. V. De Pontieu, B. Bakke, H. Polito, V. |
Author_xml | – sequence: 1 givenname: H. orcidid: 0000-0002-2503-3269 surname: Bakke fullname: Bakke, H. – sequence: 2 givenname: M. orcidid: 0000-0001-9218-3139 surname: Carlsson fullname: Carlsson, M. – sequence: 3 givenname: L. orcidid: 0000-0003-2088-028X surname: Rouppe van der Voort fullname: Rouppe van der Voort, L. – sequence: 4 givenname: B. V. surname: Gudiksen fullname: Gudiksen, B. V. – sequence: 5 givenname: V. surname: Polito fullname: Polito, V. – sequence: 6 givenname: P. orcidid: 0000-0002-0405-0668 surname: Testa fullname: Testa, P. – sequence: 7 givenname: B. orcidid: 0000-0002-8370-952X surname: De Pontieu fullname: De Pontieu, B. |
BookMark | eNp9kDtPwzAUhS1UJNrCL2AgEnOoX3GcsZSnVIGEYGCyHD-oq8Qudjrw73EpMDAwXd2r7xydeyZg5IM3AJwieIFghWYQQloywtAMQ4wo5hQfgDGiBJewpmwExr_EEZiktM4rRpyMweViFUMf0mZlolOF6V1KLvjC5mvhpQ-2k9EUKyMH598K54un-dXrQ5Fcv-3yLfh0DA6t7JI5-Z5T8HJz_by4K5ePt_eL-bJUFOGhJKZVmCmiKms1bqqmbnjTUsUoqRotWa15azXTra5ZpXFtpWkI18aYlmJdKTIFZ3tfFV3KaYQPUQoEeYVFJmueifM9sYnhfWvSINZhG30OJTCras4wb1immh-fkFI0Vig3fL0yROm67Ch2pYpdZWJXmfgtNWvJH-0mul7Gj39Vn_Y4eh4 |
CitedBy_id | crossref_primary_10_3847_1538_4357_acb7da crossref_primary_10_1051_0004_6361_202347089 crossref_primary_10_1051_0004_6361_202452370 crossref_primary_10_1051_0004_6361_202451707 crossref_primary_10_1051_0004_6361_202348457 crossref_primary_10_1051_0004_6361_202346765 crossref_primary_10_1093_mnras_stad1232 crossref_primary_10_3847_1538_4357_acf4f1 |
Cites_doi | 10.1051/0004-6361/201116520 10.1088/0004-637X/772/2/90 10.1051/0004-6361/202038529 10.1086/186544 10.1093/mnras/stab2283 10.1007/s11214-010-9705-4 10.1086/153744 10.1126/science.1255724 10.1051/0004-6361/201834129 10.1007/BF00149070 10.1088/0004-637X/772/2/89 10.1051/aas:1997368 10.3847/1538-4357/aa7a59 10.1088/0004-637X/808/2/177 10.1007/BF00155074 10.1088/2041-8205/770/1/L1 10.1016/0021-9991(87)90161-6 10.1088/2041-8205/809/2/L30 10.1051/0004-6361/201731926 10.1086/187753 10.1007/s11214-010-9680-9 10.1007/s11207-020-01736-7 10.3847/1538-4357/ab63cf 10.1086/321659 10.1086/304043 10.3847/2041-8213/ab7341 10.1051/0004-6361/201424785 10.1088/0004-637X/806/1/14 10.1117/12.460377 10.1086/166485 10.1007/s11207-014-0485-y 10.3847/1538-4357/aab49e 10.1086/153115 10.1086/156371 |
ContentType | Journal Article |
Copyright | Copyright EDP Sciences Mar 2022 info:eu-repo/semantics/openAccess |
Copyright_xml | – notice: Copyright EDP Sciences Mar 2022 – notice: info:eu-repo/semantics/openAccess |
DBID | AAYXX CITATION 8FD H8D L7M 3HK |
DOI | 10.1051/0004-6361/202142842 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace NORA - Norwegian Open Research Archives |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 10852_93878 10_1051_0004_6361_202142842 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 8FD H8D L7M 3HK ABTAH ACBIF ACZCS AFDAS G8K RNP RSV SOJ XFK |
ID | FETCH-LOGICAL-c412t-3ebc26c3c5ffd29597989b4c64359da67d8bfd6dbd765d27fae938deeeb42d5c3 |
ISSN | 0004-6361 |
IngestDate | Sat Apr 29 05:43:54 EDT 2023 Sun Jun 29 16:13:59 EDT 2025 Tue Jul 01 03:53:58 EDT 2025 Thu Apr 24 23:05:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://www.edpsciences.org/en/authors/copyright-and-licensing |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c412t-3ebc26c3c5ffd29597989b4c64359da67d8bfd6dbd765d27fae938deeeb42d5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 NFR/262622 |
ORCID | 0000-0001-9218-3139 0000-0002-0405-0668 0000-0002-2503-3269 0000-0002-8370-952X 0000-0003-2088-028X |
OpenAccessLink | http://hdl.handle.net/10852/93878 |
PQID | 2657862896 |
PQPubID | 1796397 |
ParticipantIDs | cristin_nora_10852_93878 proquest_journals_2657862896 crossref_citationtrail_10_1051_0004_6361_202142842 crossref_primary_10_1051_0004_6361_202142842 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2022 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Brown (R4) 1971; 18 Emslie (R13) 1978; 224 Leenaarts (R21) 2013; 772 Bakke (R2) 2018; 620 Glesener (R15) 2020; 891 Carlsson (R5) 1992; 397 Carlsson (R7) 1997; 481 Carlsson (R6) 1995; 440 Rimmele (R28) 2020; 295 Testa (R33) 2020; 889 Leenaarts (R20) 2013; 772 Parker (R23) 1988; 330 Shine (R30) 1975; 199 Testa (R32) 2014; 346 R29 Testa (R31) 2013; 770 Bjørgen (R3) 2018; 611 Cooper (R9) 2021; 507 Milkey (R22) 1974; 192 Reep (R27) 2015; 808 Allred (R1) 2015; 1 Frogner (R14) 2020; 643 Gudiksen (R16) 2011; 531 Holman (R19) 2011; 159 De Pontieu (R10) 2014; 289 Dorfi (R12) 1987; 69 Vardavas (R35) 1974; 38 Wright (R36) 2017; 844 Carlsson (R8) 2015; 809 Dere (R11) 1997; 125 Uitenbroek (R34) 2001; 557 Pereira (R25) 2015; 806 Hannah (R18) 2011; 159 Pereira (R24) 2015; 574 R17 Polito (R26) 2018; 856 |
References_xml | – volume: 531 start-page: A154 year: 2011 ident: R16 publication-title: A&A doi: 10.1051/0004-6361/201116520 – volume: 772 start-page: 90 year: 2013 ident: R21 publication-title: ApJ doi: 10.1088/0004-637X/772/2/90 – volume: 643 start-page: A27 year: 2020 ident: R14 publication-title: A&A doi: 10.1051/0004-6361/202038529 – volume: 1 start-page: 302.07 year: 2015 ident: R1 publication-title: AAS/AGU Triennial Earth-Sun Summit – volume: 397 start-page: L59 year: 1992 ident: R5 publication-title: ApJ doi: 10.1086/186544 – volume: 507 start-page: 3936 year: 2021 ident: R9 publication-title: MNRAS doi: 10.1093/mnras/stab2283 – volume: 159 start-page: 263 year: 2011 ident: R18 publication-title: Space Sci. Rev. doi: 10.1007/s11214-010-9705-4 – volume: 199 start-page: 724 year: 1975 ident: R30 publication-title: ApJ doi: 10.1086/153744 – volume: 346 start-page: 1255724 year: 2014 ident: R32 publication-title: Science doi: 10.1126/science.1255724 – volume: 620 start-page: L5 year: 2018 ident: R2 publication-title: A&A doi: 10.1051/0004-6361/201834129 – volume: 18 start-page: 489 year: 1971 ident: R4 publication-title: Sol. Phys. doi: 10.1007/BF00149070 – volume: 772 start-page: 89 year: 2013 ident: R20 publication-title: ApJ doi: 10.1088/0004-637X/772/2/89 – volume: 125 start-page: 149 year: 1997 ident: R11 publication-title: A&AS doi: 10.1051/aas:1997368 – volume: 844 start-page: 132 year: 2017 ident: R36 publication-title: ApJ doi: 10.3847/1538-4357/aa7a59 – volume: 808 start-page: 177 year: 2015 ident: R27 publication-title: ApJ doi: 10.1088/0004-637X/808/2/177 – volume: 38 start-page: 367 year: 1974 ident: R35 publication-title: Sol. Phys. doi: 10.1007/BF00155074 – volume: 770 start-page: L1 year: 2013 ident: R31 publication-title: ApJ doi: 10.1088/2041-8205/770/1/L1 – volume: 69 start-page: 175 year: 1987 ident: R12 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(87)90161-6 – volume: 809 start-page: L30 year: 2015 ident: R8 publication-title: ApJ doi: 10.1088/2041-8205/809/2/L30 – volume: 611 start-page: A62 year: 2018 ident: R3 publication-title: A&A doi: 10.1051/0004-6361/201731926 – volume: 440 start-page: L29 year: 1995 ident: R6 publication-title: ApJ doi: 10.1086/187753 – volume: 159 start-page: 107 year: 2011 ident: R19 publication-title: Space Sci. Rev. doi: 10.1007/s11214-010-9680-9 – volume: 295 start-page: 172 year: 2020 ident: R28 publication-title: Sol. Phys. doi: 10.1007/s11207-020-01736-7 – volume: 889 start-page: 124 year: 2020 ident: R33 publication-title: ApJ doi: 10.3847/1538-4357/ab63cf – volume: 557 start-page: 389 year: 2001 ident: R34 publication-title: ApJ doi: 10.1086/321659 – volume: 481 start-page: 500 year: 1997 ident: R7 publication-title: ApJ doi: 10.1086/304043 – volume: 891 start-page: L34 year: 2020 ident: R15 publication-title: ApJ doi: 10.3847/2041-8213/ab7341 – volume: 574 start-page: A3 year: 2015 ident: R24 publication-title: A&A doi: 10.1051/0004-6361/201424785 – volume: 806 start-page: 14 year: 2015 ident: R25 publication-title: ApJ doi: 10.1088/0004-637X/806/1/14 – ident: R29 doi: 10.1117/12.460377 – volume: 330 start-page: 474 year: 1988 ident: R23 publication-title: ApJ doi: 10.1086/166485 – volume: 289 start-page: 2733 year: 2014 ident: R10 publication-title: Sol. Phys. doi: 10.1007/s11207-014-0485-y – volume: 856 start-page: 178 year: 2018 ident: R26 publication-title: ApJ doi: 10.3847/1538-4357/aab49e – volume: 192 start-page: 769 year: 1974 ident: R22 publication-title: ApJ doi: 10.1086/153115 – volume: 224 start-page: 241 year: 1978 ident: R13 publication-title: ApJ doi: 10.1086/156371 – ident: R17 |
SSID | ssj0002183 |
Score | 2.4550877 |
Snippet | Context.
Heating signatures from small-scale magnetic reconnection events in the solar atmosphere have proven to be difficult to detect through observations.... Context. Heating signatures from small-scale magnetic reconnection events in the solar atmosphere have proven to be difficult to detect through observations.... |
SourceID | cristin proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | A186 |
SubjectTerms | Atmospheric models Chromosphere Coronal loops Electron beams Emission analysis Ground-based observation Heating Line spectra Numerical models Signatures Solar atmosphere Space telescopes Spectra |
Title | Chromospheric emission from nanoflare heating in RADYN simulations |
URI | https://www.proquest.com/docview/2657862896 http://hdl.handle.net/10852/93878 |
Volume | 659 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKEBIvaAxQCwP5AfFS0rWO7SSPKT9WEExo2qbxFDmOI1Vbk2ppedgDfzt3seulgCbGS5Ra6VXNdznfXe6-I-S1ZHlUYjeOSpgJeK7LQGleBlFsdMt_xyX2Dn89krNT_vlcnPd6PzpVS-tVPtLXf-0r-R9UYQ1wxS7ZOyDrhcICnAO-cASE4fhPGCOz7aJukBlgroc4ua1pKwexZaRSVV1eYl0XmlvXuXKcvv9-NGzmCze0q-n6pmmDafF6YRmZFH6yeY82MWt5sTqJg6m6sIU9s9HNi4wr_Mu2PNivHtfr5dK0A4KRuOKsdsPrv_grDtfF_MKlgqaj4dmom4uAMNYXY3n7ygMZWnr1kbEmlYdY3-oSjc7mSkcDbq1mOrF02H-Yc7AYtv7RSsXuFcsRZxm5tumzf9vWfLFh-5pdTPA1O89QTOaF3CP3GYQXOPni8NNPv4Oj22jDJvu7G7YqMTnwawdeCEROujXI1bZvs721t_7KyS555AINmlqteUx6ptojfY8xfUPTDsJ75ME3e_aETLfUim7UiqJaUa9W1KkVnVe0VSvaUaun5PTjh5N3s8CN2gg0n7BVEJpcM6lDLcqyYAlEmUmc5FyDvyqSQsmoiPMSZ48VkRQFi0plkjAujDE5Z4XQ4TOyU9WV6RM6LkMjlcpNJA3E_ioxGqMKHgmtxmJcDEjf3a6sAiuHDLWCZSAtigeEbe5fph1FPU5KucxuwXBA3vovLS1Dy-2X72-Aydyj3GRMwsYlWZzI53eT9oI8vHkO9snO6mptXoKXuspftSr1C3s2h8Y |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromospheric+emission+from+nanoflare+heating+in+RADYN+simulations&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Bakke%2C+H.&rft.au=Carlsson%2C+M.&rft.au=Rouppe+van+der+Voort%2C+L.&rft.au=Gudiksen%2C+B.+V.&rft.date=2022-03-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=659&rft.spage=A186&rft_id=info:doi/10.1051%2F0004-6361%2F202142842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202142842 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |