Chromospheric emission from nanoflare heating in RADYN simulations

Context. Heating signatures from small-scale magnetic reconnection events in the solar atmosphere have proven to be difficult to detect through observations. Numerical models that reproduce flaring conditions are essential in understanding how nanoflares may act as a heating mechanism of the corona....

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 659; p. A186
Main Authors Bakke, H., Carlsson, M., Rouppe van der Voort, L., Gudiksen, B. V., Polito, V., Testa, P., De Pontieu, B.
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Context. Heating signatures from small-scale magnetic reconnection events in the solar atmosphere have proven to be difficult to detect through observations. Numerical models that reproduce flaring conditions are essential in understanding how nanoflares may act as a heating mechanism of the corona. Aims. We study the effects of non-thermal electrons in synthetic spectra from 1D hydrodynamic RADYN simulations of nanoflare heated loops to investigate the diagnostic potential of chromospheric emission from small-scale events. Methods. The Mg  II h and k, Ca  II H and K, Ca  II 854.2 nm, and H α and H β chromospheric lines were synthesised from various RADYN models of coronal loops subject to electron beams of nanoflare energies. The contribution function to the line intensity was computed to better understand how the atmospheric response to the non-thermal electrons affects the formation of spectral lines and the detailed shape of their spectral profiles. Results. The spectral line signatures arising from the electron beams highly depend on the density of the loop and the lower cutoff energy of the electrons. Low-energy (5 keV) electrons deposit their energy in the corona and transition region, producing strong plasma flows that cause both redshifts and blueshifts of the chromospheric spectra. Higher-energy (10 and 15 keV) electrons deposit their energy in the lower transition region and chromosphere, resulting in increased emission from local heating. Our results indicate that effects from small-scale events can be observed with ground-based telescopes, expanding the list of possible diagnostics for the presence and properties of nanoflares.
AbstractList Context. Heating signatures from small-scale magnetic reconnection events in the solar atmosphere have proven to be difficult to detect through observations. Numerical models that reproduce flaring conditions are essential in understanding how nanoflares may act as a heating mechanism of the corona. Aims. We study the effects of non-thermal electrons in synthetic spectra from 1D hydrodynamic RADYN simulations of nanoflare heated loops to investigate the diagnostic potential of chromospheric emission from small-scale events. Methods. The Mg  II h and k, Ca  II H and K, Ca  II 854.2 nm, and H α and H β chromospheric lines were synthesised from various RADYN models of coronal loops subject to electron beams of nanoflare energies. The contribution function to the line intensity was computed to better understand how the atmospheric response to the non-thermal electrons affects the formation of spectral lines and the detailed shape of their spectral profiles. Results. The spectral line signatures arising from the electron beams highly depend on the density of the loop and the lower cutoff energy of the electrons. Low-energy (5 keV) electrons deposit their energy in the corona and transition region, producing strong plasma flows that cause both redshifts and blueshifts of the chromospheric spectra. Higher-energy (10 and 15 keV) electrons deposit their energy in the lower transition region and chromosphere, resulting in increased emission from local heating. Our results indicate that effects from small-scale events can be observed with ground-based telescopes, expanding the list of possible diagnostics for the presence and properties of nanoflares.
Context. Heating signatures from small-scale magnetic reconnection events in the solar atmosphere have proven to be difficult to detect through observations. Numerical models that reproduce flaring conditions are essential in understanding how nanoflares may act as a heating mechanism of the corona. Aims. We study the effects of non-thermal electrons in synthetic spectra from 1D hydrodynamic RADYN simulations of nanoflare heated loops to investigate the diagnostic potential of chromospheric emission from small-scale events. Methods. The Mg II h and k, Ca II H and K, Ca II 854.2 nm, and Hα and Hβ chromospheric lines were synthesised from various RADYN models of coronal loops subject to electron beams of nanoflare energies. The contribution function to the line intensity was computed to better understand how the atmospheric response to the non-thermal electrons affects the formation of spectral lines and the detailed shape of their spectral profiles. Results. The spectral line signatures arising from the electron beams highly depend on the density of the loop and the lower cutoff energy of the electrons. Low-energy (5 keV) electrons deposit their energy in the corona and transition region, producing strong plasma flows that cause both redshifts and blueshifts of the chromospheric spectra. Higher-energy (10 and 15 keV) electrons deposit their energy in the lower transition region and chromosphere, resulting in increased emission from local heating. Our results indicate that effects from small-scale events can be observed with ground-based telescopes, expanding the list of possible diagnostics for the presence and properties of nanoflares.
Context. Heating signatures from small-scale magnetic reconnection events in the solar atmosphere have proven to be difficult to detect through observations. Numerical models that reproduce flaring conditions are essential in understanding how nanoflares may act as a heating mechanism of the corona. Aims. We study the effects of non-thermal electrons in synthetic spectra from 1D hydrodynamic RADYN simulations of nanoflare heated loops to investigate the diagnostic potential of chromospheric emission from small-scale events. Methods. The Mg  II h and k, Ca  II H and K, Ca  II 854.2 nm, and H α and H β chromospheric lines were synthesised from various RADYN models of coronal loops subject to electron beams of nanoflare energies. The contribution function to the line intensity was computed to better understand how the atmospheric response to the non-thermal electrons affects the formation of spectral lines and the detailed shape of their spectral profiles. Results. The spectral line signatures arising from the electron beams highly depend on the density of the loop and the lower cutoff energy of the electrons. Low-energy (5 keV) electrons deposit their energy in the corona and transition region, producing strong plasma flows that cause both redshifts and blueshifts of the chromospheric spectra. Higher-energy (10 and 15 keV) electrons deposit their energy in the lower transition region and chromosphere, resulting in increased emission from local heating. Our results indicate that effects from small-scale events can be observed with ground-based telescopes, expanding the list of possible diagnostics for the presence and properties of nanoflares.
Author Rouppe van der Voort, L.
Testa, P.
Carlsson, M.
Gudiksen, B. V.
De Pontieu, B.
Bakke, H.
Polito, V.
Author_xml – sequence: 1
  givenname: H.
  orcidid: 0000-0002-2503-3269
  surname: Bakke
  fullname: Bakke, H.
– sequence: 2
  givenname: M.
  orcidid: 0000-0001-9218-3139
  surname: Carlsson
  fullname: Carlsson, M.
– sequence: 3
  givenname: L.
  orcidid: 0000-0003-2088-028X
  surname: Rouppe van der Voort
  fullname: Rouppe van der Voort, L.
– sequence: 4
  givenname: B. V.
  surname: Gudiksen
  fullname: Gudiksen, B. V.
– sequence: 5
  givenname: V.
  surname: Polito
  fullname: Polito, V.
– sequence: 6
  givenname: P.
  orcidid: 0000-0002-0405-0668
  surname: Testa
  fullname: Testa, P.
– sequence: 7
  givenname: B.
  orcidid: 0000-0002-8370-952X
  surname: De Pontieu
  fullname: De Pontieu, B.
BookMark eNp9kDtPwzAUhS1UJNrCL2AgEnOoX3GcsZSnVIGEYGCyHD-oq8Qudjrw73EpMDAwXd2r7xydeyZg5IM3AJwieIFghWYQQloywtAMQ4wo5hQfgDGiBJewpmwExr_EEZiktM4rRpyMweViFUMf0mZlolOF6V1KLvjC5mvhpQ-2k9EUKyMH598K54un-dXrQ5Fcv-3yLfh0DA6t7JI5-Z5T8HJz_by4K5ePt_eL-bJUFOGhJKZVmCmiKms1bqqmbnjTUsUoqRotWa15azXTra5ZpXFtpWkI18aYlmJdKTIFZ3tfFV3KaYQPUQoEeYVFJmueifM9sYnhfWvSINZhG30OJTCras4wb1immh-fkFI0Vig3fL0yROm67Ch2pYpdZWJXmfgtNWvJH-0mul7Gj39Vn_Y4eh4
CitedBy_id crossref_primary_10_3847_1538_4357_acb7da
crossref_primary_10_1051_0004_6361_202347089
crossref_primary_10_1051_0004_6361_202452370
crossref_primary_10_1051_0004_6361_202451707
crossref_primary_10_1051_0004_6361_202348457
crossref_primary_10_1051_0004_6361_202346765
crossref_primary_10_1093_mnras_stad1232
crossref_primary_10_3847_1538_4357_acf4f1
Cites_doi 10.1051/0004-6361/201116520
10.1088/0004-637X/772/2/90
10.1051/0004-6361/202038529
10.1086/186544
10.1093/mnras/stab2283
10.1007/s11214-010-9705-4
10.1086/153744
10.1126/science.1255724
10.1051/0004-6361/201834129
10.1007/BF00149070
10.1088/0004-637X/772/2/89
10.1051/aas:1997368
10.3847/1538-4357/aa7a59
10.1088/0004-637X/808/2/177
10.1007/BF00155074
10.1088/2041-8205/770/1/L1
10.1016/0021-9991(87)90161-6
10.1088/2041-8205/809/2/L30
10.1051/0004-6361/201731926
10.1086/187753
10.1007/s11214-010-9680-9
10.1007/s11207-020-01736-7
10.3847/1538-4357/ab63cf
10.1086/321659
10.1086/304043
10.3847/2041-8213/ab7341
10.1051/0004-6361/201424785
10.1088/0004-637X/806/1/14
10.1117/12.460377
10.1086/166485
10.1007/s11207-014-0485-y
10.3847/1538-4357/aab49e
10.1086/153115
10.1086/156371
ContentType Journal Article
Copyright Copyright EDP Sciences Mar 2022
info:eu-repo/semantics/openAccess
Copyright_xml – notice: Copyright EDP Sciences Mar 2022
– notice: info:eu-repo/semantics/openAccess
DBID AAYXX
CITATION
8FD
H8D
L7M
3HK
DOI 10.1051/0004-6361/202142842
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
NORA - Norwegian Open Research Archives
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10852_93878
10_1051_0004_6361_202142842
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
8FD
H8D
L7M
3HK
ABTAH
ACBIF
ACZCS
AFDAS
G8K
RNP
RSV
SOJ
XFK
ID FETCH-LOGICAL-c412t-3ebc26c3c5ffd29597989b4c64359da67d8bfd6dbd765d27fae938deeeb42d5c3
ISSN 0004-6361
IngestDate Sat Apr 29 05:43:54 EDT 2023
Sun Jun 29 16:13:59 EDT 2025
Tue Jul 01 03:53:58 EDT 2025
Thu Apr 24 23:05:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://www.edpsciences.org/en/authors/copyright-and-licensing
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-3ebc26c3c5ffd29597989b4c64359da67d8bfd6dbd765d27fae938deeeb42d5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
NFR/262622
ORCID 0000-0001-9218-3139
0000-0002-0405-0668
0000-0002-2503-3269
0000-0002-8370-952X
0000-0003-2088-028X
OpenAccessLink http://hdl.handle.net/10852/93878
PQID 2657862896
PQPubID 1796397
ParticipantIDs cristin_nora_10852_93878
proquest_journals_2657862896
crossref_citationtrail_10_1051_0004_6361_202142842
crossref_primary_10_1051_0004_6361_202142842
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2022
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Brown (R4) 1971; 18
Emslie (R13) 1978; 224
Leenaarts (R21) 2013; 772
Bakke (R2) 2018; 620
Glesener (R15) 2020; 891
Carlsson (R5) 1992; 397
Carlsson (R7) 1997; 481
Carlsson (R6) 1995; 440
Rimmele (R28) 2020; 295
Testa (R33) 2020; 889
Leenaarts (R20) 2013; 772
Parker (R23) 1988; 330
Shine (R30) 1975; 199
Testa (R32) 2014; 346
R29
Testa (R31) 2013; 770
Bjørgen (R3) 2018; 611
Cooper (R9) 2021; 507
Milkey (R22) 1974; 192
Reep (R27) 2015; 808
Allred (R1) 2015; 1
Frogner (R14) 2020; 643
Gudiksen (R16) 2011; 531
Holman (R19) 2011; 159
De Pontieu (R10) 2014; 289
Dorfi (R12) 1987; 69
Vardavas (R35) 1974; 38
Wright (R36) 2017; 844
Carlsson (R8) 2015; 809
Dere (R11) 1997; 125
Uitenbroek (R34) 2001; 557
Pereira (R25) 2015; 806
Hannah (R18) 2011; 159
Pereira (R24) 2015; 574
R17
Polito (R26) 2018; 856
References_xml – volume: 531
  start-page: A154
  year: 2011
  ident: R16
  publication-title: A&A
  doi: 10.1051/0004-6361/201116520
– volume: 772
  start-page: 90
  year: 2013
  ident: R21
  publication-title: ApJ
  doi: 10.1088/0004-637X/772/2/90
– volume: 643
  start-page: A27
  year: 2020
  ident: R14
  publication-title: A&A
  doi: 10.1051/0004-6361/202038529
– volume: 1
  start-page: 302.07
  year: 2015
  ident: R1
  publication-title: AAS/AGU Triennial Earth-Sun Summit
– volume: 397
  start-page: L59
  year: 1992
  ident: R5
  publication-title: ApJ
  doi: 10.1086/186544
– volume: 507
  start-page: 3936
  year: 2021
  ident: R9
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2283
– volume: 159
  start-page: 263
  year: 2011
  ident: R18
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-010-9705-4
– volume: 199
  start-page: 724
  year: 1975
  ident: R30
  publication-title: ApJ
  doi: 10.1086/153744
– volume: 346
  start-page: 1255724
  year: 2014
  ident: R32
  publication-title: Science
  doi: 10.1126/science.1255724
– volume: 620
  start-page: L5
  year: 2018
  ident: R2
  publication-title: A&A
  doi: 10.1051/0004-6361/201834129
– volume: 18
  start-page: 489
  year: 1971
  ident: R4
  publication-title: Sol. Phys.
  doi: 10.1007/BF00149070
– volume: 772
  start-page: 89
  year: 2013
  ident: R20
  publication-title: ApJ
  doi: 10.1088/0004-637X/772/2/89
– volume: 125
  start-page: 149
  year: 1997
  ident: R11
  publication-title: A&AS
  doi: 10.1051/aas:1997368
– volume: 844
  start-page: 132
  year: 2017
  ident: R36
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa7a59
– volume: 808
  start-page: 177
  year: 2015
  ident: R27
  publication-title: ApJ
  doi: 10.1088/0004-637X/808/2/177
– volume: 38
  start-page: 367
  year: 1974
  ident: R35
  publication-title: Sol. Phys.
  doi: 10.1007/BF00155074
– volume: 770
  start-page: L1
  year: 2013
  ident: R31
  publication-title: ApJ
  doi: 10.1088/2041-8205/770/1/L1
– volume: 69
  start-page: 175
  year: 1987
  ident: R12
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(87)90161-6
– volume: 809
  start-page: L30
  year: 2015
  ident: R8
  publication-title: ApJ
  doi: 10.1088/2041-8205/809/2/L30
– volume: 611
  start-page: A62
  year: 2018
  ident: R3
  publication-title: A&A
  doi: 10.1051/0004-6361/201731926
– volume: 440
  start-page: L29
  year: 1995
  ident: R6
  publication-title: ApJ
  doi: 10.1086/187753
– volume: 159
  start-page: 107
  year: 2011
  ident: R19
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-010-9680-9
– volume: 295
  start-page: 172
  year: 2020
  ident: R28
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-020-01736-7
– volume: 889
  start-page: 124
  year: 2020
  ident: R33
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab63cf
– volume: 557
  start-page: 389
  year: 2001
  ident: R34
  publication-title: ApJ
  doi: 10.1086/321659
– volume: 481
  start-page: 500
  year: 1997
  ident: R7
  publication-title: ApJ
  doi: 10.1086/304043
– volume: 891
  start-page: L34
  year: 2020
  ident: R15
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab7341
– volume: 574
  start-page: A3
  year: 2015
  ident: R24
  publication-title: A&A
  doi: 10.1051/0004-6361/201424785
– volume: 806
  start-page: 14
  year: 2015
  ident: R25
  publication-title: ApJ
  doi: 10.1088/0004-637X/806/1/14
– ident: R29
  doi: 10.1117/12.460377
– volume: 330
  start-page: 474
  year: 1988
  ident: R23
  publication-title: ApJ
  doi: 10.1086/166485
– volume: 289
  start-page: 2733
  year: 2014
  ident: R10
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-014-0485-y
– volume: 856
  start-page: 178
  year: 2018
  ident: R26
  publication-title: ApJ
  doi: 10.3847/1538-4357/aab49e
– volume: 192
  start-page: 769
  year: 1974
  ident: R22
  publication-title: ApJ
  doi: 10.1086/153115
– volume: 224
  start-page: 241
  year: 1978
  ident: R13
  publication-title: ApJ
  doi: 10.1086/156371
– ident: R17
SSID ssj0002183
Score 2.4550877
Snippet Context. Heating signatures from small-scale magnetic reconnection events in the solar atmosphere have proven to be difficult to detect through observations....
Context. Heating signatures from small-scale magnetic reconnection events in the solar atmosphere have proven to be difficult to detect through observations....
SourceID cristin
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage A186
SubjectTerms Atmospheric models
Chromosphere
Coronal loops
Electron beams
Emission analysis
Ground-based observation
Heating
Line spectra
Numerical models
Signatures
Solar atmosphere
Space telescopes
Spectra
Title Chromospheric emission from nanoflare heating in RADYN simulations
URI https://www.proquest.com/docview/2657862896
http://hdl.handle.net/10852/93878
Volume 659
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKEBIvaAxQCwP5AfFS0rWO7SSPKT9WEExo2qbxFDmOI1Vbk2ppedgDfzt3seulgCbGS5Ra6VXNdznfXe6-I-S1ZHlUYjeOSpgJeK7LQGleBlFsdMt_xyX2Dn89krNT_vlcnPd6PzpVS-tVPtLXf-0r-R9UYQ1wxS7ZOyDrhcICnAO-cASE4fhPGCOz7aJukBlgroc4ua1pKwexZaRSVV1eYl0XmlvXuXKcvv9-NGzmCze0q-n6pmmDafF6YRmZFH6yeY82MWt5sTqJg6m6sIU9s9HNi4wr_Mu2PNivHtfr5dK0A4KRuOKsdsPrv_grDtfF_MKlgqaj4dmom4uAMNYXY3n7ygMZWnr1kbEmlYdY3-oSjc7mSkcDbq1mOrF02H-Yc7AYtv7RSsXuFcsRZxm5tumzf9vWfLFh-5pdTPA1O89QTOaF3CP3GYQXOPni8NNPv4Oj22jDJvu7G7YqMTnwawdeCEROujXI1bZvs721t_7KyS555AINmlqteUx6ptojfY8xfUPTDsJ75ME3e_aETLfUim7UiqJaUa9W1KkVnVe0VSvaUaun5PTjh5N3s8CN2gg0n7BVEJpcM6lDLcqyYAlEmUmc5FyDvyqSQsmoiPMSZ48VkRQFi0plkjAujDE5Z4XQ4TOyU9WV6RM6LkMjlcpNJA3E_ioxGqMKHgmtxmJcDEjf3a6sAiuHDLWCZSAtigeEbe5fph1FPU5KucxuwXBA3vovLS1Dy-2X72-Aydyj3GRMwsYlWZzI53eT9oI8vHkO9snO6mptXoKXuspftSr1C3s2h8Y
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromospheric+emission+from+nanoflare+heating+in+RADYN+simulations&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Bakke%2C+H.&rft.au=Carlsson%2C+M.&rft.au=Rouppe+van+der+Voort%2C+L.&rft.au=Gudiksen%2C+B.+V.&rft.date=2022-03-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=659&rft.spage=A186&rft_id=info:doi/10.1051%2F0004-6361%2F202142842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202142842
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon