Hollow silicon microneedles, fabricated using combined wet and dry etching techniques, for transdermal delivery and diagnostics
[Display omitted] Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily because of their minimally invasive and painless nature, which in turn could lead to increased patient compliance and self-...
Saved in:
Published in | International journal of pharmaceutics Vol. 637; p. 122888 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
25.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily because of their minimally invasive and painless nature, which in turn could lead to increased patient compliance and self-administration. In this paper, a process for the fabrication of arrays of hollow silicon microneedles is described. This method uses just two bulk silicon etches – a front-side wet etch to define the 500 μm tall octagonal needle structure itself, and a rear-side dry etch to create a 50 μm diameter bore through the needle. This reduces the number of etches and process complexity over the approaches described elsewhere. Ex-vivo human skin and a customised applicator were used to demonstrate biomechanical reliability and the feasibility of using these microneedles for both transdermal delivery and diagnostics. Microneedle arrays show no damage even when applied to skin up to 40 times, are capable of delivering several mL of fluid at flowrates of 30 μL/min, and of withdrawing 1 μL of interstitial fluid using capillary action. |
---|---|
AbstractList | Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily because of their minimally invasive and painless nature, which in turn could lead to increased patient compliance and self-administration. In this paper, a process for the fabrication of arrays of hollow silicon microneedles is described. This method uses just two bulk silicon etches - a front-side wet etch to define the 500 μm tall octagonal needle structure itself, and a rear-side dry etch to create a 50 μm diameter bore through the needle. This reduces the number of etches and process complexity over the approaches described elsewhere. Ex-vivo human skin and a customised applicator were used to demonstrate biomechanical reliability and the feasibility of using these microneedles for both transdermal delivery and diagnostics. Microneedle arrays show no damage even when applied to skin up to 40 times, are capable of delivering several mL of fluid at flowrates of 30 μL/min, and of withdrawing 1 μL of interstitial fluid using capillary action. Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily because of their minimally invasive and painless nature, which in turn could lead to increased patient compliance and self-administration. In this paper, a process for the fabrication of arrays of hollow silicon microneedles is described. This method uses just two bulk silicon etches - a front-side wet etch to define the 500 μm tall octagonal needle structure itself, and a rear-side dry etch to create a 50 μm diameter bore through the needle. This reduces the number of etches and process complexity over the approaches described elsewhere. Ex-vivo human skin and a customised applicator were used to demonstrate biomechanical reliability and the feasibility of using these microneedles for both transdermal delivery and diagnostics. Microneedle arrays show no damage even when applied to skin up to 40 times, are capable of delivering several mL of fluid at flowrates of 30 μL/min, and of withdrawing 1 μL of interstitial fluid using capillary action.Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily because of their minimally invasive and painless nature, which in turn could lead to increased patient compliance and self-administration. In this paper, a process for the fabrication of arrays of hollow silicon microneedles is described. This method uses just two bulk silicon etches - a front-side wet etch to define the 500 μm tall octagonal needle structure itself, and a rear-side dry etch to create a 50 μm diameter bore through the needle. This reduces the number of etches and process complexity over the approaches described elsewhere. Ex-vivo human skin and a customised applicator were used to demonstrate biomechanical reliability and the feasibility of using these microneedles for both transdermal delivery and diagnostics. Microneedle arrays show no damage even when applied to skin up to 40 times, are capable of delivering several mL of fluid at flowrates of 30 μL/min, and of withdrawing 1 μL of interstitial fluid using capillary action. [Display omitted] Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily because of their minimally invasive and painless nature, which in turn could lead to increased patient compliance and self-administration. In this paper, a process for the fabrication of arrays of hollow silicon microneedles is described. This method uses just two bulk silicon etches – a front-side wet etch to define the 500 μm tall octagonal needle structure itself, and a rear-side dry etch to create a 50 μm diameter bore through the needle. This reduces the number of etches and process complexity over the approaches described elsewhere. Ex-vivo human skin and a customised applicator were used to demonstrate biomechanical reliability and the feasibility of using these microneedles for both transdermal delivery and diagnostics. Microneedle arrays show no damage even when applied to skin up to 40 times, are capable of delivering several mL of fluid at flowrates of 30 μL/min, and of withdrawing 1 μL of interstitial fluid using capillary action. |
ArticleNumber | 122888 |
Author | Clover, A. James P. Sebastian, Ryan Hegarty, Margaret Slimi, Inès Whelan, Derek Scully, Jim O'Brien, Joe O'Mahony, Conor Blake, Alan Kelleher, Anne-Marie Hu, Yuan Tjulkins, Fjodors Lyness, Alexander Bocchino, Andrea |
Author_xml | – sequence: 1 givenname: Conor orcidid: 0000-0003-4018-103X surname: O'Mahony fullname: O'Mahony, Conor email: conor.omahony@tyndall.ie organization: Tyndall National Institute, University College Cork, Cork, Ireland – sequence: 2 givenname: Ryan surname: Sebastian fullname: Sebastian, Ryan organization: Tyndall National Institute, University College Cork, Cork, Ireland – sequence: 3 givenname: Fjodors surname: Tjulkins fullname: Tjulkins, Fjodors organization: Tyndall National Institute, University College Cork, Cork, Ireland – sequence: 4 givenname: Derek orcidid: 0000-0002-5457-1699 surname: Whelan fullname: Whelan, Derek organization: Department of Biomedical, Mechanical and Manufacturing Engineering, Munster Technological University, Cork, Ireland – sequence: 5 givenname: Andrea surname: Bocchino fullname: Bocchino, Andrea organization: Tyndall National Institute, University College Cork, Cork, Ireland – sequence: 6 givenname: Yuan surname: Hu fullname: Hu, Yuan organization: Tyndall National Institute, University College Cork, Cork, Ireland – sequence: 7 givenname: Joe surname: O'Brien fullname: O'Brien, Joe organization: Tyndall National Institute, University College Cork, Cork, Ireland – sequence: 8 givenname: Jim surname: Scully fullname: Scully, Jim organization: Tyndall National Institute, University College Cork, Cork, Ireland – sequence: 9 givenname: Margaret surname: Hegarty fullname: Hegarty, Margaret organization: Tyndall National Institute, University College Cork, Cork, Ireland – sequence: 10 givenname: Alan orcidid: 0000-0001-7961-4459 surname: Blake fullname: Blake, Alan organization: Tyndall National Institute, University College Cork, Cork, Ireland – sequence: 11 givenname: Inès surname: Slimi fullname: Slimi, Inès organization: Tyndall National Institute, University College Cork, Cork, Ireland – sequence: 12 givenname: A. James P. surname: Clover fullname: Clover, A. James P. organization: Department of Plastic and Reconstructive Surgery, Cork University Hospital, Cork, Ireland – sequence: 13 givenname: Alexander surname: Lyness fullname: Lyness, Alexander organization: West Pharmaceutical Services, Exton, PA, USA – sequence: 14 givenname: Anne-Marie surname: Kelleher fullname: Kelleher, Anne-Marie organization: Tyndall National Institute, University College Cork, Cork, Ireland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36977451$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1URLeFjwDykQNZ_CeJs-KAUAUUqRIXOFuOPenOyrEX29uqJ746Tnd74dKTx_L7zXjeuyBnIQYg5C1na854_3G3xt1-a9K8FkzINRdiGIYXZMUHJRvZqv6MrJhUQ9NxJc_JRc47xlgvuHxFzmW_Uart-Ir8vY7ex3ua0aONgc5oUx0EzkP-QCczJrSmgKOHjOGW2jiPGOr1Hgo1wVGXHigUu10eC9htwD-HRzImWpIJ2UGajacOPN5BFT9CaG5DzAVtfk1eTsZneHM6L8nvb19_XV03Nz-__7j6ctPYlovSyGGUdhhbC93Eecddp4ZaiXHTurGVnBnRm8mwUXQbMH3HnOrVyDYtN2wxQF6S98e--xSXHxY9Y7bgvQkQD1kLtREdl1yoKn13kh7GGZzeJ5xNetBPplXBp6OgWpVzgklbLKZgDHVj9JozvUSkd_oUkV4i0seIKt39Rz8NeI77fOSg2nSHkHS2CMGCwwS2aBfxmQ7_AC-Wr7E |
CitedBy_id | crossref_primary_10_1007_s12633_024_02963_4 crossref_primary_10_1016_j_micinf_2024_105426 crossref_primary_10_1039_D3TB02646A crossref_primary_10_1016_j_ijbiomac_2024_129987 crossref_primary_10_1021_acsbiomaterials_3c00116 crossref_primary_10_1016_j_bios_2024_116427 crossref_primary_10_1088_1361_6439_adb75e crossref_primary_10_1039_D3NA00454F crossref_primary_10_1016_j_sintl_2024_100325 crossref_primary_10_1631_bdm_2300352 crossref_primary_10_1021_acsabm_4c01064 crossref_primary_10_1039_D4LC00880D crossref_primary_10_1088_1758_5090_ad6d90 crossref_primary_10_1038_s41598_024_82564_8 crossref_primary_10_3390_gels11020089 crossref_primary_10_1016_j_mtbio_2025_101504 crossref_primary_10_1016_j_ijpharm_2024_124481 crossref_primary_10_3390_medicina59040778 crossref_primary_10_1002_ppsc_202400181 |
Cites_doi | 10.1371/journal.pone.0022442 10.1016/B978-0-323-29965-7.00021-X 10.1007/s10544-014-9836-6 10.1371/journal.pone.0276814 10.1073/pnas.1716772115 10.1109/JMEMS.2003.820293 10.1109/BioCAS.2013.6679642 10.1016/j.sbsr.2020.100348 10.1016/j.vaccine.2016.09.069 10.1016/j.addr.2021.03.007 10.1016/j.biomaterials.2020.120491 10.3390/pharmaceutics14051097 10.1117/1.3463002 10.1080/21645515.2015.1010871 10.1007/s00542-008-0596-1 10.1088/0960-1317/17/2/008 10.1016/j.sna.2012.04.037 10.1016/j.ijpharm.2008.10.008 10.1016/j.ijpharm.2021.120455 10.1109/JMEMS.2007.907461 10.1109/MEMSYS.1999.746863 10.1007/s10544-018-0349-6 10.1039/D0LC00567C 10.1038/s41378-019-0077-y 10.1177/19322968211059851 10.2174/187221111794109484 10.1002/mds3.10069 10.1088/0960-1317/6/2/011 10.1088/0960-1317/16/4/018 10.1002/pen.25078 10.1109/MEMSYS.1998.659807 10.1002/jps.21898 10.1021/ie50501a040 10.1002/anbr.202200040 10.3390/mi9010040 10.1007/s10544-008-9208-1 10.1039/B505793K 10.1016/j.mejo.2005.04.044 10.1109/JMEMS.2005.844843 10.1109/MEMSYS.1995.472544 10.1007/s11095-005-8498-8 10.1016/B978-0-323-29965-7.00022-1 10.1109/MEMSYS.2002.984303 10.1038/s41598-018-32026-9 10.3390/pharmaceutics7040438 10.1109/MMB.2000.893777 10.3390/diagnostics13050916 10.1177/1559827619890955 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2023 The Author(s) – notice: Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.ijpharm.2023.122888 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-3476 |
ExternalDocumentID | 36977451 10_1016_j_ijpharm_2023_122888 S0378517323003083 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV C45 CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSH SSP SSZ T5K TEORI ~02 ~G- .GJ 29J 3O- 53G 5VS AAQXK AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMT HVGLF HZ~ R2- RIG SEW SPT WUQ ZXP AFKWA AJOXV AMFUW CGR CUY CVF ECM EIF NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c412t-38b3c8b4ce5f1151d5785f12b94db4310a26afa0b259ea650d767b0941a051733 |
IEDL.DBID | .~1 |
ISSN | 0378-5173 1873-3476 |
IngestDate | Mon Jul 21 10:06:34 EDT 2025 Wed Feb 19 02:24:25 EST 2025 Tue Jul 01 01:19:21 EDT 2025 Thu Apr 24 22:56:47 EDT 2025 Sun Apr 06 06:53:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Transdermal delivery bioMEMS Microneedles Diagnostics Silicon etching |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-38b3c8b4ce5f1151d5785f12b94db4310a26afa0b259ea650d767b0941a051733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4018-103X 0000-0001-7961-4459 0000-0002-5457-1699 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0378517323003083 |
PMID | 36977451 |
PQID | 2792513127 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2792513127 pubmed_primary_36977451 crossref_citationtrail_10_1016_j_ijpharm_2023_122888 crossref_primary_10_1016_j_ijpharm_2023_122888 elsevier_sciencedirect_doi_10_1016_j_ijpharm_2023_122888 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-25 |
PublicationDateYYYYMMDD | 2023-04-25 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | International journal of pharmaceutics |
PublicationTitleAlternate | Int J Pharm |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Juster, van der Aar, de Brouwer (b0090) 2019; 59 D. McAllister, “Three-dimensional hollow microneedle and microtube arrays,” in 1999, pp. 1098-1101. P. P. Samant and M. R. Prausnitz, “Mechanisms of sampling interstitial fluid from skin using a microneedle patch,” Singh, Dunne, Cunningham, Donnelly (b0200) 2011; 5 Vescovo, Rettby, Ramaniraka, Liberman, Hart, Cachemaille (b0240) 2017; 35 Wilke, Morrissey (b0250) 2006; 17 “An array of hollow microcapillaries for the controlled injection of genetic materials into animal/plant cells,” in Li, Zhang, Yang, Laffitte, Schmill, Hu (b0115) 2019; 5 Vangbo, Bäcklund (b0235) 1996; 6 O'Mahony, Pini, Vereschagina, Blake, O'Brien, Webster (b0150) 2013; 2013 p. 916, 2023. Thompson, Cook (b0215) 2022; 16 Li, Badkar, Nema, Kolli, Banga (b0110) 2009; 368 Roxhed, Gasser, Griss, Holzapfel, Stemme (b0170) 2007; 16 Yadav, Liu, Shire, Kalonia (b0265) 2010; 99 Segur, Oberstar (b0185) 1951; 43 K. Chun, G. Hashiguchi, H. Toshiyoshi, H. Fujita, Y. Kikuchi, J. Ishikawa S. Henry, D. V. McAllister, M. G. Allen, and M. R. Prausnitz, “Micromachined needles for the transdermal delivery of drugs,” in pp. 1-15, 2021. 1995, p. 111. Zaid Alkilani, McCrudden, Donnelly (b0270) 2015; 7 Kulkarni, Damiri, Rojekar, Zehravi, Ramproshad, Dhoke (b0095) 2022; 14 W. Trimmer, P. Ling, C. Chee-Kok, P. Orton, R. Gaugler, S. Hashmi In vivo experimental study of noninvasive insulin microinjection through hollow Si microneedle array F. Laermer, S. Franssila, L. Sainiemi, and K. Kolari, “Chapter 21 - Deep Reactive Ion Etching,” in Bird, Ravindra (b0020) 2020; 3 Martanto, Moore, Kashlan, Kamath, Wang, O'Neal (b0130) 2006; 23 “Injection of DNA into plant and animal tissues with micromechanical piercing structures,” in Zhang, Yang, Shi, Xu (b0275) 2022; 2 Stoeber, Liepmann (b0210) 2005; 14 Berry, Smith, Collins, Smith (b0015) 2020 Silicon micromachined hollow microneedles for transdermal liquid transport 1998, pp. 494-498. J. H. Jung and S. G. Jin, “Microneedle for transdermal drug delivery: current trends and fabrication,” Levin, Kochba, Hung, Kenney (b0105) 2015; 11 M. Tilli, T. Motooka, V.-M. Airaksinen, S. Franssila, M. Paulasto-Kröckel, and V. Lindroos, Eds., 2nd ed Boston: William Andrew Publishing, 2015, pp. 470-502. Tjulkins, Sebastian, Guillerm, Clover, Hu, Lyness (b0220) 2022 2002, pp. 467-470. Carey, Pearson, Vrdoljak, McGrath, Crean, Walsh (b0035) 2011; 6 Shuwen, Jiaqi, Lixia, Nianping, Zhang (b0195) 2023 Madou (b0125) 2018 p. 40, 2018, https://doi.org/10.3390%2Fmi9010040. Bolton, Howells, Blayney, Eng, Birchall, Gualeni (b0025) 2020; 20 Baron, Passave, Guichardaz, Cabodevila (b0010) 2008; 14 1999, pp. 406-411. D. Prakashan, R. PR, and S. Gandhi, “A Systematic Review on the Advanced Techniques of Wearable Point-of-Care Devices and Their Futuristic Applications,” M. Tilli, T. Motooka, V.-M. Airaksinen, S. Franssila, M. Paulasto-Kröckel, and V. Lindroos, Eds., 2nd ed Boston: William Andrew Publishing, 2015, pp. 444-469. Ribet, Stemme, Roxhed (b0165) 2018; 20 2000, pp. 224-228. J. Madden, C. O'Mahony, M. Thompson, A. O'Riordan, and P. Galvin, “Biosensing in dermal interstitial fluid using microneedle based electrochemical devices,” pp. 4583-4588, 2018, 10.1073/pnas.1716772115. Alsbrooks, Hoerauf (b0005) 2022; 17 H. J. G. E. Gardeniers, R. Luttge, E. J. W. Berenschot, M. J. d. Boer, S. Y. Yeshurun, M. Hefetz pp. 855-862, 2003, 10.1109/JMEMS.2003.820293. Enfield, O'Connell, Lawlor, Jonathan, O'Mahony, Leahy (b0050) 2010; 15 O’Mahony, Pini, Blake, Webster, O’Brien, McCarthy (b0140) 2012; 186 O'Mahony (b0145) 2014; 16 M. A. Gosálvez, I. Zubel, and E. Viinikka, “Chapter 22 - Wet Etching of Silicon,” in Wilke, Mulcahy, Ye, Morrissey (b0255) 2005; 36 D. Resnik, M. Možek, B. Pečar, A. Janež, V. Urbančič, C. Iliescu White, Knezevich (b0245) 2020; 14 Ingrole, Azizoglu, Dul, Birchall, Gill, Prausnitz (b0080) 2021; 267 P. Griss and G. Stemme, “Novel, side opened out-of-plane microneedles for microfluidic transdermal interfacing,” in B. Stoeber and D. Liepmann, “Fluid injection through out-of-plane microneedles,” in Shrestha, Stoeber (b0190) 2018; 8 Cárcamo-Martínez, Mallon, Domínguez-Robles, Vora, Anjani, Donnelly (b0030) 2021; 599 Haq, Smith, John, Kalavala, Edwards, Anstey (b0070) 2009; 11 p. 100348, 2020, https://doi.org/10.1016/j.sbsr.2020.100348. Sebastian, Guillerm, Tjulkins, Hu, Clover, Lyness (b0180) 2022 Wilke, Reed, Morrissey (b0260) 2006; 16 Economidou, Douroumis (b0045) 2021; 173 Tobin (b0225) 2006; 35 10.1016/j.ijpharm.2023.122888_b0155 Segur (10.1016/j.ijpharm.2023.122888_b0185) 1951; 43 Shuwen (10.1016/j.ijpharm.2023.122888_b0195) 2023 10.1016/j.ijpharm.2023.122888_b0230 10.1016/j.ijpharm.2023.122888_b0075 Wilke (10.1016/j.ijpharm.2023.122888_b0260) 2006; 16 Haq (10.1016/j.ijpharm.2023.122888_b0070) 2009; 11 Sebastian (10.1016/j.ijpharm.2023.122888_b0180) 2022 Bolton (10.1016/j.ijpharm.2023.122888_b0025) 2020; 20 Levin (10.1016/j.ijpharm.2023.122888_b0105) 2015; 11 Stoeber (10.1016/j.ijpharm.2023.122888_b0210) 2005; 14 Cárcamo-Martínez (10.1016/j.ijpharm.2023.122888_b0030) 2021; 599 Madou (10.1016/j.ijpharm.2023.122888_b0125) 2018 Juster (10.1016/j.ijpharm.2023.122888_b0090) 2019; 59 10.1016/j.ijpharm.2023.122888_b0120 Zhang (10.1016/j.ijpharm.2023.122888_b0275) 2022; 2 10.1016/j.ijpharm.2023.122888_b0085 10.1016/j.ijpharm.2023.122888_b0040 10.1016/j.ijpharm.2023.122888_b0160 Alsbrooks (10.1016/j.ijpharm.2023.122888_b0005) 2022; 17 Tjulkins (10.1016/j.ijpharm.2023.122888_b0220) 2022 Martanto (10.1016/j.ijpharm.2023.122888_b0130) 2006; 23 Singh (10.1016/j.ijpharm.2023.122888_b0200) 2011; 5 Zaid Alkilani (10.1016/j.ijpharm.2023.122888_b0270) 2015; 7 Baron (10.1016/j.ijpharm.2023.122888_b0010) 2008; 14 Ribet (10.1016/j.ijpharm.2023.122888_b0165) 2018; 20 Carey (10.1016/j.ijpharm.2023.122888_b0035) 2011; 6 Ingrole (10.1016/j.ijpharm.2023.122888_b0080) 2021; 267 White (10.1016/j.ijpharm.2023.122888_b0245) 2020; 14 O'Mahony (10.1016/j.ijpharm.2023.122888_b0150) 2013; 2013 10.1016/j.ijpharm.2023.122888_b0205 Li (10.1016/j.ijpharm.2023.122888_b0110) 2009; 368 Kulkarni (10.1016/j.ijpharm.2023.122888_b0095) 2022; 14 Enfield (10.1016/j.ijpharm.2023.122888_b0050) 2010; 15 10.1016/j.ijpharm.2023.122888_b0055 10.1016/j.ijpharm.2023.122888_b0175 Tobin (10.1016/j.ijpharm.2023.122888_b0225) 2006; 35 Berry (10.1016/j.ijpharm.2023.122888_b0015) 2020 O’Mahony (10.1016/j.ijpharm.2023.122888_b0140) 2012; 186 Wilke (10.1016/j.ijpharm.2023.122888_b0250) 2006; 17 Li (10.1016/j.ijpharm.2023.122888_b0115) 2019; 5 Thompson (10.1016/j.ijpharm.2023.122888_b0215) 2022; 16 10.1016/j.ijpharm.2023.122888_b0135 10.1016/j.ijpharm.2023.122888_b0100 10.1016/j.ijpharm.2023.122888_b0065 Yadav (10.1016/j.ijpharm.2023.122888_b0265) 2010; 99 Vescovo (10.1016/j.ijpharm.2023.122888_b0240) 2017; 35 Vangbo (10.1016/j.ijpharm.2023.122888_b0235) 1996; 6 Economidou (10.1016/j.ijpharm.2023.122888_b0045) 2021; 173 10.1016/j.ijpharm.2023.122888_b0060 Bird (10.1016/j.ijpharm.2023.122888_b0020) 2020; 3 Roxhed (10.1016/j.ijpharm.2023.122888_b0170) 2007; 16 Shrestha (10.1016/j.ijpharm.2023.122888_b0190) 2018; 8 O'Mahony (10.1016/j.ijpharm.2023.122888_b0145) 2014; 16 Wilke (10.1016/j.ijpharm.2023.122888_b0255) 2005; 36 |
References_xml | – volume: 14 start-page: 472 year: 2005 end-page: 479 ident: b0210 article-title: Arrays of hollow out-of-plane microneedles for drug delivery publication-title: J. Microelectromech. Syst. – start-page: 3020 year: 2022 end-page: 3023 ident: b0220 article-title: Towards Micropump-and Microneedle-based Drug Delivery using Micro Transdermal Interface Platforms (MicroTIPs) publication-title: in – volume: 35 start-page: 1782 year: 2017 end-page: 1788 ident: b0240 article-title: Safety, tolerability and efficacy of intradermal rabies immunization with DebioJect™ publication-title: Vaccine – reference: J. Madden, C. O'Mahony, M. Thompson, A. O'Riordan, and P. Galvin, “Biosensing in dermal interstitial fluid using microneedle based electrochemical devices,” – volume: 16 start-page: 1429 year: 2007 end-page: 1440 ident: b0170 article-title: Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery publication-title: J. Microelectromech. Syst. – reference: p. 100348, 2020, https://doi.org/10.1016/j.sbsr.2020.100348. – volume: 59 start-page: 877 year: 2019 end-page: 890 ident: b0090 article-title: A review on microfabrication of thermoplastic polymer-based microneedle arrays publication-title: Polym. Eng. Sci. – volume: 14 start-page: 1475 year: 2008 end-page: 1480 ident: b0010 article-title: Investigations of development process of high hollow beveled microneedles using a combination of ICP RIE and dicing saw publication-title: Microsyst. Technol. – volume: 7 start-page: 438 year: 2015 end-page: 470 ident: b0270 article-title: Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum publication-title: Pharmaceutics – reference: P. P. Samant and M. R. Prausnitz, “Mechanisms of sampling interstitial fluid from skin using a microneedle patch,” – volume: 2 start-page: 2200040 year: 2022 ident: b0275 article-title: Current technological trends in transdermal biosensing publication-title: Adv. NanoBiomed. Res. – reference: , 1999, pp. 406-411. – volume: 15 year: 2010 ident: b0050 article-title: In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography publication-title: J. Biomed. Opt. – volume: 11 start-page: 35 year: 2009 end-page: 47 ident: b0070 article-title: Clinical administration of microneedles: skin puncture, pain and sensation publication-title: Biomed. Microdevices – reference: , p. 40, 2018, https://doi.org/10.3390%2Fmi9010040. – reference: S. Henry, D. V. McAllister, M. G. Allen, and M. R. Prausnitz, “Micromachined needles for the transdermal delivery of drugs,” in – volume: 23 start-page: 104 year: 2006 end-page: 113 ident: b0130 article-title: Microinfusion using hollow microneedles publication-title: Pharm. Res. – volume: 368 start-page: 109 year: 2009 end-page: 115 ident: b0110 article-title: In vitro transdermal delivery of therapeutic antibodies using maltose microneedles publication-title: Int. J. Pharm. – volume: 20 start-page: 1 year: 2018 end-page: 10 ident: b0165 article-title: Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system publication-title: Biomed. Microdevices – reference: B. Stoeber and D. Liepmann, “Fluid injection through out-of-plane microneedles,” in – reference: , pp. 855-862, 2003, 10.1109/JMEMS.2003.820293. – reference: , M. Tilli, T. Motooka, V.-M. Airaksinen, S. Franssila, M. Paulasto-Kröckel, and V. Lindroos, Eds., 2nd ed Boston: William Andrew Publishing, 2015, pp. 444-469. – volume: 35 start-page: 52 year: 2006 end-page: 67 ident: b0225 article-title: Biochemistry of human skin—our brain on the outside publication-title: Chem. Soc. Rev. – year: 2018 ident: b0125 article-title: Fundamentals of Microfabrication and Nanotechnology, Three-Volume Set – volume: 599 year: 2021 ident: b0030 article-title: Hollow microneedles: A perspective in biomedical applications publication-title: Int. J. Pharm. – volume: 99 start-page: 1152 year: 2010 end-page: 1168 ident: b0265 article-title: Specific interactions in high concentration antibody solutions resulting in high viscosity publication-title: J. Pharm. Sci. – volume: 186 start-page: 130 year: 2012 end-page: 136 ident: b0140 article-title: Microneedle-based electrodes with integrated through-silicon via for biopotential recording publication-title: Sens. Actuators, A – volume: 11 start-page: 991 year: 2015 end-page: 997 ident: b0105 article-title: Intradermal vaccination using the novel microneedle device MicronJet600: Past, present, and future publication-title: Hum. Vaccin. Immunother. – volume: 14 start-page: 1097 year: 2022 ident: b0095 article-title: Recent advancements in microneedle technology for multifaceted biomedical applications publication-title: Pharmaceutics – reference: K. Chun, G. Hashiguchi, H. Toshiyoshi, H. Fujita, Y. Kikuchi, J. Ishikawa – reference: , “An array of hollow microcapillaries for the controlled injection of genetic materials into animal/plant cells,” in – volume: 267 year: 2021 ident: b0080 article-title: Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity publication-title: Biomaterials – reference: , 2000, pp. 224-228. – reference: , p. 916, 2023. – volume: 6 start-page: 279 year: 1996 end-page: 284 ident: b0235 article-title: Precise mask alignment to the crystallographic orientation of silicon wafers using wet anisotropic etching publication-title: J. Micromech. Microeng. – reference: , pp. 4583-4588, 2018, 10.1073/pnas.1716772115. – reference: , M. Tilli, T. Motooka, V.-M. Airaksinen, S. Franssila, M. Paulasto-Kröckel, and V. Lindroos, Eds., 2nd ed Boston: William Andrew Publishing, 2015, pp. 470-502. – volume: 16 start-page: 333 year: 2014 end-page: 343 ident: b0145 article-title: Structural characterization and in-vivo reliability evaluation of silicon microneedles publication-title: Biomed. Microdevices – volume: 6 start-page: e22442 year: 2011 ident: b0035 article-title: Microneedle array design determines the induction of protective memory CD8+ T cell responses induced by a recombinant live malaria vaccine in mice publication-title: PLoS One – reference: , 1995, p. 111. – reference: P. Griss and G. Stemme, “Novel, side opened out-of-plane microneedles for microfluidic transdermal interfacing,” in – volume: 16 start-page: 808 year: 2006 ident: b0260 article-title: The evolution from convex corner undercut towards microneedle formation: theory and experimental verification publication-title: J. Micromech. Microeng. – volume: 14 start-page: 130 year: 2020 end-page: 132 ident: b0245 article-title: Flash glucose monitoring technology impact on diabetes self-care behavior publication-title: Am. J. Lifestyle Med. – reference: , 2002, pp. 467-470. – reference: D. McAllister, “Three-dimensional hollow microneedle and microtube arrays,” in – volume: 20 start-page: 2788 year: 2020 end-page: 2795 ident: b0025 article-title: Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery publication-title: Lab Chip – reference: , “Injection of DNA into plant and animal tissues with micromechanical piercing structures,” in – volume: 2013 start-page: 69 year: 2013 end-page: 72 ident: b0150 article-title: “Skin insertion mechanisms of microneedle-based dry electrodes for physiological signal monitoring,” in publication-title: IEEE Biomedical Circuits and Systems Conference (BioCAS) – reference: , 1998, pp. 494-498. – volume: 173 start-page: 60 year: 2021 end-page: 69 ident: b0045 article-title: 3D printing as a transformative tool for microneedle systems: Recent advances, manufacturing considerations and market potential publication-title: Adv. Drug Deliv. Rev. – volume: 8 start-page: 1 year: 2018 end-page: 13 ident: b0190 article-title: Fluid absorption by skin tissue during intradermal injections through hollow microneedles publication-title: Sci. Rep. – reference: D. Prakashan, R. PR, and S. Gandhi, “A Systematic Review on the Advanced Techniques of Wearable Point-of-Care Devices and Their Futuristic Applications,” – reference: M. A. Gosálvez, I. Zubel, and E. Viinikka, “Chapter 22 - Wet Etching of Silicon,” in – volume: 43 start-page: 2117 year: 1951 end-page: 2120 ident: b0185 article-title: Viscosity of glycerol and its aqueous solutions publication-title: Ind. Eng. Chem. – volume: 3 start-page: e10069 year: 2020 ident: b0020 article-title: Transdermal drug delivery and patches—An overview publication-title: Medical Devices & Sensors – reference: F. Laermer, S. Franssila, L. Sainiemi, and K. Kolari, “Chapter 21 - Deep Reactive Ion Etching,” in – start-page: 365 year: 2020 end-page: 368 ident: b0015 article-title: “Dermal ISF Collection Using a Si Microneedle Array,” publication-title: in – volume: 16 start-page: 1376 year: 2022 end-page: 1380 ident: b0215 article-title: Unsafe sharps disposal among insulin-using patients with diabetes mellitus: an emerging global crisis publication-title: J. Diabetes Sci. Technol. – reference: D. Resnik, M. Možek, B. Pečar, A. Janež, V. Urbančič, C. Iliescu – volume: 5 start-page: 11 year: 2011 end-page: 23 ident: b0200 article-title: Review of patents on microneedle applicators publication-title: Recent Pat. Drug Deliv. Formul. – volume: 36 start-page: 650 year: 2005 end-page: 656 ident: b0255 article-title: Process optimization and characterization of silicon microneedles fabricated by wet etch technology publication-title: Microelectron. J. – reference: J. H. Jung and S. G. Jin, “Microneedle for transdermal drug delivery: current trends and fabrication,” – start-page: 2573 year: 2022 end-page: 2576 ident: b0180 article-title: A Comparison of Flow-and Pressure-Controlled Infusion Strategies for Microneedle-based Transdermal Drug Delivery publication-title: in – volume: 17 start-page: 238 year: 2006 ident: b0250 article-title: Silicon microneedle formation using modified mask designs based on convex corner undercut publication-title: J. Micromech. Microeng. – volume: 17 start-page: e0276814 year: 2022 ident: b0005 article-title: Prevalence, causes, impacts, and management of needle phobia: An international survey of a general adult population publication-title: PLoS One – reference: pp. 1-15, 2021. – reference: H. J. G. E. Gardeniers, R. Luttge, E. J. W. Berenschot, M. J. d. Boer, S. Y. Yeshurun, M. Hefetz – year: 2023 ident: b0195 article-title: Microneedle-based interstitial fluid extraction for drug analysis: Advances, challenges, and prospects publication-title: J. Pharm. Anal. – reference: W. Trimmer, P. Ling, C. Chee-Kok, P. Orton, R. Gaugler, S. Hashmi – reference: , “In vivo experimental study of noninvasive insulin microinjection through hollow Si microneedle array,” – volume: 5 start-page: 41 year: 2019 ident: b0115 article-title: Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics publication-title: Microsyst. Nanoeng. – reference: , “Silicon micromachined hollow microneedles for transdermal liquid transport,” – reference: , 1999, pp. 1098-1101. – volume: 6 start-page: e22442 year: 2011 ident: 10.1016/j.ijpharm.2023.122888_b0035 article-title: Microneedle array design determines the induction of protective memory CD8+ T cell responses induced by a recombinant live malaria vaccine in mice publication-title: PLoS One doi: 10.1371/journal.pone.0022442 – ident: 10.1016/j.ijpharm.2023.122888_b0100 doi: 10.1016/B978-0-323-29965-7.00021-X – volume: 16 start-page: 333 year: 2014 ident: 10.1016/j.ijpharm.2023.122888_b0145 article-title: Structural characterization and in-vivo reliability evaluation of silicon microneedles publication-title: Biomed. Microdevices doi: 10.1007/s10544-014-9836-6 – volume: 17 start-page: e0276814 year: 2022 ident: 10.1016/j.ijpharm.2023.122888_b0005 article-title: Prevalence, causes, impacts, and management of needle phobia: An international survey of a general adult population publication-title: PLoS One doi: 10.1371/journal.pone.0276814 – ident: 10.1016/j.ijpharm.2023.122888_b0175 doi: 10.1073/pnas.1716772115 – ident: 10.1016/j.ijpharm.2023.122888_b0055 doi: 10.1109/JMEMS.2003.820293 – volume: 2013 start-page: 69 year: 2013 ident: 10.1016/j.ijpharm.2023.122888_b0150 article-title: “Skin insertion mechanisms of microneedle-based dry electrodes for physiological signal monitoring,” in publication-title: IEEE Biomedical Circuits and Systems Conference (BioCAS) doi: 10.1109/BioCAS.2013.6679642 – ident: 10.1016/j.ijpharm.2023.122888_b0085 – ident: 10.1016/j.ijpharm.2023.122888_b0120 doi: 10.1016/j.sbsr.2020.100348 – year: 2023 ident: 10.1016/j.ijpharm.2023.122888_b0195 article-title: Microneedle-based interstitial fluid extraction for drug analysis: Advances, challenges, and prospects publication-title: J. Pharm. Anal. – volume: 35 start-page: 1782 year: 2017 ident: 10.1016/j.ijpharm.2023.122888_b0240 article-title: Safety, tolerability and efficacy of intradermal rabies immunization with DebioJect™ publication-title: Vaccine doi: 10.1016/j.vaccine.2016.09.069 – volume: 173 start-page: 60 year: 2021 ident: 10.1016/j.ijpharm.2023.122888_b0045 article-title: 3D printing as a transformative tool for microneedle systems: Recent advances, manufacturing considerations and market potential publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.03.007 – volume: 267 year: 2021 ident: 10.1016/j.ijpharm.2023.122888_b0080 article-title: Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120491 – volume: 14 start-page: 1097 year: 2022 ident: 10.1016/j.ijpharm.2023.122888_b0095 article-title: Recent advancements in microneedle technology for multifaceted biomedical applications publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14051097 – volume: 15 year: 2010 ident: 10.1016/j.ijpharm.2023.122888_b0050 article-title: In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography publication-title: J. Biomed. Opt. doi: 10.1117/1.3463002 – volume: 11 start-page: 991 year: 2015 ident: 10.1016/j.ijpharm.2023.122888_b0105 article-title: Intradermal vaccination using the novel microneedle device MicronJet600: Past, present, and future publication-title: Hum. Vaccin. Immunother. doi: 10.1080/21645515.2015.1010871 – volume: 14 start-page: 1475 year: 2008 ident: 10.1016/j.ijpharm.2023.122888_b0010 article-title: Investigations of development process of high hollow beveled microneedles using a combination of ICP RIE and dicing saw publication-title: Microsyst. Technol. doi: 10.1007/s00542-008-0596-1 – volume: 17 start-page: 238 year: 2006 ident: 10.1016/j.ijpharm.2023.122888_b0250 article-title: Silicon microneedle formation using modified mask designs based on convex corner undercut publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/17/2/008 – volume: 186 start-page: 130 year: 2012 ident: 10.1016/j.ijpharm.2023.122888_b0140 article-title: Microneedle-based electrodes with integrated through-silicon via for biopotential recording publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2012.04.037 – start-page: 2573 year: 2022 ident: 10.1016/j.ijpharm.2023.122888_b0180 article-title: A Comparison of Flow-and Pressure-Controlled Infusion Strategies for Microneedle-based Transdermal Drug Delivery – volume: 368 start-page: 109 year: 2009 ident: 10.1016/j.ijpharm.2023.122888_b0110 article-title: In vitro transdermal delivery of therapeutic antibodies using maltose microneedles publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2008.10.008 – volume: 599 year: 2021 ident: 10.1016/j.ijpharm.2023.122888_b0030 article-title: Hollow microneedles: A perspective in biomedical applications publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120455 – volume: 16 start-page: 1429 year: 2007 ident: 10.1016/j.ijpharm.2023.122888_b0170 article-title: Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2007.907461 – ident: 10.1016/j.ijpharm.2023.122888_b0040 doi: 10.1109/MEMSYS.1999.746863 – volume: 20 start-page: 1 year: 2018 ident: 10.1016/j.ijpharm.2023.122888_b0165 article-title: Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system publication-title: Biomed. Microdevices doi: 10.1007/s10544-018-0349-6 – volume: 20 start-page: 2788 year: 2020 ident: 10.1016/j.ijpharm.2023.122888_b0025 article-title: Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery publication-title: Lab Chip doi: 10.1039/D0LC00567C – volume: 5 start-page: 41 year: 2019 ident: 10.1016/j.ijpharm.2023.122888_b0115 article-title: Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-019-0077-y – volume: 16 start-page: 1376 year: 2022 ident: 10.1016/j.ijpharm.2023.122888_b0215 article-title: Unsafe sharps disposal among insulin-using patients with diabetes mellitus: an emerging global crisis publication-title: J. Diabetes Sci. Technol. doi: 10.1177/19322968211059851 – volume: 5 start-page: 11 year: 2011 ident: 10.1016/j.ijpharm.2023.122888_b0200 article-title: Review of patents on microneedle applicators publication-title: Recent Pat. Drug Deliv. Formul. doi: 10.2174/187221111794109484 – volume: 3 start-page: e10069 year: 2020 ident: 10.1016/j.ijpharm.2023.122888_b0020 article-title: Transdermal drug delivery and patches—An overview publication-title: Medical Devices & Sensors doi: 10.1002/mds3.10069 – volume: 6 start-page: 279 year: 1996 ident: 10.1016/j.ijpharm.2023.122888_b0235 article-title: Precise mask alignment to the crystallographic orientation of silicon wafers using wet anisotropic etching publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/6/2/011 – volume: 16 start-page: 808 year: 2006 ident: 10.1016/j.ijpharm.2023.122888_b0260 article-title: The evolution from convex corner undercut towards microneedle formation: theory and experimental verification publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/16/4/018 – start-page: 3020 year: 2022 ident: 10.1016/j.ijpharm.2023.122888_b0220 article-title: Towards Micropump-and Microneedle-based Drug Delivery using Micro Transdermal Interface Platforms (MicroTIPs) – volume: 59 start-page: 877 year: 2019 ident: 10.1016/j.ijpharm.2023.122888_b0090 article-title: A review on microfabrication of thermoplastic polymer-based microneedle arrays publication-title: Polym. Eng. Sci. doi: 10.1002/pen.25078 – year: 2018 ident: 10.1016/j.ijpharm.2023.122888_b0125 – ident: 10.1016/j.ijpharm.2023.122888_b0075 doi: 10.1109/MEMSYS.1998.659807 – volume: 99 start-page: 1152 year: 2010 ident: 10.1016/j.ijpharm.2023.122888_b0265 article-title: Specific interactions in high concentration antibody solutions resulting in high viscosity publication-title: J. Pharm. Sci. doi: 10.1002/jps.21898 – volume: 43 start-page: 2117 year: 1951 ident: 10.1016/j.ijpharm.2023.122888_b0185 article-title: Viscosity of glycerol and its aqueous solutions publication-title: Ind. Eng. Chem. doi: 10.1021/ie50501a040 – volume: 2 start-page: 2200040 year: 2022 ident: 10.1016/j.ijpharm.2023.122888_b0275 article-title: Current technological trends in transdermal biosensing publication-title: Adv. NanoBiomed. Res. doi: 10.1002/anbr.202200040 – ident: 10.1016/j.ijpharm.2023.122888_b0160 doi: 10.3390/mi9010040 – volume: 11 start-page: 35 year: 2009 ident: 10.1016/j.ijpharm.2023.122888_b0070 article-title: Clinical administration of microneedles: skin puncture, pain and sensation publication-title: Biomed. Microdevices doi: 10.1007/s10544-008-9208-1 – ident: 10.1016/j.ijpharm.2023.122888_b0135 – volume: 35 start-page: 52 year: 2006 ident: 10.1016/j.ijpharm.2023.122888_b0225 article-title: Biochemistry of human skin—our brain on the outside publication-title: Chem. Soc. Rev. doi: 10.1039/B505793K – volume: 36 start-page: 650 year: 2005 ident: 10.1016/j.ijpharm.2023.122888_b0255 article-title: Process optimization and characterization of silicon microneedles fabricated by wet etch technology publication-title: Microelectron. J. doi: 10.1016/j.mejo.2005.04.044 – volume: 14 start-page: 472 year: 2005 ident: 10.1016/j.ijpharm.2023.122888_b0210 article-title: Arrays of hollow out-of-plane microneedles for drug delivery publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2005.844843 – ident: 10.1016/j.ijpharm.2023.122888_b0230 doi: 10.1109/MEMSYS.1995.472544 – volume: 23 start-page: 104 year: 2006 ident: 10.1016/j.ijpharm.2023.122888_b0130 article-title: Microinfusion using hollow microneedles publication-title: Pharm. Res. doi: 10.1007/s11095-005-8498-8 – ident: 10.1016/j.ijpharm.2023.122888_b0060 doi: 10.1016/B978-0-323-29965-7.00022-1 – ident: 10.1016/j.ijpharm.2023.122888_b0065 doi: 10.1109/MEMSYS.2002.984303 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.ijpharm.2023.122888_b0190 article-title: Fluid absorption by skin tissue during intradermal injections through hollow microneedles publication-title: Sci. Rep. doi: 10.1038/s41598-018-32026-9 – volume: 7 start-page: 438 year: 2015 ident: 10.1016/j.ijpharm.2023.122888_b0270 article-title: Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum publication-title: Pharmaceutics doi: 10.3390/pharmaceutics7040438 – start-page: 365 year: 2020 ident: 10.1016/j.ijpharm.2023.122888_b0015 article-title: “Dermal ISF Collection Using a Si Microneedle Array,” – ident: 10.1016/j.ijpharm.2023.122888_b0205 doi: 10.1109/MMB.2000.893777 – ident: 10.1016/j.ijpharm.2023.122888_b0155 doi: 10.3390/diagnostics13050916 – volume: 14 start-page: 130 year: 2020 ident: 10.1016/j.ijpharm.2023.122888_b0245 article-title: Flash glucose monitoring technology impact on diabetes self-care behavior publication-title: Am. J. Lifestyle Med. doi: 10.1177/1559827619890955 |
SSID | ssj0006213 |
Score | 2.5334735 |
Snippet | [Display omitted]
Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and... Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 122888 |
SubjectTerms | Administration, Cutaneous bioMEMS Diagnostics Drug Delivery Systems - instrumentation Equipment Design - methods Humans Manufacturing Industry Microinjections - instrumentation Microinjections - methods Microneedles Needles Reproducibility of Results Silicon Silicon etching Skin Transdermal delivery |
Title | Hollow silicon microneedles, fabricated using combined wet and dry etching techniques, for transdermal delivery and diagnostics |
URI | https://dx.doi.org/10.1016/j.ijpharm.2023.122888 https://www.ncbi.nlm.nih.gov/pubmed/36977451 https://www.proquest.com/docview/2792513127 |
Volume | 637 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DX3wRv51fRBCfbLc0adc-iihTcQg62FtImlQ2aje2iuxF_3Xv-rEhKIKPbXM0zV3vfkcuvyPkzPLEBgAjHMvi0IEIEYEf1L6TWBWydqRiXjSbeOgF3b64G_iDBrmqz8JgWWXl-0ufXnjr6k6rWs3WZDhsPbV50VieA4hG0hVk_BSig1bufizLPAKvapEM2RKOXp7iaY3c4WiCBNEu9hB3meeFRQOWH-PTb_iziEM3G2S9ApD0spzjJmnYbIucP5YM1PML-rw8UDW7oOf0cclNPd8mn13Q-_idzoYpmEBGX7EeL4MIlloYnShddA2yhmI9_AuFVYHMGS7fbU5VZqiZzikqGh8u6F9RcjylOYY9g54-pcamWPAxL4XKcj6c0Q7p31w_X3WdqgeDEwvm5Q4PNY9DLWLrJwAemUFynIR5OhJGA_hoKy9QiWprSKOsArhnOkFHQ87IFLJ_cb5LVjL4jn1CARr5QifgI5QQ3BoF4NMXYA0RizmPRJOIeuVlXBGUY5-MVNaVaCNZKUyiwmSpsCZxF2KTkqHjL4GwVqv8ZmoSoshfoqe1GUj4DXFvRWV2_DaTyMPoM868TpPslfaxmA0PEGT77OD_Lz4ka3iF21ief0RW8umbPQY0lOuTwtxPyOrl7X239wXALgrR |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7S9NBeQtNXnDbpFkpOkezVrmTpWEyM2yYhUAdyW3a1q2CjyMaWCb6kf70zetgUEgI96jFotTOa-RbNfh_ANycyFyGM8BxPYw8rRIJ50IRe5nTMe4lORSU2cXEZja7lz5vwZgcG7V4Yaqtscn-d06ts3ZzpNrPZnU8m3d89UQnLCwTRRLoiXsBLiZ8vyRj4D9s-jyhoNJJxuUS3b7fxdKf-ZDonhmifRMR9HgRxpcDyaIF6CoBWhWj4BvYaBMm-14Pchx1XvIWTq5qCen3KxtsdVctTdsKutuTU63fwZ4SOn92z5STHGCjYHTXkFVjCcod3Z9pUskHOMmqIv2U4Lbh0xsN7VzJdWGYXa0aeposb_leynC1YSXXPUqrPmXU5dXysa6O6n49G9B6uh2fjwchrRBi8VPKg9ERsRBobmbowQ_TILbHjZDwwibQG0UdPB5HOdM_gOsppxHu2H_UNLhq5JvovIT7AboHvcQAMsVEoTYZJQkspnNWIPkOJ4ZDwVIhEdkC2M6_ShqGchDJy1baiTVXjMEUOU7XDOuBvzOY1RcdzBnHrVvVPrCksI8-Zfm3DQOF3SD9XdOFmq6UiIsaQCx70O_Cxjo_NaEREKDvkh___4C_wajS-OFfnPy5_fYLXdIX-aQXhZ9gtFyt3hNCoNMdV6P8Fuu8MXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hollow+silicon+microneedles%2C+fabricated+using+combined+wet+and+dry+etching+techniques%2C+for+transdermal+delivery+and+diagnostics&rft.jtitle=International+journal+of+pharmaceutics&rft.au=O%27Mahony%2C+Conor&rft.au=Sebastian%2C+Ryan&rft.au=Tjulkins%2C+Fjodors&rft.au=Whelan%2C+Derek&rft.date=2023-04-25&rft.eissn=1873-3476&rft.volume=637&rft.spage=122888&rft_id=info:doi/10.1016%2Fj.ijpharm.2023.122888&rft_id=info%3Apmid%2F36977451&rft.externalDocID=36977451 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5173&client=summon |