Hollow silicon microneedles, fabricated using combined wet and dry etching techniques, for transdermal delivery and diagnostics

[Display omitted] Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily because of their minimally invasive and painless nature, which in turn could lead to increased patient compliance and self-...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of pharmaceutics Vol. 637; p. 122888
Main Authors O'Mahony, Conor, Sebastian, Ryan, Tjulkins, Fjodors, Whelan, Derek, Bocchino, Andrea, Hu, Yuan, O'Brien, Joe, Scully, Jim, Hegarty, Margaret, Blake, Alan, Slimi, Inès, Clover, A. James P., Lyness, Alexander, Kelleher, Anne-Marie
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 25.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily because of their minimally invasive and painless nature, which in turn could lead to increased patient compliance and self-administration. In this paper, a process for the fabrication of arrays of hollow silicon microneedles is described. This method uses just two bulk silicon etches – a front-side wet etch to define the 500 μm tall octagonal needle structure itself, and a rear-side dry etch to create a 50 μm diameter bore through the needle. This reduces the number of etches and process complexity over the approaches described elsewhere. Ex-vivo human skin and a customised applicator were used to demonstrate biomechanical reliability and the feasibility of using these microneedles for both transdermal delivery and diagnostics. Microneedle arrays show no damage even when applied to skin up to 40 times, are capable of delivering several mL of fluid at flowrates of 30 μL/min, and of withdrawing 1 μL of interstitial fluid using capillary action.
AbstractList Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily because of their minimally invasive and painless nature, which in turn could lead to increased patient compliance and self-administration. In this paper, a process for the fabrication of arrays of hollow silicon microneedles is described. This method uses just two bulk silicon etches - a front-side wet etch to define the 500 μm tall octagonal needle structure itself, and a rear-side dry etch to create a 50 μm diameter bore through the needle. This reduces the number of etches and process complexity over the approaches described elsewhere. Ex-vivo human skin and a customised applicator were used to demonstrate biomechanical reliability and the feasibility of using these microneedles for both transdermal delivery and diagnostics. Microneedle arrays show no damage even when applied to skin up to 40 times, are capable of delivering several mL of fluid at flowrates of 30 μL/min, and of withdrawing 1 μL of interstitial fluid using capillary action.
Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily because of their minimally invasive and painless nature, which in turn could lead to increased patient compliance and self-administration. In this paper, a process for the fabrication of arrays of hollow silicon microneedles is described. This method uses just two bulk silicon etches - a front-side wet etch to define the 500 μm tall octagonal needle structure itself, and a rear-side dry etch to create a 50 μm diameter bore through the needle. This reduces the number of etches and process complexity over the approaches described elsewhere. Ex-vivo human skin and a customised applicator were used to demonstrate biomechanical reliability and the feasibility of using these microneedles for both transdermal delivery and diagnostics. Microneedle arrays show no damage even when applied to skin up to 40 times, are capable of delivering several mL of fluid at flowrates of 30 μL/min, and of withdrawing 1 μL of interstitial fluid using capillary action.Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily because of their minimally invasive and painless nature, which in turn could lead to increased patient compliance and self-administration. In this paper, a process for the fabrication of arrays of hollow silicon microneedles is described. This method uses just two bulk silicon etches - a front-side wet etch to define the 500 μm tall octagonal needle structure itself, and a rear-side dry etch to create a 50 μm diameter bore through the needle. This reduces the number of etches and process complexity over the approaches described elsewhere. Ex-vivo human skin and a customised applicator were used to demonstrate biomechanical reliability and the feasibility of using these microneedles for both transdermal delivery and diagnostics. Microneedle arrays show no damage even when applied to skin up to 40 times, are capable of delivering several mL of fluid at flowrates of 30 μL/min, and of withdrawing 1 μL of interstitial fluid using capillary action.
[Display omitted] Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily because of their minimally invasive and painless nature, which in turn could lead to increased patient compliance and self-administration. In this paper, a process for the fabrication of arrays of hollow silicon microneedles is described. This method uses just two bulk silicon etches – a front-side wet etch to define the 500 μm tall octagonal needle structure itself, and a rear-side dry etch to create a 50 μm diameter bore through the needle. This reduces the number of etches and process complexity over the approaches described elsewhere. Ex-vivo human skin and a customised applicator were used to demonstrate biomechanical reliability and the feasibility of using these microneedles for both transdermal delivery and diagnostics. Microneedle arrays show no damage even when applied to skin up to 40 times, are capable of delivering several mL of fluid at flowrates of 30 μL/min, and of withdrawing 1 μL of interstitial fluid using capillary action.
ArticleNumber 122888
Author Clover, A. James P.
Sebastian, Ryan
Hegarty, Margaret
Slimi, Inès
Whelan, Derek
Scully, Jim
O'Brien, Joe
O'Mahony, Conor
Blake, Alan
Kelleher, Anne-Marie
Hu, Yuan
Tjulkins, Fjodors
Lyness, Alexander
Bocchino, Andrea
Author_xml – sequence: 1
  givenname: Conor
  orcidid: 0000-0003-4018-103X
  surname: O'Mahony
  fullname: O'Mahony, Conor
  email: conor.omahony@tyndall.ie
  organization: Tyndall National Institute, University College Cork, Cork, Ireland
– sequence: 2
  givenname: Ryan
  surname: Sebastian
  fullname: Sebastian, Ryan
  organization: Tyndall National Institute, University College Cork, Cork, Ireland
– sequence: 3
  givenname: Fjodors
  surname: Tjulkins
  fullname: Tjulkins, Fjodors
  organization: Tyndall National Institute, University College Cork, Cork, Ireland
– sequence: 4
  givenname: Derek
  orcidid: 0000-0002-5457-1699
  surname: Whelan
  fullname: Whelan, Derek
  organization: Department of Biomedical, Mechanical and Manufacturing Engineering, Munster Technological University, Cork, Ireland
– sequence: 5
  givenname: Andrea
  surname: Bocchino
  fullname: Bocchino, Andrea
  organization: Tyndall National Institute, University College Cork, Cork, Ireland
– sequence: 6
  givenname: Yuan
  surname: Hu
  fullname: Hu, Yuan
  organization: Tyndall National Institute, University College Cork, Cork, Ireland
– sequence: 7
  givenname: Joe
  surname: O'Brien
  fullname: O'Brien, Joe
  organization: Tyndall National Institute, University College Cork, Cork, Ireland
– sequence: 8
  givenname: Jim
  surname: Scully
  fullname: Scully, Jim
  organization: Tyndall National Institute, University College Cork, Cork, Ireland
– sequence: 9
  givenname: Margaret
  surname: Hegarty
  fullname: Hegarty, Margaret
  organization: Tyndall National Institute, University College Cork, Cork, Ireland
– sequence: 10
  givenname: Alan
  orcidid: 0000-0001-7961-4459
  surname: Blake
  fullname: Blake, Alan
  organization: Tyndall National Institute, University College Cork, Cork, Ireland
– sequence: 11
  givenname: Inès
  surname: Slimi
  fullname: Slimi, Inès
  organization: Tyndall National Institute, University College Cork, Cork, Ireland
– sequence: 12
  givenname: A. James P.
  surname: Clover
  fullname: Clover, A. James P.
  organization: Department of Plastic and Reconstructive Surgery, Cork University Hospital, Cork, Ireland
– sequence: 13
  givenname: Alexander
  surname: Lyness
  fullname: Lyness, Alexander
  organization: West Pharmaceutical Services, Exton, PA, USA
– sequence: 14
  givenname: Anne-Marie
  surname: Kelleher
  fullname: Kelleher, Anne-Marie
  organization: Tyndall National Institute, University College Cork, Cork, Ireland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36977451$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URLeFjwDykQNZ_CeJs-KAUAUUqRIXOFuOPenOyrEX29uqJ746Tnd74dKTx_L7zXjeuyBnIQYg5C1na854_3G3xt1-a9K8FkzINRdiGIYXZMUHJRvZqv6MrJhUQ9NxJc_JRc47xlgvuHxFzmW_Uart-Ir8vY7ex3ua0aONgc5oUx0EzkP-QCczJrSmgKOHjOGW2jiPGOr1Hgo1wVGXHigUu10eC9htwD-HRzImWpIJ2UGajacOPN5BFT9CaG5DzAVtfk1eTsZneHM6L8nvb19_XV03Nz-__7j6ctPYlovSyGGUdhhbC93Eecddp4ZaiXHTurGVnBnRm8mwUXQbMH3HnOrVyDYtN2wxQF6S98e--xSXHxY9Y7bgvQkQD1kLtREdl1yoKn13kh7GGZzeJ5xNetBPplXBp6OgWpVzgklbLKZgDHVj9JozvUSkd_oUkV4i0seIKt39Rz8NeI77fOSg2nSHkHS2CMGCwwS2aBfxmQ7_AC-Wr7E
CitedBy_id crossref_primary_10_1007_s12633_024_02963_4
crossref_primary_10_1016_j_micinf_2024_105426
crossref_primary_10_1039_D3TB02646A
crossref_primary_10_1016_j_ijbiomac_2024_129987
crossref_primary_10_1021_acsbiomaterials_3c00116
crossref_primary_10_1016_j_bios_2024_116427
crossref_primary_10_1088_1361_6439_adb75e
crossref_primary_10_1039_D3NA00454F
crossref_primary_10_1016_j_sintl_2024_100325
crossref_primary_10_1631_bdm_2300352
crossref_primary_10_1021_acsabm_4c01064
crossref_primary_10_1039_D4LC00880D
crossref_primary_10_1088_1758_5090_ad6d90
crossref_primary_10_1038_s41598_024_82564_8
crossref_primary_10_3390_gels11020089
crossref_primary_10_1016_j_mtbio_2025_101504
crossref_primary_10_1016_j_ijpharm_2024_124481
crossref_primary_10_3390_medicina59040778
crossref_primary_10_1002_ppsc_202400181
Cites_doi 10.1371/journal.pone.0022442
10.1016/B978-0-323-29965-7.00021-X
10.1007/s10544-014-9836-6
10.1371/journal.pone.0276814
10.1073/pnas.1716772115
10.1109/JMEMS.2003.820293
10.1109/BioCAS.2013.6679642
10.1016/j.sbsr.2020.100348
10.1016/j.vaccine.2016.09.069
10.1016/j.addr.2021.03.007
10.1016/j.biomaterials.2020.120491
10.3390/pharmaceutics14051097
10.1117/1.3463002
10.1080/21645515.2015.1010871
10.1007/s00542-008-0596-1
10.1088/0960-1317/17/2/008
10.1016/j.sna.2012.04.037
10.1016/j.ijpharm.2008.10.008
10.1016/j.ijpharm.2021.120455
10.1109/JMEMS.2007.907461
10.1109/MEMSYS.1999.746863
10.1007/s10544-018-0349-6
10.1039/D0LC00567C
10.1038/s41378-019-0077-y
10.1177/19322968211059851
10.2174/187221111794109484
10.1002/mds3.10069
10.1088/0960-1317/6/2/011
10.1088/0960-1317/16/4/018
10.1002/pen.25078
10.1109/MEMSYS.1998.659807
10.1002/jps.21898
10.1021/ie50501a040
10.1002/anbr.202200040
10.3390/mi9010040
10.1007/s10544-008-9208-1
10.1039/B505793K
10.1016/j.mejo.2005.04.044
10.1109/JMEMS.2005.844843
10.1109/MEMSYS.1995.472544
10.1007/s11095-005-8498-8
10.1016/B978-0-323-29965-7.00022-1
10.1109/MEMSYS.2002.984303
10.1038/s41598-018-32026-9
10.3390/pharmaceutics7040438
10.1109/MMB.2000.893777
10.3390/diagnostics13050916
10.1177/1559827619890955
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 The Author(s)
– notice: Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ijpharm.2023.122888
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-3476
ExternalDocumentID 36977451
10_1016_j_ijpharm_2023_122888
S0378517323003083
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
C45
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSH
SSP
SSZ
T5K
TEORI
~02
~G-
.GJ
29J
3O-
53G
5VS
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMT
HVGLF
HZ~
R2-
RIG
SEW
SPT
WUQ
ZXP
AFKWA
AJOXV
AMFUW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c412t-38b3c8b4ce5f1151d5785f12b94db4310a26afa0b259ea650d767b0941a051733
IEDL.DBID .~1
ISSN 0378-5173
1873-3476
IngestDate Mon Jul 21 10:06:34 EDT 2025
Wed Feb 19 02:24:25 EST 2025
Tue Jul 01 01:19:21 EDT 2025
Thu Apr 24 22:56:47 EDT 2025
Sun Apr 06 06:53:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Transdermal delivery
bioMEMS
Microneedles
Diagnostics
Silicon etching
Language English
License This is an open access article under the CC BY license.
Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-38b3c8b4ce5f1151d5785f12b94db4310a26afa0b259ea650d767b0941a051733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4018-103X
0000-0001-7961-4459
0000-0002-5457-1699
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0378517323003083
PMID 36977451
PQID 2792513127
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2792513127
pubmed_primary_36977451
crossref_citationtrail_10_1016_j_ijpharm_2023_122888
crossref_primary_10_1016_j_ijpharm_2023_122888
elsevier_sciencedirect_doi_10_1016_j_ijpharm_2023_122888
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-25
PublicationDateYYYYMMDD 2023-04-25
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-25
  day: 25
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle International journal of pharmaceutics
PublicationTitleAlternate Int J Pharm
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Juster, van der Aar, de Brouwer (b0090) 2019; 59
D. McAllister, “Three-dimensional hollow microneedle and microtube arrays,” in
1999, pp. 1098-1101.
P. P. Samant and M. R. Prausnitz, “Mechanisms of sampling interstitial fluid from skin using a microneedle patch,”
Singh, Dunne, Cunningham, Donnelly (b0200) 2011; 5
Vescovo, Rettby, Ramaniraka, Liberman, Hart, Cachemaille (b0240) 2017; 35
Wilke, Morrissey (b0250) 2006; 17
“An array of hollow microcapillaries for the controlled injection of genetic materials into animal/plant cells,” in
Li, Zhang, Yang, Laffitte, Schmill, Hu (b0115) 2019; 5
Vangbo, Bäcklund (b0235) 1996; 6
O'Mahony, Pini, Vereschagina, Blake, O'Brien, Webster (b0150) 2013; 2013
p. 916, 2023.
Thompson, Cook (b0215) 2022; 16
Li, Badkar, Nema, Kolli, Banga (b0110) 2009; 368
Roxhed, Gasser, Griss, Holzapfel, Stemme (b0170) 2007; 16
Yadav, Liu, Shire, Kalonia (b0265) 2010; 99
Segur, Oberstar (b0185) 1951; 43
K. Chun, G. Hashiguchi, H. Toshiyoshi, H. Fujita, Y. Kikuchi, J. Ishikawa
S. Henry, D. V. McAllister, M. G. Allen, and M. R. Prausnitz, “Micromachined needles for the transdermal delivery of drugs,” in
pp. 1-15, 2021.
1995, p. 111.
Zaid Alkilani, McCrudden, Donnelly (b0270) 2015; 7
Kulkarni, Damiri, Rojekar, Zehravi, Ramproshad, Dhoke (b0095) 2022; 14
W. Trimmer, P. Ling, C. Chee-Kok, P. Orton, R. Gaugler, S. Hashmi
In vivo experimental study of noninvasive insulin microinjection through hollow Si microneedle array
F. Laermer, S. Franssila, L. Sainiemi, and K. Kolari, “Chapter 21 - Deep Reactive Ion Etching,” in
Bird, Ravindra (b0020) 2020; 3
Martanto, Moore, Kashlan, Kamath, Wang, O'Neal (b0130) 2006; 23
“Injection of DNA into plant and animal tissues with micromechanical piercing structures,” in
Zhang, Yang, Shi, Xu (b0275) 2022; 2
Stoeber, Liepmann (b0210) 2005; 14
Berry, Smith, Collins, Smith (b0015) 2020
Silicon micromachined hollow microneedles for transdermal liquid transport
1998, pp. 494-498.
J. H. Jung and S. G. Jin, “Microneedle for transdermal drug delivery: current trends and fabrication,”
Levin, Kochba, Hung, Kenney (b0105) 2015; 11
M. Tilli, T. Motooka, V.-M. Airaksinen, S. Franssila, M. Paulasto-Kröckel, and V. Lindroos, Eds., 2nd ed Boston: William Andrew Publishing, 2015, pp. 470-502.
Tjulkins, Sebastian, Guillerm, Clover, Hu, Lyness (b0220) 2022
2002, pp. 467-470.
Carey, Pearson, Vrdoljak, McGrath, Crean, Walsh (b0035) 2011; 6
Shuwen, Jiaqi, Lixia, Nianping, Zhang (b0195) 2023
Madou (b0125) 2018
p. 40, 2018, https://doi.org/10.3390%2Fmi9010040.
Bolton, Howells, Blayney, Eng, Birchall, Gualeni (b0025) 2020; 20
Baron, Passave, Guichardaz, Cabodevila (b0010) 2008; 14
1999, pp. 406-411.
D. Prakashan, R. PR, and S. Gandhi, “A Systematic Review on the Advanced Techniques of Wearable Point-of-Care Devices and Their Futuristic Applications,”
M. Tilli, T. Motooka, V.-M. Airaksinen, S. Franssila, M. Paulasto-Kröckel, and V. Lindroos, Eds., 2nd ed Boston: William Andrew Publishing, 2015, pp. 444-469.
Ribet, Stemme, Roxhed (b0165) 2018; 20
2000, pp. 224-228.
J. Madden, C. O'Mahony, M. Thompson, A. O'Riordan, and P. Galvin, “Biosensing in dermal interstitial fluid using microneedle based electrochemical devices,”
pp. 4583-4588, 2018, 10.1073/pnas.1716772115.
Alsbrooks, Hoerauf (b0005) 2022; 17
H. J. G. E. Gardeniers, R. Luttge, E. J. W. Berenschot, M. J. d. Boer, S. Y. Yeshurun, M. Hefetz
pp. 855-862, 2003, 10.1109/JMEMS.2003.820293.
Enfield, O'Connell, Lawlor, Jonathan, O'Mahony, Leahy (b0050) 2010; 15
O’Mahony, Pini, Blake, Webster, O’Brien, McCarthy (b0140) 2012; 186
O'Mahony (b0145) 2014; 16
M. A. Gosálvez, I. Zubel, and E. Viinikka, “Chapter 22 - Wet Etching of Silicon,” in
Wilke, Mulcahy, Ye, Morrissey (b0255) 2005; 36
D. Resnik, M. Možek, B. Pečar, A. Janež, V. Urbančič, C. Iliescu
White, Knezevich (b0245) 2020; 14
Ingrole, Azizoglu, Dul, Birchall, Gill, Prausnitz (b0080) 2021; 267
P. Griss and G. Stemme, “Novel, side opened out-of-plane microneedles for microfluidic transdermal interfacing,” in
B. Stoeber and D. Liepmann, “Fluid injection through out-of-plane microneedles,” in
Shrestha, Stoeber (b0190) 2018; 8
Cárcamo-Martínez, Mallon, Domínguez-Robles, Vora, Anjani, Donnelly (b0030) 2021; 599
Haq, Smith, John, Kalavala, Edwards, Anstey (b0070) 2009; 11
p. 100348, 2020, https://doi.org/10.1016/j.sbsr.2020.100348.
Sebastian, Guillerm, Tjulkins, Hu, Clover, Lyness (b0180) 2022
Wilke, Reed, Morrissey (b0260) 2006; 16
Economidou, Douroumis (b0045) 2021; 173
Tobin (b0225) 2006; 35
10.1016/j.ijpharm.2023.122888_b0155
Segur (10.1016/j.ijpharm.2023.122888_b0185) 1951; 43
Shuwen (10.1016/j.ijpharm.2023.122888_b0195) 2023
10.1016/j.ijpharm.2023.122888_b0230
10.1016/j.ijpharm.2023.122888_b0075
Wilke (10.1016/j.ijpharm.2023.122888_b0260) 2006; 16
Haq (10.1016/j.ijpharm.2023.122888_b0070) 2009; 11
Sebastian (10.1016/j.ijpharm.2023.122888_b0180) 2022
Bolton (10.1016/j.ijpharm.2023.122888_b0025) 2020; 20
Levin (10.1016/j.ijpharm.2023.122888_b0105) 2015; 11
Stoeber (10.1016/j.ijpharm.2023.122888_b0210) 2005; 14
Cárcamo-Martínez (10.1016/j.ijpharm.2023.122888_b0030) 2021; 599
Madou (10.1016/j.ijpharm.2023.122888_b0125) 2018
Juster (10.1016/j.ijpharm.2023.122888_b0090) 2019; 59
10.1016/j.ijpharm.2023.122888_b0120
Zhang (10.1016/j.ijpharm.2023.122888_b0275) 2022; 2
10.1016/j.ijpharm.2023.122888_b0085
10.1016/j.ijpharm.2023.122888_b0040
10.1016/j.ijpharm.2023.122888_b0160
Alsbrooks (10.1016/j.ijpharm.2023.122888_b0005) 2022; 17
Tjulkins (10.1016/j.ijpharm.2023.122888_b0220) 2022
Martanto (10.1016/j.ijpharm.2023.122888_b0130) 2006; 23
Singh (10.1016/j.ijpharm.2023.122888_b0200) 2011; 5
Zaid Alkilani (10.1016/j.ijpharm.2023.122888_b0270) 2015; 7
Baron (10.1016/j.ijpharm.2023.122888_b0010) 2008; 14
Ribet (10.1016/j.ijpharm.2023.122888_b0165) 2018; 20
Carey (10.1016/j.ijpharm.2023.122888_b0035) 2011; 6
Ingrole (10.1016/j.ijpharm.2023.122888_b0080) 2021; 267
White (10.1016/j.ijpharm.2023.122888_b0245) 2020; 14
O'Mahony (10.1016/j.ijpharm.2023.122888_b0150) 2013; 2013
10.1016/j.ijpharm.2023.122888_b0205
Li (10.1016/j.ijpharm.2023.122888_b0110) 2009; 368
Kulkarni (10.1016/j.ijpharm.2023.122888_b0095) 2022; 14
Enfield (10.1016/j.ijpharm.2023.122888_b0050) 2010; 15
10.1016/j.ijpharm.2023.122888_b0055
10.1016/j.ijpharm.2023.122888_b0175
Tobin (10.1016/j.ijpharm.2023.122888_b0225) 2006; 35
Berry (10.1016/j.ijpharm.2023.122888_b0015) 2020
O’Mahony (10.1016/j.ijpharm.2023.122888_b0140) 2012; 186
Wilke (10.1016/j.ijpharm.2023.122888_b0250) 2006; 17
Li (10.1016/j.ijpharm.2023.122888_b0115) 2019; 5
Thompson (10.1016/j.ijpharm.2023.122888_b0215) 2022; 16
10.1016/j.ijpharm.2023.122888_b0135
10.1016/j.ijpharm.2023.122888_b0100
10.1016/j.ijpharm.2023.122888_b0065
Yadav (10.1016/j.ijpharm.2023.122888_b0265) 2010; 99
Vescovo (10.1016/j.ijpharm.2023.122888_b0240) 2017; 35
Vangbo (10.1016/j.ijpharm.2023.122888_b0235) 1996; 6
Economidou (10.1016/j.ijpharm.2023.122888_b0045) 2021; 173
10.1016/j.ijpharm.2023.122888_b0060
Bird (10.1016/j.ijpharm.2023.122888_b0020) 2020; 3
Roxhed (10.1016/j.ijpharm.2023.122888_b0170) 2007; 16
Shrestha (10.1016/j.ijpharm.2023.122888_b0190) 2018; 8
O'Mahony (10.1016/j.ijpharm.2023.122888_b0145) 2014; 16
Wilke (10.1016/j.ijpharm.2023.122888_b0255) 2005; 36
References_xml – volume: 14
  start-page: 472
  year: 2005
  end-page: 479
  ident: b0210
  article-title: Arrays of hollow out-of-plane microneedles for drug delivery
  publication-title: J. Microelectromech. Syst.
– start-page: 3020
  year: 2022
  end-page: 3023
  ident: b0220
  article-title: Towards Micropump-and Microneedle-based Drug Delivery using Micro Transdermal Interface Platforms (MicroTIPs)
  publication-title: in
– volume: 35
  start-page: 1782
  year: 2017
  end-page: 1788
  ident: b0240
  article-title: Safety, tolerability and efficacy of intradermal rabies immunization with DebioJect™
  publication-title: Vaccine
– reference: J. Madden, C. O'Mahony, M. Thompson, A. O'Riordan, and P. Galvin, “Biosensing in dermal interstitial fluid using microneedle based electrochemical devices,”
– volume: 16
  start-page: 1429
  year: 2007
  end-page: 1440
  ident: b0170
  article-title: Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery
  publication-title: J. Microelectromech. Syst.
– reference: p. 100348, 2020, https://doi.org/10.1016/j.sbsr.2020.100348.
– volume: 59
  start-page: 877
  year: 2019
  end-page: 890
  ident: b0090
  article-title: A review on microfabrication of thermoplastic polymer-based microneedle arrays
  publication-title: Polym. Eng. Sci.
– volume: 14
  start-page: 1475
  year: 2008
  end-page: 1480
  ident: b0010
  article-title: Investigations of development process of high hollow beveled microneedles using a combination of ICP RIE and dicing saw
  publication-title: Microsyst. Technol.
– volume: 7
  start-page: 438
  year: 2015
  end-page: 470
  ident: b0270
  article-title: Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum
  publication-title: Pharmaceutics
– reference: P. P. Samant and M. R. Prausnitz, “Mechanisms of sampling interstitial fluid from skin using a microneedle patch,”
– volume: 2
  start-page: 2200040
  year: 2022
  ident: b0275
  article-title: Current technological trends in transdermal biosensing
  publication-title: Adv. NanoBiomed. Res.
– reference: , 1999, pp. 406-411.
– volume: 15
  year: 2010
  ident: b0050
  article-title: In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography
  publication-title: J. Biomed. Opt.
– volume: 11
  start-page: 35
  year: 2009
  end-page: 47
  ident: b0070
  article-title: Clinical administration of microneedles: skin puncture, pain and sensation
  publication-title: Biomed. Microdevices
– reference: , p. 40, 2018, https://doi.org/10.3390%2Fmi9010040.
– reference: S. Henry, D. V. McAllister, M. G. Allen, and M. R. Prausnitz, “Micromachined needles for the transdermal delivery of drugs,” in
– volume: 23
  start-page: 104
  year: 2006
  end-page: 113
  ident: b0130
  article-title: Microinfusion using hollow microneedles
  publication-title: Pharm. Res.
– volume: 368
  start-page: 109
  year: 2009
  end-page: 115
  ident: b0110
  article-title: In vitro transdermal delivery of therapeutic antibodies using maltose microneedles
  publication-title: Int. J. Pharm.
– volume: 20
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0165
  article-title: Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system
  publication-title: Biomed. Microdevices
– reference: B. Stoeber and D. Liepmann, “Fluid injection through out-of-plane microneedles,” in
– reference: , pp. 855-862, 2003, 10.1109/JMEMS.2003.820293.
– reference: , M. Tilli, T. Motooka, V.-M. Airaksinen, S. Franssila, M. Paulasto-Kröckel, and V. Lindroos, Eds., 2nd ed Boston: William Andrew Publishing, 2015, pp. 444-469.
– volume: 35
  start-page: 52
  year: 2006
  end-page: 67
  ident: b0225
  article-title: Biochemistry of human skin—our brain on the outside
  publication-title: Chem. Soc. Rev.
– year: 2018
  ident: b0125
  article-title: Fundamentals of Microfabrication and Nanotechnology, Three-Volume Set
– volume: 599
  year: 2021
  ident: b0030
  article-title: Hollow microneedles: A perspective in biomedical applications
  publication-title: Int. J. Pharm.
– volume: 99
  start-page: 1152
  year: 2010
  end-page: 1168
  ident: b0265
  article-title: Specific interactions in high concentration antibody solutions resulting in high viscosity
  publication-title: J. Pharm. Sci.
– volume: 186
  start-page: 130
  year: 2012
  end-page: 136
  ident: b0140
  article-title: Microneedle-based electrodes with integrated through-silicon via for biopotential recording
  publication-title: Sens. Actuators, A
– volume: 11
  start-page: 991
  year: 2015
  end-page: 997
  ident: b0105
  article-title: Intradermal vaccination using the novel microneedle device MicronJet600: Past, present, and future
  publication-title: Hum. Vaccin. Immunother.
– volume: 14
  start-page: 1097
  year: 2022
  ident: b0095
  article-title: Recent advancements in microneedle technology for multifaceted biomedical applications
  publication-title: Pharmaceutics
– reference: K. Chun, G. Hashiguchi, H. Toshiyoshi, H. Fujita, Y. Kikuchi, J. Ishikawa
– reference: , “An array of hollow microcapillaries for the controlled injection of genetic materials into animal/plant cells,” in
– volume: 267
  year: 2021
  ident: b0080
  article-title: Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity
  publication-title: Biomaterials
– reference: , 2000, pp. 224-228.
– reference: , p. 916, 2023.
– volume: 6
  start-page: 279
  year: 1996
  end-page: 284
  ident: b0235
  article-title: Precise mask alignment to the crystallographic orientation of silicon wafers using wet anisotropic etching
  publication-title: J. Micromech. Microeng.
– reference: , pp. 4583-4588, 2018, 10.1073/pnas.1716772115.
– reference: , M. Tilli, T. Motooka, V.-M. Airaksinen, S. Franssila, M. Paulasto-Kröckel, and V. Lindroos, Eds., 2nd ed Boston: William Andrew Publishing, 2015, pp. 470-502.
– volume: 16
  start-page: 333
  year: 2014
  end-page: 343
  ident: b0145
  article-title: Structural characterization and in-vivo reliability evaluation of silicon microneedles
  publication-title: Biomed. Microdevices
– volume: 6
  start-page: e22442
  year: 2011
  ident: b0035
  article-title: Microneedle array design determines the induction of protective memory CD8+ T cell responses induced by a recombinant live malaria vaccine in mice
  publication-title: PLoS One
– reference: , 1995, p. 111.
– reference: P. Griss and G. Stemme, “Novel, side opened out-of-plane microneedles for microfluidic transdermal interfacing,” in
– volume: 16
  start-page: 808
  year: 2006
  ident: b0260
  article-title: The evolution from convex corner undercut towards microneedle formation: theory and experimental verification
  publication-title: J. Micromech. Microeng.
– volume: 14
  start-page: 130
  year: 2020
  end-page: 132
  ident: b0245
  article-title: Flash glucose monitoring technology impact on diabetes self-care behavior
  publication-title: Am. J. Lifestyle Med.
– reference: , 2002, pp. 467-470.
– reference: D. McAllister, “Three-dimensional hollow microneedle and microtube arrays,” in
– volume: 20
  start-page: 2788
  year: 2020
  end-page: 2795
  ident: b0025
  article-title: Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery
  publication-title: Lab Chip
– reference: , “Injection of DNA into plant and animal tissues with micromechanical piercing structures,” in
– volume: 2013
  start-page: 69
  year: 2013
  end-page: 72
  ident: b0150
  article-title: “Skin insertion mechanisms of microneedle-based dry electrodes for physiological signal monitoring,” in
  publication-title: IEEE Biomedical Circuits and Systems Conference (BioCAS)
– reference: , 1998, pp. 494-498.
– volume: 173
  start-page: 60
  year: 2021
  end-page: 69
  ident: b0045
  article-title: 3D printing as a transformative tool for microneedle systems: Recent advances, manufacturing considerations and market potential
  publication-title: Adv. Drug Deliv. Rev.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 13
  ident: b0190
  article-title: Fluid absorption by skin tissue during intradermal injections through hollow microneedles
  publication-title: Sci. Rep.
– reference: D. Prakashan, R. PR, and S. Gandhi, “A Systematic Review on the Advanced Techniques of Wearable Point-of-Care Devices and Their Futuristic Applications,”
– reference: M. A. Gosálvez, I. Zubel, and E. Viinikka, “Chapter 22 - Wet Etching of Silicon,” in
– volume: 43
  start-page: 2117
  year: 1951
  end-page: 2120
  ident: b0185
  article-title: Viscosity of glycerol and its aqueous solutions
  publication-title: Ind. Eng. Chem.
– volume: 3
  start-page: e10069
  year: 2020
  ident: b0020
  article-title: Transdermal drug delivery and patches—An overview
  publication-title: Medical Devices & Sensors
– reference: F. Laermer, S. Franssila, L. Sainiemi, and K. Kolari, “Chapter 21 - Deep Reactive Ion Etching,” in
– start-page: 365
  year: 2020
  end-page: 368
  ident: b0015
  article-title: “Dermal ISF Collection Using a Si Microneedle Array,”
  publication-title: in
– volume: 16
  start-page: 1376
  year: 2022
  end-page: 1380
  ident: b0215
  article-title: Unsafe sharps disposal among insulin-using patients with diabetes mellitus: an emerging global crisis
  publication-title: J. Diabetes Sci. Technol.
– reference: D. Resnik, M. Možek, B. Pečar, A. Janež, V. Urbančič, C. Iliescu
– volume: 5
  start-page: 11
  year: 2011
  end-page: 23
  ident: b0200
  article-title: Review of patents on microneedle applicators
  publication-title: Recent Pat. Drug Deliv. Formul.
– volume: 36
  start-page: 650
  year: 2005
  end-page: 656
  ident: b0255
  article-title: Process optimization and characterization of silicon microneedles fabricated by wet etch technology
  publication-title: Microelectron. J.
– reference: J. H. Jung and S. G. Jin, “Microneedle for transdermal drug delivery: current trends and fabrication,”
– start-page: 2573
  year: 2022
  end-page: 2576
  ident: b0180
  article-title: A Comparison of Flow-and Pressure-Controlled Infusion Strategies for Microneedle-based Transdermal Drug Delivery
  publication-title: in
– volume: 17
  start-page: 238
  year: 2006
  ident: b0250
  article-title: Silicon microneedle formation using modified mask designs based on convex corner undercut
  publication-title: J. Micromech. Microeng.
– volume: 17
  start-page: e0276814
  year: 2022
  ident: b0005
  article-title: Prevalence, causes, impacts, and management of needle phobia: An international survey of a general adult population
  publication-title: PLoS One
– reference: pp. 1-15, 2021.
– reference: H. J. G. E. Gardeniers, R. Luttge, E. J. W. Berenschot, M. J. d. Boer, S. Y. Yeshurun, M. Hefetz
– year: 2023
  ident: b0195
  article-title: Microneedle-based interstitial fluid extraction for drug analysis: Advances, challenges, and prospects
  publication-title: J. Pharm. Anal.
– reference: W. Trimmer, P. Ling, C. Chee-Kok, P. Orton, R. Gaugler, S. Hashmi
– reference: , “In vivo experimental study of noninvasive insulin microinjection through hollow Si microneedle array,”
– volume: 5
  start-page: 41
  year: 2019
  ident: b0115
  article-title: Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics
  publication-title: Microsyst. Nanoeng.
– reference: , “Silicon micromachined hollow microneedles for transdermal liquid transport,”
– reference: , 1999, pp. 1098-1101.
– volume: 6
  start-page: e22442
  year: 2011
  ident: 10.1016/j.ijpharm.2023.122888_b0035
  article-title: Microneedle array design determines the induction of protective memory CD8+ T cell responses induced by a recombinant live malaria vaccine in mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0022442
– ident: 10.1016/j.ijpharm.2023.122888_b0100
  doi: 10.1016/B978-0-323-29965-7.00021-X
– volume: 16
  start-page: 333
  year: 2014
  ident: 10.1016/j.ijpharm.2023.122888_b0145
  article-title: Structural characterization and in-vivo reliability evaluation of silicon microneedles
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-014-9836-6
– volume: 17
  start-page: e0276814
  year: 2022
  ident: 10.1016/j.ijpharm.2023.122888_b0005
  article-title: Prevalence, causes, impacts, and management of needle phobia: An international survey of a general adult population
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0276814
– ident: 10.1016/j.ijpharm.2023.122888_b0175
  doi: 10.1073/pnas.1716772115
– ident: 10.1016/j.ijpharm.2023.122888_b0055
  doi: 10.1109/JMEMS.2003.820293
– volume: 2013
  start-page: 69
  year: 2013
  ident: 10.1016/j.ijpharm.2023.122888_b0150
  article-title: “Skin insertion mechanisms of microneedle-based dry electrodes for physiological signal monitoring,” in
  publication-title: IEEE Biomedical Circuits and Systems Conference (BioCAS)
  doi: 10.1109/BioCAS.2013.6679642
– ident: 10.1016/j.ijpharm.2023.122888_b0085
– ident: 10.1016/j.ijpharm.2023.122888_b0120
  doi: 10.1016/j.sbsr.2020.100348
– year: 2023
  ident: 10.1016/j.ijpharm.2023.122888_b0195
  article-title: Microneedle-based interstitial fluid extraction for drug analysis: Advances, challenges, and prospects
  publication-title: J. Pharm. Anal.
– volume: 35
  start-page: 1782
  year: 2017
  ident: 10.1016/j.ijpharm.2023.122888_b0240
  article-title: Safety, tolerability and efficacy of intradermal rabies immunization with DebioJect™
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2016.09.069
– volume: 173
  start-page: 60
  year: 2021
  ident: 10.1016/j.ijpharm.2023.122888_b0045
  article-title: 3D printing as a transformative tool for microneedle systems: Recent advances, manufacturing considerations and market potential
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.03.007
– volume: 267
  year: 2021
  ident: 10.1016/j.ijpharm.2023.122888_b0080
  article-title: Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120491
– volume: 14
  start-page: 1097
  year: 2022
  ident: 10.1016/j.ijpharm.2023.122888_b0095
  article-title: Recent advancements in microneedle technology for multifaceted biomedical applications
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics14051097
– volume: 15
  year: 2010
  ident: 10.1016/j.ijpharm.2023.122888_b0050
  article-title: In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3463002
– volume: 11
  start-page: 991
  year: 2015
  ident: 10.1016/j.ijpharm.2023.122888_b0105
  article-title: Intradermal vaccination using the novel microneedle device MicronJet600: Past, present, and future
  publication-title: Hum. Vaccin. Immunother.
  doi: 10.1080/21645515.2015.1010871
– volume: 14
  start-page: 1475
  year: 2008
  ident: 10.1016/j.ijpharm.2023.122888_b0010
  article-title: Investigations of development process of high hollow beveled microneedles using a combination of ICP RIE and dicing saw
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-008-0596-1
– volume: 17
  start-page: 238
  year: 2006
  ident: 10.1016/j.ijpharm.2023.122888_b0250
  article-title: Silicon microneedle formation using modified mask designs based on convex corner undercut
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/17/2/008
– volume: 186
  start-page: 130
  year: 2012
  ident: 10.1016/j.ijpharm.2023.122888_b0140
  article-title: Microneedle-based electrodes with integrated through-silicon via for biopotential recording
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2012.04.037
– start-page: 2573
  year: 2022
  ident: 10.1016/j.ijpharm.2023.122888_b0180
  article-title: A Comparison of Flow-and Pressure-Controlled Infusion Strategies for Microneedle-based Transdermal Drug Delivery
– volume: 368
  start-page: 109
  year: 2009
  ident: 10.1016/j.ijpharm.2023.122888_b0110
  article-title: In vitro transdermal delivery of therapeutic antibodies using maltose microneedles
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2008.10.008
– volume: 599
  year: 2021
  ident: 10.1016/j.ijpharm.2023.122888_b0030
  article-title: Hollow microneedles: A perspective in biomedical applications
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120455
– volume: 16
  start-page: 1429
  year: 2007
  ident: 10.1016/j.ijpharm.2023.122888_b0170
  article-title: Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2007.907461
– ident: 10.1016/j.ijpharm.2023.122888_b0040
  doi: 10.1109/MEMSYS.1999.746863
– volume: 20
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijpharm.2023.122888_b0165
  article-title: Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-018-0349-6
– volume: 20
  start-page: 2788
  year: 2020
  ident: 10.1016/j.ijpharm.2023.122888_b0025
  article-title: Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery
  publication-title: Lab Chip
  doi: 10.1039/D0LC00567C
– volume: 5
  start-page: 41
  year: 2019
  ident: 10.1016/j.ijpharm.2023.122888_b0115
  article-title: Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-019-0077-y
– volume: 16
  start-page: 1376
  year: 2022
  ident: 10.1016/j.ijpharm.2023.122888_b0215
  article-title: Unsafe sharps disposal among insulin-using patients with diabetes mellitus: an emerging global crisis
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/19322968211059851
– volume: 5
  start-page: 11
  year: 2011
  ident: 10.1016/j.ijpharm.2023.122888_b0200
  article-title: Review of patents on microneedle applicators
  publication-title: Recent Pat. Drug Deliv. Formul.
  doi: 10.2174/187221111794109484
– volume: 3
  start-page: e10069
  year: 2020
  ident: 10.1016/j.ijpharm.2023.122888_b0020
  article-title: Transdermal drug delivery and patches—An overview
  publication-title: Medical Devices & Sensors
  doi: 10.1002/mds3.10069
– volume: 6
  start-page: 279
  year: 1996
  ident: 10.1016/j.ijpharm.2023.122888_b0235
  article-title: Precise mask alignment to the crystallographic orientation of silicon wafers using wet anisotropic etching
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/6/2/011
– volume: 16
  start-page: 808
  year: 2006
  ident: 10.1016/j.ijpharm.2023.122888_b0260
  article-title: The evolution from convex corner undercut towards microneedle formation: theory and experimental verification
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/16/4/018
– start-page: 3020
  year: 2022
  ident: 10.1016/j.ijpharm.2023.122888_b0220
  article-title: Towards Micropump-and Microneedle-based Drug Delivery using Micro Transdermal Interface Platforms (MicroTIPs)
– volume: 59
  start-page: 877
  year: 2019
  ident: 10.1016/j.ijpharm.2023.122888_b0090
  article-title: A review on microfabrication of thermoplastic polymer-based microneedle arrays
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.25078
– year: 2018
  ident: 10.1016/j.ijpharm.2023.122888_b0125
– ident: 10.1016/j.ijpharm.2023.122888_b0075
  doi: 10.1109/MEMSYS.1998.659807
– volume: 99
  start-page: 1152
  year: 2010
  ident: 10.1016/j.ijpharm.2023.122888_b0265
  article-title: Specific interactions in high concentration antibody solutions resulting in high viscosity
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.21898
– volume: 43
  start-page: 2117
  year: 1951
  ident: 10.1016/j.ijpharm.2023.122888_b0185
  article-title: Viscosity of glycerol and its aqueous solutions
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50501a040
– volume: 2
  start-page: 2200040
  year: 2022
  ident: 10.1016/j.ijpharm.2023.122888_b0275
  article-title: Current technological trends in transdermal biosensing
  publication-title: Adv. NanoBiomed. Res.
  doi: 10.1002/anbr.202200040
– ident: 10.1016/j.ijpharm.2023.122888_b0160
  doi: 10.3390/mi9010040
– volume: 11
  start-page: 35
  year: 2009
  ident: 10.1016/j.ijpharm.2023.122888_b0070
  article-title: Clinical administration of microneedles: skin puncture, pain and sensation
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-008-9208-1
– ident: 10.1016/j.ijpharm.2023.122888_b0135
– volume: 35
  start-page: 52
  year: 2006
  ident: 10.1016/j.ijpharm.2023.122888_b0225
  article-title: Biochemistry of human skin—our brain on the outside
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B505793K
– volume: 36
  start-page: 650
  year: 2005
  ident: 10.1016/j.ijpharm.2023.122888_b0255
  article-title: Process optimization and characterization of silicon microneedles fabricated by wet etch technology
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2005.04.044
– volume: 14
  start-page: 472
  year: 2005
  ident: 10.1016/j.ijpharm.2023.122888_b0210
  article-title: Arrays of hollow out-of-plane microneedles for drug delivery
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2005.844843
– ident: 10.1016/j.ijpharm.2023.122888_b0230
  doi: 10.1109/MEMSYS.1995.472544
– volume: 23
  start-page: 104
  year: 2006
  ident: 10.1016/j.ijpharm.2023.122888_b0130
  article-title: Microinfusion using hollow microneedles
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-005-8498-8
– ident: 10.1016/j.ijpharm.2023.122888_b0060
  doi: 10.1016/B978-0-323-29965-7.00022-1
– ident: 10.1016/j.ijpharm.2023.122888_b0065
  doi: 10.1109/MEMSYS.2002.984303
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijpharm.2023.122888_b0190
  article-title: Fluid absorption by skin tissue during intradermal injections through hollow microneedles
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32026-9
– volume: 7
  start-page: 438
  year: 2015
  ident: 10.1016/j.ijpharm.2023.122888_b0270
  article-title: Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics7040438
– start-page: 365
  year: 2020
  ident: 10.1016/j.ijpharm.2023.122888_b0015
  article-title: “Dermal ISF Collection Using a Si Microneedle Array,”
– ident: 10.1016/j.ijpharm.2023.122888_b0205
  doi: 10.1109/MMB.2000.893777
– ident: 10.1016/j.ijpharm.2023.122888_b0155
  doi: 10.3390/diagnostics13050916
– volume: 14
  start-page: 130
  year: 2020
  ident: 10.1016/j.ijpharm.2023.122888_b0245
  article-title: Flash glucose monitoring technology impact on diabetes self-care behavior
  publication-title: Am. J. Lifestyle Med.
  doi: 10.1177/1559827619890955
SSID ssj0006213
Score 2.5334735
Snippet [Display omitted] Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and...
Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 122888
SubjectTerms Administration, Cutaneous
bioMEMS
Diagnostics
Drug Delivery Systems - instrumentation
Equipment Design - methods
Humans
Manufacturing Industry
Microinjections - instrumentation
Microinjections - methods
Microneedles
Needles
Reproducibility of Results
Silicon
Silicon etching
Skin
Transdermal delivery
Title Hollow silicon microneedles, fabricated using combined wet and dry etching techniques, for transdermal delivery and diagnostics
URI https://dx.doi.org/10.1016/j.ijpharm.2023.122888
https://www.ncbi.nlm.nih.gov/pubmed/36977451
https://www.proquest.com/docview/2792513127
Volume 637
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DX3wRv51fRBCfbLc0adc-iihTcQg62FtImlQ2aje2iuxF_3Xv-rEhKIKPbXM0zV3vfkcuvyPkzPLEBgAjHMvi0IEIEYEf1L6TWBWydqRiXjSbeOgF3b64G_iDBrmqz8JgWWXl-0ufXnjr6k6rWs3WZDhsPbV50VieA4hG0hVk_BSig1bufizLPAKvapEM2RKOXp7iaY3c4WiCBNEu9hB3meeFRQOWH-PTb_iziEM3G2S9ApD0spzjJmnYbIucP5YM1PML-rw8UDW7oOf0cclNPd8mn13Q-_idzoYpmEBGX7EeL4MIlloYnShddA2yhmI9_AuFVYHMGS7fbU5VZqiZzikqGh8u6F9RcjylOYY9g54-pcamWPAxL4XKcj6c0Q7p31w_X3WdqgeDEwvm5Q4PNY9DLWLrJwAemUFynIR5OhJGA_hoKy9QiWprSKOsArhnOkFHQ87IFLJ_cb5LVjL4jn1CARr5QifgI5QQ3BoF4NMXYA0RizmPRJOIeuVlXBGUY5-MVNaVaCNZKUyiwmSpsCZxF2KTkqHjL4GwVqv8ZmoSoshfoqe1GUj4DXFvRWV2_DaTyMPoM868TpPslfaxmA0PEGT77OD_Lz4ka3iF21ief0RW8umbPQY0lOuTwtxPyOrl7X239wXALgrR
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7S9NBeQtNXnDbpFkpOkezVrmTpWEyM2yYhUAdyW3a1q2CjyMaWCb6kf70zetgUEgI96jFotTOa-RbNfh_ANycyFyGM8BxPYw8rRIJ50IRe5nTMe4lORSU2cXEZja7lz5vwZgcG7V4Yaqtscn-d06ts3ZzpNrPZnU8m3d89UQnLCwTRRLoiXsBLiZ8vyRj4D9s-jyhoNJJxuUS3b7fxdKf-ZDonhmifRMR9HgRxpcDyaIF6CoBWhWj4BvYaBMm-14Pchx1XvIWTq5qCen3KxtsdVctTdsKutuTU63fwZ4SOn92z5STHGCjYHTXkFVjCcod3Z9pUskHOMmqIv2U4Lbh0xsN7VzJdWGYXa0aeposb_leynC1YSXXPUqrPmXU5dXysa6O6n49G9B6uh2fjwchrRBi8VPKg9ERsRBobmbowQ_TILbHjZDwwibQG0UdPB5HOdM_gOsppxHu2H_UNLhq5JvovIT7AboHvcQAMsVEoTYZJQkspnNWIPkOJ4ZDwVIhEdkC2M6_ShqGchDJy1baiTVXjMEUOU7XDOuBvzOY1RcdzBnHrVvVPrCksI8-Zfm3DQOF3SD9XdOFmq6UiIsaQCx70O_Cxjo_NaEREKDvkh___4C_wajS-OFfnPy5_fYLXdIX-aQXhZ9gtFyt3hNCoNMdV6P8Fuu8MXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hollow+silicon+microneedles%2C+fabricated+using+combined+wet+and+dry+etching+techniques%2C+for+transdermal+delivery+and+diagnostics&rft.jtitle=International+journal+of+pharmaceutics&rft.au=O%27Mahony%2C+Conor&rft.au=Sebastian%2C+Ryan&rft.au=Tjulkins%2C+Fjodors&rft.au=Whelan%2C+Derek&rft.date=2023-04-25&rft.eissn=1873-3476&rft.volume=637&rft.spage=122888&rft_id=info:doi/10.1016%2Fj.ijpharm.2023.122888&rft_id=info%3Apmid%2F36977451&rft.externalDocID=36977451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5173&client=summon