A Cell’s Fate: An Overview of the Molecular Biology and Genetics of Apoptosis
Apoptosis is one of the main types of regulated cell death, a complex process that can be triggered by external or internal stimuli, which activate the extrinsic or the intrinsic pathway, respectively. Among various factors involved in apoptosis, several genes and their interactive networks are cruc...
Saved in:
Published in | International journal of molecular sciences Vol. 20; no. 17; p. 4133 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
24.08.2019
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1422-0067 1661-6596 1422-0067 |
DOI | 10.3390/ijms20174133 |
Cover
Loading…
Abstract | Apoptosis is one of the main types of regulated cell death, a complex process that can be triggered by external or internal stimuli, which activate the extrinsic or the intrinsic pathway, respectively. Among various factors involved in apoptosis, several genes and their interactive networks are crucial regulators of the outcomes of each apoptotic phase. Furthermore, mitochondria are key players in determining the way by which cells will react to internal stress stimuli, thus being the main contributor of the intrinsic pathway, in addition to providing energy for the whole process. Other factors that have been reported as important players of this intricate molecular network are miRNAs, which regulate the genes involved in the apoptotic process. Imbalance in any of these mechanisms can lead to the development of several illnesses, hence, an overall understanding of these processes is essential for the comprehension of such situations. Although apoptosis has been widely studied, the current literature lacks an updated and more general overview on this subject. Therefore, here, we review and discuss the mechanisms of apoptosis, highlighting the roles of genes, miRNAs, and mitochondria involved in this type of cell death. |
---|---|
AbstractList | Introduction The mechanisms underlying cell death and survival have a great impact on maintaining cellular balance, such that their deregulation may lead to the development of various diseases, such as multiple types of cancer and neurodegenerative disorders [1,2]. PIDDosome has been suggested to be involved in p53-mediated apoptosis in response to genotoxic stress and DNA damage, but recently it has been associated to other non-apoptotic roles, such as centrosome surveillance during cellular differentiation [19]. There are eight types of death receptors (DR1–DR8), which can be divided in two groups according to the adapter protein [26,27]: (i) The first group includes the receptors Fas (DR2) TRAILR1 (DR4) and TRAILR2 (DR5), which can be activated by Fas ligand (FasL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), respectively. The TNFR1 receptor recruits the TNFR1-associated death-domain protein, which serves as a platform to recruit different signaling molecules: (i) FADD, which functions as a mediator of the activation of apoptosis through the activation of CASP8, and (ii) TRAF2 (in the TRAF2/cIAP complex) and RIP, eventually leading to the activation of NF-κB and JNK/AP-1 (c-Jun NH2-terminal kinase/Jun proto-oncogene, AP-1 transcription factor subunit), which possess anti-apoptotic activity [21]. Apoptosis is one of the main types of regulated cell death, a complex process that can be triggered by external or internal stimuli, which activate the extrinsic or the intrinsic pathway, respectively. Among various factors involved in apoptosis, several genes and their interactive networks are crucial regulators of the outcomes of each apoptotic phase. Furthermore, mitochondria are key players in determining the way by which cells will react to internal stress stimuli, thus being the main contributor of the intrinsic pathway, in addition to providing energy for the whole process. Other factors that have been reported as important players of this intricate molecular network are miRNAs, which regulate the genes involved in the apoptotic process. Imbalance in any of these mechanisms can lead to the development of several illnesses, hence, an overall understanding of these processes is essential for the comprehension of such situations. Although apoptosis has been widely studied, the current literature lacks an updated and more general overview on this subject. Therefore, here, we review and discuss the mechanisms of apoptosis, highlighting the roles of genes, miRNAs, and mitochondria involved in this type of cell death.Apoptosis is one of the main types of regulated cell death, a complex process that can be triggered by external or internal stimuli, which activate the extrinsic or the intrinsic pathway, respectively. Among various factors involved in apoptosis, several genes and their interactive networks are crucial regulators of the outcomes of each apoptotic phase. Furthermore, mitochondria are key players in determining the way by which cells will react to internal stress stimuli, thus being the main contributor of the intrinsic pathway, in addition to providing energy for the whole process. Other factors that have been reported as important players of this intricate molecular network are miRNAs, which regulate the genes involved in the apoptotic process. Imbalance in any of these mechanisms can lead to the development of several illnesses, hence, an overall understanding of these processes is essential for the comprehension of such situations. Although apoptosis has been widely studied, the current literature lacks an updated and more general overview on this subject. Therefore, here, we review and discuss the mechanisms of apoptosis, highlighting the roles of genes, miRNAs, and mitochondria involved in this type of cell death. Apoptosis is one of the main types of regulated cell death, a complex process that can be triggered by external or internal stimuli, which activate the extrinsic or the intrinsic pathway, respectively. Among various factors involved in apoptosis, several genes and their interactive networks are crucial regulators of the outcomes of each apoptotic phase. Furthermore, mitochondria are key players in determining the way by which cells will react to internal stress stimuli, thus being the main contributor of the intrinsic pathway, in addition to providing energy for the whole process. Other factors that have been reported as important players of this intricate molecular network are miRNAs, which regulate the genes involved in the apoptotic process. Imbalance in any of these mechanisms can lead to the development of several illnesses, hence, an overall understanding of these processes is essential for the comprehension of such situations. Although apoptosis has been widely studied, the current literature lacks an updated and more general overview on this subject. Therefore, here, we review and discuss the mechanisms of apoptosis, highlighting the roles of genes, miRNAs, and mitochondria involved in this type of cell death. |
Author | Cabral, Gleyce Fonseca Santana-da-Silva, Mayara Natália Cavalcante, Giovanna C. Pinto, Pablo Vidal, Amanda F. Schaan, Ana Paula Ribeiro-dos-Santos, Ândrea |
AuthorAffiliation | 2 Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, PA, Brazil 1 Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, PA, Brazil |
AuthorAffiliation_xml | – name: 1 Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66075-110, PA, Brazil – name: 2 Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, PA, Brazil |
Author_xml | – sequence: 1 givenname: Giovanna C. orcidid: 0000-0001-9814-4819 surname: Cavalcante fullname: Cavalcante, Giovanna C. – sequence: 2 givenname: Ana Paula surname: Schaan fullname: Schaan, Ana Paula – sequence: 3 givenname: Gleyce Fonseca surname: Cabral fullname: Cabral, Gleyce Fonseca – sequence: 4 givenname: Mayara Natália surname: Santana-da-Silva fullname: Santana-da-Silva, Mayara Natália – sequence: 5 givenname: Pablo surname: Pinto fullname: Pinto, Pablo – sequence: 6 givenname: Amanda F. surname: Vidal fullname: Vidal, Amanda F. – sequence: 7 givenname: Ândrea orcidid: 0000-0001-7001-1483 surname: Ribeiro-dos-Santos fullname: Ribeiro-dos-Santos, Ândrea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31450613$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU2LFDEQhoOsuB968ywBLx4cTSrppNuDMA7uB6zMRc8h3anezdCTjEl6ZG_-Df-ev8Qe9oNx2VMV1FMv9b51TA5CDEjIa84-CNGwj361zsC4llyIZ-SIS4AZY0of7PWH5DjnFWMgoGpekEPBZcUUF0dkOacLHIa_v_9kemoLfqLzQJdbTFuPv2jsablG-i0O2I2DTfSLj0O8uqE2OHqGAYvv8o6ab-KmxOzzS_K8t0PGV3f1hPw4_fp9cT67XJ5dLOaXs05yKDNRMw5Vq2teNdoiKsF610OtbcclU21TO2C6b51GiappHIgGQUgFrXOuAXFCPt_qbsZ2ja7DUJIdzCb5tU03Jlpv_p8Ef22u4tYoLbWs5CTw7k4gxZ8j5mLWPndTFDZgHLMBqDkXMCU4oW8foas4pjDZMyAECFUrySbqzf5FD6fcZz0B72-BLsWcE_YPCGdm90qz_8oJh0d454stPu78-OHppX9HfKEU |
CitedBy_id | crossref_primary_10_1007_s12265_023_10444_z crossref_primary_10_1002_cbin_11619 crossref_primary_10_1016_j_jtcme_2023_11_003 crossref_primary_10_1016_j_tranon_2023_101691 crossref_primary_10_3390_ijms242317032 crossref_primary_10_1134_S0003683824604670 crossref_primary_10_3390_biology10010033 crossref_primary_10_1016_j_plgene_2024_100459 crossref_primary_10_1002_tox_24019 crossref_primary_10_1007_s10620_020_06070_3 crossref_primary_10_1080_15384101_2021_1907512 crossref_primary_10_1088_2043_6262_ad4bae crossref_primary_10_1002_EXP_20210115 crossref_primary_10_1007_s00264_023_05847_1 crossref_primary_10_3390_life11030257 crossref_primary_10_1186_s12881_020_01138_3 crossref_primary_10_1242_jeb_247638 crossref_primary_10_21303_2313_8416_2020_001549 crossref_primary_10_2174_0118715206325844240909144543 crossref_primary_10_3390_md22060251 crossref_primary_10_1002_slct_202302948 crossref_primary_10_3390_microorganisms10091692 crossref_primary_10_1016_j_jbiotec_2024_06_005 crossref_primary_10_1016_j_fsi_2021_12_006 crossref_primary_10_3390_photonics10040464 crossref_primary_10_1007_s11030_024_10833_9 crossref_primary_10_1016_j_biopha_2021_112349 crossref_primary_10_2174_0113894501303824240604103732 crossref_primary_10_1016_j_ejphar_2020_173380 crossref_primary_10_1007_s00210_021_02123_0 crossref_primary_10_1016_j_fochx_2024_102120 crossref_primary_10_1186_s12906_020_03191_0 crossref_primary_10_3389_fonc_2023_1156763 crossref_primary_10_1007_s10895_024_03590_3 crossref_primary_10_1016_j_fct_2021_112590 crossref_primary_10_1039_D4DT00659C crossref_primary_10_1007_s12032_023_02221_4 crossref_primary_10_1016_j_biopha_2020_110318 crossref_primary_10_1038_s41598_024_57680_0 crossref_primary_10_17776_csj_1256954 crossref_primary_10_3390_fishes8030167 crossref_primary_10_37349_eds_2024_00074 crossref_primary_10_1007_s10653_019_00491_4 crossref_primary_10_1016_j_fct_2019_111044 crossref_primary_10_2174_1573394718666220421112750 crossref_primary_10_1007_s11356_023_26470_y crossref_primary_10_1016_j_jhazmat_2025_137395 crossref_primary_10_1016_j_psj_2024_104600 crossref_primary_10_1002_biot_202300667 crossref_primary_10_3390_biomedicines12030502 crossref_primary_10_1097_MPG_0000000000002876 crossref_primary_10_3390_ijms22136948 crossref_primary_10_1016_j_cbi_2020_109288 crossref_primary_10_1186_s12943_020_01219_0 crossref_primary_10_31083_j_fbl2802029 crossref_primary_10_1016_j_chemosphere_2020_126913 crossref_primary_10_1016_j_phrs_2020_105169 crossref_primary_10_3389_fphar_2023_1281150 crossref_primary_10_1016_j_jsbmb_2022_106115 crossref_primary_10_3389_fcvm_2020_00065 crossref_primary_10_3390_mi13091401 crossref_primary_10_1038_s41586_022_05016_1 crossref_primary_10_3389_fcimb_2024_1452392 crossref_primary_10_1016_j_brainres_2024_149175 crossref_primary_10_3390_ph17101364 crossref_primary_10_1016_j_sjbs_2023_103717 crossref_primary_10_1007_s12291_024_01223_x crossref_primary_10_3390_ph15091060 crossref_primary_10_3390_pharmaceutics16121504 crossref_primary_10_1016_j_toxicon_2024_107718 crossref_primary_10_54038_ms_v1i1_2 crossref_primary_10_3390_cells9061345 crossref_primary_10_3390_ijms21093285 crossref_primary_10_1007_s12029_020_00370_7 crossref_primary_10_1016_j_mtbio_2024_100997 crossref_primary_10_3390_pharmaceutics16060781 crossref_primary_10_3390_ijms21051838 crossref_primary_10_2147_JIR_S403819 crossref_primary_10_1016_j_omton_2024_200834 crossref_primary_10_3389_fonc_2021_725549 crossref_primary_10_1097_MD_0000000000036898 crossref_primary_10_1007_s12672_022_00469_2 crossref_primary_10_1007_s00894_024_06274_8 crossref_primary_10_32604_biocell_2021_013993 crossref_primary_10_1007_s00018_022_04132_5 crossref_primary_10_1016_j_tiv_2023_105757 crossref_primary_10_1186_s12964_021_00756_5 crossref_primary_10_3390_ijms241713527 crossref_primary_10_1017_S0007114522000721 crossref_primary_10_1038_s41598_025_87445_2 crossref_primary_10_3390_cimb46090605 crossref_primary_10_3390_molecules27238181 crossref_primary_10_1186_s12936_023_04729_6 crossref_primary_10_3390_ijms22157870 crossref_primary_10_3390_ijms222212296 crossref_primary_10_1155_2020_8886612 crossref_primary_10_3390_ijms24119707 crossref_primary_10_3389_fphar_2025_1538601 crossref_primary_10_1007_s00401_024_02722_0 crossref_primary_10_1016_j_exger_2021_111319 crossref_primary_10_1158_1541_7786_MCR_23_0323 crossref_primary_10_3390_ijms231911343 crossref_primary_10_3389_fphot_2022_1018773 crossref_primary_10_1016_j_ecoenv_2022_113736 crossref_primary_10_1007_s10989_022_10429_7 crossref_primary_10_1007_s11356_022_18863_2 crossref_primary_10_3390_pathogens12070896 crossref_primary_10_3390_toxics11020107 crossref_primary_10_3389_froh_2023_1246873 crossref_primary_10_1007_s00383_020_04817_7 crossref_primary_10_1007_s11033_024_09901_y crossref_primary_10_3390_molecules28010109 crossref_primary_10_3390_molecules28165980 crossref_primary_10_1016_j_intimp_2023_111095 crossref_primary_10_52711_0974_360X_2022_00902 crossref_primary_10_3390_ijms21124392 crossref_primary_10_3390_ijms25094627 crossref_primary_10_1177_11772719241297168 crossref_primary_10_2174_0115680266282360240222062032 crossref_primary_10_1016_j_sajb_2024_10_021 crossref_primary_10_2147_CCIDE_S284240 crossref_primary_10_1016_j_ejmech_2020_112758 crossref_primary_10_1080_08820139_2024_2334296 crossref_primary_10_3390_app11010390 crossref_primary_10_1161_CIRCULATIONAHA_120_050553 crossref_primary_10_1038_s41419_024_07083_w crossref_primary_10_1016_j_genrep_2021_101018 crossref_primary_10_1016_j_lfs_2022_120675 crossref_primary_10_3390_ijms25147952 crossref_primary_10_3390_molecules29040914 crossref_primary_10_1016_j_taap_2022_116256 crossref_primary_10_3389_fphar_2022_1004929 crossref_primary_10_1124_molpharm_124_000894 crossref_primary_10_1016_j_biopha_2025_117986 crossref_primary_10_3390_cimb46070454 crossref_primary_10_26565_3083_5615_2024_14_04 crossref_primary_10_3389_fcell_2024_1532614 crossref_primary_10_1016_j_phrs_2020_104689 crossref_primary_10_1080_10799893_2024_2426516 crossref_primary_10_1007_s00401_022_02528_y crossref_primary_10_3390_ijms222011047 crossref_primary_10_3390_curroncol28030200 crossref_primary_10_1002_ptr_8316 crossref_primary_10_1002_ppap_201900178 crossref_primary_10_3390_biomedicines12092025 crossref_primary_10_3390_biomedicines12051077 crossref_primary_10_1002_jcb_30173 crossref_primary_10_3390_ijms26062385 |
Cites_doi | 10.1186/s13024-017-0168-x 10.3390/cancers11040456 10.1016/j.ejcb.2018.01.005 10.1038/onc.2008.308 10.1093/hmg/ddp069 10.1242/jcs.073643 10.1091/mbc.e11-09-0781 10.1016/j.molcel.2017.01.022 10.18632/oncotarget.11370 10.1016/0092-8674(95)90071-3 10.4161/epi.26488 10.1126/science.2006410 10.1016/S0092-8674(00)80595-4 10.1098/rsob.180002 10.1158/1055-9965.EPI-11-0845 10.1111/j.1476-4431.2008.00363.x 10.1371/journal.pone.0214847 10.1016/j.celrep.2014.07.057 10.3390/ijms161226232 10.1007/s11596-015-1467-5 10.1016/j.ymgme.2013.07.012 10.1016/j.cell.2011.06.051 10.7554/eLife.26371 10.1073/pnas.1524900113 10.1155/2012/524308 10.1016/j.it.2018.10.005 10.7554/eLife.17755 10.1038/nrm2312 10.1038/onc.2008.6 10.1038/sj.onc.1205231 10.1038/cdd.2014.216 10.1042/BJ20090825 10.1007/s40572-016-0103-2 10.18632/oncotarget.18460 10.1073/pnas.1620626114 10.1158/1535-7163.MCT-06-0522 10.1016/j.ceb.2010.08.004 10.1038/cdd.2017.164 10.1038/384368a0 10.2174/187152012800228661 10.1016/j.molcel.2016.01.009 10.1074/jbc.M115.711051 10.1016/j.yexcr.2010.02.037 10.1007/s10522-015-9562-3 10.1074/jbc.M115.657833 10.1002/ijc.25143 10.1161/CIRCRESAHA.112.268946 10.4161/cc.11.3.19060 10.1111/febs.14186 10.1016/j.ejphar.2018.08.021 10.3390/ijms19020448 10.1038/nrm3440 10.1126/science.284.5412.339 10.1158/0008-5472.CAN-07-0426 10.1038/sj.onc.1207111 10.1016/S0092-8674(00)81476-2 10.3389/fimmu.2017.00097 10.1073/pnas.1012311108 10.1038/sj.onc.1210811 10.1210/jc.2017-02374 10.1016/j.molonc.2012.10.011 10.1038/sj.onc.1203805 10.1038/srep32447 10.1016/S0092-8674(00)80405-5 10.1002/ijc.31374 10.1016/j.molcel.2011.06.006 10.1007/PL00000806 10.1101/gad.1662308 10.1016/j.ejca.2010.11.005 10.1074/jbc.M207509200 10.1182/blood.V122.21.3811.3811 10.1016/S0378-1119(01)00697-7 10.1016/j.cell.2004.06.007 10.4161/cbt.7.2.5335 10.1084/jem.186.11.1873 10.1016/j.yexcr.2009.12.011 10.1016/S1097-2765(00)80469-4 10.1007/s10495-018-1451-1 10.1038/34112 10.1093/nar/gky720 10.3389/fmicb.2017.02685 10.1073/pnas.1803377115 10.1002/jbt.22001 10.1073/pnas.0506654102 10.1038/35037710 10.1038/onc.2009.39 10.1242/jcs.00739 10.1016/j.str.2013.02.024 10.1016/j.bbamcr.2013.11.022 10.7150/ijbs.10190 10.1186/s12891-018-2057-z 10.1016/j.str.2011.07.001 10.1016/S1535-6108(04)00113-8 10.1021/bi100968m 10.1042/bj3490547 10.21873/anticanres.13361 10.1038/cdd.2011.96 10.1016/j.cellsig.2013.11.003 10.1101/gad.12.15.2424 10.1016/j.cell.2012.03.042 10.1016/j.archoralbio.2018.09.009 10.1016/j.biochi.2017.02.001 10.3390/cancers2041952 10.1038/s41422-019-0164-5 10.12703/P7-42 10.1016/j.bbamcr.2011.03.010 10.18632/oncotarget.3947 10.1002/pro.3032 10.1053/j.gastro.2018.09.041 10.1101/cshperspect.a008656 10.1016/j.critrevonc.2018.08.005 10.1016/j.devcel.2011.06.017 10.1084/jem.188.11.2033 10.1016/j.cell.2014.11.037 10.1016/j.ccr.2008.10.018 10.1038/s41419-017-0100-x 10.1016/j.cell.2006.06.025 10.1016/S1534-5807(02)00328-3 10.1016/j.virusres.2011.09.015 10.1101/cshperspect.a008722 10.1096/fj.14-263889 10.1042/bse0390053 10.1083/jcb.200209124 10.1016/S1074-7613(00)80609-3 10.1038/cdd.2011.121 10.1371/journal.pone.0012178 10.1158/0008-5472.CAN-07-1484 10.1038/nrm2952 10.5483/BMBRep.2012.45.9.186 10.1146/annurev.immunol.16.1.395 10.1016/j.molcel.2015.03.003 10.1074/jbc.M109.083337 10.1158/2159-8290.CD-18-1119 10.1038/s41431-017-0025-y 10.1016/j.cell.2011.02.013 10.1126/science.1095432 10.1146/annurev-immunol-042617-053010 10.1016/j.it.2010.05.005 10.1038/ncomms13565 10.1016/j.yjmcc.2015.01.012 10.1016/j.bone.2013.05.020 10.1126/science.281.5381.1305 10.1111/febs.13970 10.1080/01926230701320337 10.1523/JNEUROSCI.1639-11.2011 10.1126/science.3929382 10.1371/journal.pone.0091546 10.1101/cshperspect.a008672 10.1101/gad.245621.114 10.1126/science.278.5336.294 10.1073/pnas.1414028111 10.4049/jimmunol.168.10.5024 10.1007/s13277-015-4295-0 10.1073/pnas.1008848108 10.1128/JVI.00884-10 10.1242/jcs.203448 10.1007/s13238-015-0200-2 10.1074/jbc.C000871200 10.4161/rna.6.1.7534 10.1007/s00204-014-1448-7 10.1038/cdd.2017.44 10.1093/molehr/4.12.1099 10.1074/jbc.M804612200 10.1158/0008-5472.CAN-11-1460 10.1111/j.1582-4934.2009.00777.x 10.1016/j.bbamcr.2011.01.026 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.3390/ijms20174133 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC6747454 31450613 10_3390_ijms20174133 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grantid: 3381/2013 |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c412t-380125b781597aee630fdf287ac1406b98d207fbd7e4e699d239e23462bddd923 |
IEDL.DBID | M48 |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:31:34 EDT 2025 Mon Jul 21 10:00:00 EDT 2025 Fri Jul 25 20:20:54 EDT 2025 Thu Apr 03 07:08:48 EDT 2025 Thu Apr 24 22:59:33 EDT 2025 Tue Jul 01 01:45:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | regulated cell death apoptosis genetics miRNAs mitochondria |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-380125b781597aee630fdf287ac1406b98d207fbd7e4e699d239e23462bddd923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7001-1483 0000-0001-9814-4819 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms20174133 |
PMID | 31450613 |
PQID | 2332368640 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6747454 proquest_miscellaneous_2281132422 proquest_journals_2332368640 pubmed_primary_31450613 crossref_primary_10_3390_ijms20174133 crossref_citationtrail_10_3390_ijms20174133 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190824 |
PublicationDateYYYYMMDD | 2019-08-24 |
PublicationDate_xml | – month: 8 year: 2019 text: 20190824 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_136 Datta (ref_39) 1997; 91 Hamada (ref_156) 2014; 26 Sommer (ref_85) 2019; 97 Walters (ref_122) 2009; 424 Cartwright (ref_119) 2017; 6 Mohr (ref_33) 2018; 25 Mouasni (ref_34) 2018; 39 Zaanan (ref_79) 2015; 290 Bianchessi (ref_151) 2015; 81 McIlwain (ref_16) 2013; 5 Lomonosova (ref_6) 2008; 27 Mahmood (ref_26) 2010; 316 Rongvaux (ref_131) 2014; 159 Martinou (ref_68) 2011; 21 Tait (ref_8) 2010; 11 Henry (ref_32) 2017; 65 Chinnaiyan (ref_94) 1995; 81 Tsuchiya (ref_29) 2015; 16 Mace (ref_17) 2010; 22 Wang (ref_25) 2004; 5 Chen (ref_111) 2014; 10 Garofalo (ref_163) 2008; 27 Elrod (ref_22) 2008; 7 Wachmann (ref_54) 2010; 49 Li (ref_81) 2017; 114 Lehle (ref_92) 2019; 156 Kantari (ref_133) 2011; 1813 Larsen (ref_57) 2017; 284 Koo (ref_159) 2018; 9 ref_125 Tsujimoto (ref_74) 1985; 229 Fu (ref_96) 2016; 61 Vallinoto (ref_102) 2012; 163 Wang (ref_70) 1999; 284 Tenev (ref_30) 2011; 43 Slattery (ref_168) 2018; 23 Tourneur (ref_97) 2010; 31 ref_28 Campbell (ref_76) 2018; 8 Trudel (ref_116) 1997; 186 Muthalagu (ref_118) 2014; 8 Haupt (ref_23) 2003; 116 Wu (ref_82) 2016; 7 Wang (ref_164) 2013; 7 Huang (ref_166) 2012; 72 Tinel (ref_18) 2004; 304 ref_72 Nguyen (ref_105) 2018; 46 Galluzzi (ref_9) 2012; 111 Chestnut (ref_141) 2011; 31 Taylor (ref_109) 2008; 9 Maia (ref_144) 2014; 9 Yuan (ref_11) 2013; 21 Ke (ref_64) 2001; 276 Siddiqui (ref_65) 2015; 89 Takashina (ref_90) 2007; 6 ref_155 Kren (ref_149) 2009; 6 Basu (ref_110) 1998; 4 Lima (ref_153) 2011; 47 Ji (ref_154) 2013; 56 Kirby (ref_4) 2008; 18 Lambertini (ref_147) 2016; 3 Cox (ref_80) 2003; 22 Varfolomeev (ref_49) 1998; 9 Abend (ref_169) 2010; 84 Cheng (ref_10) 2016; 5 Galluzzi (ref_20) 2012; 19 Shakeri (ref_83) 2017; 135 Stahl (ref_41) 2002; 168 Sladky (ref_19) 2017; 130 Frezza (ref_127) 2006; 126 Orth (ref_56) 2012; 23 Tang (ref_3) 2019; 29 ref_88 Ercan (ref_86) 2019; 39 Pinton (ref_135) 2008; 27 Zhang (ref_37) 2011; 1813 Ors (ref_98) 2016; 7 Iacobazzi (ref_139) 2013; 110 Pernaute (ref_161) 2014; 28 Wang (ref_148) 2015; 35 (ref_113) 2001; 277 Lizcano (ref_66) 2000; 349 Modur (ref_40) 2002; 277 Camp (ref_89) 2012; 21 Zhao (ref_152) 2018; 131 Gortat (ref_12) 2015; 6 Wilder (ref_106) 1998; 188 Hanahan (ref_71) 2011; 144 Feoktistova (ref_31) 2012; 11 Julien (ref_52) 2016; 113 Zwacka (ref_93) 2010; 2 Park (ref_137) 2009; 18 Mercer (ref_146) 2011; 146 Shi (ref_14) 2004; 117 Dixon (ref_73) 2012; 149 Cecconi (ref_59) 2001; 58 Dan (ref_36) 2008; 22 Zhou (ref_124) 2018; 143 Shaffiey (ref_165) 2013; 122 Mullen (ref_129) 2012; 12 Karimzadeh (ref_60) 2018; 97 Yamada (ref_170) 2014; 1843 Winkle (ref_121) 2015; 29 Vallinoto (ref_103) 2018; 8 Tucker (ref_53) 2016; 25 Enari (ref_45) 1998; 391 Parrish (ref_46) 2013; 5 Kothakota (ref_58) 1997; 278 Chao (ref_63) 1998; 16 Elmore (ref_2) 2007; 35 Zhou (ref_157) 2010; 285 Lee (ref_27) 2012; 45 Bellail (ref_87) 2010; 14 Boone (ref_117) 2011; 108 Brunet (ref_42) 1999; 96 Hardwick (ref_62) 2013; 5 Kaufmann (ref_95) 2012; 19 Hengartner (ref_43) 2000; 407 Guo (ref_84) 2016; 6 Julien (ref_51) 2017; 24 Zhivotovsky (ref_1) 2010; 316 Nagata (ref_55) 2018; 36 Blombery (ref_77) 2019; 9 Lehmann (ref_38) 2000; 19 Bratton (ref_13) 2010; 123 Karbowski (ref_126) 2002; 159 Picard (ref_138) 2014; 111 Cimmino (ref_158) 2005; 102 Barr (ref_99) 2017; 12 Ovcharenko (ref_167) 2007; 67 Kuida (ref_48) 1996; 384 Kuida (ref_50) 1998; 94 Svensson (ref_91) 2018; 103 Yuan (ref_15) 2011; 19 Nakano (ref_128) 2010; 127 Tzifi (ref_75) 2012; 2012 Li (ref_7) 2015; 7 Huang (ref_134) 2016; 291 Ashkenazi (ref_21) 1998; 281 Bellizzi (ref_143) 2015; 16 Harada (ref_67) 1999; 3 Miller (ref_162) 2008; 283 ref_108 ref_107 Blackwood (ref_112) 1991; 251 Han (ref_145) 2015; 6 ref_47 (ref_132) 2018; 285 Rowland (ref_130) 2012; 13 Shalini (ref_44) 2015; 22 Bergmann (ref_69) 2002; 3 ref_101 Menezes (ref_104) 2017; 8 Biswas (ref_142) 2018; 837 Li (ref_160) 2018; 115 Wajant (ref_35) 2003; 39 Edathara (ref_100) 2016; 37 Ma (ref_78) 2008; 27 Zindy (ref_115) 1998; 12 ref_5 Knoepfler (ref_120) 2007; 67 Shock (ref_140) 2011; 108 Amanullah (ref_24) 2002; 21 Murphy (ref_114) 2008; 14 Liu (ref_123) 2015; 58 Spellicy (ref_61) 2018; 26 Borgna (ref_150) 2017; 8 |
References_xml | – volume: 12 start-page: 26 year: 2017 ident: ref_99 article-title: Decreased cortical FADD protein is associated with clinical dementia and cognitive decline in an elderly community sample publication-title: Mol. Neurodegener. doi: 10.1186/s13024-017-0168-x – ident: ref_28 doi: 10.3390/cancers11040456 – volume: 97 start-page: 126 year: 2018 ident: ref_60 article-title: Insufficient Apaf-1 expression in early stages of neural differentiation of human embryonic stem cells might protect them from apoptosis publication-title: Eur. J. Cell Biol. doi: 10.1016/j.ejcb.2018.01.005 – volume: 27 start-page: 6407 year: 2008 ident: ref_135 article-title: Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis publication-title: Oncogene doi: 10.1038/onc.2008.308 – volume: 18 start-page: 1578 year: 2009 ident: ref_137 article-title: A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp069 – volume: 123 start-page: 3209 year: 2010 ident: ref_13 article-title: Regulation of the Apaf-1-caspase-9 apoptosome publication-title: J. Cell Sci. doi: 10.1242/jcs.073643 – volume: 23 start-page: 567 year: 2012 ident: ref_56 article-title: Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-09-0781 – volume: 65 start-page: 715 year: 2017 ident: ref_32 article-title: Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory “FADDosome” Complex upon TRAIL Stimulation publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.01.022 – volume: 7 start-page: 61485 year: 2016 ident: ref_98 article-title: Deregulated FADD expression and phosphorylation in T-cell lymphoblastic lymphoma publication-title: Oncotarget doi: 10.18632/oncotarget.11370 – volume: 81 start-page: 505 year: 1995 ident: ref_94 article-title: FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis publication-title: Cell doi: 10.1016/0092-8674(95)90071-3 – volume: 9 start-page: 75 year: 2014 ident: ref_144 article-title: Clinical significance of the interaction between non-coding RNAs and the epigenetics machinery: Challenges and opportunities in oncology publication-title: Epigenetics doi: 10.4161/epi.26488 – volume: 251 start-page: 1211 year: 1991 ident: ref_112 article-title: Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc publication-title: Science doi: 10.1126/science.2006410 – volume: 96 start-page: 857 year: 1999 ident: ref_42 article-title: Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor publication-title: Cell doi: 10.1016/S0092-8674(00)80595-4 – volume: 8 start-page: 180002 year: 2018 ident: ref_76 article-title: Targeting BCL-2 regulated apoptosis in cancer publication-title: Open Biol. doi: 10.1098/rsob.180002 – volume: 21 start-page: 176 year: 2012 ident: ref_89 article-title: Fine-mapping CASP8 risk variants in breast cancer publication-title: Cancer Epidemiol. Biomark. Prev. doi: 10.1158/1055-9965.EPI-11-0845 – volume: 18 start-page: 572 year: 2008 ident: ref_4 article-title: Apoptosis: A review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease publication-title: J. Vet. Emerg. Crit. Care doi: 10.1111/j.1476-4431.2008.00363.x – ident: ref_107 doi: 10.1371/journal.pone.0214847 – volume: 8 start-page: 1347 year: 2014 ident: ref_118 article-title: BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.07.057 – volume: 16 start-page: 30321 year: 2015 ident: ref_29 article-title: FLIP the Switch: Regulation of Apoptosis and Necroptosis by cFLIP publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms161226232 – volume: 35 start-page: 541 year: 2015 ident: ref_148 article-title: Long non-coding RNA MEG3 induces renal cell carcinoma cells apoptosis by activating the mitochondrial pathway publication-title: J. Huazhong Univ. Sci. Technol. Med. Sci. doi: 10.1007/s11596-015-1467-5 – volume: 110 start-page: 25 year: 2013 ident: ref_139 article-title: Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2013.07.012 – volume: 146 start-page: 645 year: 2011 ident: ref_146 article-title: The human mitochondrial transcriptome publication-title: Cell doi: 10.1016/j.cell.2011.06.051 – volume: 6 start-page: e26371 year: 2017 ident: ref_119 article-title: Essential roles of Caspase-3 in facilitating Myc-induced genetic instability and carcinogenesis publication-title: Elife doi: 10.7554/eLife.26371 – volume: 113 start-page: E2001 year: 2016 ident: ref_52 article-title: Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1524900113 – volume: 2012 start-page: 524308 year: 2012 ident: ref_75 article-title: The Role of BCL2 Family of Apoptosis Regulator Proteins in Acute and Chronic Leukemias publication-title: Adv. Hematol. doi: 10.1155/2012/524308 – volume: 39 start-page: 1036 year: 2018 ident: ref_34 article-title: FADD at the Crossroads between Cancer and Inflammation publication-title: Trends Immunol. doi: 10.1016/j.it.2018.10.005 – volume: 5 start-page: e17755 year: 2016 ident: ref_10 article-title: A near atomic structure of the active human apoptosome publication-title: eLife doi: 10.7554/eLife.17755 – volume: 9 start-page: 231 year: 2008 ident: ref_109 article-title: Apoptosis: Controlled demolition at the cellular level publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2312 – volume: 27 start-page: 3845 year: 2008 ident: ref_163 article-title: MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer publication-title: Oncogene doi: 10.1038/onc.2008.6 – volume: 21 start-page: 1600 year: 2002 ident: ref_24 article-title: Deregulated c-Myc prematurely recruits both Type I and II CD95/Fas apoptotic pathways associated with terminal myeloid differentiation publication-title: Oncogene doi: 10.1038/sj.onc.1205231 – volume: 22 start-page: 526 year: 2015 ident: ref_44 article-title: Old, new and emerging functions of caspases publication-title: Cell Death Differ. doi: 10.1038/cdd.2014.216 – volume: 424 start-page: 335 year: 2009 ident: ref_122 article-title: A constitutively active and uninhibitable caspase-3 zymogen efficiently induces apoptosis publication-title: Biochem. J. doi: 10.1042/BJ20090825 – volume: 3 start-page: 214 year: 2016 ident: ref_147 article-title: Mitochondrial Epigenetics and Environmental Exposure publication-title: Curr. Environ. Health Rep. doi: 10.1007/s40572-016-0103-2 – volume: 8 start-page: 43692 year: 2017 ident: ref_150 article-title: Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as potent targets to inhibit tumor growth and metastasis in the RenCa murine renal adenocarcinoma model publication-title: Oncotarget doi: 10.18632/oncotarget.18460 – volume: 114 start-page: 1542 year: 2017 ident: ref_81 article-title: Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1620626114 – volume: 6 start-page: 1793 year: 2007 ident: ref_90 article-title: Modifications enhance the apoptosis-inducing activity of FADD publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-06-0522 – volume: 22 start-page: 828 year: 2010 ident: ref_17 article-title: Molecular cell death platforms and assemblies publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2010.08.004 – volume: 25 start-page: 340 year: 2018 ident: ref_33 article-title: Caspase-10: A molecular switch from cell-autonomous apoptosis to communal cell death in response to chemotherapeutic drug treatment publication-title: Cell Death Differ. doi: 10.1038/cdd.2017.164 – volume: 384 start-page: 368 year: 1996 ident: ref_48 article-title: Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice publication-title: Nature doi: 10.1038/384368a0 – volume: 12 start-page: 340 year: 2012 ident: ref_129 article-title: Ceramide and apoptosis: Exploring the enigmatic connections between sphingolipid metabolism and programmed cell death publication-title: Anticancer Agents Med. Chem. doi: 10.2174/187152012800228661 – volume: 61 start-page: 602 year: 2016 ident: ref_96 article-title: Structural Basis and Functional Role of Intramembrane Trimerization of the Fas/CD95 Death Receptor publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.01.009 – volume: 291 start-page: 11843 year: 2016 ident: ref_134 article-title: Cleavage by Caspase 8 and Mitochondrial Membrane Association Activate the BH3-only Protein Bid during TRAIL-induced Apoptosis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.711051 – volume: 316 start-page: 1374 year: 2010 ident: ref_1 article-title: Cell death mechanisms: Cross-talk and role in disease publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2010.02.037 – volume: 16 start-page: 569 year: 2015 ident: ref_143 article-title: Mitochondria in health, aging and diseases: The epigenetic perspective publication-title: Biogerontology doi: 10.1007/s10522-015-9562-3 – volume: 290 start-page: 23838 year: 2015 ident: ref_79 article-title: The Mutant KRAS Gene Up-regulates BCL-XL Protein via STAT3 to Confer Apoptosis Resistance That Is Reversed by BIM Protein Induction and BCL-XL Antagonism publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.657833 – volume: 127 start-page: 1072 year: 2010 ident: ref_128 article-title: Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X(L) in colorectal cancer cells publication-title: Int. J. Cancer doi: 10.1002/ijc.25143 – volume: 111 start-page: 1198 year: 2012 ident: ref_9 article-title: Mitochondrial control of cellular life, stress, and death publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.112.268946 – volume: 11 start-page: 460 year: 2012 ident: ref_31 article-title: Pick your poison: The Ripoptosome, a cell death platform regulating apoptosis and necroptosis publication-title: Cell Cycle doi: 10.4161/cc.11.3.19060 – volume: 285 start-page: 416 year: 2018 ident: ref_132 article-title: Bax, Bak and beyond—Mitochondrial performance in apoptosis publication-title: FEBS J. doi: 10.1111/febs.14186 – volume: 837 start-page: 8 year: 2018 ident: ref_142 article-title: Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2018.08.021 – ident: ref_5 doi: 10.3390/ijms19020448 – ident: ref_47 – volume: 13 start-page: 607 year: 2012 ident: ref_130 article-title: Endoplasmic reticulum–mitochondria contacts: Function of the junction publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3440 – volume: 284 start-page: 339 year: 1999 ident: ref_70 article-title: Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD publication-title: Science doi: 10.1126/science.284.5412.339 – volume: 67 start-page: 5061 year: 2007 ident: ref_120 article-title: Myc goes global: New tricks for an old oncogene publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-0426 – volume: 22 start-page: 8999 year: 2003 ident: ref_80 article-title: The dark side of Ras: Regulation of apoptosis publication-title: Oncogene doi: 10.1038/sj.onc.1207111 – volume: 94 start-page: 325 year: 1998 ident: ref_50 article-title: Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9 publication-title: Cell doi: 10.1016/S0092-8674(00)81476-2 – volume: 8 start-page: 97 year: 2017 ident: ref_104 article-title: A Fashi Lymphoproliferative Phenotype Reveals Non-Apoptotic Fas Signaling in HTLV-1-Associated Neuroinflammation publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.00097 – volume: 108 start-page: 3630 year: 2011 ident: ref_140 article-title: DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1012311108 – volume: 27 start-page: 1749 year: 2008 ident: ref_78 article-title: CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway publication-title: Oncogene doi: 10.1038/sj.onc.1210811 – volume: 103 start-page: 1592 year: 2018 ident: ref_91 article-title: Plasma Concentration of Caspase-8 Is Associated With Short Sleep Duration and the Risk of Incident Diabetes Mellitus publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2017-02374 – volume: 7 start-page: 334 year: 2013 ident: ref_164 article-title: The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL publication-title: Mol. Oncol. doi: 10.1016/j.molonc.2012.10.011 – volume: 19 start-page: 4461 year: 2000 ident: ref_38 article-title: Matrix detachment induces caspase-dependent cytochrome c release from mitochondria: Inhibition by PKB/Akt but not Raf signalling publication-title: Oncogene doi: 10.1038/sj.onc.1203805 – volume: 6 start-page: 32447 year: 2016 ident: ref_84 article-title: Inhibition of caspase-9 aggravates acute liver injury through suppression of cytoprotective autophagy publication-title: Sci. Rep. doi: 10.1038/srep32447 – volume: 91 start-page: 231 year: 1997 ident: ref_39 article-title: Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery publication-title: Cell doi: 10.1016/S0092-8674(00)80405-5 – volume: 143 start-page: 921 year: 2018 ident: ref_124 article-title: Caspase-3 regulates the migration, invasion and metastasis of colon cancer cells: Metastasis of colon cancer cells publication-title: Int. J. Cancer doi: 10.1002/ijc.31374 – volume: 43 start-page: 432 year: 2011 ident: ref_30 article-title: The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.06.006 – volume: 58 start-page: 1688 year: 2001 ident: ref_59 article-title: Human Genome and Diseases: Apaf1 in developmental apoptosis and cancer: How many ways to die? publication-title: CMLS Cell. Mol. Life Sci. doi: 10.1007/PL00000806 – volume: 22 start-page: 1490 year: 2008 ident: ref_36 article-title: Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor in association with IKK publication-title: Genes Dev. doi: 10.1101/gad.1662308 – volume: 47 start-page: 163 year: 2011 ident: ref_153 article-title: MicroRNA regulation of core apoptosis pathways in cancer publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2010.11.005 – volume: 277 start-page: 47928 year: 2002 ident: ref_40 article-title: FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer publication-title: J. Biol. Chem. doi: 10.1074/jbc.M207509200 – volume: 122 start-page: 3811 year: 2013 ident: ref_165 article-title: Mir-590 Is a Novel STAT5 Regulated Oncogenic miRNA and Targets FasL In Acute Myeloid Leukemia publication-title: Blood doi: 10.1182/blood.V122.21.3811.3811 – volume: 277 start-page: 1 year: 2001 ident: ref_113 article-title: Function and regulation of the transcription factors of the Myc/Max/Mad network publication-title: Gene doi: 10.1016/S0378-1119(01)00697-7 – volume: 117 start-page: 855 year: 2004 ident: ref_14 article-title: Caspase activation: Revisiting the induced proximity model publication-title: Cell doi: 10.1016/j.cell.2004.06.007 – volume: 7 start-page: 163 year: 2008 ident: ref_22 article-title: Modulation of death receptors by cancer therapeutic agents publication-title: Cancer Biol. Ther. doi: 10.4161/cbt.7.2.5335 – volume: 186 start-page: 1873 year: 1997 ident: ref_116 article-title: C-MYC–induced Apoptosis in Polycystic Kidney Disease Is Bcl-2 and p53 Independent publication-title: J. Exp. Med. doi: 10.1084/jem.186.11.1873 – volume: 316 start-page: 887 year: 2010 ident: ref_26 article-title: Death receptors: Targets for cancer therapy publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2009.12.011 – volume: 3 start-page: 413 year: 1999 ident: ref_67 article-title: Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80469-4 – volume: 23 start-page: 237 year: 2018 ident: ref_168 article-title: Dysregulated genes and miRNAs in the apoptosis pathway in colorectal cancer patients publication-title: Apoptosis doi: 10.1007/s10495-018-1451-1 – volume: 391 start-page: 43 year: 1998 ident: ref_45 article-title: A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD publication-title: Nature doi: 10.1038/34112 – volume: 46 start-page: 8153 year: 2018 ident: ref_105 article-title: Revealing a human p53 universe publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky720 – volume: 8 start-page: 2685 year: 2018 ident: ref_103 article-title: Family Aggregation of HTLV-1 Infection Associated with FAS-670A/G Polymorphism: A Case Report publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02685 – volume: 115 start-page: E10849 year: 2018 ident: ref_160 article-title: microRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle publication-title: PNAS doi: 10.1073/pnas.1803377115 – ident: ref_108 doi: 10.1002/jbt.22001 – volume: 102 start-page: 13944 year: 2005 ident: ref_158 article-title: miR-15 and miR-16 induce apoptosis by targeting BCL2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0506654102 – volume: 407 start-page: 770 year: 2000 ident: ref_43 article-title: The biochemistry of apoptosis publication-title: Nature doi: 10.1038/35037710 – ident: ref_136 – volume: 27 start-page: S2 year: 2008 ident: ref_6 article-title: BH3-only proteins in apoptosis and beyond: An overview publication-title: Oncogene doi: 10.1038/onc.2009.39 – volume: 116 start-page: 4077 year: 2003 ident: ref_23 article-title: Apoptosis—The p53 network publication-title: J. Cell Sci. doi: 10.1242/jcs.00739 – volume: 21 start-page: 501 year: 2013 ident: ref_11 article-title: Apoptosome structure, assembly, and procaspase activation publication-title: Structure doi: 10.1016/j.str.2013.02.024 – volume: 1843 start-page: 590 year: 2014 ident: ref_170 article-title: Epigenetic regulation of microRNA-128a expression contributes to the apoptosis-resistance of human T-cell leukaemia jurkat cells by modulating expression of fas-associated protein with death domain (FADD) publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2013.11.022 – volume: 10 start-page: 1084 year: 2014 ident: ref_111 article-title: Small Molecules Targeting c-Myc Oncogene: Promising Anti-Cancer Therapeutics publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.10190 – ident: ref_101 doi: 10.1186/s12891-018-2057-z – volume: 19 start-page: 1084 year: 2011 ident: ref_15 article-title: The holo-apoptosome: Activation of procaspase-9 and interactions with caspase-3 publication-title: Structure doi: 10.1016/j.str.2011.07.001 – volume: 5 start-page: 501 year: 2004 ident: ref_25 article-title: Synthetic lethal targeting of MYC by activation of the DR5 death receptor pathway publication-title: Cancer Cell doi: 10.1016/S1535-6108(04)00113-8 – volume: 49 start-page: 8307 year: 2010 ident: ref_54 article-title: Activation and Specificity of human Caspase-10 publication-title: Biochemistry doi: 10.1021/bi100968m – volume: 349 start-page: 547 year: 2000 ident: ref_66 article-title: Regulation of BAD by cAMP-dependent protein kinase is mediated via phosphorylation of a novel site, Ser155 publication-title: Biochem. J. doi: 10.1042/bj3490547 – volume: 39 start-page: 2437 year: 2019 ident: ref_86 article-title: Investigation of Caspase 9 Gene Polymorphism in Patients With Non-small Cell Lung Cancer publication-title: Anticancer Res. doi: 10.21873/anticanres.13361 – volume: 19 start-page: 107 year: 2012 ident: ref_20 article-title: Molecular definitions of cell death subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012 publication-title: Cell Death Differ. doi: 10.1038/cdd.2011.96 – volume: 26 start-page: 179 year: 2014 ident: ref_156 article-title: MiR-365 induces gemcitabine resistance in pancreatic cancer cells by targeting the adaptor protein SHC1 and pro-apoptotic regulator BAX publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2013.11.003 – volume: 12 start-page: 2424 year: 1998 ident: ref_115 article-title: Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization publication-title: Genes Dev. doi: 10.1101/gad.12.15.2424 – volume: 149 start-page: 1060 year: 2012 ident: ref_73 article-title: Ferroptosis: An iron-dependent form of nonapoptotic cell death publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 97 start-page: 77 year: 2019 ident: ref_85 article-title: Immune response mediated by Th1 / IL-17 / caspase-9 promotes evolution of periodontal disease publication-title: Arch. Oral Biol. doi: 10.1016/j.archoralbio.2018.09.009 – volume: 135 start-page: 111 year: 2017 ident: ref_83 article-title: Apaf-1: Regulation and function in cell death publication-title: Biochimie doi: 10.1016/j.biochi.2017.02.001 – volume: 2 start-page: 1952 year: 2010 ident: ref_93 article-title: The enigmatic roles of caspases in tumor development publication-title: Cancers doi: 10.3390/cancers2041952 – volume: 29 start-page: 347 year: 2019 ident: ref_3 article-title: The molecular machinery of regulated cell death publication-title: Cell Res. doi: 10.1038/s41422-019-0164-5 – volume: 7 start-page: 42 year: 2015 ident: ref_7 article-title: Mitochondria and apoptosis: Emerging concepts publication-title: F1000Prime Rep. doi: 10.12703/P7-42 – volume: 1813 start-page: 1978 year: 2011 ident: ref_37 article-title: Akt, FoxO and regulation of apoptosis publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2011.03.010 – volume: 6 start-page: 17532 year: 2015 ident: ref_145 article-title: The novel proteasome inhibitor carfilzomib activates and enhances extrinsic apoptosis involving stabilization of death receptor 5 publication-title: Oncotarget doi: 10.18632/oncotarget.3947 – volume: 25 start-page: 2076 year: 2016 ident: ref_53 article-title: Phage display and structural studies reveal plasticity in substrate specificity of caspase-3a from zebrafish publication-title: Protein Sci. doi: 10.1002/pro.3032 – volume: 156 start-page: 275 year: 2019 ident: ref_92 article-title: Intestinal Inflammation and Dysregulated Immunity in Patients With Inherited Caspase-8 Deficiency publication-title: Gastroenterology doi: 10.1053/j.gastro.2018.09.041 – volume: 5 start-page: a008656 year: 2013 ident: ref_16 article-title: Caspase functions in cell death and disease publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a008656 – ident: ref_72 – volume: 131 start-page: 76 year: 2018 ident: ref_152 article-title: The effects of mitochondria-associated long noncoding RNAs in cancer mitochondria: New players in an old arena publication-title: Crit. Rev. Oncol. Hematol. doi: 10.1016/j.critrevonc.2018.08.005 – volume: 21 start-page: 92 year: 2011 ident: ref_68 article-title: Mitochondria in Apoptosis: Bcl-2 family Members and Mitochondrial Dynamics publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.06.017 – volume: 188 start-page: 2033 year: 1998 ident: ref_106 article-title: p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs publication-title: J. Exp. Med. doi: 10.1084/jem.188.11.2033 – volume: 159 start-page: 1563 year: 2014 ident: ref_131 article-title: Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA publication-title: Cell doi: 10.1016/j.cell.2014.11.037 – volume: 14 start-page: 447 year: 2008 ident: ref_114 article-title: Distinct thresholds govern Myc’s biological output in vivo publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.10.018 – volume: 9 start-page: 77 year: 2018 ident: ref_159 article-title: MicroRNA miR-4779 suppresses tumor growth by inducing apoptosis and cell cycle arrest through direct targeting of PAK2 and CCND3 publication-title: Cell Death Dis. doi: 10.1038/s41419-017-0100-x – volume: 126 start-page: 177 year: 2006 ident: ref_127 article-title: OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion publication-title: Cell doi: 10.1016/j.cell.2006.06.025 – volume: 3 start-page: 607 year: 2002 ident: ref_69 article-title: Survival signaling goes BAD publication-title: Dev. Cell doi: 10.1016/S1534-5807(02)00328-3 – volume: 163 start-page: 178 year: 2012 ident: ref_102 article-title: FAS-670A/G single nucleotide polymorphism may be associated with human T lymphotropic virus-1 infection and clinical evolution to TSP/HAM publication-title: Virus Res. doi: 10.1016/j.virusres.2011.09.015 – volume: 5 start-page: a008722 year: 2013 ident: ref_62 article-title: Multiple functions of BCL-2 family proteins publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a008722 – volume: 29 start-page: 2338 year: 2015 ident: ref_121 article-title: Long noncoding RNAs as a novel component of the Myc transcriptional network publication-title: FASEB J. doi: 10.1096/fj.14-263889 – volume: 39 start-page: 53 year: 2003 ident: ref_35 article-title: Death receptors publication-title: Essays Biochem. doi: 10.1042/bse0390053 – volume: 159 start-page: 931 year: 2002 ident: ref_126 article-title: Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis publication-title: J. Cell Biol. doi: 10.1083/jcb.200209124 – volume: 9 start-page: 267 year: 1998 ident: ref_49 article-title: Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally publication-title: Immunity doi: 10.1016/S1074-7613(00)80609-3 – volume: 19 start-page: 42 year: 2012 ident: ref_95 article-title: Fas death receptor signalling: Roles of Bid and XIAP publication-title: Cell Death Differ. doi: 10.1038/cdd.2011.121 – ident: ref_88 doi: 10.1371/journal.pone.0012178 – volume: 67 start-page: 10782 year: 2007 ident: ref_167 article-title: Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-1484 – volume: 11 start-page: 621 year: 2010 ident: ref_8 article-title: Mitochondria and cell death: Outer membrane permeabilization and beyond publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2952 – volume: 45 start-page: 496 year: 2012 ident: ref_27 article-title: The roles of FADD in extrinsic apoptosis and necroptosis publication-title: BMB Rep. doi: 10.5483/BMBRep.2012.45.9.186 – volume: 16 start-page: 395 year: 1998 ident: ref_63 article-title: BCL-2 family: Regulators of cell death publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.16.1.395 – volume: 58 start-page: 284 year: 2015 ident: ref_123 article-title: Caspase-3 Promotes Genetic Instability and Carcinogenesis publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.03.003 – ident: ref_125 – volume: 285 start-page: 21496 year: 2010 ident: ref_157 article-title: MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.083337 – volume: 9 start-page: 342 year: 2019 ident: ref_77 article-title: Acquisition of the Recurrent Gly101Val Mutation in BCL2 Confers Resistance to Venetoclax in Patients with Progressive Chronic Lymphocytic Leukemia publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-18-1119 – volume: 26 start-page: 420 year: 2018 ident: ref_61 article-title: Key apoptotic genes APAF1 and CASP9 implicated in recurrent folate-resistant neural tube defects publication-title: Eur. J. Hum. Genet. doi: 10.1038/s41431-017-0025-y – volume: 144 start-page: 646 year: 2011 ident: ref_71 article-title: Hallmarks of cancer: The next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 304 start-page: 843 year: 2004 ident: ref_18 article-title: The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress publication-title: Science doi: 10.1126/science.1095432 – volume: 36 start-page: 489 year: 2018 ident: ref_55 article-title: Apoptosis and Clearance of Apoptotic Cells publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-042617-053010 – volume: 31 start-page: 260 year: 2010 ident: ref_97 article-title: FADD: A regulator of life and death publication-title: Trends Immunol. doi: 10.1016/j.it.2010.05.005 – volume: 7 start-page: 13565 year: 2016 ident: ref_82 article-title: The Apaf-1 apoptosome induces formation of caspase-9 homo- and heterodimers with distinct activities publication-title: Nature Commun. doi: 10.1038/ncomms13565 – volume: 81 start-page: 62 year: 2015 ident: ref_151 article-title: The mitochondrial lncRNA ASncmtRNA-2 is induced in aging and replicative senescence in Endothelial Cells publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2015.01.012 – volume: 56 start-page: 220 year: 2013 ident: ref_154 article-title: MicroRNA-133a, downregulated in osteosarcoma, suppresses proliferation and promotes apoptosis by targeting Bcl-xL and Mcl-1 publication-title: Bone doi: 10.1016/j.bone.2013.05.020 – volume: 281 start-page: 1305 year: 1998 ident: ref_21 article-title: Death receptors: Signaling and modulation publication-title: Science doi: 10.1126/science.281.5381.1305 – volume: 284 start-page: 1160 year: 2017 ident: ref_57 article-title: The caspase-activated DNase: Apoptosis and beyond publication-title: FEBS J. doi: 10.1111/febs.13970 – volume: 35 start-page: 495 year: 2007 ident: ref_2 article-title: Apoptosis: A review of programmed cell death publication-title: Toxicol. Pathol. doi: 10.1080/01926230701320337 – volume: 31 start-page: 16619 year: 2011 ident: ref_141 article-title: Epigenetic Regulation of Motor Neuron Cell Death through DNA Methylation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1639-11.2011 – volume: 229 start-page: 1390 year: 1985 ident: ref_74 article-title: The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining publication-title: Science doi: 10.1126/science.3929382 – ident: ref_155 doi: 10.1371/journal.pone.0091546 – volume: 5 start-page: a008672 year: 2013 ident: ref_46 article-title: Cellular mechanisms controlling caspase activation and function publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a008672 – volume: 28 start-page: 1873 year: 2014 ident: ref_161 article-title: MicroRNAs control the apoptotic threshold in primed pluripotent stem cells through regulation of BIM publication-title: Genes Dev. doi: 10.1101/gad.245621.114 – volume: 278 start-page: 294 year: 1997 ident: ref_58 article-title: Caspase-3-generated fragment of gelsolin: Effector of morphological change in apoptosis publication-title: Science doi: 10.1126/science.278.5336.294 – volume: 111 start-page: E4033 year: 2014 ident: ref_138 article-title: Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1414028111 – volume: 168 start-page: 5024 year: 2002 ident: ref_41 article-title: The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2 publication-title: J. Immunol. doi: 10.4049/jimmunol.168.10.5024 – volume: 37 start-page: 5475 year: 2016 ident: ref_100 article-title: Association of promoter polymorphisms of Fas-FasL genes with development of Chronic Myeloid Leukemia publication-title: Tumor Biol. doi: 10.1007/s13277-015-4295-0 – volume: 108 start-page: 632 year: 2011 ident: ref_117 article-title: Egr1 mediates p53-independent c-Myc-induced apoptosis via a noncanonical ARF-dependent transcriptional mechanism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1008848108 – volume: 84 start-page: 12139 year: 2010 ident: ref_169 article-title: Regulation of tumor necrosis factor-like weak inducer of apoptosis receptor protein (TWEAKR) expression by Kaposi’s sarcoma-associated herpesvirus microRNA prevents TWEAK-induced apoptosis and inflammatory cytokine expression publication-title: J. Virol. doi: 10.1128/JVI.00884-10 – volume: 130 start-page: 3779 year: 2017 ident: ref_19 article-title: The resurrection of the PIDDosome - emerging roles in the DNA-damage response and centrosome surveillance publication-title: J. Cell Sci. doi: 10.1242/jcs.203448 – volume: 6 start-page: 833 year: 2015 ident: ref_12 article-title: Apaf1 inhibition promotes cell recovery from apoptosis publication-title: Protein Cell doi: 10.1007/s13238-015-0200-2 – volume: 276 start-page: 12481 year: 2001 ident: ref_64 article-title: Bcl-B, a novel Bcl-2 family member that differentially binds and regulates Bax and Bak publication-title: J. Biol. Chem. doi: 10.1074/jbc.C000871200 – volume: 6 start-page: 65 year: 2009 ident: ref_149 article-title: MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis publication-title: RNA Biol. doi: 10.4161/rna.6.1.7534 – volume: 89 start-page: 289 year: 2015 ident: ref_65 article-title: The mystery of BCL2 family: Bcl-2 proteins and apoptosis: An update publication-title: Arch. Toxicol. doi: 10.1007/s00204-014-1448-7 – volume: 24 start-page: 1380 year: 2017 ident: ref_51 article-title: Caspases and their substrates publication-title: Cell Death Differ. doi: 10.1038/cdd.2017.44 – volume: 4 start-page: 1099 year: 1998 ident: ref_110 article-title: The relationship between BcI2, Bax and p53: Consequences for cell cycle progression and cell death publication-title: Mol. Hum. Reprod. doi: 10.1093/molehr/4.12.1099 – volume: 283 start-page: 29897 year: 2008 ident: ref_162 article-title: MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M804612200 – volume: 72 start-page: 908 year: 2012 ident: ref_166 article-title: miR-20a encoded by the miR-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating Fas expression publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-1460 – volume: 14 start-page: 1303 year: 2010 ident: ref_87 article-title: DR5-mediated DISC controls caspase-8 cleavage and initiation of apoptosis in human glioblastomas publication-title: J. Cell. Mol. Med. doi: 10.1111/j.1582-4934.2009.00777.x – volume: 1813 start-page: 558 year: 2011 ident: ref_133 article-title: Caspase-8 and bid: Caught in the act between death receptors and mitochondria publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2011.01.026 |
SSID | ssj0023259 |
Score | 2.5957518 |
SecondaryResourceType | review_article |
Snippet | Apoptosis is one of the main types of regulated cell death, a complex process that can be triggered by external or internal stimuli, which activate the... Introduction The mechanisms underlying cell death and survival have a great impact on maintaining cellular balance, such that their deregulation may lead to... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4133 |
SubjectTerms | Adapter proteins Animals Apoptosis Biomarkers Cell Physiological Phenomena Deoxyribonucleic acid DNA DNA damage Epigenesis, Genetic Gene Expression Regulation Humans Kinases Ligands Mitochondria - genetics Mitochondria - metabolism Molecular Biology Receptors, Death Domain - genetics Receptors, Death Domain - metabolism Review Signal Transduction Tumor necrosis factor-TNF |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RS9xAEB7qidAXsda20bOsYJ8kmOxuNokvch4eUlBLUfAtJLsbvHIm0dwpvvk3_Hv-Emcve-ldpb4FdkKSmcx838wuMwC7SkRK5F7m8jTkLo_xKvOkdGWOWK9CHYrM1DtOz8TJJf95FVzZglttj1XOYuI0UKtSmhr5PmWMMhEJ7h1Wt66ZGmV2V-0IjSVYxhAcBR1YPjo--_W7TbkYnY5L8xGFXBHEojn6zjDR3x_-uakR_RBRGVsEpTdM898Dk3MINFiDVUsdSa-x9Sf4oIt1WGmGST5-hvMe6evR6OXpuSYDZJAHpFeQ83sTC_QDKXOCVI-czqbhEnsfSQtFTO9p067ZSPWqshqX9bDegMvB8UX_xLXjElzJfTp2mQGbIAsjZChhqrVgXq5yzIhSiVmUyOJIUS_MM7QA1yKOFWWxpowLmimlkOh9gU5RFvobEI1uHSnlS6olp0hBtJ_TMPfTiKbos6kDezN9JdL2EjcjLUYJ5hRGu8m8dh340UpXTQ-N_8h1Z6pPrCfVyV-7O7DTLqMPmI2NtNDlBGVo5PuGGVIHvjaWah_EfB4YzuJAuGDDVsD0115cKYbX0z7bAlMtHvDN919rCz7iB8Smzkx5Fzrju4neRqIyzr7bv_EViqfoYw priority: 102 providerName: ProQuest |
Title | A Cell’s Fate: An Overview of the Molecular Biology and Genetics of Apoptosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31450613 https://www.proquest.com/docview/2332368640 https://www.proquest.com/docview/2281132422 https://pubmed.ncbi.nlm.nih.gov/PMC6747454 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3dS9xAEB9Oj4ovYlutsfbYguKDRJPdzW4iSLmKVymcinhwbyHJbujJmZzm1PrfO3v54K7WlxDY2STMR36_2V1mAHaV8JVIndjmkeQ2D_AudpLETlLEeiW1FLFZ7-hfiPMB_z30hi2ou41WCiz-m9qZflKDh_Hh3_uXHxjwJybjxJT9aHR7VyCOITYytgRtxCRh_LvPm_0EpA1eUB57fzNjFVaYy72yw8E8Nr0hnP-em5wDot46rFUMknRLk3-Els4-wYeyp-TLZ-h3yakej_cL0kMaeUy6Gbl8Mj8E_UzylCDfI_26JS6pZpEoU8QUoDY1m41Ud5JPpnkxKjZg0Du7OT23q54JdsJdOrWZQRwvlj7SFBlpLZiTqhTToijBVErEga-oI9MYzcC1CAJFWaAp44LGSilke5uwnOWZ3gKiMbZ9pdyE6oRT5CHaTalM3cinEQZuZMFBra0wqQqKm74W4xATC6PmcF7NFuw10pOykMY7cju14sPaG0LKGGXCF9yx4HszjIFgdjeiTOePKEN91zX0kFrwpbRT86LawBbIBQs2AqbI9uJINvozK7YtMN_iHt9-95lfYRW_PTDrzJTvwPL04VF_Q6IyjTuwJIcSr37vVwfaP88urq47Bjq8zsw7XwFzA-oJ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5VRQguiP-GFjASPaGoie04cSWEVoVlS7vtpZV6C4ntiEVLsjTbVr3xGrwED8WTMLP5oQuCW2-RPFGc8XjmG_98A_DSqsSqIsh9mcXSlxqf8sAY3xQY623sYpXTesf4QI2O5YeT6GQFfnR3YehYZecTF47aVobWyLe4EFyoRMngzeyrT1WjaHe1K6HRmMWeu7zAlK1-vfsWx3eT8-G7o52R31YV8I0M-dwX5JOjPE4wkMeZc0oEhS0wccgMJhsq14nlQVzk2FHplNaWC-24kIrn1lpNRAfo8m9IITRx9SfD932CJ_iiOFuIMc9XkVbNQXsUDLYmn7_UGGsxfguxHAL_wrV_Hs-8Eu-Gd-FOC1TZoLGse7DiyvtwsyldefkADgdsx02nP799r9kQ8eo2G5Ts8Jw8j7tgVcEQWLJxV3uXte-xrLSMmK6JHJqkBrNqNq_qSf0Qjq9FjY9gtaxKtwbMoRNJrA0Nd0ZyBDwuLHhchFnCM_QQmQevOn2lpmUupwIa0xQzGNJuelW7Hmz20rOGseMfchud6tN23tbpbyvz4EXfjDOOtlGy0lVnKMOTMCQcyj143IxU_yERyogQkgfx0hj2AsTmvdxSTj4tWL0VJnYykk_-363ncGt0NN5P93cP9tbhNv6MphVuLjdgdX565p4iRJrnzxZ2yeDjdU-EX-UtIxQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5VW4G4IP5JW8BI9ISiTWzHjishtLRdtZRuK0Sl3tIktsWibbIl21a98Rq8Co_DkzDe_NAFwa23SJ4oznh-vrHHMwCvtIi1sEHm81Rynyt8yoI893OLvl5LI0Xm9jv2R2LniL8_jo6X4Ed7F8alVbY2cW6odZm7PfI-ZYwyEQse9G2TFnG4NXw7PfNdByl30tq206hFZM9cXWL4Vr3Z3cK1Xqd0uP1pc8dvOgz4OQ_pzGfOPkeZjNGpy9QYwQKrLQYRaY6Bh8hUrGkgbYaT5kYopSlThjIuaKa1Vq7oAZr_ZYm0cQ-W322PDj924R6j81ZtIXpAX0RK1Gn3jKmgP_5yWqHnRW_O2KJD_Avl_pmsec37De_B3Qa2kkEtZ_dhyRQP4FbdyPLqIRwMyKaZTH5--16RIaLXDTIoyMGFs0PmkpSWIMwk-20nXtK8R9JCE1f32pWKdlSDaTmdldW4egRHN8LIx9ArysI8BWLQpMRahzk1OacIf0xoqbRhGtMU7UXqweuWX0ne1DF37TQmCcYzjrvJde56sN5RT-v6Hf-gW2tZnzRaXCW_Zc6Dl90w6p87VEkLU54jDY3D0KFS6sGTeqW6D7GQRw4veSAX1rAjcLW9F0eK8ed5jW-BYR6P-Mr_p_UCbqMSJB92R3urcAf_RbntbsrXoDf7em6eIV6aZc8bwSRwctO68AtbOiiv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cell%27s+Fate%3A+An+Overview+of+the+Molecular+Biology+and+Genetics+of+Apoptosis&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Cavalcante%2C+Giovanna+C&rft.au=Schaan%2C+Ana+Paula&rft.au=Cabral%2C+Gleyce+Fonseca&rft.au=Santana-da-Silva%2C+Mayara+Nat%C3%A1lia&rft.date=2019-08-24&rft.eissn=1422-0067&rft.volume=20&rft.issue=17&rft_id=info:doi/10.3390%2Fijms20174133&rft_id=info%3Apmid%2F31450613&rft.externalDocID=31450613 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |