The Epigenetic Landscape of Vascular Calcification: An Integrative Perspective

Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus. The pathophysiology of VC encompasses passive occurrence of physico-chemical calcium deposition, active cellular secretion of osteoid matrix u...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 21; no. 3; p. 980
Main Authors Hou, Yi-Chou, Lu, Chien-Lin, Yuan, Tzu-Hang, Liao, Min-Tser, Chao, Chia-Ter, Lu, Kuo-Cheng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.02.2020
MDPI
Subjects
Online AccessGet full text
ISSN1422-0067
1661-6596
1422-0067
DOI10.3390/ijms21030980

Cover

Loading…
Abstract Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus. The pathophysiology of VC encompasses passive occurrence of physico-chemical calcium deposition, active cellular secretion of osteoid matrix upon exposure to metabolically noxious stimuli, or a variable combination of both processes. Epigenetic alterations have been shown to participate in this complex environment, through mechanisms including DNA methylation, non-coding RNAs, histone modifications, and chromatin changes. Despite such importance, existing reviews fail to provide a comprehensive view of all relevant reports addressing epigenetic processes in VC, and cross-talk between different epigenetic machineries is rarely examined. We conducted a systematic review based on PUBMED and MEDLINE databases up to 30 September 2019, to identify clinical, translational, and experimental reports addressing epigenetic processes in VC; we retrieved 66 original studies, among which 60.6% looked into the pathogenic role of non-coding RNA, followed by DNA methylation (12.1%), histone modification (9.1%), and chromatin changes (4.5%). Nine (13.6%) reports examined the discrepancy of epigenetic signatures between subjects or tissues with and without VC, supporting their applicability as biomarkers. Assisted by bioinformatic analyses blending in each epigenetic component, we discovered prominent interactions between microRNAs, DNA methylation, and histone modification regarding potential influences on VC risk.
AbstractList Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus. The pathophysiology of VC encompasses passive occurrence of physico-chemical calcium deposition, active cellular secretion of osteoid matrix upon exposure to metabolically noxious stimuli, or a variable combination of both processes. Epigenetic alterations have been shown to participate in this complex environment, through mechanisms including DNA methylation, non-coding RNAs, histone modifications, and chromatin changes. Despite such importance, existing reviews fail to provide a comprehensive view of all relevant reports addressing epigenetic processes in VC, and cross-talk between different epigenetic machineries is rarely examined. We conducted a systematic review based on PUBMED and MEDLINE databases up to 30 September 2019, to identify clinical, translational, and experimental reports addressing epigenetic processes in VC; we retrieved 66 original studies, among which 60.6% looked into the pathogenic role of non-coding RNA, followed by DNA methylation (12.1%), histone modification (9.1%), and chromatin changes (4.5%). Nine (13.6%) reports examined the discrepancy of epigenetic signatures between subjects or tissues with and without VC, supporting their applicability as biomarkers. Assisted by bioinformatic analyses blending in each epigenetic component, we discovered prominent interactions between microRNAs, DNA methylation, and histone modification regarding potential influences on VC risk.
Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus. The pathophysiology of VC encompasses passive occurrence of physico-chemical calcium deposition, active cellular secretion of osteoid matrix upon exposure to metabolically noxious stimuli, or a variable combination of both processes. Epigenetic alterations have been shown to participate in this complex environment, through mechanisms including DNA methylation, non-coding RNAs, histone modifications, and chromatin changes. Despite such importance, existing reviews fail to provide a comprehensive view of all relevant reports addressing epigenetic processes in VC, and cross-talk between different epigenetic machineries is rarely examined. We conducted a systematic review based on PUBMED and MEDLINE databases up to 30 September 2019, to identify clinical, translational, and experimental reports addressing epigenetic processes in VC; we retrieved 66 original studies, among which 60.6% looked into the pathogenic role of non-coding RNA, followed by DNA methylation (12.1%), histone modification (9.1%), and chromatin changes (4.5%). Nine (13.6%) reports examined the discrepancy of epigenetic signatures between subjects or tissues with and without VC, supporting their applicability as biomarkers. Assisted by bioinformatic analyses blending in each epigenetic component, we discovered prominent interactions between microRNAs, DNA methylation, and histone modification regarding potential influences on VC risk.Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus. The pathophysiology of VC encompasses passive occurrence of physico-chemical calcium deposition, active cellular secretion of osteoid matrix upon exposure to metabolically noxious stimuli, or a variable combination of both processes. Epigenetic alterations have been shown to participate in this complex environment, through mechanisms including DNA methylation, non-coding RNAs, histone modifications, and chromatin changes. Despite such importance, existing reviews fail to provide a comprehensive view of all relevant reports addressing epigenetic processes in VC, and cross-talk between different epigenetic machineries is rarely examined. We conducted a systematic review based on PUBMED and MEDLINE databases up to 30 September 2019, to identify clinical, translational, and experimental reports addressing epigenetic processes in VC; we retrieved 66 original studies, among which 60.6% looked into the pathogenic role of non-coding RNA, followed by DNA methylation (12.1%), histone modification (9.1%), and chromatin changes (4.5%). Nine (13.6%) reports examined the discrepancy of epigenetic signatures between subjects or tissues with and without VC, supporting their applicability as biomarkers. Assisted by bioinformatic analyses blending in each epigenetic component, we discovered prominent interactions between microRNAs, DNA methylation, and histone modification regarding potential influences on VC risk.
Author Yuan, Tzu-Hang
Lu, Kuo-Cheng
Chao, Chia-Ter
Hou, Yi-Chou
Liao, Min-Tser
Lu, Chien-Lin
AuthorAffiliation 8 Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 108, Taiwan
1 Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 234, Taiwan; athletics910@gmail.com
2 Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 243, Taiwan; janlin0123@gmail.com (C.-L.L.); kuochenglu@gmail.com (K.-C.L.)
4 Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan; liaoped804h@yahoo.com.tw
6 Department of Pediatrics, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 243, Taiwan
5 Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
7 Nephrology division, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
3 Graduate Institute
AuthorAffiliation_xml – name: 3 Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 104, Taiwan; yuan.tzu.h@gmail.com
– name: 4 Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan; liaoped804h@yahoo.com.tw
– name: 7 Nephrology division, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
– name: 8 Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 108, Taiwan
– name: 2 Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 243, Taiwan; janlin0123@gmail.com (C.-L.L.); kuochenglu@gmail.com (K.-C.L.)
– name: 6 Department of Pediatrics, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 243, Taiwan
– name: 1 Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 234, Taiwan; athletics910@gmail.com
– name: 5 Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
Author_xml – sequence: 1
  givenname: Yi-Chou
  surname: Hou
  fullname: Hou, Yi-Chou
– sequence: 2
  givenname: Chien-Lin
  orcidid: 0000-0002-9452-5179
  surname: Lu
  fullname: Lu, Chien-Lin
– sequence: 3
  givenname: Tzu-Hang
  surname: Yuan
  fullname: Yuan, Tzu-Hang
– sequence: 4
  givenname: Min-Tser
  surname: Liao
  fullname: Liao, Min-Tser
– sequence: 5
  givenname: Chia-Ter
  orcidid: 0000-0003-2892-7986
  surname: Chao
  fullname: Chao, Chia-Ter
– sequence: 6
  givenname: Kuo-Cheng
  surname: Lu
  fullname: Lu, Kuo-Cheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32024140$$D View this record in MEDLINE/PubMed
BookMark eNptkUFP3DAQha2KChbKrecqUi89sMUe20ncAxJaAV1pRXugXC3HmSxeZe3UTpD678mygLYrTjOj-ebpzcwxOfDBIyGfGf3OuaLnbrVOwCinqqQfyIQJgCmleXGwkx-R45RWlAIHqQ7JEQcKggk6Ibd3D5hddW6JHntns4XxdbKmwyw02b1JdmhNzGamta5x1vQu-B_Zpc_mvsdlHOtHzH5jTB3aTf6JfGxMm_D0JZ6QP9dXd7Of08Wvm_nscjG1gkE_Ba7yypYgKlWbulRFUyohRFWZXAJyKYWpZGOpLQRUgjeFYQLBSswZ1pBzfkIutrrdUK2xtuj7aFrdRbc28Z8Oxun_O9496GV41AXlBWMwCnx7EYjh74Cp12uXLLat8RiGpIFLoKLkSo7o1z10FYbox_U0SFHmhSr4xtGXXUdvVl5PPQKwBWwMKUVstHX980FHg67VjOrNP_XuP8ehs72hV9138Sd2WKFP
CitedBy_id crossref_primary_10_1021_acs_jmedchem_2c01601
crossref_primary_10_3389_fcvm_2021_624313
crossref_primary_10_1016_j_ijcha_2024_101505
crossref_primary_10_3389_fnagi_2023_1131548
crossref_primary_10_3390_life13091801
crossref_primary_10_1161_CIRCRESAHA_123_323699
crossref_primary_10_1016_j_cca_2020_10_021
crossref_primary_10_1172_JCI150966
crossref_primary_10_3390_ijms22126270
crossref_primary_10_3390_ijms21051593
crossref_primary_10_1016_j_jacc_2021_06_049
crossref_primary_10_1016_j_cca_2020_10_022
crossref_primary_10_1089_dna_2020_5949
crossref_primary_10_1016_j_lfs_2024_123319
crossref_primary_10_1186_s12933_021_01279_6
crossref_primary_10_1038_s41401_021_00846_7
crossref_primary_10_1002_ctm2_145
crossref_primary_10_3389_fphar_2021_722728
crossref_primary_10_1021_acs_jmedchem_4c01247
crossref_primary_10_1007_s11033_023_08792_9
crossref_primary_10_3390_toxins12060420
crossref_primary_10_1016_j_isci_2023_108360
crossref_primary_10_14336_AD_2024_0289
crossref_primary_10_3390_toxins12120812
crossref_primary_10_1155_2021_6675548
crossref_primary_10_1155_2022_4378413
crossref_primary_10_3390_biom11020226
crossref_primary_10_3390_healthcare9080979
crossref_primary_10_1186_s43556_023_00146_y
crossref_primary_10_1016_j_atherosclerosis_2024_119085
crossref_primary_10_1016_j_archger_2024_105333
crossref_primary_10_1016_j_mvr_2020_104105
crossref_primary_10_1016_j_semcdb_2022_09_012
crossref_primary_10_1186_s12957_022_02487_4
crossref_primary_10_2147_VHRM_S242685
crossref_primary_10_1080_14656566_2023_2266381
crossref_primary_10_1155_2022_9122264
crossref_primary_10_1093_cvr_cvab038
Cites_doi 10.1161/CIRCRESAHA.117.306712
10.1093/ajh/hpx197
10.2174/2211536608666181122125208
10.1016/j.atherosclerosis.2018.11.002
10.1016/j.taap.2018.12.002
10.1080/0886022X.2019.1591997
10.1038/emboj.2013.156
10.1016/j.cmet.2017.02.016
10.1093/cvr/cvv030
10.1681/ASN.2014050520
10.1038/ncomms10492
10.1016/j.toxlet.2017.11.033
10.1111/joim.12099
10.1002/dvdy.24477
10.1210/en.2012-2236
10.3109/0886022X.2012.676491
10.1007/s11914-015-0293-9
10.1007/s00441-016-2469-8
10.1161/JAHA.118.010805
10.1016/j.yexcr.2014.01.025
10.1038/labinvest.2012.85
10.1155/2015/624037
10.1161/ATVBAHA.112.300206
10.1007/s10142-019-00669-0
10.2174/1389450115666140627104151
10.15252/embr.201643686
10.1007/s13277-016-5144-5
10.1016/j.bbrc.2018.10.198
10.1177/0300060519848949
10.1074/jbc.M111.292722
10.1016/j.atherosclerosis.2014.12.040
10.1155/2017/6713606
10.1093/jb/mvz065
10.1096/fj.201802063RR
10.1002/jnr.24487
10.1038/ncomms15870
10.1016/j.vph.2018.11.006
10.1016/j.ajpath.2011.06.016
10.1016/j.yjmcc.2017.11.021
10.1371/journal.pone.0216947
10.1016/j.bone.2016.11.016
10.1210/en.2018-00320
10.2215/CJN.01930408
10.1016/j.bone.2019.04.006
10.1016/j.mam.2019.09.004
10.1002/jcp.28607
10.5551/jat.20818
10.1155/2018/9623412
10.1002/jcp.28390
10.1002/cbf.3005
10.1016/j.arcmed.2018.08.002
10.1161/CIRCRESAHA.116.310262
10.3346/jkms.2017.32.11.1738
10.1038/s41467-019-09174-1
10.1002/stem.288
10.1159/000499646
10.1007/s12272-019-01118-z
10.1161/JAHA.112.003905
10.1002/cbf.2974
10.1016/j.jstrokecerebrovasdis.2017.08.009
10.1002/jcp.28130
10.2174/1570161113666150722151817
10.1126/science.aal2380
10.1161/CIRCRESAHA.118.312497
10.1126/scisignal.2001744
10.1016/j.atherosclerosis.2018.11.024
10.1002/jbmr.1604
10.1002/jcp.27300
10.1161/ATVBAHA.118.311298
10.3389/fgene.2017.00209
10.18632/oncotarget.24662
10.1016/j.biomaterials.2017.11.033
10.1093/cvr/cvs258
10.1016/j.yexcr.2017.11.033
10.1371/journal.pone.0047807
10.5551/jat.36897
10.1186/1476-4598-12-30
10.1371/journal.pone.0174138
10.1097/HJH.0000000000000732
10.1155/2015/320849
10.1371/journal.pone.0131589
10.1111/jcmm.14535
10.7150/ijbs.15195
10.1161/ATVBAHA.117.309566
10.1155/2016/7419524
10.18632/aging.101973
10.5551/jat.15826
10.1159/000495885
10.1002/jcp.26121
10.1159/000362971
10.1074/jbc.RA118.002046
10.1016/j.bbadis.2015.08.003
10.1182/blood-2012-04-423004
10.4049/jimmunol.1800747
10.1210/er.2003-0015
10.3389/fphar.2018.00903
10.1111/gtc.12311
10.18632/oncotarget.1825
10.1002/jbmr.93
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.3390/ijms21030980
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medicine (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Proquest-PRL(Research Library)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
proquest-Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC7037112
32024140
10_3390_ijms21030980
Genre Journal Article
Review
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST-108-2314-B-002-055-
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
GROUPED_DOAJ
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c412t-2396bc824b9dad897f89444bba652e3554ab5fc0c742b43f7a14e2c5e61ed2633
IEDL.DBID 8FG
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 18:16:07 EDT 2025
Thu Jul 10 17:21:30 EDT 2025
Fri Jul 25 20:30:43 EDT 2025
Wed Feb 19 02:31:27 EST 2025
Thu Apr 24 23:10:08 EDT 2025
Tue Jul 01 04:15:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords chronic kidney disease
epigenetic
vascular calcification
phosphate
microRNA
diabetes mellitus
medial calcification
vascular smooth muscle cells
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-2396bc824b9dad897f89444bba652e3554ab5fc0c742b43f7a14e2c5e61ed2633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-9452-5179
0000-0003-2892-7986
OpenAccessLink https://www.proquest.com/docview/2548679733?pq-origsite=%requestingapplication%
PMID 32024140
PQID 2548679733
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7037112
proquest_miscellaneous_2352048395
proquest_journals_2548679733
pubmed_primary_32024140
crossref_citationtrail_10_3390_ijms21030980
crossref_primary_10_3390_ijms21030980
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
2020-Feb-01
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Goettsch (ref_13) 2011; 179
Wu (ref_9) 2015; 2015
Wu (ref_94) 2013; 12
Chao (ref_75) 2019; 8
Han (ref_40) 2018; 506
Louvet (ref_28) 2016; 2016
Azechi (ref_59) 2014; 21
Dudunk (ref_76) 2019; 8
ref_18
Alizadeh (ref_98) 2019; 234
Li (ref_36) 2017; 72
Gulei (ref_97) 2019; 70
Ramachandran (ref_62) 2018; 293
Doherty (ref_3) 2004; 25
Mangino (ref_70) 2016; 34
Guerrero (ref_5) 2010; 25
Gangwar (ref_86) 2018; 31
Bridge (ref_80) 2012; 120
Fakhry (ref_43) 2018; 233
Icli (ref_96) 2019; 33
Cui (ref_15) 2012; 96
Sun (ref_38) 2018; 49
ref_27
Haneklaus (ref_102) 2013; 274
Chao (ref_83) 2019; 23
Lin (ref_41) 2018; 159
Louvet (ref_23) 2015; 1852
Badi (ref_39) 2018; 38
Zhang (ref_42) 2018; 362
ref_77
Fujita (ref_66) 2014; 32
Lin (ref_64) 2019; 11
Wang (ref_50) 2019; 10
Zheng (ref_31) 2016; 19
Kwon (ref_54) 2016; 7
McCullough (ref_2) 2008; 3
Chao (ref_33) 2017; 37
Shrestha (ref_90) 2017; 246
Daoudi (ref_55) 2017; 121
Xie (ref_61) 2018; 155
Wang (ref_69) 2012; 34
Du (ref_14) 2012; 32
Liu (ref_93) 2019; 166
Gui (ref_17) 2012; 92
Song (ref_52) 2019; 364
Liu (ref_63) 2018; 114
Ding (ref_25) 2015; 106
Wu (ref_35) 2017; 118
Agostini (ref_99) 2014; 5
Jiang (ref_34) 2017; 2017
Guo (ref_46) 2019; 19
Wang (ref_48) 2019; 234
Qiao (ref_21) 2014; 33
Chen (ref_60) 2016; 12
Li (ref_88) 2019; 44
Kim (ref_12) 2019; 42
Wen (ref_22) 2014; 322
Ulbing (ref_71) 2017; 95
Huang (ref_85) 2010; 28
Kim (ref_92) 2012; 27
Sales (ref_7) 2017; 25
Qu (ref_89) 2019; 234
Cai (ref_95) 2017; 8
Lin (ref_30) 2016; 14
Lefort (ref_100) 2013; 32
Xu (ref_47) 2019; 234
Csont (ref_87) 2018; 9
Kwon (ref_11) 2017; 32
Sudo (ref_26) 2015; 20
Li (ref_103) 2019; 97
Cavallari (ref_49) 2019; 202
Azechi (ref_53) 2013; 20
Mao (ref_78) 2018; 2018
Flavahan (ref_6) 2017; 357
Katano (ref_73) 2018; 27
Mackenzie (ref_20) 2014; 32
Li (ref_84) 2016; 37
Wu (ref_79) 2012; 287
Li (ref_82) 2018; 9
Wang (ref_68) 2019; 41
Nanoudis (ref_10) 2017; 8
Balderman (ref_16) 2012; 1
Zhou (ref_72) 2017; 24
Alluri (ref_1) 2015; 239
Yu (ref_81) 2014; 15
Zhang (ref_8) 2018; 123
Hao (ref_29) 2016; 366
ref_37
Kim (ref_101) 2011; 4
Zhang (ref_51) 2019; 2019
Kurozumi (ref_57) 2019; 124
Vacante (ref_91) 2019; 112
Panizo (ref_32) 2016; 27
Kirsch (ref_45) 2019; 280
Cheng (ref_65) 2015; 117
Liao (ref_19) 2013; 154
Chen (ref_4) 2015; 13
Gilham (ref_67) 2019; 280
Xia (ref_24) 2015; 2015
Zhang (ref_44) 2018; 284
Lee (ref_74) 2019; 47
Abend (ref_56) 2017; 18
Chen (ref_58) 2019; 141
References_xml – volume: 117
  start-page: 142
  year: 2015
  ident: ref_65
  article-title: Vascular smooth muscle LRP6 limits arteriosclerotic calcification in diabetic LDLR−/− mice by restraining noncanonical Wnt signals
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.117.306712
– volume: 31
  start-page: 150
  year: 2018
  ident: ref_86
  article-title: Noncoding RNAs in Cardiovascular Disease: Pathological Relevance and Emerging Role as Biomarkers and Therapeutics
  publication-title: Am. J. Hypertens.
  doi: 10.1093/ajh/hpx197
– volume: 8
  start-page: 127
  year: 2019
  ident: ref_76
  article-title: Vascular Calcification and not Arrhythmia in Idiopathic Atrial Fibrillation Associates with Sex Differences in Diabetic Microvascular Injury miRNA Profiles
  publication-title: MicroRNA
  doi: 10.2174/2211536608666181122125208
– volume: 280
  start-page: 75
  year: 2019
  ident: ref_67
  article-title: Apabetalone downregulates factors and pathways associated with vascular calcification
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2018.11.002
– volume: 364
  start-page: 45
  year: 2019
  ident: ref_52
  article-title: Association of astragaloside IV-inhibited autophagy and mineralization in vascular smooth muscle cells with lncRNA H19 and DUSP5-mediated ERK signaling
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2018.12.002
– volume: 41
  start-page: 220
  year: 2019
  ident: ref_68
  article-title: Label-free quantitative proteomics identifies Smarca4 is involved in vascular calcification
  publication-title: Ren. Fail.
  doi: 10.1080/0886022X.2019.1591997
– volume: 32
  start-page: 2248
  year: 2013
  ident: ref_100
  article-title: A miR-34a-SIRT6 axis in the squamous cell differentiation network
  publication-title: EMBO J.
  doi: 10.1038/emboj.2013.156
– volume: 25
  start-page: 559
  year: 2017
  ident: ref_7
  article-title: Epigenetic Mechanisms of Transmission of Metabolic Disease across Generations
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.02.016
– volume: 106
  start-page: 131
  year: 2015
  ident: ref_25
  article-title: miR-30e targets IGF2-regulated osteogenesis in bone marrow-derived mesenchymal stem cells, aortic smooth muscle cells, and ApoE−/− mice
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvv030
– volume: 27
  start-page: 824
  year: 2016
  ident: ref_32
  article-title: MicroRNAs 29b, 133b, and 211 Regulate Vascular Smooth Muscle Calcification Mediated by High Phosphorus
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2014050520
– volume: 7
  start-page: 10492
  year: 2016
  ident: ref_54
  article-title: MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10492
– volume: 72
  start-page: 680
  year: 2017
  ident: ref_36
  article-title: Satb1 promotes osteoclastogenesis by recruiting CBP to upregulate miR-223 expression in chronic kidney disease-mineral and bone disorder
  publication-title: Pharmazie
– volume: 284
  start-page: 29
  year: 2018
  ident: ref_44
  article-title: Indoxyl sulfate accelerates vascular smooth muscle cell calcification via microRNA-29b dependent regulation of Wnt/β-catenin signaling
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2017.11.033
– volume: 274
  start-page: 215
  year: 2013
  ident: ref_102
  article-title: miR-223: Infection, inflammation and cancer
  publication-title: J. Intern. Med.
  doi: 10.1111/joim.12099
– volume: 246
  start-page: 285
  year: 2017
  ident: ref_90
  article-title: MicroRNA-142 is a multifaceted regulator in organogenesis, homeostasis, and disease
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.24477
– volume: 154
  start-page: 3344
  year: 2013
  ident: ref_19
  article-title: MiR-133a Modulates Osteogenic Differentiation of Vascular Smooth Muscle Cells
  publication-title: Endocrinology
  doi: 10.1210/en.2012-2236
– volume: 34
  start-page: 685
  year: 2012
  ident: ref_69
  article-title: Reduced Circulating miR-15b Is Correlated with Phosphate Metabolism in Patients with End-Stage Renal Disease on Maintenance Hemodialysis
  publication-title: Ren. Fail.
  doi: 10.3109/0886022X.2012.676491
– volume: 13
  start-page: 372
  year: 2015
  ident: ref_4
  article-title: Pathophysiology of Vascular Calcification
  publication-title: Curr. Osteoporos. Rep.
  doi: 10.1007/s11914-015-0293-9
– volume: 366
  start-page: 733
  year: 2016
  ident: ref_29
  article-title: MicroRNA-34b/c inhibits aldosterone-induced vascular smooth muscle cell calcification via a SATB2/Runx2 pathway
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-016-2469-8
– volume: 8
  start-page: e010805
  year: 2019
  ident: ref_75
  article-title: Risk Factors Associated With Altered Circulating Micro RNA -125b and Their Influences on Uremic Vascular Calcification Among Patients With End-Stage Renal Disease
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.118.010805
– volume: 118
  start-page: 499
  year: 2017
  ident: ref_35
  article-title: MiR-26a regulates vascular smooth muscle cell calcification in vitro through targeting CTGF
  publication-title: Bratisl. Lek. Listy
– volume: 322
  start-page: 302
  year: 2014
  ident: ref_22
  article-title: miR-125b/Ets1 axis regulates transdifferentiation and calcification of vascular smooth muscle cells in a high-phosphate environment
  publication-title: Exp. Cell. Res.
  doi: 10.1016/j.yexcr.2014.01.025
– volume: 92
  start-page: 1250
  year: 2012
  ident: ref_17
  article-title: MicroRNAs that target Ca2+ transporters are involved in vascular smooth muscle cell calcification
  publication-title: Lab. Investig.
  doi: 10.1038/labinvest.2012.85
– volume: 2015
  start-page: 624037
  year: 2015
  ident: ref_24
  article-title: Runx2/miR-3960/miR-2861 Positive Feedback Loop Is Responsible for Osteogenic Transdifferentiation of Vascular Smooth Muscle Cells
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2015/624037
– volume: 32
  start-page: 2580
  year: 2012
  ident: ref_14
  article-title: Upregulation of a Disintegrin and Metalloproteinase with Thrombospondin Motifs-7 by miR-29 Repression Mediates Vascular Smooth Muscle Calcification
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.112.300206
– volume: 19
  start-page: 633
  year: 2019
  ident: ref_46
  article-title: Bone marrow mesenchymal stem cell–derived exosomes alleviate high phosphorus-induced vascular smooth muscle cells calcification by modifying microRNA profiles
  publication-title: Funct. Integr. Genomics
  doi: 10.1007/s10142-019-00669-0
– volume: 15
  start-page: 817
  year: 2014
  ident: ref_81
  article-title: microRNA-133: Expression, Function and Therapeutic Potential in Muscle Diseases and Cancer
  publication-title: Curr. Drug Targets
  doi: 10.2174/1389450115666140627104151
– volume: 18
  start-page: 1166
  year: 2017
  ident: ref_56
  article-title: Salt-inducible kinase induces cytoplasmic histone deacetylase 4 to promote vascular calcification
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201643686
– volume: 37
  start-page: 11667
  year: 2016
  ident: ref_84
  article-title: The dual regulatory role of miR-204 in cancer
  publication-title: Tumour Biol.
  doi: 10.1007/s13277-016-5144-5
– volume: 506
  start-page: 1040
  year: 2018
  ident: ref_40
  article-title: Teniposide regulates the phenotype switching of vascular smooth muscle cells in a miR-21-dependent manner
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2018.10.198
– volume: 47
  start-page: 2929
  year: 2019
  ident: ref_74
  article-title: Circulating microRNAs and vascular calcification in hemodialysis patients
  publication-title: J. Int. Med. Res.
  doi: 10.1177/0300060519848949
– volume: 287
  start-page: 7503
  year: 2012
  ident: ref_79
  article-title: miR-30 family members negatively regulate osteoblast differentiation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.292722
– volume: 239
  start-page: 109
  year: 2015
  ident: ref_1
  article-title: Scoring of coronary artery calcium scans: History, assumptions, current limitations, and future directions
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2014.12.040
– volume: 2017
  start-page: 6713606
  year: 2017
  ident: ref_34
  article-title: The Involvement of miR-29b-3p in Arterial Calcification by Targeting Matrix Metalloproteinase-2
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2017/6713606
– volume: 166
  start-page: 495
  year: 2019
  ident: ref_93
  article-title: MiR-211-5p contributes to chondrocyte differentiation by suppressing Fibulin-4 expression to play a role in osteoarthritis
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvz065
– volume: 33
  start-page: 5599
  year: 2019
  ident: ref_96
  article-title: MicroRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells
  publication-title: FASEB J.
  doi: 10.1096/fj.201802063RR
– volume: 97
  start-page: 1242
  year: 2019
  ident: ref_103
  article-title: Inflammation-regulatory microRNAs: Valuable targets for intracranial atherosclerosis
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.24487
– volume: 8
  start-page: 15870
  year: 2017
  ident: ref_95
  article-title: Simultaneous overactivation of Wnt/β-catenin and TGFβ signalling by miR-128-3p confers chemoresistance-associated metastasis in NSCLC
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15870
– volume: 112
  start-page: 24
  year: 2019
  ident: ref_91
  article-title: The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease
  publication-title: Vasc. Pharmacol.
  doi: 10.1016/j.vph.2018.11.006
– volume: 179
  start-page: 1594
  year: 2011
  ident: ref_13
  article-title: miR-125b Regulates Calcification of Vascular Smooth Muscle Cells
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2011.06.016
– volume: 114
  start-page: 264
  year: 2018
  ident: ref_63
  article-title: High phosphate-induced downregulation of PPARγ contributes to CKD-associated vascular calcification
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2017.11.021
– ident: ref_77
  doi: 10.1371/journal.pone.0216947
– volume: 95
  start-page: 115
  year: 2017
  ident: ref_71
  article-title: MicroRNAs 223-3p and 93-5p in patients with chronic kidney disease before and after renal transplantation
  publication-title: Bone
  doi: 10.1016/j.bone.2016.11.016
– volume: 159
  start-page: 2905
  year: 2018
  ident: ref_41
  article-title: Arterial Calcification Is Regulated Via an miR-204/DNMT3a Regulatory Circuit Both In Vitro and in Female Mice
  publication-title: Endocrinology
  doi: 10.1210/en.2018-00320
– volume: 3
  start-page: 1585
  year: 2008
  ident: ref_2
  article-title: Accelerated Atherosclerotic Calcification and Mönckeberg’s Sclerosis: A Continuum of Advanced Vascular Pathology in Chronic Kidney Disease
  publication-title: Clin. J. Am. Soc. Nephrol.
  doi: 10.2215/CJN.01930408
– volume: 124
  start-page: 53
  year: 2019
  ident: ref_57
  article-title: IL-6 and sIL-6R induces STAT3-dependent differentiation of human VSMCs into osteoblast-like cells through JMJD2B-mediated histone demethylation of RUNX2
  publication-title: Bone
  doi: 10.1016/j.bone.2019.04.006
– volume: 70
  start-page: 33
  year: 2019
  ident: ref_97
  article-title: The extensive role of miR-155 in malignant and non-malignant diseases
  publication-title: Mol. Asp. Med.
  doi: 10.1016/j.mam.2019.09.004
– volume: 234
  start-page: 19280
  year: 2019
  ident: ref_98
  article-title: The potential role of miR-29 in health and cancer diagnosis, prognosis, and therapy
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.28607
– volume: 19
  start-page: 1331
  year: 2016
  ident: ref_31
  article-title: MicroRNA-297a regulates vascular calcification by targeting fibroblast growth factor 23
  publication-title: Iran. J. Basic Med. Sci.
– volume: 21
  start-page: 463
  year: 2014
  ident: ref_59
  article-title: 5-aza-2’-Deoxycytidine, a DNA Methyltransferase Inhibitor, Facilitates the Inorganic Phosphorus-Induced Mineralization of Vascular Smooth Muscle Cells
  publication-title: J. Atheroscler. Thromb.
  doi: 10.5551/jat.20818
– volume: 2018
  start-page: 9623412
  year: 2018
  ident: ref_78
  article-title: miR-30 Family: A Promising Regulator in Development and Disease
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2018/9623412
– volume: 234
  start-page: 17663
  year: 2019
  ident: ref_89
  article-title: Downregulated microRNA-135a ameliorates rheumatoid arthritis by inactivation of the phosphatidylinositol 3-kinase/AKT signaling pathway via phosphatidylinositol 3-kinase regulatory subunit 2
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.28390
– volume: 32
  start-page: 209
  year: 2014
  ident: ref_20
  article-title: miRNA-221 and miRNA-222 synergistically function to promote vascular calcification
  publication-title: Cell Biochem. Funct.
  doi: 10.1002/cbf.3005
– volume: 49
  start-page: 164
  year: 2018
  ident: ref_38
  article-title: Impact of miR-302b on Calcium-phosphorus Metabolism and Vascular Calcification of Rats with Chronic Renal Failure by Regulating BMP-2/Runx2/Osterix Signaling Pathway
  publication-title: Arch. Med. Res.
  doi: 10.1016/j.arcmed.2018.08.002
– volume: 121
  start-page: 19
  year: 2017
  ident: ref_55
  article-title: Human Alternative Macrophages Populate Calcified Areas of Atherosclerotic Lesions and Display Impaired RANKL-Induced Osteoclastic Bone Resorption Activity
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.310262
– volume: 32
  start-page: 1738
  year: 2017
  ident: ref_11
  article-title: New Aspects of Vascular Calcification: Histone Deacetylases and Beyond
  publication-title: J. Korean Med. Sci.
  doi: 10.3346/jkms.2017.32.11.1738
– volume: 10
  start-page: 1203
  year: 2019
  ident: ref_50
  article-title: Poly(ADP-ribose) polymerase 1 accelerates vascular calcification by upregulating Runx2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09174-1
– volume: 28
  start-page: 357
  year: 2010
  ident: ref_85
  article-title: MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation
  publication-title: Stem Cells
  doi: 10.1002/stem.288
– volume: 44
  start-page: 287
  year: 2019
  ident: ref_88
  article-title: MicroRNA-26a: An Emerging Regulator of Renal Biology and Disease
  publication-title: Kidney Blood Press. Res.
  doi: 10.1159/000499646
– volume: 42
  start-page: 244
  year: 2019
  ident: ref_12
  article-title: Diverse roles of noncoding RNAs in vascular calcification
  publication-title: Arch. Pharm. Res.
  doi: 10.1007/s12272-019-01118-z
– volume: 1
  start-page: e003905
  year: 2012
  ident: ref_16
  article-title: Bone morphogenetic protein-2 decreases microRNA-30b and microRNA-30c to promote vascular smooth muscle cell calcification
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.112.003905
– volume: 32
  start-page: 77
  year: 2014
  ident: ref_66
  article-title: Necrotic and apoptotic cells serve as nuclei for calcification on osteoblastic differentiation of human mesenchymal stem cells in vitro
  publication-title: Cell. Biochem. Funct.
  doi: 10.1002/cbf.2974
– volume: 27
  start-page: 108
  year: 2018
  ident: ref_73
  article-title: Differential Expression of microRNAs in Severely Calcified Carotid Plaques
  publication-title: J. Stroke Cerebrovasc. Dis.
  doi: 10.1016/j.jstrokecerebrovasdis.2017.08.009
– volume: 234
  start-page: 14306
  year: 2019
  ident: ref_47
  article-title: Restoration of microRNA-30b expression alleviates vascular calcification through the mTOR signaling pathway and autophagy
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.28130
– volume: 2019
  start-page: 2691514
  year: 2019
  ident: ref_51
  article-title: MicroRNA-25 Protects Smooth Muscle Cells against Corticosterone-Induced Apoptosis
  publication-title: Oxid. Med. Cell. Longev.
– volume: 14
  start-page: 211
  year: 2016
  ident: ref_30
  article-title: MiR-135a Suppresses Calcification in Senescent VSMCs by Regulating KLF4/STAT3 Pathway
  publication-title: Curr. Vasc. Pharmacol.
  doi: 10.2174/1570161113666150722151817
– volume: 357
  start-page: eaal2380
  year: 2017
  ident: ref_6
  article-title: Epigenetic plasticity and the hallmarks of cancer
  publication-title: Science
  doi: 10.1126/science.aal2380
– volume: 123
  start-page: 773
  year: 2018
  ident: ref_8
  article-title: Epigenetic Modifications in Cardiovascular Aging and Diseases
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.118.312497
– volume: 4
  start-page: ra71
  year: 2011
  ident: ref_101
  article-title: p53 and microRNA-34 are suppressors of canonical Wnt signaling
  publication-title: Sci. Signal
  doi: 10.1126/scisignal.2001744
– volume: 280
  start-page: 28
  year: 2019
  ident: ref_45
  article-title: MicroRNA-142-3p improves vascular relaxation in uremia
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2018.11.024
– volume: 27
  start-page: 1669
  year: 2012
  ident: ref_92
  article-title: miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.1604
– volume: 234
  start-page: 4997
  year: 2019
  ident: ref_48
  article-title: MiR-128-3p accelerates cardiovascular calcification and insulin resistance through ISL1-dependent Wnt pathway in type 2 diabetes mellitus rats
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.27300
– volume: 38
  start-page: 2079
  year: 2018
  ident: ref_39
  article-title: miR-34a Promotes Vascular Smooth Muscle Cell Calcification by Downregulating SIRT1 (Sirtuin 1) and Axl (AXL Receptor Tyrosine Kinase)
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.118.311298
– volume: 8
  start-page: 209
  year: 2017
  ident: ref_10
  article-title: The Role of MicroRNAs in Arterial Stiffness and Arterial Calcification. An Update and Review of the Literature
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2017.00209
– volume: 9
  start-page: 21580
  year: 2018
  ident: ref_87
  article-title: A myriad of roles of miR-25 in health and disease
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.24662
– volume: 155
  start-page: 203
  year: 2018
  ident: ref_61
  article-title: Matrix stiffness determines the phenotype of vascular smooth muscle cell in vitro and in vivo: Role of DNA methyltransferase 1
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.11.033
– volume: 96
  start-page: 320
  year: 2012
  ident: ref_15
  article-title: MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvs258
– volume: 362
  start-page: 324
  year: 2018
  ident: ref_42
  article-title: The miR-182/SORT1 axis regulates vascular smooth muscle cell calcification in vitro and in vivo
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2017.11.033
– ident: ref_18
  doi: 10.1371/journal.pone.0047807
– volume: 24
  start-page: 609
  year: 2017
  ident: ref_72
  article-title: CDKN2B Methylation and Aortic Arch Calcification in Patients with Ischemic Stroke
  publication-title: J. Atheroscler. Thromb.
  doi: 10.5551/jat.36897
– volume: 12
  start-page: 30
  year: 2013
  ident: ref_94
  article-title: MicroRNA-32 (miR-32) regulates phosphatase and tensin homologue (PTEN) expression and promotes growth, migration, and invasion in colorectal carcinoma cells
  publication-title: Mol. Cancer
  doi: 10.1186/1476-4598-12-30
– ident: ref_37
  doi: 10.1371/journal.pone.0174138
– volume: 34
  start-page: 79
  year: 2016
  ident: ref_70
  article-title: Integrated multiomics approach identifies calcium and integrin-binding protein-2 as a novel gene for pulse wave velocity
  publication-title: J. Hypertens.
  doi: 10.1097/HJH.0000000000000732
– volume: 2015
  start-page: 320849
  year: 2015
  ident: ref_9
  article-title: The Role of Epigenetics in Arterial Calcification
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2015/320849
– ident: ref_27
  doi: 10.1371/journal.pone.0131589
– volume: 23
  start-page: 5884
  year: 2019
  ident: ref_83
  article-title: MicroRNA-125b in vascular diseases: An updated systematic review of pathogenetic implications and clinical applications
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.14535
– volume: 12
  start-page: 1236
  year: 2016
  ident: ref_60
  article-title: Indoxyl Sulfate Enhance the Hypermethylation of Klotho and Promote the Process of Vascular Calcification in Chronic Kidney Disease
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.15195
– volume: 37
  start-page: 1402
  year: 2017
  ident: ref_33
  article-title: Circulating MicroRNA-125b Predicts the Presence and Progression of Uremic Vascular Calcification
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.117.309566
– volume: 2016
  start-page: 7419524
  year: 2016
  ident: ref_28
  article-title: Magnesium Attenuates Phosphate-Induced Deregulation of a MicroRNA Signature and Prevents Modulation of Smad1 and Osterix during the Course of Vascular Calcification
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2016/7419524
– volume: 11
  start-page: 3182
  year: 2019
  ident: ref_64
  article-title: Aberration methylation of miR-34b was involved in regulating vascular calcification by targeting Notch1
  publication-title: Aging
  doi: 10.18632/aging.101973
– volume: 20
  start-page: 538
  year: 2013
  ident: ref_53
  article-title: Trichostatin A, an HDAC Class I/II Inhibitor, Promotes Pi-Induced Vascular Calcification Via Up-Regulation of the Expression of Alkaline Phosphatase
  publication-title: J. Atheroscler. Thromb.
  doi: 10.5551/jat.15826
– volume: 141
  start-page: 287
  year: 2019
  ident: ref_58
  article-title: Amelioration of Uremic Toxin Indoxyl Sulfate-Induced Osteoblastic Calcification by SET Domain Containing Lysine Methyltransferase 7/9 Protein
  publication-title: Nephron
  doi: 10.1159/000495885
– volume: 233
  start-page: 4056
  year: 2018
  ident: ref_43
  article-title: Characterization and assessment of potential microRNAs involved in phosphate-induced aortic calcification
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.26121
– volume: 33
  start-page: 1945
  year: 2014
  ident: ref_21
  article-title: MicroRNA-205 Regulates the Calcification and Osteoblastic Differentiation of Vascular Smooth Muscle Cells
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000362971
– volume: 293
  start-page: 7942
  year: 2018
  ident: ref_62
  article-title: A GTPase-activating protein-binding protein (G3BP1)/antiviral protein relay conveys arteriosclerotic Wnt signals in aortic smooth muscle cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.002046
– volume: 1852
  start-page: 2202
  year: 2015
  ident: ref_23
  article-title: High inorganic phosphate concentration inhibits osteoclastogenesis by modulating miR-223
  publication-title: Biochim. Biophys. Acta Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2015.08.003
– volume: 120
  start-page: 5063
  year: 2012
  ident: ref_80
  article-title: The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis
  publication-title: Blood
  doi: 10.1182/blood-2012-04-423004
– volume: 202
  start-page: 2372
  year: 2019
  ident: ref_49
  article-title: Online Hemodiafiltration Inhibits Inflammation-Related Endothelial Dysfunction and Vascular Calcification of Uremic Patients Modulating miR-223 Expression in Plasma Extracellular Vesicles
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1800747
– volume: 25
  start-page: 629
  year: 2004
  ident: ref_3
  article-title: Molecular, Endocrine, and Genetic Mechanisms of Arterial Calcification
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2003-0015
– volume: 9
  start-page: 903
  year: 2018
  ident: ref_82
  article-title: miR-133: A Suppressor of Cardiac Remodeling?
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00903
– volume: 20
  start-page: 1077
  year: 2015
  ident: ref_26
  article-title: MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells
  publication-title: Genes Cells
  doi: 10.1111/gtc.12311
– volume: 5
  start-page: 872
  year: 2014
  ident: ref_99
  article-title: miR-34: From bench to bedside
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.1825
– volume: 25
  start-page: 1996
  year: 2010
  ident: ref_5
  article-title: High-phosphate-induced calcification is related to SM22α promoter methylation in vascular smooth muscle cells
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.93
SSID ssj0023259
Score 2.4415946
SecondaryResourceType review_article
Snippet Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 980
SubjectTerms Calcification
DNA methylation
Epigenetics
Growth factors
Kinases
MicroRNAs
Pathogenesis
Review
Smooth muscle
Transcription factors
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA6iCF7Et-uLCHqS6jbPRhARUVRUPLjirSRtiitrV91d0H_vTNutrq9zp22YSTLzkcn3EbLFQ24T2ByDjKUAUGxqAse8CpRuah9ZpXxBVn11rc5a4uJe3o-Rodpo5cDer9AO9aRar53dt5f3Q1jwB4g4AbLvtR-fegzlskwE4H0CcpJGEYcrUZ8nQNlQyKaFkI0CJY0qW-B_vD2anH5UnN8bJ79kotMZMl2VkPSojPksGfP5HJksRSXf58k1RJ6ePCPLJl5QpJd4mRfbnGg3o3dV4yk9tp2iG68IzD49yul5RRwB2x-9-byCuUBapye3x2dBpZoQgM9ZP2DcKJdETDiT2jQyOouMEMI5qyTzWF5YJ7OkmQAodoJn2obCs0R6FfqUKc4XyXjezf0yocY3lUm5S5XK4APcSGajTBsfCZk0pWyQnaG74qSiFEdli04M0AKdG391boNs19bPJZXGH3ZrQ8_Hw_kQA45FakDNeYNs1o9hKeD5hs19dwA2UEwiQ76BgS2Vgap_hDLxAsBkg-iRENYGSLM9-iRvPxR02xpZDUO28v-wVskUQyheNHSvkfH-68CvQ73SdxvFVPwAh_DpQQ
  priority: 102
  providerName: Scholars Portal
Title The Epigenetic Landscape of Vascular Calcification: An Integrative Perspective
URI https://www.ncbi.nlm.nih.gov/pubmed/32024140
https://www.proquest.com/docview/2548679733
https://www.proquest.com/docview/2352048395
https://pubmed.ncbi.nlm.nih.gov/PMC7037112
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xUKVeqkJf29KVK9FTFbHxM-aCKNoFKlihqlR7i-zEUUGQ3XaXQ_99ZxJvWIraSy4eJdaMPTNfPP4GYFekwhXoHJOKlwhQXGkTz4NOtBmYkDmtQ0NWfT7WJ5fyy0RN4g-3eSyrXPrExlGX04L-ke8hkCFuOCPEwexnQl2j6HQ1ttBYh80UIw2t8Gx03AEuwZtmaSnGoEQrq9vCd4Ewf-_q-nbOqcWWJULI1ZD0KM_8u1xyJf6MnsOzmDiyw9bSW7AW6m140raS_P0CxmhvNpwRtyZdS2RndIWXipvYtGLfY7kpO3I3TQ1eY459dliz00gXgU6PXdxfvHwJl6Pht6OTJPZKSFDTfJFwYbUvMi69LV2ZWVNlVkrpvdOKB0oqnFdVMSgQCnspKuNSGXihgk5DybUQr2CjntbhDTAbBtqWwpdaV_gCYRV3WWVsyKQqBkr14NNSXXkRicSpn8VNjoCClJuvKrcHHzvpWUug8Q-5naXm87iN5vm90XvwoRvGDUCnGq4O0zuUwRSSePEtTux1a6juQ9QcXiKE7IF5YMJOgMi1H47UVz8akm1DXIYpf_v_ab2Dp5wAeFPGvQMbi1934T1mKQvfh3UzMf1mQfZh8_NwfPG1T3FD4fNcZn8Arlfq5w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRQguiHcDBRaJnpBVe5_eSlVVlVYJTSMOLcrN7NprUVScQFJV_VP8Rmb8SFIQ3Hrekb2amZ3H7sw3AO9EIlyOxjEqeYEJiits5HnQkTaxCanTOtRg1Scj3T-TH8dqvAa_ul4YKqvsbGJtqItJTnfk25jIEDacEWJv-iOiqVH0utqN0GjU4jhcX2HKNtsdfED5bnF-dHh60I_aqQIR7onPIy6s9nnKpbeFK1JrytRKKb13WvFA7td5VeZxjkmjl6I0LpGB5yroJBRc0wUomvw76HhjKiE042WCJ3g9nC1BnxdpZXVTaC-EjbfPv32fcRrpZQmActUF_hXX_lmeueLvjh7CgzZQZfuNZj2CtVA9hrvN6MrrJzBC_WKHU8LypDZINqSWYSqmYpOSfW7LW9mBu6hr_mrx77D9ig1aeAo0suzTstHzKZzdChefwXo1qcIGMBtibQvhC61L_ICwiru0NDakUuWxUj1437Ery1vgcpqfcZFhAkPMzVaZ24OtBfW0Aez4B91mx_msPbazbKlkPXi7WMYDR68orgqTS6TBkJVw-C1u7HkjqMWPaBi9xJS1B-aGCBcEBOZ9c6U6_1qDehvCTkz4i_9v6w3c65-eDLPhYHT8Eu5zSv7rEvJNWJ__vAyvMEKa-9e1WjL4ctvn4DfSOiNY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRSAuiHcDBRaJnpAVe5_eSlVVtY0aWqIeKMrN7NprUVScQFJV_Wv8Omb8SFIQ3Hrekb2anefuzDcA70QiXI7GMSp5gQmKK2zkedCRNrEJqdM61GDVH0f66Ex-GKvxGvzqemGorLKzibWhLiY53ZH3MZEhbDgjRL9syyJODwa70x8RTZCil9ZunEYjIsfh-grTt9nO8ADPeovzweGn_aOonTAQ4f74POLCap-nXHpbuCK1pkytlNJ7pxUP5IqdV2Ue55hAeilK4xIZeK6CTkLBNV2Govm_YwS6TdQlM14me4LXg9oS9H-RVlY3RfdC2Lh__u37jNN4L0tglKvu8K8Y989SzRXfN3gID9qgle01UvYI1kL1GO42Yyyvn8AIZY0dTgnXk1oi2Qm1D1NhFZuU7HNb6sr23UVd_1eLwjbbq9iwhapAg8tOl02fT-HsVrj4DNarSRU2gNkQa1sIX2hd4geEVdylpbEhlSqPlerB-45dWd6CmNMsjYsMkxlibrbK3B5sLainDXjHP-g2O85nrQrPsqXA9eDtYhmVj15UXBUml0iD4Sth8lvc2PPmoBY_osH0EtPXHpgbR7ggIGDvmyvV-dca4NsQjmLCX_x_W2_gHmpAdjIcHb-E-5zuAepq8k1Yn_-8DK8wWJr717VUMvhy22rwGzbgJ44
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Epigenetic+Landscape+of+Vascular+Calcification%3A+An+Integrative+Perspective&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Yi-Chou%2C+Hou&rft.au=Chien-Lin%2C+Lu&rft.au=Tzu-Hang+Yuan&rft.au=Liao%2C+Min-Tser&rft.date=2020-02-01&rft.pub=MDPI+AG&rft.issn=1661-6596&rft.eissn=1422-0067&rft.volume=21&rft.issue=3&rft.spage=980&rft_id=info:doi/10.3390%2Fijms21030980&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon