The Epigenetic Landscape of Vascular Calcification: An Integrative Perspective
Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus. The pathophysiology of VC encompasses passive occurrence of physico-chemical calcium deposition, active cellular secretion of osteoid matrix u...
Saved in:
Published in | International journal of molecular sciences Vol. 21; no. 3; p. 980 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.02.2020
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1422-0067 1661-6596 1422-0067 |
DOI | 10.3390/ijms21030980 |
Cover
Loading…
Abstract | Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus. The pathophysiology of VC encompasses passive occurrence of physico-chemical calcium deposition, active cellular secretion of osteoid matrix upon exposure to metabolically noxious stimuli, or a variable combination of both processes. Epigenetic alterations have been shown to participate in this complex environment, through mechanisms including DNA methylation, non-coding RNAs, histone modifications, and chromatin changes. Despite such importance, existing reviews fail to provide a comprehensive view of all relevant reports addressing epigenetic processes in VC, and cross-talk between different epigenetic machineries is rarely examined. We conducted a systematic review based on PUBMED and MEDLINE databases up to 30 September 2019, to identify clinical, translational, and experimental reports addressing epigenetic processes in VC; we retrieved 66 original studies, among which 60.6% looked into the pathogenic role of non-coding RNA, followed by DNA methylation (12.1%), histone modification (9.1%), and chromatin changes (4.5%). Nine (13.6%) reports examined the discrepancy of epigenetic signatures between subjects or tissues with and without VC, supporting their applicability as biomarkers. Assisted by bioinformatic analyses blending in each epigenetic component, we discovered prominent interactions between microRNAs, DNA methylation, and histone modification regarding potential influences on VC risk. |
---|---|
AbstractList | Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus. The pathophysiology of VC encompasses passive occurrence of physico-chemical calcium deposition, active cellular secretion of osteoid matrix upon exposure to metabolically noxious stimuli, or a variable combination of both processes. Epigenetic alterations have been shown to participate in this complex environment, through mechanisms including DNA methylation, non-coding RNAs, histone modifications, and chromatin changes. Despite such importance, existing reviews fail to provide a comprehensive view of all relevant reports addressing epigenetic processes in VC, and cross-talk between different epigenetic machineries is rarely examined. We conducted a systematic review based on PUBMED and MEDLINE databases up to 30 September 2019, to identify clinical, translational, and experimental reports addressing epigenetic processes in VC; we retrieved 66 original studies, among which 60.6% looked into the pathogenic role of non-coding RNA, followed by DNA methylation (12.1%), histone modification (9.1%), and chromatin changes (4.5%). Nine (13.6%) reports examined the discrepancy of epigenetic signatures between subjects or tissues with and without VC, supporting their applicability as biomarkers. Assisted by bioinformatic analyses blending in each epigenetic component, we discovered prominent interactions between microRNAs, DNA methylation, and histone modification regarding potential influences on VC risk. Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus. The pathophysiology of VC encompasses passive occurrence of physico-chemical calcium deposition, active cellular secretion of osteoid matrix upon exposure to metabolically noxious stimuli, or a variable combination of both processes. Epigenetic alterations have been shown to participate in this complex environment, through mechanisms including DNA methylation, non-coding RNAs, histone modifications, and chromatin changes. Despite such importance, existing reviews fail to provide a comprehensive view of all relevant reports addressing epigenetic processes in VC, and cross-talk between different epigenetic machineries is rarely examined. We conducted a systematic review based on PUBMED and MEDLINE databases up to 30 September 2019, to identify clinical, translational, and experimental reports addressing epigenetic processes in VC; we retrieved 66 original studies, among which 60.6% looked into the pathogenic role of non-coding RNA, followed by DNA methylation (12.1%), histone modification (9.1%), and chromatin changes (4.5%). Nine (13.6%) reports examined the discrepancy of epigenetic signatures between subjects or tissues with and without VC, supporting their applicability as biomarkers. Assisted by bioinformatic analyses blending in each epigenetic component, we discovered prominent interactions between microRNAs, DNA methylation, and histone modification regarding potential influences on VC risk.Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus. The pathophysiology of VC encompasses passive occurrence of physico-chemical calcium deposition, active cellular secretion of osteoid matrix upon exposure to metabolically noxious stimuli, or a variable combination of both processes. Epigenetic alterations have been shown to participate in this complex environment, through mechanisms including DNA methylation, non-coding RNAs, histone modifications, and chromatin changes. Despite such importance, existing reviews fail to provide a comprehensive view of all relevant reports addressing epigenetic processes in VC, and cross-talk between different epigenetic machineries is rarely examined. We conducted a systematic review based on PUBMED and MEDLINE databases up to 30 September 2019, to identify clinical, translational, and experimental reports addressing epigenetic processes in VC; we retrieved 66 original studies, among which 60.6% looked into the pathogenic role of non-coding RNA, followed by DNA methylation (12.1%), histone modification (9.1%), and chromatin changes (4.5%). Nine (13.6%) reports examined the discrepancy of epigenetic signatures between subjects or tissues with and without VC, supporting their applicability as biomarkers. Assisted by bioinformatic analyses blending in each epigenetic component, we discovered prominent interactions between microRNAs, DNA methylation, and histone modification regarding potential influences on VC risk. |
Author | Yuan, Tzu-Hang Lu, Kuo-Cheng Chao, Chia-Ter Hou, Yi-Chou Liao, Min-Tser Lu, Chien-Lin |
AuthorAffiliation | 8 Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 108, Taiwan 1 Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 234, Taiwan; athletics910@gmail.com 2 Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 243, Taiwan; janlin0123@gmail.com (C.-L.L.); kuochenglu@gmail.com (K.-C.L.) 4 Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan; liaoped804h@yahoo.com.tw 6 Department of Pediatrics, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 243, Taiwan 5 Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan 7 Nephrology division, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan 3 Graduate Institute |
AuthorAffiliation_xml | – name: 3 Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 104, Taiwan; yuan.tzu.h@gmail.com – name: 4 Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan; liaoped804h@yahoo.com.tw – name: 7 Nephrology division, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan – name: 8 Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 108, Taiwan – name: 2 Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 243, Taiwan; janlin0123@gmail.com (C.-L.L.); kuochenglu@gmail.com (K.-C.L.) – name: 6 Department of Pediatrics, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 243, Taiwan – name: 1 Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 234, Taiwan; athletics910@gmail.com – name: 5 Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan |
Author_xml | – sequence: 1 givenname: Yi-Chou surname: Hou fullname: Hou, Yi-Chou – sequence: 2 givenname: Chien-Lin orcidid: 0000-0002-9452-5179 surname: Lu fullname: Lu, Chien-Lin – sequence: 3 givenname: Tzu-Hang surname: Yuan fullname: Yuan, Tzu-Hang – sequence: 4 givenname: Min-Tser surname: Liao fullname: Liao, Min-Tser – sequence: 5 givenname: Chia-Ter orcidid: 0000-0003-2892-7986 surname: Chao fullname: Chao, Chia-Ter – sequence: 6 givenname: Kuo-Cheng surname: Lu fullname: Lu, Kuo-Cheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32024140$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUFP3DAQha2KChbKrecqUi89sMUe20ncAxJaAV1pRXugXC3HmSxeZe3UTpD678mygLYrTjOj-ebpzcwxOfDBIyGfGf3OuaLnbrVOwCinqqQfyIQJgCmleXGwkx-R45RWlAIHqQ7JEQcKggk6Ibd3D5hddW6JHntns4XxdbKmwyw02b1JdmhNzGamta5x1vQu-B_Zpc_mvsdlHOtHzH5jTB3aTf6JfGxMm_D0JZ6QP9dXd7Of08Wvm_nscjG1gkE_Ba7yypYgKlWbulRFUyohRFWZXAJyKYWpZGOpLQRUgjeFYQLBSswZ1pBzfkIutrrdUK2xtuj7aFrdRbc28Z8Oxun_O9496GV41AXlBWMwCnx7EYjh74Cp12uXLLat8RiGpIFLoKLkSo7o1z10FYbox_U0SFHmhSr4xtGXXUdvVl5PPQKwBWwMKUVstHX980FHg67VjOrNP_XuP8ehs72hV9138Sd2WKFP |
CitedBy_id | crossref_primary_10_1021_acs_jmedchem_2c01601 crossref_primary_10_3389_fcvm_2021_624313 crossref_primary_10_1016_j_ijcha_2024_101505 crossref_primary_10_3389_fnagi_2023_1131548 crossref_primary_10_3390_life13091801 crossref_primary_10_1161_CIRCRESAHA_123_323699 crossref_primary_10_1016_j_cca_2020_10_021 crossref_primary_10_1172_JCI150966 crossref_primary_10_3390_ijms22126270 crossref_primary_10_3390_ijms21051593 crossref_primary_10_1016_j_jacc_2021_06_049 crossref_primary_10_1016_j_cca_2020_10_022 crossref_primary_10_1089_dna_2020_5949 crossref_primary_10_1016_j_lfs_2024_123319 crossref_primary_10_1186_s12933_021_01279_6 crossref_primary_10_1038_s41401_021_00846_7 crossref_primary_10_1002_ctm2_145 crossref_primary_10_3389_fphar_2021_722728 crossref_primary_10_1021_acs_jmedchem_4c01247 crossref_primary_10_1007_s11033_023_08792_9 crossref_primary_10_3390_toxins12060420 crossref_primary_10_1016_j_isci_2023_108360 crossref_primary_10_14336_AD_2024_0289 crossref_primary_10_3390_toxins12120812 crossref_primary_10_1155_2021_6675548 crossref_primary_10_1155_2022_4378413 crossref_primary_10_3390_biom11020226 crossref_primary_10_3390_healthcare9080979 crossref_primary_10_1186_s43556_023_00146_y crossref_primary_10_1016_j_atherosclerosis_2024_119085 crossref_primary_10_1016_j_archger_2024_105333 crossref_primary_10_1016_j_mvr_2020_104105 crossref_primary_10_1016_j_semcdb_2022_09_012 crossref_primary_10_1186_s12957_022_02487_4 crossref_primary_10_2147_VHRM_S242685 crossref_primary_10_1080_14656566_2023_2266381 crossref_primary_10_1155_2022_9122264 crossref_primary_10_1093_cvr_cvab038 |
Cites_doi | 10.1161/CIRCRESAHA.117.306712 10.1093/ajh/hpx197 10.2174/2211536608666181122125208 10.1016/j.atherosclerosis.2018.11.002 10.1016/j.taap.2018.12.002 10.1080/0886022X.2019.1591997 10.1038/emboj.2013.156 10.1016/j.cmet.2017.02.016 10.1093/cvr/cvv030 10.1681/ASN.2014050520 10.1038/ncomms10492 10.1016/j.toxlet.2017.11.033 10.1111/joim.12099 10.1002/dvdy.24477 10.1210/en.2012-2236 10.3109/0886022X.2012.676491 10.1007/s11914-015-0293-9 10.1007/s00441-016-2469-8 10.1161/JAHA.118.010805 10.1016/j.yexcr.2014.01.025 10.1038/labinvest.2012.85 10.1155/2015/624037 10.1161/ATVBAHA.112.300206 10.1007/s10142-019-00669-0 10.2174/1389450115666140627104151 10.15252/embr.201643686 10.1007/s13277-016-5144-5 10.1016/j.bbrc.2018.10.198 10.1177/0300060519848949 10.1074/jbc.M111.292722 10.1016/j.atherosclerosis.2014.12.040 10.1155/2017/6713606 10.1093/jb/mvz065 10.1096/fj.201802063RR 10.1002/jnr.24487 10.1038/ncomms15870 10.1016/j.vph.2018.11.006 10.1016/j.ajpath.2011.06.016 10.1016/j.yjmcc.2017.11.021 10.1371/journal.pone.0216947 10.1016/j.bone.2016.11.016 10.1210/en.2018-00320 10.2215/CJN.01930408 10.1016/j.bone.2019.04.006 10.1016/j.mam.2019.09.004 10.1002/jcp.28607 10.5551/jat.20818 10.1155/2018/9623412 10.1002/jcp.28390 10.1002/cbf.3005 10.1016/j.arcmed.2018.08.002 10.1161/CIRCRESAHA.116.310262 10.3346/jkms.2017.32.11.1738 10.1038/s41467-019-09174-1 10.1002/stem.288 10.1159/000499646 10.1007/s12272-019-01118-z 10.1161/JAHA.112.003905 10.1002/cbf.2974 10.1016/j.jstrokecerebrovasdis.2017.08.009 10.1002/jcp.28130 10.2174/1570161113666150722151817 10.1126/science.aal2380 10.1161/CIRCRESAHA.118.312497 10.1126/scisignal.2001744 10.1016/j.atherosclerosis.2018.11.024 10.1002/jbmr.1604 10.1002/jcp.27300 10.1161/ATVBAHA.118.311298 10.3389/fgene.2017.00209 10.18632/oncotarget.24662 10.1016/j.biomaterials.2017.11.033 10.1093/cvr/cvs258 10.1016/j.yexcr.2017.11.033 10.1371/journal.pone.0047807 10.5551/jat.36897 10.1186/1476-4598-12-30 10.1371/journal.pone.0174138 10.1097/HJH.0000000000000732 10.1155/2015/320849 10.1371/journal.pone.0131589 10.1111/jcmm.14535 10.7150/ijbs.15195 10.1161/ATVBAHA.117.309566 10.1155/2016/7419524 10.18632/aging.101973 10.5551/jat.15826 10.1159/000495885 10.1002/jcp.26121 10.1159/000362971 10.1074/jbc.RA118.002046 10.1016/j.bbadis.2015.08.003 10.1182/blood-2012-04-423004 10.4049/jimmunol.1800747 10.1210/er.2003-0015 10.3389/fphar.2018.00903 10.1111/gtc.12311 10.18632/oncotarget.1825 10.1002/jbmr.93 |
ContentType | Journal Article |
Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0S M1P M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.3390/ijms21030980 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medicine (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest-PRL(Research Library) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic proquest-Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1422-0067 |
ExternalDocumentID | PMC7037112 32024140 10_3390_ijms21030980 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST-108-2314-B-002-055- |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8G5 A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 DWQXO E3Z EBD EBS EJD ESX F5P FRP FYUFA GNUQQ GUQSH GX1 HH5 HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M2O M48 MODMG O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI GROUPED_DOAJ HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK K9. MBDVC PJZUB PKEHL PPXIY PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c412t-2396bc824b9dad897f89444bba652e3554ab5fc0c742b43f7a14e2c5e61ed2633 |
IEDL.DBID | 8FG |
ISSN | 1422-0067 1661-6596 |
IngestDate | Thu Aug 21 18:16:07 EDT 2025 Thu Jul 10 17:21:30 EDT 2025 Fri Jul 25 20:30:43 EDT 2025 Wed Feb 19 02:31:27 EST 2025 Thu Apr 24 23:10:08 EDT 2025 Tue Jul 01 04:15:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | chronic kidney disease epigenetic vascular calcification phosphate microRNA diabetes mellitus medial calcification vascular smooth muscle cells |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-2396bc824b9dad897f89444bba652e3554ab5fc0c742b43f7a14e2c5e61ed2633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-9452-5179 0000-0003-2892-7986 |
OpenAccessLink | https://www.proquest.com/docview/2548679733?pq-origsite=%requestingapplication% |
PMID | 32024140 |
PQID | 2548679733 |
PQPubID | 2032341 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7037112 proquest_miscellaneous_2352048395 proquest_journals_2548679733 pubmed_primary_32024140 crossref_citationtrail_10_3390_ijms21030980 crossref_primary_10_3390_ijms21030980 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 2020-Feb-01 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of molecular sciences |
PublicationTitleAlternate | Int J Mol Sci |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Goettsch (ref_13) 2011; 179 Wu (ref_9) 2015; 2015 Wu (ref_94) 2013; 12 Chao (ref_75) 2019; 8 Han (ref_40) 2018; 506 Louvet (ref_28) 2016; 2016 Azechi (ref_59) 2014; 21 Dudunk (ref_76) 2019; 8 ref_18 Alizadeh (ref_98) 2019; 234 Li (ref_36) 2017; 72 Gulei (ref_97) 2019; 70 Ramachandran (ref_62) 2018; 293 Doherty (ref_3) 2004; 25 Mangino (ref_70) 2016; 34 Guerrero (ref_5) 2010; 25 Gangwar (ref_86) 2018; 31 Bridge (ref_80) 2012; 120 Fakhry (ref_43) 2018; 233 Icli (ref_96) 2019; 33 Cui (ref_15) 2012; 96 Sun (ref_38) 2018; 49 ref_27 Haneklaus (ref_102) 2013; 274 Chao (ref_83) 2019; 23 Lin (ref_41) 2018; 159 Louvet (ref_23) 2015; 1852 Badi (ref_39) 2018; 38 Zhang (ref_42) 2018; 362 ref_77 Fujita (ref_66) 2014; 32 Lin (ref_64) 2019; 11 Wang (ref_50) 2019; 10 Zheng (ref_31) 2016; 19 Kwon (ref_54) 2016; 7 McCullough (ref_2) 2008; 3 Chao (ref_33) 2017; 37 Shrestha (ref_90) 2017; 246 Daoudi (ref_55) 2017; 121 Xie (ref_61) 2018; 155 Wang (ref_69) 2012; 34 Du (ref_14) 2012; 32 Liu (ref_93) 2019; 166 Gui (ref_17) 2012; 92 Song (ref_52) 2019; 364 Liu (ref_63) 2018; 114 Ding (ref_25) 2015; 106 Wu (ref_35) 2017; 118 Agostini (ref_99) 2014; 5 Jiang (ref_34) 2017; 2017 Guo (ref_46) 2019; 19 Wang (ref_48) 2019; 234 Qiao (ref_21) 2014; 33 Chen (ref_60) 2016; 12 Li (ref_88) 2019; 44 Kim (ref_12) 2019; 42 Wen (ref_22) 2014; 322 Ulbing (ref_71) 2017; 95 Huang (ref_85) 2010; 28 Kim (ref_92) 2012; 27 Sales (ref_7) 2017; 25 Qu (ref_89) 2019; 234 Cai (ref_95) 2017; 8 Lin (ref_30) 2016; 14 Lefort (ref_100) 2013; 32 Xu (ref_47) 2019; 234 Csont (ref_87) 2018; 9 Kwon (ref_11) 2017; 32 Sudo (ref_26) 2015; 20 Li (ref_103) 2019; 97 Cavallari (ref_49) 2019; 202 Azechi (ref_53) 2013; 20 Mao (ref_78) 2018; 2018 Flavahan (ref_6) 2017; 357 Katano (ref_73) 2018; 27 Mackenzie (ref_20) 2014; 32 Li (ref_84) 2016; 37 Wu (ref_79) 2012; 287 Li (ref_82) 2018; 9 Wang (ref_68) 2019; 41 Nanoudis (ref_10) 2017; 8 Balderman (ref_16) 2012; 1 Zhou (ref_72) 2017; 24 Alluri (ref_1) 2015; 239 Yu (ref_81) 2014; 15 Zhang (ref_8) 2018; 123 Hao (ref_29) 2016; 366 ref_37 Kim (ref_101) 2011; 4 Zhang (ref_51) 2019; 2019 Kurozumi (ref_57) 2019; 124 Vacante (ref_91) 2019; 112 Panizo (ref_32) 2016; 27 Kirsch (ref_45) 2019; 280 Cheng (ref_65) 2015; 117 Liao (ref_19) 2013; 154 Chen (ref_4) 2015; 13 Gilham (ref_67) 2019; 280 Xia (ref_24) 2015; 2015 Zhang (ref_44) 2018; 284 Lee (ref_74) 2019; 47 Abend (ref_56) 2017; 18 Chen (ref_58) 2019; 141 |
References_xml | – volume: 117 start-page: 142 year: 2015 ident: ref_65 article-title: Vascular smooth muscle LRP6 limits arteriosclerotic calcification in diabetic LDLR−/− mice by restraining noncanonical Wnt signals publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.117.306712 – volume: 31 start-page: 150 year: 2018 ident: ref_86 article-title: Noncoding RNAs in Cardiovascular Disease: Pathological Relevance and Emerging Role as Biomarkers and Therapeutics publication-title: Am. J. Hypertens. doi: 10.1093/ajh/hpx197 – volume: 8 start-page: 127 year: 2019 ident: ref_76 article-title: Vascular Calcification and not Arrhythmia in Idiopathic Atrial Fibrillation Associates with Sex Differences in Diabetic Microvascular Injury miRNA Profiles publication-title: MicroRNA doi: 10.2174/2211536608666181122125208 – volume: 280 start-page: 75 year: 2019 ident: ref_67 article-title: Apabetalone downregulates factors and pathways associated with vascular calcification publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2018.11.002 – volume: 364 start-page: 45 year: 2019 ident: ref_52 article-title: Association of astragaloside IV-inhibited autophagy and mineralization in vascular smooth muscle cells with lncRNA H19 and DUSP5-mediated ERK signaling publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2018.12.002 – volume: 41 start-page: 220 year: 2019 ident: ref_68 article-title: Label-free quantitative proteomics identifies Smarca4 is involved in vascular calcification publication-title: Ren. Fail. doi: 10.1080/0886022X.2019.1591997 – volume: 32 start-page: 2248 year: 2013 ident: ref_100 article-title: A miR-34a-SIRT6 axis in the squamous cell differentiation network publication-title: EMBO J. doi: 10.1038/emboj.2013.156 – volume: 25 start-page: 559 year: 2017 ident: ref_7 article-title: Epigenetic Mechanisms of Transmission of Metabolic Disease across Generations publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.02.016 – volume: 106 start-page: 131 year: 2015 ident: ref_25 article-title: miR-30e targets IGF2-regulated osteogenesis in bone marrow-derived mesenchymal stem cells, aortic smooth muscle cells, and ApoE−/− mice publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvv030 – volume: 27 start-page: 824 year: 2016 ident: ref_32 article-title: MicroRNAs 29b, 133b, and 211 Regulate Vascular Smooth Muscle Calcification Mediated by High Phosphorus publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2014050520 – volume: 7 start-page: 10492 year: 2016 ident: ref_54 article-title: MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification publication-title: Nat. Commun. doi: 10.1038/ncomms10492 – volume: 72 start-page: 680 year: 2017 ident: ref_36 article-title: Satb1 promotes osteoclastogenesis by recruiting CBP to upregulate miR-223 expression in chronic kidney disease-mineral and bone disorder publication-title: Pharmazie – volume: 284 start-page: 29 year: 2018 ident: ref_44 article-title: Indoxyl sulfate accelerates vascular smooth muscle cell calcification via microRNA-29b dependent regulation of Wnt/β-catenin signaling publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2017.11.033 – volume: 274 start-page: 215 year: 2013 ident: ref_102 article-title: miR-223: Infection, inflammation and cancer publication-title: J. Intern. Med. doi: 10.1111/joim.12099 – volume: 246 start-page: 285 year: 2017 ident: ref_90 article-title: MicroRNA-142 is a multifaceted regulator in organogenesis, homeostasis, and disease publication-title: Dev. Dyn. doi: 10.1002/dvdy.24477 – volume: 154 start-page: 3344 year: 2013 ident: ref_19 article-title: MiR-133a Modulates Osteogenic Differentiation of Vascular Smooth Muscle Cells publication-title: Endocrinology doi: 10.1210/en.2012-2236 – volume: 34 start-page: 685 year: 2012 ident: ref_69 article-title: Reduced Circulating miR-15b Is Correlated with Phosphate Metabolism in Patients with End-Stage Renal Disease on Maintenance Hemodialysis publication-title: Ren. Fail. doi: 10.3109/0886022X.2012.676491 – volume: 13 start-page: 372 year: 2015 ident: ref_4 article-title: Pathophysiology of Vascular Calcification publication-title: Curr. Osteoporos. Rep. doi: 10.1007/s11914-015-0293-9 – volume: 366 start-page: 733 year: 2016 ident: ref_29 article-title: MicroRNA-34b/c inhibits aldosterone-induced vascular smooth muscle cell calcification via a SATB2/Runx2 pathway publication-title: Cell Tissue Res. doi: 10.1007/s00441-016-2469-8 – volume: 8 start-page: e010805 year: 2019 ident: ref_75 article-title: Risk Factors Associated With Altered Circulating Micro RNA -125b and Their Influences on Uremic Vascular Calcification Among Patients With End-Stage Renal Disease publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.118.010805 – volume: 118 start-page: 499 year: 2017 ident: ref_35 article-title: MiR-26a regulates vascular smooth muscle cell calcification in vitro through targeting CTGF publication-title: Bratisl. Lek. Listy – volume: 322 start-page: 302 year: 2014 ident: ref_22 article-title: miR-125b/Ets1 axis regulates transdifferentiation and calcification of vascular smooth muscle cells in a high-phosphate environment publication-title: Exp. Cell. Res. doi: 10.1016/j.yexcr.2014.01.025 – volume: 92 start-page: 1250 year: 2012 ident: ref_17 article-title: MicroRNAs that target Ca2+ transporters are involved in vascular smooth muscle cell calcification publication-title: Lab. Investig. doi: 10.1038/labinvest.2012.85 – volume: 2015 start-page: 624037 year: 2015 ident: ref_24 article-title: Runx2/miR-3960/miR-2861 Positive Feedback Loop Is Responsible for Osteogenic Transdifferentiation of Vascular Smooth Muscle Cells publication-title: Biomed. Res. Int. doi: 10.1155/2015/624037 – volume: 32 start-page: 2580 year: 2012 ident: ref_14 article-title: Upregulation of a Disintegrin and Metalloproteinase with Thrombospondin Motifs-7 by miR-29 Repression Mediates Vascular Smooth Muscle Calcification publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.112.300206 – volume: 19 start-page: 633 year: 2019 ident: ref_46 article-title: Bone marrow mesenchymal stem cell–derived exosomes alleviate high phosphorus-induced vascular smooth muscle cells calcification by modifying microRNA profiles publication-title: Funct. Integr. Genomics doi: 10.1007/s10142-019-00669-0 – volume: 15 start-page: 817 year: 2014 ident: ref_81 article-title: microRNA-133: Expression, Function and Therapeutic Potential in Muscle Diseases and Cancer publication-title: Curr. Drug Targets doi: 10.2174/1389450115666140627104151 – volume: 18 start-page: 1166 year: 2017 ident: ref_56 article-title: Salt-inducible kinase induces cytoplasmic histone deacetylase 4 to promote vascular calcification publication-title: EMBO Rep. doi: 10.15252/embr.201643686 – volume: 37 start-page: 11667 year: 2016 ident: ref_84 article-title: The dual regulatory role of miR-204 in cancer publication-title: Tumour Biol. doi: 10.1007/s13277-016-5144-5 – volume: 506 start-page: 1040 year: 2018 ident: ref_40 article-title: Teniposide regulates the phenotype switching of vascular smooth muscle cells in a miR-21-dependent manner publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.10.198 – volume: 47 start-page: 2929 year: 2019 ident: ref_74 article-title: Circulating microRNAs and vascular calcification in hemodialysis patients publication-title: J. Int. Med. Res. doi: 10.1177/0300060519848949 – volume: 287 start-page: 7503 year: 2012 ident: ref_79 article-title: miR-30 family members negatively regulate osteoblast differentiation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.292722 – volume: 239 start-page: 109 year: 2015 ident: ref_1 article-title: Scoring of coronary artery calcium scans: History, assumptions, current limitations, and future directions publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2014.12.040 – volume: 2017 start-page: 6713606 year: 2017 ident: ref_34 article-title: The Involvement of miR-29b-3p in Arterial Calcification by Targeting Matrix Metalloproteinase-2 publication-title: Biomed. Res. Int. doi: 10.1155/2017/6713606 – volume: 166 start-page: 495 year: 2019 ident: ref_93 article-title: MiR-211-5p contributes to chondrocyte differentiation by suppressing Fibulin-4 expression to play a role in osteoarthritis publication-title: J. Biochem. doi: 10.1093/jb/mvz065 – volume: 33 start-page: 5599 year: 2019 ident: ref_96 article-title: MicroRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells publication-title: FASEB J. doi: 10.1096/fj.201802063RR – volume: 97 start-page: 1242 year: 2019 ident: ref_103 article-title: Inflammation-regulatory microRNAs: Valuable targets for intracranial atherosclerosis publication-title: J. Neurosci. Res. doi: 10.1002/jnr.24487 – volume: 8 start-page: 15870 year: 2017 ident: ref_95 article-title: Simultaneous overactivation of Wnt/β-catenin and TGFβ signalling by miR-128-3p confers chemoresistance-associated metastasis in NSCLC publication-title: Nat. Commun. doi: 10.1038/ncomms15870 – volume: 112 start-page: 24 year: 2019 ident: ref_91 article-title: The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease publication-title: Vasc. Pharmacol. doi: 10.1016/j.vph.2018.11.006 – volume: 179 start-page: 1594 year: 2011 ident: ref_13 article-title: miR-125b Regulates Calcification of Vascular Smooth Muscle Cells publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2011.06.016 – volume: 114 start-page: 264 year: 2018 ident: ref_63 article-title: High phosphate-induced downregulation of PPARγ contributes to CKD-associated vascular calcification publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2017.11.021 – ident: ref_77 doi: 10.1371/journal.pone.0216947 – volume: 95 start-page: 115 year: 2017 ident: ref_71 article-title: MicroRNAs 223-3p and 93-5p in patients with chronic kidney disease before and after renal transplantation publication-title: Bone doi: 10.1016/j.bone.2016.11.016 – volume: 159 start-page: 2905 year: 2018 ident: ref_41 article-title: Arterial Calcification Is Regulated Via an miR-204/DNMT3a Regulatory Circuit Both In Vitro and in Female Mice publication-title: Endocrinology doi: 10.1210/en.2018-00320 – volume: 3 start-page: 1585 year: 2008 ident: ref_2 article-title: Accelerated Atherosclerotic Calcification and Mönckeberg’s Sclerosis: A Continuum of Advanced Vascular Pathology in Chronic Kidney Disease publication-title: Clin. J. Am. Soc. Nephrol. doi: 10.2215/CJN.01930408 – volume: 124 start-page: 53 year: 2019 ident: ref_57 article-title: IL-6 and sIL-6R induces STAT3-dependent differentiation of human VSMCs into osteoblast-like cells through JMJD2B-mediated histone demethylation of RUNX2 publication-title: Bone doi: 10.1016/j.bone.2019.04.006 – volume: 70 start-page: 33 year: 2019 ident: ref_97 article-title: The extensive role of miR-155 in malignant and non-malignant diseases publication-title: Mol. Asp. Med. doi: 10.1016/j.mam.2019.09.004 – volume: 234 start-page: 19280 year: 2019 ident: ref_98 article-title: The potential role of miR-29 in health and cancer diagnosis, prognosis, and therapy publication-title: J. Cell. Physiol. doi: 10.1002/jcp.28607 – volume: 19 start-page: 1331 year: 2016 ident: ref_31 article-title: MicroRNA-297a regulates vascular calcification by targeting fibroblast growth factor 23 publication-title: Iran. J. Basic Med. Sci. – volume: 21 start-page: 463 year: 2014 ident: ref_59 article-title: 5-aza-2’-Deoxycytidine, a DNA Methyltransferase Inhibitor, Facilitates the Inorganic Phosphorus-Induced Mineralization of Vascular Smooth Muscle Cells publication-title: J. Atheroscler. Thromb. doi: 10.5551/jat.20818 – volume: 2018 start-page: 9623412 year: 2018 ident: ref_78 article-title: miR-30 Family: A Promising Regulator in Development and Disease publication-title: Biomed. Res. Int. doi: 10.1155/2018/9623412 – volume: 234 start-page: 17663 year: 2019 ident: ref_89 article-title: Downregulated microRNA-135a ameliorates rheumatoid arthritis by inactivation of the phosphatidylinositol 3-kinase/AKT signaling pathway via phosphatidylinositol 3-kinase regulatory subunit 2 publication-title: J. Cell. Physiol. doi: 10.1002/jcp.28390 – volume: 32 start-page: 209 year: 2014 ident: ref_20 article-title: miRNA-221 and miRNA-222 synergistically function to promote vascular calcification publication-title: Cell Biochem. Funct. doi: 10.1002/cbf.3005 – volume: 49 start-page: 164 year: 2018 ident: ref_38 article-title: Impact of miR-302b on Calcium-phosphorus Metabolism and Vascular Calcification of Rats with Chronic Renal Failure by Regulating BMP-2/Runx2/Osterix Signaling Pathway publication-title: Arch. Med. Res. doi: 10.1016/j.arcmed.2018.08.002 – volume: 121 start-page: 19 year: 2017 ident: ref_55 article-title: Human Alternative Macrophages Populate Calcified Areas of Atherosclerotic Lesions and Display Impaired RANKL-Induced Osteoclastic Bone Resorption Activity publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.310262 – volume: 32 start-page: 1738 year: 2017 ident: ref_11 article-title: New Aspects of Vascular Calcification: Histone Deacetylases and Beyond publication-title: J. Korean Med. Sci. doi: 10.3346/jkms.2017.32.11.1738 – volume: 10 start-page: 1203 year: 2019 ident: ref_50 article-title: Poly(ADP-ribose) polymerase 1 accelerates vascular calcification by upregulating Runx2 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09174-1 – volume: 28 start-page: 357 year: 2010 ident: ref_85 article-title: MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation publication-title: Stem Cells doi: 10.1002/stem.288 – volume: 44 start-page: 287 year: 2019 ident: ref_88 article-title: MicroRNA-26a: An Emerging Regulator of Renal Biology and Disease publication-title: Kidney Blood Press. Res. doi: 10.1159/000499646 – volume: 42 start-page: 244 year: 2019 ident: ref_12 article-title: Diverse roles of noncoding RNAs in vascular calcification publication-title: Arch. Pharm. Res. doi: 10.1007/s12272-019-01118-z – volume: 1 start-page: e003905 year: 2012 ident: ref_16 article-title: Bone morphogenetic protein-2 decreases microRNA-30b and microRNA-30c to promote vascular smooth muscle cell calcification publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.112.003905 – volume: 32 start-page: 77 year: 2014 ident: ref_66 article-title: Necrotic and apoptotic cells serve as nuclei for calcification on osteoblastic differentiation of human mesenchymal stem cells in vitro publication-title: Cell. Biochem. Funct. doi: 10.1002/cbf.2974 – volume: 27 start-page: 108 year: 2018 ident: ref_73 article-title: Differential Expression of microRNAs in Severely Calcified Carotid Plaques publication-title: J. Stroke Cerebrovasc. Dis. doi: 10.1016/j.jstrokecerebrovasdis.2017.08.009 – volume: 234 start-page: 14306 year: 2019 ident: ref_47 article-title: Restoration of microRNA-30b expression alleviates vascular calcification through the mTOR signaling pathway and autophagy publication-title: J. Cell. Physiol. doi: 10.1002/jcp.28130 – volume: 2019 start-page: 2691514 year: 2019 ident: ref_51 article-title: MicroRNA-25 Protects Smooth Muscle Cells against Corticosterone-Induced Apoptosis publication-title: Oxid. Med. Cell. Longev. – volume: 14 start-page: 211 year: 2016 ident: ref_30 article-title: MiR-135a Suppresses Calcification in Senescent VSMCs by Regulating KLF4/STAT3 Pathway publication-title: Curr. Vasc. Pharmacol. doi: 10.2174/1570161113666150722151817 – volume: 357 start-page: eaal2380 year: 2017 ident: ref_6 article-title: Epigenetic plasticity and the hallmarks of cancer publication-title: Science doi: 10.1126/science.aal2380 – volume: 123 start-page: 773 year: 2018 ident: ref_8 article-title: Epigenetic Modifications in Cardiovascular Aging and Diseases publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.118.312497 – volume: 4 start-page: ra71 year: 2011 ident: ref_101 article-title: p53 and microRNA-34 are suppressors of canonical Wnt signaling publication-title: Sci. Signal doi: 10.1126/scisignal.2001744 – volume: 280 start-page: 28 year: 2019 ident: ref_45 article-title: MicroRNA-142-3p improves vascular relaxation in uremia publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2018.11.024 – volume: 27 start-page: 1669 year: 2012 ident: ref_92 article-title: miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1 publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1604 – volume: 234 start-page: 4997 year: 2019 ident: ref_48 article-title: MiR-128-3p accelerates cardiovascular calcification and insulin resistance through ISL1-dependent Wnt pathway in type 2 diabetes mellitus rats publication-title: J. Cell. Physiol. doi: 10.1002/jcp.27300 – volume: 38 start-page: 2079 year: 2018 ident: ref_39 article-title: miR-34a Promotes Vascular Smooth Muscle Cell Calcification by Downregulating SIRT1 (Sirtuin 1) and Axl (AXL Receptor Tyrosine Kinase) publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.118.311298 – volume: 8 start-page: 209 year: 2017 ident: ref_10 article-title: The Role of MicroRNAs in Arterial Stiffness and Arterial Calcification. An Update and Review of the Literature publication-title: Front. Genet. doi: 10.3389/fgene.2017.00209 – volume: 9 start-page: 21580 year: 2018 ident: ref_87 article-title: A myriad of roles of miR-25 in health and disease publication-title: Oncotarget doi: 10.18632/oncotarget.24662 – volume: 155 start-page: 203 year: 2018 ident: ref_61 article-title: Matrix stiffness determines the phenotype of vascular smooth muscle cell in vitro and in vivo: Role of DNA methyltransferase 1 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.11.033 – volume: 96 start-page: 320 year: 2012 ident: ref_15 article-title: MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvs258 – volume: 362 start-page: 324 year: 2018 ident: ref_42 article-title: The miR-182/SORT1 axis regulates vascular smooth muscle cell calcification in vitro and in vivo publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2017.11.033 – ident: ref_18 doi: 10.1371/journal.pone.0047807 – volume: 24 start-page: 609 year: 2017 ident: ref_72 article-title: CDKN2B Methylation and Aortic Arch Calcification in Patients with Ischemic Stroke publication-title: J. Atheroscler. Thromb. doi: 10.5551/jat.36897 – volume: 12 start-page: 30 year: 2013 ident: ref_94 article-title: MicroRNA-32 (miR-32) regulates phosphatase and tensin homologue (PTEN) expression and promotes growth, migration, and invasion in colorectal carcinoma cells publication-title: Mol. Cancer doi: 10.1186/1476-4598-12-30 – ident: ref_37 doi: 10.1371/journal.pone.0174138 – volume: 34 start-page: 79 year: 2016 ident: ref_70 article-title: Integrated multiomics approach identifies calcium and integrin-binding protein-2 as a novel gene for pulse wave velocity publication-title: J. Hypertens. doi: 10.1097/HJH.0000000000000732 – volume: 2015 start-page: 320849 year: 2015 ident: ref_9 article-title: The Role of Epigenetics in Arterial Calcification publication-title: Biomed. Res. Int. doi: 10.1155/2015/320849 – ident: ref_27 doi: 10.1371/journal.pone.0131589 – volume: 23 start-page: 5884 year: 2019 ident: ref_83 article-title: MicroRNA-125b in vascular diseases: An updated systematic review of pathogenetic implications and clinical applications publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.14535 – volume: 12 start-page: 1236 year: 2016 ident: ref_60 article-title: Indoxyl Sulfate Enhance the Hypermethylation of Klotho and Promote the Process of Vascular Calcification in Chronic Kidney Disease publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.15195 – volume: 37 start-page: 1402 year: 2017 ident: ref_33 article-title: Circulating MicroRNA-125b Predicts the Presence and Progression of Uremic Vascular Calcification publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.117.309566 – volume: 2016 start-page: 7419524 year: 2016 ident: ref_28 article-title: Magnesium Attenuates Phosphate-Induced Deregulation of a MicroRNA Signature and Prevents Modulation of Smad1 and Osterix during the Course of Vascular Calcification publication-title: Biomed. Res. Int. doi: 10.1155/2016/7419524 – volume: 11 start-page: 3182 year: 2019 ident: ref_64 article-title: Aberration methylation of miR-34b was involved in regulating vascular calcification by targeting Notch1 publication-title: Aging doi: 10.18632/aging.101973 – volume: 20 start-page: 538 year: 2013 ident: ref_53 article-title: Trichostatin A, an HDAC Class I/II Inhibitor, Promotes Pi-Induced Vascular Calcification Via Up-Regulation of the Expression of Alkaline Phosphatase publication-title: J. Atheroscler. Thromb. doi: 10.5551/jat.15826 – volume: 141 start-page: 287 year: 2019 ident: ref_58 article-title: Amelioration of Uremic Toxin Indoxyl Sulfate-Induced Osteoblastic Calcification by SET Domain Containing Lysine Methyltransferase 7/9 Protein publication-title: Nephron doi: 10.1159/000495885 – volume: 233 start-page: 4056 year: 2018 ident: ref_43 article-title: Characterization and assessment of potential microRNAs involved in phosphate-induced aortic calcification publication-title: J. Cell. Physiol. doi: 10.1002/jcp.26121 – volume: 33 start-page: 1945 year: 2014 ident: ref_21 article-title: MicroRNA-205 Regulates the Calcification and Osteoblastic Differentiation of Vascular Smooth Muscle Cells publication-title: Cell. Physiol. Biochem. doi: 10.1159/000362971 – volume: 293 start-page: 7942 year: 2018 ident: ref_62 article-title: A GTPase-activating protein-binding protein (G3BP1)/antiviral protein relay conveys arteriosclerotic Wnt signals in aortic smooth muscle cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.002046 – volume: 1852 start-page: 2202 year: 2015 ident: ref_23 article-title: High inorganic phosphate concentration inhibits osteoclastogenesis by modulating miR-223 publication-title: Biochim. Biophys. Acta Mol. Basis Dis. doi: 10.1016/j.bbadis.2015.08.003 – volume: 120 start-page: 5063 year: 2012 ident: ref_80 article-title: The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis publication-title: Blood doi: 10.1182/blood-2012-04-423004 – volume: 202 start-page: 2372 year: 2019 ident: ref_49 article-title: Online Hemodiafiltration Inhibits Inflammation-Related Endothelial Dysfunction and Vascular Calcification of Uremic Patients Modulating miR-223 Expression in Plasma Extracellular Vesicles publication-title: J. Immunol. doi: 10.4049/jimmunol.1800747 – volume: 25 start-page: 629 year: 2004 ident: ref_3 article-title: Molecular, Endocrine, and Genetic Mechanisms of Arterial Calcification publication-title: Endocr. Rev. doi: 10.1210/er.2003-0015 – volume: 9 start-page: 903 year: 2018 ident: ref_82 article-title: miR-133: A Suppressor of Cardiac Remodeling? publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00903 – volume: 20 start-page: 1077 year: 2015 ident: ref_26 article-title: MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells publication-title: Genes Cells doi: 10.1111/gtc.12311 – volume: 5 start-page: 872 year: 2014 ident: ref_99 article-title: miR-34: From bench to bedside publication-title: Oncotarget doi: 10.18632/oncotarget.1825 – volume: 25 start-page: 1996 year: 2010 ident: ref_5 article-title: High-phosphate-induced calcification is related to SM22α promoter methylation in vascular smooth muscle cells publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.93 |
SSID | ssj0023259 |
Score | 2.4415946 |
SecondaryResourceType | review_article |
Snippet | Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus.... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 980 |
SubjectTerms | Calcification DNA methylation Epigenetics Growth factors Kinases MicroRNAs Pathogenesis Review Smooth muscle Transcription factors |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA6iCF7Et-uLCHqS6jbPRhARUVRUPLjirSRtiitrV91d0H_vTNutrq9zp22YSTLzkcn3EbLFQ24T2ByDjKUAUGxqAse8CpRuah9ZpXxBVn11rc5a4uJe3o-Rodpo5cDer9AO9aRar53dt5f3Q1jwB4g4AbLvtR-fegzlskwE4H0CcpJGEYcrUZ8nQNlQyKaFkI0CJY0qW-B_vD2anH5UnN8bJ79kotMZMl2VkPSojPksGfP5HJksRSXf58k1RJ6ePCPLJl5QpJd4mRfbnGg3o3dV4yk9tp2iG68IzD49yul5RRwB2x-9-byCuUBapye3x2dBpZoQgM9ZP2DcKJdETDiT2jQyOouMEMI5qyTzWF5YJ7OkmQAodoJn2obCs0R6FfqUKc4XyXjezf0yocY3lUm5S5XK4APcSGajTBsfCZk0pWyQnaG74qSiFEdli04M0AKdG391boNs19bPJZXGH3ZrQ8_Hw_kQA45FakDNeYNs1o9hKeD5hs19dwA2UEwiQ76BgS2Vgap_hDLxAsBkg-iRENYGSLM9-iRvPxR02xpZDUO28v-wVskUQyheNHSvkfH-68CvQ73SdxvFVPwAh_DpQQ priority: 102 providerName: Scholars Portal |
Title | The Epigenetic Landscape of Vascular Calcification: An Integrative Perspective |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32024140 https://www.proquest.com/docview/2548679733 https://www.proquest.com/docview/2352048395 https://pubmed.ncbi.nlm.nih.gov/PMC7037112 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xUKVeqkJf29KVK9FTFbHxM-aCKNoFKlihqlR7i-zEUUGQ3XaXQ_99ZxJvWIraSy4eJdaMPTNfPP4GYFekwhXoHJOKlwhQXGkTz4NOtBmYkDmtQ0NWfT7WJ5fyy0RN4g-3eSyrXPrExlGX04L-ke8hkCFuOCPEwexnQl2j6HQ1ttBYh80UIw2t8Gx03AEuwZtmaSnGoEQrq9vCd4Ewf-_q-nbOqcWWJULI1ZD0KM_8u1xyJf6MnsOzmDiyw9bSW7AW6m140raS_P0CxmhvNpwRtyZdS2RndIWXipvYtGLfY7kpO3I3TQ1eY459dliz00gXgU6PXdxfvHwJl6Pht6OTJPZKSFDTfJFwYbUvMi69LV2ZWVNlVkrpvdOKB0oqnFdVMSgQCnspKuNSGXihgk5DybUQr2CjntbhDTAbBtqWwpdaV_gCYRV3WWVsyKQqBkr14NNSXXkRicSpn8VNjoCClJuvKrcHHzvpWUug8Q-5naXm87iN5vm90XvwoRvGDUCnGq4O0zuUwRSSePEtTux1a6juQ9QcXiKE7IF5YMJOgMi1H47UVz8akm1DXIYpf_v_ab2Dp5wAeFPGvQMbi1934T1mKQvfh3UzMf1mQfZh8_NwfPG1T3FD4fNcZn8Arlfq5w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRQguiHcDBRaJnpBVe5_eSlVVlVYJTSMOLcrN7NprUVScQFJV_VP8Rmb8SFIQ3Hrekb2amZ3H7sw3AO9EIlyOxjEqeYEJiits5HnQkTaxCanTOtRg1Scj3T-TH8dqvAa_ul4YKqvsbGJtqItJTnfk25jIEDacEWJv-iOiqVH0utqN0GjU4jhcX2HKNtsdfED5bnF-dHh60I_aqQIR7onPIy6s9nnKpbeFK1JrytRKKb13WvFA7td5VeZxjkmjl6I0LpGB5yroJBRc0wUomvw76HhjKiE042WCJ3g9nC1BnxdpZXVTaC-EjbfPv32fcRrpZQmActUF_hXX_lmeueLvjh7CgzZQZfuNZj2CtVA9hrvN6MrrJzBC_WKHU8LypDZINqSWYSqmYpOSfW7LW9mBu6hr_mrx77D9ig1aeAo0suzTstHzKZzdChefwXo1qcIGMBtibQvhC61L_ICwiru0NDakUuWxUj1437Ery1vgcpqfcZFhAkPMzVaZ24OtBfW0Aez4B91mx_msPbazbKlkPXi7WMYDR68orgqTS6TBkJVw-C1u7HkjqMWPaBi9xJS1B-aGCBcEBOZ9c6U6_1qDehvCTkz4i_9v6w3c65-eDLPhYHT8Eu5zSv7rEvJNWJ__vAyvMEKa-9e1WjL4ctvn4DfSOiNY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRSAuiHcDBRaJnpAVe5_eSlVVtY0aWqIeKMrN7NprUVScQFJV_Wv8Omb8SFIQ3Hrekb2anefuzDcA70QiXI7GMSp5gQmKK2zkedCRNrEJqdM61GDVH0f66Ex-GKvxGvzqemGorLKzibWhLiY53ZH3MZEhbDgjRL9syyJODwa70x8RTZCil9ZunEYjIsfh-grTt9nO8ADPeovzweGn_aOonTAQ4f74POLCap-nXHpbuCK1pkytlNJ7pxUP5IqdV2Ue55hAeilK4xIZeK6CTkLBNV2Govm_YwS6TdQlM14me4LXg9oS9H-RVlY3RfdC2Lh__u37jNN4L0tglKvu8K8Y989SzRXfN3gID9qgle01UvYI1kL1GO42Yyyvn8AIZY0dTgnXk1oi2Qm1D1NhFZuU7HNb6sr23UVd_1eLwjbbq9iwhapAg8tOl02fT-HsVrj4DNarSRU2gNkQa1sIX2hd4geEVdylpbEhlSqPlerB-45dWd6CmNMsjYsMkxlibrbK3B5sLainDXjHP-g2O85nrQrPsqXA9eDtYhmVj15UXBUml0iD4Sth8lvc2PPmoBY_osH0EtPXHpgbR7ggIGDvmyvV-dca4NsQjmLCX_x_W2_gHmpAdjIcHb-E-5zuAepq8k1Yn_-8DK8wWJr717VUMvhy22rwGzbgJ44 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Epigenetic+Landscape+of+Vascular+Calcification%3A+An+Integrative+Perspective&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Yi-Chou%2C+Hou&rft.au=Chien-Lin%2C+Lu&rft.au=Tzu-Hang+Yuan&rft.au=Liao%2C+Min-Tser&rft.date=2020-02-01&rft.pub=MDPI+AG&rft.issn=1661-6596&rft.eissn=1422-0067&rft.volume=21&rft.issue=3&rft.spage=980&rft_id=info:doi/10.3390%2Fijms21030980&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon |