Soil Nutrient Retention and pH Buffering Capacity Are Enhanced by Calciprill and Sodium Silicate

In the tropics, warm temperatures and high rainfall contribute to acidic soil formation because of the significant leaching of base cations (K+, Ca2+, Mg2+, and Na+), followed by the replacement of the base cations with Al3+, Fe2+, and H+ ions at the soil adsorption sites. The pH buffering capacity...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 12; no. 1; p. 219
Main Authors Ng, Ji Feng, Ahmed, Osumanu Haruna, Jalloh, Mohamadu Boyie, Omar, Latifah, Kwan, Yee Min, Musah, Adiza Alhassan, Poong, Ken Heong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the tropics, warm temperatures and high rainfall contribute to acidic soil formation because of the significant leaching of base cations (K+, Ca2+, Mg2+, and Na+), followed by the replacement of the base cations with Al3+, Fe2+, and H+ ions at the soil adsorption sites. The pH buffering capacity of highly weathered acid soils is generally low because of their low pH which negatively impacts soil and crop productivity. Thus, there is a need to amend these soils with the right amount of inorganic liming materials which have relatively high neutralizing values and reactivity to overcome the aforementioned problems. Soil leaching and the pH buffering capacity studies were conducted to determine whether the co-application or co-amendment of a calcium carbonate product (Calciprill) and sodium silicate can improve soil nutrient retention and pH buffering capacity of the Bekenu series (Typic Paleudults). A 30 day soil leaching experiment was carried out using a completely randomized design with 16 treatments and 3 replications after which the leached soil samples were used for a pH buffering capacity study. The Calciprill and sodium silicate treatments significantly improved soil pH, exchangeable NH4+, available P, exchangeable base cations, Effective Cation Exchange Capacity (ECEC), and pH buffering capacity in comparison with the untreated soil. The improvements were attributed to the alkalinity of Calciprill and sodium silicate due to their high inherent K+, Ca2+, Mg2+, and Na+ contents. The neutralizing effects of the amendments impeded the hydrolysis of Al3+ (96.5%), Fe2+ (70.4%), and Mn2+ (25.3%) ions resulting in fewer H+ ions being produced. The co-application of Calciprill and sodium silicate reduced the leaching of Ca2+ (58.7%) and NO3− (74.8%) from the amended soils. This was due to the ability of sodium silicate to reduce soil permeability and protect the Calciprill and available NO3− from being leached. This also improved the longevity of Calciprill to enhance the soil pH buffering capacity. However, the amounts of NH4+, P, and base cations leached from the amended soils were higher compared with the un-amended soils. This was due to the high solubility of sodium silicate. The most suitable combination amendment was 7.01 g Calciprill and 9.26 g sodium silicate (C2S5) per kilogram soil. It is possible for farmers to adopt the combined use Calciprill and sodium silicate to regulate soil nutrient retention and improve the soil pH buffering capacity of highly weathered acidic soils. This will enhance soil and crop productivity.
AbstractList In the tropics, warm temperatures and high rainfall contribute to acidic soil formation because of the significant leaching of base cations (K+, Ca2+, Mg2+, and Na+), followed by the replacement of the base cations with Al3+, Fe2+, and H+ ions at the soil adsorption sites. The pH buffering capacity of highly weathered acid soils is generally low because of their low pH which negatively impacts soil and crop productivity. Thus, there is a need to amend these soils with the right amount of inorganic liming materials which have relatively high neutralizing values and reactivity to overcome the aforementioned problems. Soil leaching and the pH buffering capacity studies were conducted to determine whether the co-application or co-amendment of a calcium carbonate product (Calciprill) and sodium silicate can improve soil nutrient retention and pH buffering capacity of the Bekenu series (Typic Paleudults). A 30 day soil leaching experiment was carried out using a completely randomized design with 16 treatments and 3 replications after which the leached soil samples were used for a pH buffering capacity study. The Calciprill and sodium silicate treatments significantly improved soil pH, exchangeable NH4+, available P, exchangeable base cations, Effective Cation Exchange Capacity (ECEC), and pH buffering capacity in comparison with the untreated soil. The improvements were attributed to the alkalinity of Calciprill and sodium silicate due to their high inherent K+, Ca2+, Mg2+, and Na+ contents. The neutralizing effects of the amendments impeded the hydrolysis of Al3+ (96.5%), Fe2+ (70.4%), and Mn2+ (25.3%) ions resulting in fewer H+ ions being produced. The co-application of Calciprill and sodium silicate reduced the leaching of Ca2+ (58.7%) and NO3− (74.8%) from the amended soils. This was due to the ability of sodium silicate to reduce soil permeability and protect the Calciprill and available NO3− from being leached. This also improved the longevity of Calciprill to enhance the soil pH buffering capacity. However, the amounts of NH4+, P, and base cations leached from the amended soils were higher compared with the un-amended soils. This was due to the high solubility of sodium silicate. The most suitable combination amendment was 7.01 g Calciprill and 9.26 g sodium silicate (C2S5) per kilogram soil. It is possible for farmers to adopt the combined use Calciprill and sodium silicate to regulate soil nutrient retention and improve the soil pH buffering capacity of highly weathered acidic soils. This will enhance soil and crop productivity.
In the tropics, warm temperatures and high rainfall contribute to acidic soil formation because of the significant leaching of base cations (K⁺, Ca²⁺, Mg²⁺, and Na⁺), followed by the replacement of the base cations with Al³⁺, Fe²⁺, and H⁺ ions at the soil adsorption sites. The pH buffering capacity of highly weathered acid soils is generally low because of their low pH which negatively impacts soil and crop productivity. Thus, there is a need to amend these soils with the right amount of inorganic liming materials which have relatively high neutralizing values and reactivity to overcome the aforementioned problems. Soil leaching and the pH buffering capacity studies were conducted to determine whether the co-application or co-amendment of a calcium carbonate product (Calciprill) and sodium silicate can improve soil nutrient retention and pH buffering capacity of the Bekenu series (Typic Paleudults). A 30 day soil leaching experiment was carried out using a completely randomized design with 16 treatments and 3 replications after which the leached soil samples were used for a pH buffering capacity study. The Calciprill and sodium silicate treatments significantly improved soil pH, exchangeable NH₄⁺, available P, exchangeable base cations, Effective Cation Exchange Capacity (ECEC), and pH buffering capacity in comparison with the untreated soil. The improvements were attributed to the alkalinity of Calciprill and sodium silicate due to their high inherent K⁺, Ca²⁺, Mg²⁺, and Na⁺ contents. The neutralizing effects of the amendments impeded the hydrolysis of Al³⁺ (96.5%), Fe²⁺ (70.4%), and Mn²⁺ (25.3%) ions resulting in fewer H⁺ ions being produced. The co-application of Calciprill and sodium silicate reduced the leaching of Ca²⁺ (58.7%) and NO₃⁻ (74.8%) from the amended soils. This was due to the ability of sodium silicate to reduce soil permeability and protect the Calciprill and available NO₃⁻ from being leached. This also improved the longevity of Calciprill to enhance the soil pH buffering capacity. However, the amounts of NH₄⁺, P, and base cations leached from the amended soils were higher compared with the un-amended soils. This was due to the high solubility of sodium silicate. The most suitable combination amendment was 7.01 g Calciprill and 9.26 g sodium silicate (C2S5) per kilogram soil. It is possible for farmers to adopt the combined use Calciprill and sodium silicate to regulate soil nutrient retention and improve the soil pH buffering capacity of highly weathered acidic soils. This will enhance soil and crop productivity.
Author Ahmed, Osumanu Haruna
Poong, Ken Heong
Kwan, Yee Min
Omar, Latifah
Ng, Ji Feng
Musah, Adiza Alhassan
Jalloh, Mohamadu Boyie
Author_xml – sequence: 1
  givenname: Ji Feng
  surname: Ng
  fullname: Ng, Ji Feng
– sequence: 2
  givenname: Osumanu Haruna
  orcidid: 0000-0002-3240-8081
  surname: Ahmed
  fullname: Ahmed, Osumanu Haruna
– sequence: 3
  givenname: Mohamadu Boyie
  orcidid: 0000-0002-0237-8408
  surname: Jalloh
  fullname: Jalloh, Mohamadu Boyie
– sequence: 4
  givenname: Latifah
  surname: Omar
  fullname: Omar, Latifah
– sequence: 5
  givenname: Yee Min
  surname: Kwan
  fullname: Kwan, Yee Min
– sequence: 6
  givenname: Adiza Alhassan
  orcidid: 0000-0002-8200-8684
  surname: Musah
  fullname: Musah, Adiza Alhassan
– sequence: 7
  givenname: Ken Heong
  surname: Poong
  fullname: Poong, Ken Heong
BookMark eNp1UU1vEzEQtVCRKKV3jpa4cAl47F1vfCxRoZUqkAiczaw_giPHDl7vIf--ToMQitS5jOV57_mN32tykXJyhLwF9kEIxT7ipuSUdwfgDBgH9YJccjaIRSdUf_Hf-RW5nqYta6VALNlwSX6tc4j061xLcKnS7662FnKimCzd39FPs_euhLShK9yjCfVAb4qjt-k3JuMsHQ9tEE3YlxDjE2mdbZh3dB1iMFjdG_LSY5zc9d9-RX5-vv2xuls8fPtyv7p5WJgOeF2AZ0s7oPejccPorPNgpWJdK8MRRiNVz8S45Mh7zxUwa5jsJbgR7AjYiytyf9K1Gbe62dlhOeiMQT9d5LLRWGow0elOGbXspegl2s7AUVy0lwUbQYBRqmm9P2ntS_4zu6nqXZiMixGTy_OkuRRyELzrRIO-O4Nu81xS27ShOPCOKXE0x04oU_I0Fef_GQSmjwnq8wQbRZ5R2ufjMZpaMMTniY9pkqOb
CitedBy_id crossref_primary_10_1016_j_heliyon_2022_e10190
crossref_primary_10_1016_j_dwt_2024_100489
crossref_primary_10_11118_actaun_2022_030
crossref_primary_10_3390_agronomy14081806
crossref_primary_10_15243_jdmlm_2025_122_7353
crossref_primary_10_1016_j_jenvman_2022_115770
crossref_primary_10_1038_s41598_022_24078_9
crossref_primary_10_4236_ojss_2025_151005
crossref_primary_10_1016_j_jafr_2023_100854
crossref_primary_10_14397_jals_2024_58_6_59
crossref_primary_10_3390_su142013214
crossref_primary_10_3389_fagro_2024_1427571
crossref_primary_10_1155_2023_3542165
crossref_primary_10_3390_agronomy14030540
crossref_primary_10_15407_agrisp9_03_018
crossref_primary_10_1016_j_scitotenv_2022_155188
crossref_primary_10_3390_plants13213055
crossref_primary_10_1007_s42729_023_01308_1
crossref_primary_10_1016_j_heliyon_2024_e33448
crossref_primary_10_1007_s13762_024_06173_8
crossref_primary_10_1007_s11356_025_36067_2
crossref_primary_10_1007_s44378_024_00016_1
crossref_primary_10_1016_j_ejsobi_2025_103711
crossref_primary_10_1007_s42832_022_0136_4
crossref_primary_10_1016_j_plaphy_2024_108602
crossref_primary_10_24850_j_tyca_15_6_9
crossref_primary_10_3390_microorganisms10071458
crossref_primary_10_15446_rfnam_v77n2_109341
crossref_primary_10_1016_j_agwat_2023_108193
crossref_primary_10_1016_j_pedobi_2023_150894
crossref_primary_10_1016_j_jhazmat_2024_135453
crossref_primary_10_1038_s41598_022_17385_8
crossref_primary_10_3390_w16121715
crossref_primary_10_1016_j_chemosphere_2023_138758
crossref_primary_10_1016_j_envres_2025_121389
crossref_primary_10_3390_agriculture13091837
crossref_primary_10_3390_soilsystems8030072
crossref_primary_10_1155_2022_9097994
crossref_primary_10_3390_toxics12040265
crossref_primary_10_1016_j_scitotenv_2024_173536
crossref_primary_10_1016_j_geoderma_2025_117219
crossref_primary_10_1016_j_rineng_2023_101564
crossref_primary_10_1016_j_dwt_2024_100491
crossref_primary_10_1016_j_geodrs_2024_e00878
crossref_primary_10_24850_j_tyca_2024_06_09
crossref_primary_10_1007_s41748_024_00494_x
crossref_primary_10_3389_fpls_2023_1206820
crossref_primary_10_3390_land11101633
crossref_primary_10_3390_soilsystems8030068
crossref_primary_10_1016_j_envpol_2022_120632
crossref_primary_10_3390_horticulturae10121328
crossref_primary_10_1016_j_tfp_2024_100748
crossref_primary_10_3390_f14112159
crossref_primary_10_1007_s00374_024_01808_x
Cites_doi 10.1016/j.geoderma.2014.06.017
10.1590/S0100-06832006000500011
10.1016/S0003-2670(00)88444-5
10.1111/j.1365-2486.2006.01102.x
10.2136/sssaj1975.03615995003900040019x
10.1201/9780203912317
10.1007/s10661-016-5329-9
10.1079/9780851995939.0000
10.1007/s11270-011-0937-z
10.1016/S1452-3981(23)18200-9
10.2134/jeq2017.08.0337
10.2136/sssaj2006.0235
10.1680/grim.2001.5.1.23
10.1007/BF00009558
10.1590/1678-992x-2016-0372
10.1007/BF00483696
10.2136/sssaj2003.5440
10.1139/s03-040
10.1016/j.jhazmat.2006.02.038
10.3390/su132111808
10.1016/j.geoderma.2008.01.006
10.2136/sssaj1987.03615995005100010047x
10.2136/sssaj1986.03615995005000050024x
10.1016/j.geoderma.2010.05.012
10.3390/agronomy11102010
10.1007/978-4-431-66902-9
10.1023/A:1009709005147
10.1680/grim.2001.5.3.111
10.1007/BF00749883
10.3390/w12072012
10.1071/SR9940975
10.1016/j.still.2011.01.002
10.1016/S0167-8809(99)00068-7
10.1111/j.1365-2389.1964.tb02224.x
10.2134/jeq2001.302546x
10.1007/BF00750642
10.5402/2012/597216
10.2136/sssaj2013.04.0142
10.3390/agronomy11102081
10.33584/jnzg.2014.76.2963
10.1038/ngeo339
10.1080/00103624.2012.711876
10.1016/S1001-0742(12)60113-2
10.1016/j.geomorph.2004.11.014
10.2136/sssaj1985.03615995004900010048x
10.1080/00103629809370060
10.2136/sssaj1977.03615995004100060013x
10.1021/es301535g
10.1038/s41598-020-59437-x
10.1016/j.chemosphere.2013.09.030
10.1016/B978-0-12-802139-2.00006-8
10.1080/00380768.2016.1226685
10.1007/s12649-013-9279-y
10.3390/agronomy11091801
10.1016/S0065-2113(08)60948-7
10.1080/00380768.2000.10409145
10.1139/x92-115
10.4141/CJSS08015
10.1007/s11368-014-0989-y
10.1111/ejss.12089
10.3923/ja.2014.12.22
10.3390/agronomy11112223
10.2136/sssaj2011.0327
10.1016/S0065-2113(08)60612-4
10.1016/j.gca.2015.04.032
10.1023/A:1022833116184
10.1111/j.1747-0765.2005.tb00001.x
10.1038/s41598-018-37104-6
10.2136/sssaj1986.03615995005000020023x
10.1016/S2095-3119(18)62148-3
10.1007/s11368-012-0483-3
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7S9
L.6
DOA
DOI 10.3390/agronomy12010219
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Agricultural Science Database
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_49c9856356ad4c11bc63aff30b131c99
10_3390_agronomy12010219
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c412t-1f08d7affbce7bedef1d6904444c2a1bc69503b82a25f2910dc06561eb1db1a53
IEDL.DBID BENPR
ISSN 2073-4395
IngestDate Wed Aug 27 01:31:37 EDT 2025
Fri Jul 11 02:50:11 EDT 2025
Mon Jun 30 11:12:29 EDT 2025
Tue Jul 01 03:20:17 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-1f08d7affbce7bedef1d6904444c2a1bc69503b82a25f2910dc06561eb1db1a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8200-8684
0000-0002-3240-8081
0000-0002-0237-8408
OpenAccessLink https://www.proquest.com/docview/2621240935?pq-origsite=%requestingapplication%
PQID 2621240935
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_49c9856356ad4c11bc63aff30b131c99
proquest_miscellaneous_2636732443
proquest_journals_2621240935
crossref_primary_10_3390_agronomy12010219
crossref_citationtrail_10_3390_agronomy12010219
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shenker (ref_68) 2005; 51
Shi (ref_22) 2019; 18
Fenn (ref_84) 1975; 39
Fan (ref_31) 2006; 12
Tunesi (ref_90) 1999; 53
Ramos (ref_15) 2006; 30
Aprile (ref_91) 2012; 4
Peng (ref_23) 2011; 112
Lindh (ref_35) 2001; Volume 5
Page (ref_40) 1982; Volume 1
ref_51
Lehmann (ref_1) 2003; 249
Pagani (ref_32) 2012; 76
Schaller (ref_70) 2019; 9
Schaller (ref_36) 2020; 10
Adams (ref_11) 1984; Volume 12
Moayedi (ref_72) 2011; 6
ref_59
Opala (ref_55) 2012; 2012
ref_61
Mutert (ref_4) 1995; 171
Senn (ref_69) 2015; 162
Gao (ref_88) 2013; 25
Bowman (ref_7) 2008; 1
Moayedi (ref_74) 2012; 7
Weier (ref_62) 1986; 50
ref_25
Ifansyah (ref_67) 2014; 18
Zhao (ref_93) 2014; 99
Ferguson (ref_63) 1987; 51
Antonangelo (ref_16) 2017; 74
Rovira (ref_17) 2008; 144
Sims (ref_81) 1986; 50
Norman (ref_39) 1965; Volume 1
Adams (ref_56) 1984; Volume 12
Gungor (ref_5) 2011; Volume 1
Whitelaw (ref_87) 1999; 69
ref_29
ref_28
ref_27
Rowell (ref_43) 1994; Volume 1
Smaling (ref_85) 1993; 35
ref_26
Costello (ref_52) 2014; 5
Ritchie (ref_57) 1994; 53
Rahman (ref_78) 2014; 13
Oulehle (ref_19) 2013; 64
Tertre (ref_92) 2012; 46
Fageria (ref_8) 2014; 128
Gasser (ref_82) 1964; 15
Aitken (ref_50) 1994; 32
Ernani (ref_71) 2012; 43
Madurwar (ref_33) 2013; 2
Goodfellow (ref_44) 2006; Volume 9
Laboski (ref_65) 2003; 67
ref_34
Cai (ref_24) 2015; 15
Hinsinger (ref_14) 1995; 45
ref_30
Meiwes (ref_46) 1995; 85
Adnan (ref_77) 2003; 2
Murphy (ref_42) 1962; 27
Moir (ref_80) 2014; 76
Plan (ref_18) 2005; 68
Karageorgiou (ref_20) 2007; 139
ref_38
ref_37
Avnimelech (ref_83) 1977; 41
Xu (ref_53) 2012; 12
Hartikainen (ref_89) 2001; 30
(ref_58) 2002; Volume 1
Zu (ref_66) 2012; 33
Najafi (ref_95) 2016; 188
Lalande (ref_10) 2009; 89
Ahmed (ref_79) 2016; 99
ref_47
Cantarella (ref_45) 1998; 29
Braker (ref_73) 2007; Volume 1
ref_41
Binkley (ref_60) 1992; 22
Sdiri (ref_94) 2012; 223
Burt (ref_75) 2018; 47
Rogovska (ref_96) 2007; 71
ref_3
Zhang (ref_12) 2016; 62
ref_2
Kissel (ref_54) 2012; 76
ref_49
ref_48
Schroth (ref_86) 1999; 75
Mishra (ref_76) 2013; 77
MacKown (ref_64) 1985; 49
Laird (ref_9) 2010; 158
Baba (ref_13) 2000; 46
Perassi (ref_21) 2014; 232–234
ref_6
References_xml – volume: 232–234
  start-page: 600
  year: 2014
  ident: ref_21
  article-title: Adsorption and surface precipitation of phosphate onto CaCO3-montmorillonite: Effect of pH, ionic strength and competition with humic acid
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.06.017
– volume: 2
  start-page: 493
  year: 2013
  ident: ref_33
  article-title: Comparative Study of Black Cotton Soil Stabilization with RBI Grade 81 and Sodium Silicate
  publication-title: Int. J. Innov. Res. Sci. Eng. Technol.
– volume: 18
  start-page: 203
  year: 2014
  ident: ref_67
  article-title: Soil pH and Solubility of Aluminum, Iron, and Phosphorus in Ultisols: The Roles of Humic Acid
  publication-title: J. Trop. Soils
– volume: 30
  start-page: 849
  year: 2006
  ident: ref_15
  article-title: Reactivity of soil acidity correctives and conditioners in lysimeters
  publication-title: Rev. Bras. Ciência Solo
  doi: 10.1590/S0100-06832006000500011
– ident: ref_49
– volume: 27
  start-page: 31
  year: 1962
  ident: ref_42
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)88444-5
– volume: 12
  start-page: 489
  year: 2006
  ident: ref_31
  article-title: Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2006.01102.x
– ident: ref_51
– volume: 39
  start-page: 631
  year: 1975
  ident: ref_84
  article-title: Ammonia Volatilization from Surface Applications of Ammonium Compounds on Calcareous Soils: IV. Effect of Calcium Carbonate Content
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1975.03615995003900040019x
– ident: ref_2
  doi: 10.1201/9780203912317
– volume: 76
  start-page: 694
  year: 2012
  ident: ref_54
  article-title: Rapid Measurement of Soil pH Buffering Capacity
  publication-title: Soil Nutr. Manag. Soil Plant Anal.
– volume: 7
  start-page: 1395
  year: 2012
  ident: ref_74
  article-title: Stabilization of organic soil using sodium silicate system grout
  publication-title: Int. J. Phys. Sci.
– volume: 188
  start-page: 1
  year: 2016
  ident: ref_95
  article-title: Effect of heavy metals on pH buffering capacity and solubility of Ca, Mg, K, and P in non-spiked and heavy metal-spiked soils
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-016-5329-9
– ident: ref_61
  doi: 10.1079/9780851995939.0000
– volume: 223
  start-page: 1191
  year: 2012
  ident: ref_94
  article-title: Competitive removal of heavy metals from aqueous solutions by montmorillonitic and calcareous clays
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-011-0937-z
– volume: 6
  start-page: 2526
  year: 2011
  ident: ref_72
  article-title: Enhancing Electrokinetic Environment to Improve Physicochemical Properties of Kaolinite Using Polyvinyl Alcohol and Cement Stabilizers
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)18200-9
– volume: 47
  start-page: 162
  year: 2018
  ident: ref_75
  article-title: Urea Hydrolysis and Calcium Carbonate Precipitation in Gypsum-Amended Broiler Litter
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2017.08.0337
– volume: 71
  start-page: 1251
  year: 2007
  ident: ref_96
  article-title: Relationships between Soybean Yield, Soil pH, and Soil Carbonate Concentration
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006.0235
– volume: Volume 5
  start-page: 23
  year: 2001
  ident: ref_35
  article-title: Optimising binder blends for shallow stabilisation of fine-grained soils
  publication-title: Proceedings of the Institution of Civil Engineers-Ground Improvement
  doi: 10.1680/grim.2001.5.1.23
– volume: 4
  start-page: 278
  year: 2012
  ident: ref_91
  article-title: Evaluation of Cation Exchange Capacity (CEC) in Tropical Soils Using Four Different Analytical Methods
  publication-title: J. Agric. Sci.
– volume: Volume 1
  start-page: 205
  year: 2002
  ident: ref_58
  article-title: Sodium-calcium Interactions under Salinity Stress
  publication-title: Salinity: Environment—Plants—Molecules
– volume: 171
  start-page: 1
  year: 1995
  ident: ref_4
  article-title: Global extent, development and economic impact of acid soils
  publication-title: Plant Soil
  doi: 10.1007/BF00009558
– volume: 74
  start-page: 317
  year: 2017
  ident: ref_16
  article-title: Lime and calcium-magnesium silicate in the ionic speciation of an oxisol
  publication-title: Sci. Agric.
  doi: 10.1590/1678-992x-2016-0372
– volume: Volume 1
  start-page: 914
  year: 1965
  ident: ref_39
  article-title: Hydrogen-ion activity
  publication-title: Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties
– volume: 85
  start-page: 143
  year: 1995
  ident: ref_46
  article-title: Application of lime and wood ash to decrease acidification of forest soils
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/BF00483696
– volume: 67
  start-page: 544
  year: 2003
  ident: ref_65
  article-title: Changes in soil test phosphorus concentration after application of manure or fertilizer
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2003.5440
– volume: 2
  start-page: 315
  year: 2003
  ident: ref_77
  article-title: Pilot-scale study of phosphorus recovery through struvite crystallization—Examining the process feasibility
  publication-title: J. Environ. Eng. Sci.
  doi: 10.1139/s03-040
– volume: 139
  start-page: 447
  year: 2007
  ident: ref_20
  article-title: Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.02.038
– ident: ref_26
  doi: 10.3390/su132111808
– volume: 144
  start-page: 517
  year: 2008
  ident: ref_17
  article-title: Changes in δ13C composition of soil carbonates driven by organic matter decomposition in a Mediterranean climate: A field incubation experiment
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.01.006
– volume: 51
  start-page: 231
  year: 1987
  ident: ref_63
  article-title: Ammonium Retention in Sand Amended with Clinoptilolite
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1987.03615995005100010047x
– volume: Volume 1
  start-page: 481
  year: 2007
  ident: ref_73
  article-title: Potassium
  publication-title: Principles of Plant Nutrition
– volume: 50
  start-page: 1210
  year: 1986
  ident: ref_62
  article-title: Effect of Acidity on Nitrogen Mineralization and Nitrification in Atlantic Coastal Plain Soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1986.03615995005000050024x
– volume: 158
  start-page: 436
  year: 2010
  ident: ref_9
  article-title: Biochar impact on nutrient leaching from a Midwestern agricultural soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.05.012
– ident: ref_48
– ident: ref_28
  doi: 10.3390/agronomy11102010
– ident: ref_3
  doi: 10.1007/978-4-431-66902-9
– volume: 53
  start-page: 219
  year: 1999
  ident: ref_90
  article-title: Phosphate adsorption and precipitation in calcareous soils: The role of calcium ions in solution and carbonate minerals
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1023/A:1009709005147
– ident: ref_34
  doi: 10.1680/grim.2001.5.3.111
– volume: 45
  start-page: 69
  year: 1995
  ident: ref_14
  article-title: Silicate rock powder: Effect on selected chemical properties of a range of soils from Western Australia and on plant growth as assessed in a glasshouse experiment
  publication-title: Fertil. Res.
  doi: 10.1007/BF00749883
– ident: ref_41
– ident: ref_6
  doi: 10.3390/w12072012
– volume: 33
  start-page: 1174
  year: 2012
  ident: ref_66
  article-title: Analysis of Correlation between Soil pH and Nutrient Concentrations across Hainan Black Pepper Advantage Region
  publication-title: Chin. J. Trop. Crop.
– ident: ref_38
– volume: 32
  start-page: 975
  year: 1994
  ident: ref_50
  article-title: The effect of valence and ionic strength on the measurement of pH buffer capacity
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR9940975
– volume: 112
  start-page: 159
  year: 2011
  ident: ref_23
  article-title: Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2011.01.002
– volume: 75
  start-page: 109
  year: 1999
  ident: ref_86
  article-title: Subsoil Accumulation of Mineral Nitrogen under Polyculture and Monoculture Plantations, Fallow and Primary Forest in a Ferralitic Amazonian Upland Soil
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/S0167-8809(99)00068-7
– volume: 15
  start-page: 258
  year: 1964
  ident: ref_82
  article-title: Some factors affecting losses of ammonia from urea and ammonium sulphate applied to soils
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1964.tb02224.x
– volume: 30
  start-page: 546
  year: 2001
  ident: ref_89
  article-title: Phosphorus Mobilization from Various Sediment Pools in Response to Increased pH and Silicate Concentration
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2001.302546x
– ident: ref_59
– volume: 35
  start-page: 237
  year: 1993
  ident: ref_85
  article-title: Calculating soil nutrient balances in Africa at different scales—II. District scale
  publication-title: Fertil. Res.
  doi: 10.1007/BF00750642
– volume: Volume 9
  start-page: 667
  year: 2006
  ident: ref_44
  article-title: Exchangeable Cations
  publication-title: Handbook of Soil Analysis
– volume: 2012
  start-page: 1
  year: 2012
  ident: ref_55
  article-title: Effects of Organic and Inorganic Materials on Soil Acidity and Phosphorus Availability in a Soil Incubation Study
  publication-title: ISRN Agron.
  doi: 10.5402/2012/597216
– volume: 77
  start-page: 2045
  year: 2013
  ident: ref_76
  article-title: Gypsum Effect on Nitrogen Mineralization and Ammonia Volatilization from Broiler Litter
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2013.04.0142
– ident: ref_27
  doi: 10.3390/agronomy11102081
– ident: ref_30
– volume: 76
  start-page: 41
  year: 2014
  ident: ref_80
  article-title: Medium-term soil pH and exchangeable aluminium response to liming at three high country locations
  publication-title: Proc. New Zeal. Grassl. Assoc.
  doi: 10.33584/jnzg.2014.76.2963
– volume: Volume 12
  start-page: 3
  year: 1984
  ident: ref_56
  article-title: The Chemistry of Soil Acidity
  publication-title: Soil Acidity and Liming
– volume: 1
  start-page: 767
  year: 2008
  ident: ref_7
  article-title: Negative impact of nitrogen deposition on soil buffering capacity
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo339
– volume: 43
  start-page: 2544
  year: 2012
  ident: ref_71
  article-title: Liming Decreases the Vertical Mobility of Potassium in Acidic Soils
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103624.2012.711876
– volume: 99
  start-page: 176
  year: 2016
  ident: ref_79
  article-title: Minimizing phosphorus sorption and leaching in a tropical acid soil using Egypt rock phosphate with organic amendments
  publication-title: Philipp. Agric. Sci.
– ident: ref_47
– volume: 25
  start-page: 986
  year: 2013
  ident: ref_88
  article-title: Comparison of different phosphate species adsorption by ferric and alum water treatment residuals
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(12)60113-2
– volume: Volume 1
  start-page: 75
  year: 2011
  ident: ref_5
  article-title: Classification and Management of Highly Weathered Soils in Malaysia for Production of Plantation Crops
  publication-title: Principles, Application and Assessment in Soil Science
– volume: 68
  start-page: 201
  year: 2005
  ident: ref_18
  article-title: Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2004.11.014
– volume: Volume 1
  start-page: 153
  year: 1994
  ident: ref_43
  article-title: Soil acidity and alkalinity
  publication-title: Soil Science: Methods and Applications
– ident: ref_37
– volume: 49
  start-page: 235
  year: 1985
  ident: ref_64
  article-title: Ammonium Nitrogen Movement in a Coarse-Textured Soil Amended with Zeolite
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1985.03615995004900010048x
– volume: 29
  start-page: 1691
  year: 1998
  ident: ref_45
  article-title: Soil and plant analyses for lime and fertilizer recommendations in Brazil
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103629809370060
– volume: 41
  start-page: 1080
  year: 1977
  ident: ref_83
  article-title: Ammonia Volatilization from Soils: Equilibrium Considerations
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1977.03615995004100060013x
– volume: Volume 12
  start-page: 171
  year: 1984
  ident: ref_11
  article-title: Liming materials and practices
  publication-title: Soil Acidity and Liming
– volume: 46
  start-page: 10055
  year: 2012
  ident: ref_92
  article-title: Ion Exchange Model for Reversible Sorption of Divalent Metals on Calcite: Implications for Natural Environments
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301535g
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_36
  article-title: Biogenic amorphous silica as main driver for plant available water in soils
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-59437-x
– volume: 99
  start-page: 41
  year: 2014
  ident: ref_93
  article-title: Effect of organic matter and calcium carbonate on behaviors of cadmium adsorption—Desorption on/from purple paddy soils
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.09.030
– volume: 128
  start-page: 221
  year: 2014
  ident: ref_8
  article-title: Management of Soil Acidity of South American Soils for Sustainable Crop Production
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-802139-2.00006-8
– volume: 62
  start-page: 432
  year: 2016
  ident: ref_12
  article-title: Impacts of fertilization practices on pH and the pH buffering capacity of calcareous soil
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2016.1226685
– volume: 5
  start-page: 505
  year: 2014
  ident: ref_52
  article-title: Determining the pH buffering capacity of compost via titration with dilute sulfuric acid
  publication-title: Waste Biomass Valorization
  doi: 10.1007/s12649-013-9279-y
– ident: ref_29
  doi: 10.3390/agronomy11091801
– volume: 69
  start-page: 99
  year: 1999
  ident: ref_87
  article-title: Growth Promotion of Plants Inoculated with Phosphate-Solubilizing Fungi
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(08)60948-7
– volume: 46
  start-page: 797
  year: 2000
  ident: ref_13
  article-title: Changes in aluminum pools of andisols due to soil acidification
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2000.10409145
– volume: 22
  start-page: 858
  year: 1992
  ident: ref_60
  article-title: Comparison of methods for estimating soil nitrogen transformations in adjacent conifer and alder-conifer forests
  publication-title: Can. J. For. Res.
  doi: 10.1139/x92-115
– volume: Volume 1
  start-page: 643
  year: 1982
  ident: ref_40
  article-title: Nitrogen-Inorganic Forms
  publication-title: Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties
– volume: 89
  start-page: 209
  year: 2009
  ident: ref_10
  article-title: Impact of natural or industrial liming materials on soil properties and microbial activity
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/CJSS08015
– volume: 15
  start-page: 260
  year: 2015
  ident: ref_24
  article-title: Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-014-0989-y
– volume: 64
  start-page: 787
  year: 2013
  ident: ref_19
  article-title: Soil-solution partitioning of DOC in acid organic soils: Results from a UK field acidification and alkalization experiment
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12089
– volume: 13
  start-page: 12
  year: 2014
  ident: ref_78
  article-title: Evaluation of phosphate rock sources and rate of application on oil palm yield grown on peat soils of Sarawak, Malaysia
  publication-title: J. Agron.
  doi: 10.3923/ja.2014.12.22
– ident: ref_25
  doi: 10.3390/agronomy11112223
– volume: 76
  start-page: 1855
  year: 2012
  ident: ref_32
  article-title: Comparison of methods to determine crop lime requirement under field conditions
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2011.0327
– volume: 53
  start-page: 47
  year: 1994
  ident: ref_57
  article-title: Role of dissolution and precipitation of minerals in controlling soluble aluminium in acidic soils
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(08)60612-4
– volume: 162
  start-page: 220
  year: 2015
  ident: ref_69
  article-title: Composition and structure of Fe(III)-precipitates formed by Fe(II) oxidation in water at near-neutral pH: Interdependent effects of phosphate, silicate and Ca
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2015.04.032
– volume: 249
  start-page: 343
  year: 2003
  ident: ref_1
  article-title: Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments
  publication-title: Plant Soil
  doi: 10.1023/A:1022833116184
– volume: 51
  start-page: 1
  year: 2005
  ident: ref_68
  article-title: Increasing Iron Availability to Crops: Fertilizers, Organo-Fertilizers, and Biological Approaches
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1111/j.1747-0765.2005.tb00001.x
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_70
  article-title: Silicon increases the phosphorus availability of Arctic soils
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37104-6
– volume: 50
  start-page: 367
  year: 1986
  ident: ref_81
  article-title: Soil pH effects on the distribution and plant availability of manganese, copper, and zinc
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1986.03615995005000020023x
– volume: 18
  start-page: 1508
  year: 2019
  ident: ref_22
  article-title: Understanding the biochar’s role in ameliorating soil acidity
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(18)62148-3
– volume: 12
  start-page: 494
  year: 2012
  ident: ref_53
  article-title: pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-012-0483-3
SSID ssj0000913807
Score 2.433882
Snippet In the tropics, warm temperatures and high rainfall contribute to acidic soil formation because of the significant leaching of base cations (K+, Ca2+, Mg2+,...
In the tropics, warm temperatures and high rainfall contribute to acidic soil formation because of the significant leaching of base cations (K⁺, Ca²⁺, Mg²⁺,...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 219
SubjectTerms acid soils
Acidic soils
Acidification
adsorption
agronomy
Alkalinity
Aluminum
Buffers
calcium
Calcium carbonate
Calcium ions
Cation exchange
cation exchange capacity
Cation exchanging
Cations
Charcoal
Crop production
Ferrous ions
highly weathered
Hydrogen
hydrolysis
Ions
Iron
Leaching
Liming
liming effect
longevity
Magnesium
Manganese ions
Neutralizing
Nutrient retention
Nutrients
Paleudults
Permeability
pH effects
Productivity
rain
Rainfall
Retention
Runoff
Silica
silicon-based fertilizer
Sodium
sodium silicate
Sodium silicates
Soil adsorption
Soil amendment
Soil chemistry
Soil formation
Soil improvement
Soil nutrients
Soil permeability
Soil pH
solubility
Tropical environments
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ1arrODFQ2j3kTR7bEUpgh6sBW9xX9FATEttD_57ZzaxVAW9mGN2N4TZx_dNJvMNIeex4Zp7DA2m3TySABIRumCRkk7I2NpEJZjvfHuXDMfy5jF-XCn1hf-E1fLAteE6UlmVxqiipp20jBmbCJ3nomuYYFaF1D3AvBVnKpzBiqGSeh2XFODXd_TzLGQJMB6qWasvOBTk-n-cxgFirrfJVsMNab9-px2y5qtdstl_njX6GH6PPI0mRUnvUEIf0ILeI-VF01JdOTod0sEC650AHNFLQEELFBse5-lV9RIi_dS8Q0Npi-msKMswaDRxxeKVjoo6G26fjK-vHi6HUVMkIbKS8XnE8m7qemARY33PeOdz5sDjlXBZrtFcKu4Kk8KUxDkHcuAssI6EwRntDNOxOCDr1aTyh4TmBugWmFiIxEvlmOaO99JYGqsMAD1vkc6nyTLbKIhjIYsyA08CjZx9N3KLXCxHTGv1jF_6DnAWlv1Q9zrcgNWQNash-2s1tEj7cw6zZjO-ZTwBfJYY8W2Rs2UzbCOMjejKTxbYRyQ9IJdSHP3HexyTDY55EuFbTZusz2cLfwLsZW5Ow0L9AAbR7Qc
  priority: 102
  providerName: Directory of Open Access Journals
Title Soil Nutrient Retention and pH Buffering Capacity Are Enhanced by Calciprill and Sodium Silicate
URI https://www.proquest.com/docview/2621240935
https://www.proquest.com/docview/2636732443
https://doaj.org/article/49c9856356ad4c11bc63aff30b131c99
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEF614dIeqlKompaiReLSgxXvw69TRVBQhESESJG4mX05tWTs1CSH_vvObDZBBQkfvQ95Z3dnvpnxzBBymmiuuEPXYB5XkQQhEaEKFhXSCpkYkxYpxjtfzdLprby8S-6Cwe0x_Fa55YmeUdvOoI18xFNgshLddj-XfyKsGoXe1VBC4y3Zg9Y8H5C98WR2fbOzsmDWyzzONv5JAfr9SC16Hy3AuK9qXfwnj3za_hdc2Yuai4_kQ8CI9GyzqfvkjWs_kfdniz7kyXAH5H7e1Q2dYSp9kBr0BqEvkpiq1tLllI7XWPcExBI9B2loAGrDdI5O2t_e40_1X2hoTL3s66bxg-adrdcPdF5vouIOye3F5Nf5NArFEiIjGV9FrIpzm6mq0sZl2llXMQuar4THcMU0UD2Jhc5ha5KKA0iwBtBHyoBXW81UIj6TQdu17guhlQbYZRhor6mThWWKW57lidSm0CDw-ZCMtiQrTcgkjgUtmhI0CiRy-ZzIQ_JjN2K5yaLxSt8x7sKuH-a_9i-6flGG61TKwhR5grn1lJXwqbA8AWsXsWaCmQImOdruYRku5WP5dISG5GTXDNcJfSSqdd0a-4g0A5ApxdfXp_hG3nGMhPDWmCMyWPVr9x3wyUofh0N47PX7fw745xo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7QE4oPISCwWMBAcO0caPvA4IdctWW9quULeVekvjR7aRQrJNd4X6p_iNzDjJIkDqrTnGD9lje74Zj2eGkA-B4hm3aBqM_dyTABIeqmBeIo2QgdZhEqK_88ksnJ7LbxfBxRb51fvC4LPKnic6Rm1qjXfkIx4Ck5VotvuyvPYwaxRaV_sUGu22OLK3P0Flu_l8-BXW9yPnB5Oz_anXZRXwtGR85bHcj02U5bnSNlLW2JwZUBElfJpnTMHwAl-oGOYQ5BzQ1GiA6ZABUzOKZZglAlj-thShzwdkezyZfT_d3OpglM3Yj1p7qBCJP8oWjfNOYNxl0U7-wj-XJuA_FHDQdrBDHncyKd1rN9ETsmWrp-TR3qLp4nLYZ-RyXhclnWHofkApeoqiNi4pzSpDl1M6XmOeFYBBug_oq0G0h-4snVRX7oUBVbdQUOpi2RRl6RrNa1Osf9B50XrhPSfn90LGF2RQ1ZV9SWiuQMzTDLTl0MrEsIwbHsWBVDpRIGDwIRn1JEt1F7kcE2iUKWgwSOT0XyIPyadNi2UbteOOumNchU09jLftftTNIu2ObyoTncQBxvLLjIShwvQEzF34igmmE-hkt1_DtGMCN-mfLTsk7zfFcHzRJpNVtl5jHRFGINRK8eruLt6RB9Ozk-P0-HB29Jo85OiF4W6Cdslg1aztG5CNVupttyEpubzvM_AbsnIkFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqYTggHiK0AKLBAcOVrzr9euAUNMmSilEVUOl3tx9OVgyduomQv1r_Dpm1nYQIPVWH70P7WN2vpmdnRlC3oWKS27RNJj4uScAJDxUwbxUmECEWkdphP7OX-fR7Fx8vggvdsiv3hcGn1X2PNExalNrvCMf8QiYrECz3SjvnkWcHk0_ra48zCCFltY-nUZLIif25ieob9cfj49gr99zPp18O5x5XYYBTwvG1x7L_cTEMs-VtrGyxubMgLoo4NNcMgVDDf1AJTCfMOeArEYDZEcMGJxRTGLGCGD_uzFqRQOyO57MT8-2NzwYcTPx49Y2GgSpP5LLxnkqMO4yaqd_YaFLGfAfIjiYmz4iDzv5lB60BPWY7NjqCXlwsGy6GB32Kblc1EVJ5xjGHxCLnqHYjdtLZWXoakbHG8y5ApBIDwGJNYj50J2lk-q7e21A1Q0UlLpYNUVZukaL2hSbH3RRtB55z8j5nSzjczKo6sq-IDRXIPJpBppzZEVqmOSGx0kolE4VCBt8SEb9kmW6i2KOyTTKDLQZXOTs30Uekg_bFqs2gsctdce4C9t6GHvb_aibZdYd5UykOk1CjOsnjYChwvQCmHvgKxYwnUIn-_0eZh1DuM7-kO-QvN0Ww1FG-4ysbL3BOkEUg4Argpe3d_GG3APaz74cz0_2yH2ODhnuUmifDNbNxr4CMWmtXnf0SMnlXR-B3_rMKEo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+Nutrient+Retention+and+pH+Buffering+Capacity+Are+Enhanced+by+Calciprill+and+Sodium+Silicate&rft.jtitle=Agronomy+%28Basel%29&rft.au=Ng%2C+Ji+Feng&rft.au=Ahmed%2C+Osumanu+Haruna&rft.au=Jalloh%2C+Mohamadu+Boyie&rft.au=Omar%2C+Latifah&rft.date=2022-01-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=12&rft.issue=1&rft.spage=219&rft_id=info:doi/10.3390%2Fagronomy12010219&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agronomy12010219
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon