Root exudate composition from different plant species influences the growth of rhizosphere bacteria

Plant roots release exudates that fuel microbial activities and can structure rhizosphere microbial communities, but how different plant species use their root exudate to potentially select for different soil microbes in the rhizosphere is not well understood. Here, we investigated how root exudate...

Full description

Saved in:
Bibliographic Details
Published inRhizosphere Vol. 25; no. C; p. 100645
Main Authors Dhungana, Ishwora, Kantar, Michael B., Nguyen, Nhu H.
Format Journal Article
LanguageEnglish
Published China Elsevier B.V 01.03.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant roots release exudates that fuel microbial activities and can structure rhizosphere microbial communities, but how different plant species use their root exudate to potentially select for different soil microbes in the rhizosphere is not well understood. Here, we investigated how root exudate from plants of three diverging lineages, Lactuca sativa (lettuce), Brassica juncea (mustard cabbage), and Zea mays (maize) influence the growth of their own rhizosphere bacteria (host) and those from other plant species (non-host) in growth bioassays. We found that on the community level, lettuce rhizosphere bacteria grew better in non-host exudate, but mustard cabbage and maize rhizosphere bacteria grew similarly well in both host and non-host exudate. However, individual bacteria taxa showed strong preferences for exudate from different plant species. The bacterial growth patterns were independent of C and N quantity, suggesting that certain exometabolic compounds may drive the growth patterns. Our results demonstrate that root exudate from a given plant species have the potential to stimulate or suppress soil bacteria and hint at a mechanism that different plant species use to select for their specific suite of rhizosphere bacteria. These findings contribute to our broader understanding of how root exudate composition could be a mechanism that plants use to select for distinct microbial communities in the rhizosphere.
AbstractList Plant roots release exudates that fuel microbial activities and can structure rhizosphere microbial communities, but how different plant species use their root exudate to potentially select for different soil microbes in the rhizosphere is not well understood. Here, we investigated how root exudate from plants of three diverging lineages, Lactuca sativa (lettuce), Brassica juncea (mustard cabbage), and Zea mays (maize) influence the growth of their own rhizosphere bacteria (host) and those from other plant species (non-host) in growth bioassays. We found that on the community level, lettuce rhizosphere bacteria grew better in non-host exudate, but mustard cabbage and maize rhizosphere bacteria grew similarly well in both host and non-host exudate. However, individual bacteria taxa showed strong preferences for exudate from different plant species. The bacterial growth patterns were independent of C and N quantity, suggesting that certain exometabolic compounds may drive the growth patterns. Our results demonstrate that root exudate from a given plant species have the potential to stimulate or suppress soil bacteria and hint at a mechanism that different plant species use to select for their specific suite of rhizosphere bacteria. These findings contribute to our broader understanding of how root exudate composition could be a mechanism that plants use to select for distinct microbial communities in the rhizosphere.
ArticleNumber 100645
Author Dhungana, Ishwora
Nguyen, Nhu H.
Kantar, Michael B.
Author_xml – sequence: 1
  givenname: Ishwora
  orcidid: 0000-0002-8644-9428
  surname: Dhungana
  fullname: Dhungana, Ishwora
  email: ishwora@hawaii.edu
– sequence: 2
  givenname: Michael B.
  surname: Kantar
  fullname: Kantar, Michael B.
– sequence: 3
  givenname: Nhu H.
  surname: Nguyen
  fullname: Nguyen, Nhu H.
BackLink https://www.osti.gov/biblio/1905651$$D View this record in Osti.gov
BookMark eNqFUU1rVDEUDVLBWvsPXARXbmaa73nThSBFbaEgiK7DneTGl-HNy2uSseqvN4_XRemibpJLcs7hnnNek5MxjUjIW87WnHFzsV_nPpapXwsmRHtiRukX5FQoLVaCb7uTR_Mrcl7KnjHGN0ZqI0-J-5ZSpfj76KEidekwpRJrTCMNOR2ojyFgxrHSaYB2lgldxELjGIYjjq6NtUf6M6f72tMUaNvlb2rbNBLdgauYI7whLwMMBc8f7jPy4_On71fXq9uvX26uPt6unOKirrjYeO6MQ-TMBNM5pjsOEhRw8BvptQ8igNjJbtOBwPardqA6Dco46LySZ-TdoptKjba4WNH1Lo0jumr5lmmjeQO9X0BTTndHLNUeYnE4NHuYjsVKwYxgUsttg14uUJdTKRmDbZIwh1MzxMFyZucG7N4uDdi5Abs00MjqCXnK8QD5z_9oHxYatqB-RcyzjzloH_Nsw6f4vMA_2J2ljw
CitedBy_id crossref_primary_10_1016_j_apsoil_2025_105887
crossref_primary_10_3390_land13122076
crossref_primary_10_7717_peerj_16488
crossref_primary_10_1007_s11104_024_06516_x
crossref_primary_10_1016_j_ecoenv_2024_115969
crossref_primary_10_1128_spectrum_01649_23
crossref_primary_10_1007_s41742_024_00703_5
crossref_primary_10_1016_j_rhisph_2025_101026
crossref_primary_10_3389_fmicb_2024_1473099
crossref_primary_10_1016_j_chemosphere_2023_140868
crossref_primary_10_1016_j_funbio_2024_01_001
crossref_primary_10_1016_j_jhazmat_2024_133651
crossref_primary_10_3390_microorganisms12061190
crossref_primary_10_1007_s41348_025_01073_6
crossref_primary_10_3389_fpls_2024_1325048
crossref_primary_10_1360_SST_2024_0050
crossref_primary_10_1111_ppl_14268
crossref_primary_10_1016_j_ecoenv_2023_115593
crossref_primary_10_3390_su15097284
crossref_primary_10_3389_fmicb_2025_1544641
crossref_primary_10_3390_toxics13040239
crossref_primary_10_3390_f16010045
crossref_primary_10_1007_s13205_025_04243_3
crossref_primary_10_1016_j_stress_2023_100341
crossref_primary_10_1007_s42729_023_01397_y
crossref_primary_10_1111_fwb_14352
crossref_primary_10_1007_s00344_024_11297_9
crossref_primary_10_1016_j_catena_2024_108339
crossref_primary_10_1016_j_rhisph_2024_100885
crossref_primary_10_1186_s40168_024_01886_x
crossref_primary_10_7717_peerj_18791
crossref_primary_10_1016_j_crmicr_2024_100285
Cites_doi 10.1046/j.1439-0434.2003.00713.x
10.1016/j.scienta.2006.06.013
10.1128/AEM.66.5.2185-2191.2000
10.1007/s11104-009-9925-0
10.3389/fmicb.2014.00002
10.1038/nrmicro3109
10.1016/j.copbio.2021.05.007
10.1105/tpc.107.051672
10.3389/fmicb.2017.00975
10.7717/peerj.804
10.1111/j.1574-6941.2009.00654.x
10.1590/S0100-83582013000100002
10.1007/s11103-015-0337-7
10.1038/ismej.2009.68
10.1016/j.soilbio.2008.12.022
10.1016/j.soilbio.2015.01.025
10.1016/j.tplants.2017.09.003
10.1038/s41564-018-0129-3
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
OTOTI
DOI 10.1016/j.rhisph.2022.100645
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
EISSN 2452-2198
ExternalDocumentID 1905651
10_1016_j_rhisph_2022_100645
S2452219822001756
GroupedDBID --M
0R~
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AFKWA
AFTJW
AFXIZ
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPCBC
SSA
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
AALMO
OTOTI
ID FETCH-LOGICAL-c412t-127d1c6cee106f68c0581a3a4a1ad73d5df2fa2b3878a2e0584ba485a46ca8d43
IEDL.DBID AIKHN
ISSN 2452-2198
IngestDate Fri May 19 00:44:46 EDT 2023
Wed Jul 02 03:19:53 EDT 2025
Thu Apr 24 23:11:03 EDT 2025
Tue Jul 01 03:13:00 EDT 2025
Fri Feb 23 02:37:51 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Soil
Root exudate
Selection
Rhizosphere microbes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c412t-127d1c6cee106f68c0581a3a4a1ad73d5df2fa2b3878a2e0584ba485a46ca8d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
ORCID 0000-0002-8644-9428
0000000286449428
OpenAccessLink https://www.osti.gov/biblio/1905573
PQID 3206203539
PQPubID 24069
ParticipantIDs osti_scitechconnect_1905651
proquest_miscellaneous_3206203539
crossref_citationtrail_10_1016_j_rhisph_2022_100645
crossref_primary_10_1016_j_rhisph_2022_100645
elsevier_sciencedirect_doi_10_1016_j_rhisph_2022_100645
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
20230301
2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle Rhizosphere
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Walters, Walker, Walker (bib20) 2003; 151
Ayres, Steltzer, Simmons, Simpson, Steinweg, Wallenstein, Mellor, Parton, Moore, Wall (bib3) 2009; 41
Jones, Nguyen, Finlay (bib9) 2009; 321
Aleklett, Leff, Fierer, Hart (bib1) 2015; 3
Pérez-Jaramillo, Mendes, Raaijmakers (bib15) 2016; 90
Al-Sherif, Hegazy, Gomaa, Hassan (bib2) 2013; 31
Bergelson, Brachi, Roux, Vailleau (bib5) 2021; 70
Kuzyakov, Blagodatskaya (bib11) 2015; 83
(bib17) 2020
Berg, Smalla (bib4) 2009; 68
Jiang, Zhang, Gan, Li, Wan, Jiang, Yang, Zhang, Xu, Wang, Shen, Wei, Dini-Andreote (bib8) 2022; 2
Lee, Lee, Lee (bib12) 2006; 110
Neumann, Bott, Ohler, Mock, Lippmann, Grosch, Smalla (bib13) 2014; 5
O'Callaghan, Stone, Hu, Griffiths, Davey, Cocking (bib14) 2000; 66
Dawson, Hör, Egert, van Kleunen, Peste (bib7) 2017; 8
Zhalnina, Louie, Hao, Mansoori, da Rocha, Shi, Cho, Karaoz, Loqué, Bowen, Firestone, Northen, Brodie (bib21) 2018; 3
Köllner, Held, Lenk, Hiltpold, Turlings, Gershenzon, Degenhardta (bib10) 2008; 20
Rehman, Shahzad, Ahsan Bajwa, Hussain, Rehman, Alam Cheema, Abbas, Ali, Shah, Adkins, Li (bib18) 2019; 38
Sasse, Martinoia, Northen (bib19) 2018; 23
Bressan, Roncato, Bellvert, Comte, Haichar, Achouak, Berge (bib6) 2009; 3
Philippot, Raaijmakers, Lemanceau, van der Putten (bib16) 2013; 11
Aleklett (10.1016/j.rhisph.2022.100645_bib1) 2015; 3
Kuzyakov (10.1016/j.rhisph.2022.100645_bib11) 2015; 83
(10.1016/j.rhisph.2022.100645_bib17) 2020
Pérez-Jaramillo (10.1016/j.rhisph.2022.100645_bib15) 2016; 90
Al-Sherif (10.1016/j.rhisph.2022.100645_bib2) 2013; 31
O'Callaghan (10.1016/j.rhisph.2022.100645_bib14) 2000; 66
Bergelson (10.1016/j.rhisph.2022.100645_bib5) 2021; 70
Ayres (10.1016/j.rhisph.2022.100645_bib3) 2009; 41
Rehman (10.1016/j.rhisph.2022.100645_bib18) 2019; 38
Philippot (10.1016/j.rhisph.2022.100645_bib16) 2013; 11
Zhalnina (10.1016/j.rhisph.2022.100645_bib21) 2018; 3
Berg (10.1016/j.rhisph.2022.100645_bib4) 2009; 68
Köllner (10.1016/j.rhisph.2022.100645_bib10) 2008; 20
Bressan (10.1016/j.rhisph.2022.100645_bib6) 2009; 3
Dawson (10.1016/j.rhisph.2022.100645_bib7) 2017; 8
Jiang (10.1016/j.rhisph.2022.100645_bib8) 2022; 2
Jones (10.1016/j.rhisph.2022.100645_bib9) 2009; 321
Sasse (10.1016/j.rhisph.2022.100645_bib19) 2018; 23
Walters (10.1016/j.rhisph.2022.100645_bib20) 2003; 151
Lee (10.1016/j.rhisph.2022.100645_bib12) 2006; 110
Neumann (10.1016/j.rhisph.2022.100645_bib13) 2014; 5
References_xml – volume: 151
  start-page: 228
  year: 2003
  end-page: 230
  ident: bib20
  article-title: Lauric acid exhibits antifungal activity against plant pathogenic fungi
  publication-title: Phytopathology
– volume: 3
  start-page: 470
  year: 2018
  end-page: 480
  ident: bib21
  article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly
  publication-title: Nat Microbiol
– volume: 68
  start-page: 1
  year: 2009
  end-page: 13
  ident: bib4
  article-title: Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere
  publication-title: FEMS Microbiol. Ecol.
– volume: 321
  start-page: 5
  year: 2009
  end-page: 33
  ident: bib9
  article-title: Carbon flow in the rhizosphere: carbon trading at the soil–root interface
  publication-title: Plant Soil
– volume: 70
  start-page: 167
  year: 2021
  end-page: 173
  ident: bib5
  article-title: Assessing the potential to harness the microbiome through plant genetics
  publication-title: Curr. Opin. Biotechnol.
– volume: 20
  start-page: 482
  year: 2008
  end-page: 494
  ident: bib10
  article-title: A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties
  publication-title: Plant Cell
– volume: 8
  year: 2017
  ident: bib7
  article-title: A small number of low-abundance bacteria dominate plant species-specific responses during rhizosphere colonization
  publication-title: Front. Microbiol.
– volume: 66
  start-page: 2185
  year: 2000
  end-page: 2191
  ident: bib14
  article-title: Effects of glucosinolates and flavonoids on colonization of the roots of Brassica napus by Azorhizobium caulinodans ORS571
  publication-title: Appl. Environ. Microbiol.
– volume: 110
  start-page: 119
  year: 2006
  end-page: 128
  ident: bib12
  article-title: Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.)
  publication-title: Sci. Hortic.
– volume: 3
  year: 2015
  ident: bib1
  article-title: Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities
  publication-title: PeerJ
– volume: 5
  start-page: 2
  year: 2014
  ident: bib13
  article-title: Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils
  publication-title: Front. Microbiol.
– volume: 2
  start-page: 1
  year: 2022
  end-page: 10
  ident: bib8
  article-title: Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation
  publication-title: ISME Communications
– volume: 3
  start-page: 1243
  year: 2009
  end-page: 1257
  ident: bib6
  article-title: Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots
  publication-title: ISME J.
– volume: 11
  start-page: 789
  year: 2013
  end-page: 799
  ident: bib16
  article-title: Going back to the roots: the microbial ecology of the rhizosphere
  publication-title: Nat. Rev. Microbiol.
– volume: 90
  start-page: 635
  year: 2016
  end-page: 644
  ident: bib15
  article-title: Impact of plant domestication on rhizosphere microbiome assembly and functions
  publication-title: Plant Mol. Biol.
– volume: 41
  start-page: 606
  year: 2009
  end-page: 610
  ident: bib3
  article-title: Home-field advantage accelerates leaf litter decomposition in forests
  publication-title: Soil Biol. Biochem.
– volume: 38
  start-page: 343
  year: 2019
  end-page: 356
  ident: bib18
  article-title: Utilizing the allelopathic potential of Brassica species for sustainable crop production
  publication-title: A Review
– volume: 31
  start-page: 11
  year: 2013
  end-page: 19
  ident: bib2
  article-title: Allelopathic effect of black mustard tissues and root exudates on some crops and weeds
  publication-title: Planta Daninha
– volume: 83
  start-page: 184
  year: 2015
  end-page: 199
  ident: bib11
  article-title: Microbial hotspots and hot moments in soil: concept & review
  publication-title: Soil Biol. Biochem.
– year: 2020
  ident: bib17
  article-title: R: A Language and Environment for Statistical Computing
– volume: 23
  start-page: 25
  year: 2018
  end-page: 41
  ident: bib19
  article-title: Feed your friends: do plant exudates shape the root microbiome?
  publication-title: Trends Plant Sci.
– volume: 151
  start-page: 228
  year: 2003
  ident: 10.1016/j.rhisph.2022.100645_bib20
  article-title: Lauric acid exhibits antifungal activity against plant pathogenic fungi
  publication-title: Phytopathology
  doi: 10.1046/j.1439-0434.2003.00713.x
– volume: 110
  start-page: 119
  year: 2006
  ident: 10.1016/j.rhisph.2022.100645_bib12
  article-title: Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.)
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2006.06.013
– volume: 66
  start-page: 2185
  year: 2000
  ident: 10.1016/j.rhisph.2022.100645_bib14
  article-title: Effects of glucosinolates and flavonoids on colonization of the roots of Brassica napus by Azorhizobium caulinodans ORS571
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.5.2185-2191.2000
– volume: 321
  start-page: 5
  year: 2009
  ident: 10.1016/j.rhisph.2022.100645_bib9
  article-title: Carbon flow in the rhizosphere: carbon trading at the soil–root interface
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-9925-0
– volume: 5
  start-page: 2
  year: 2014
  ident: 10.1016/j.rhisph.2022.100645_bib13
  article-title: Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2014.00002
– volume: 38
  start-page: 343
  year: 2019
  ident: 10.1016/j.rhisph.2022.100645_bib18
  article-title: Utilizing the allelopathic potential of Brassica species for sustainable crop production
  publication-title: A Review
– volume: 11
  start-page: 789
  issue: 11 11
  year: 2013
  ident: 10.1016/j.rhisph.2022.100645_bib16
  article-title: Going back to the roots: the microbial ecology of the rhizosphere
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3109
– volume: 70
  start-page: 167
  year: 2021
  ident: 10.1016/j.rhisph.2022.100645_bib5
  article-title: Assessing the potential to harness the microbiome through plant genetics
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2021.05.007
– volume: 20
  start-page: 482
  year: 2008
  ident: 10.1016/j.rhisph.2022.100645_bib10
  article-title: A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.051672
– volume: 8
  year: 2017
  ident: 10.1016/j.rhisph.2022.100645_bib7
  article-title: A small number of low-abundance bacteria dominate plant species-specific responses during rhizosphere colonization
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00975
– volume: 2
  start-page: 1
  issue: 1 2
  year: 2022
  ident: 10.1016/j.rhisph.2022.100645_bib8
  article-title: Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation
  publication-title: ISME Communications
– volume: 3
  year: 2015
  ident: 10.1016/j.rhisph.2022.100645_bib1
  article-title: Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities
  publication-title: PeerJ
  doi: 10.7717/peerj.804
– volume: 68
  start-page: 1
  year: 2009
  ident: 10.1016/j.rhisph.2022.100645_bib4
  article-title: Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2009.00654.x
– volume: 31
  start-page: 11
  year: 2013
  ident: 10.1016/j.rhisph.2022.100645_bib2
  article-title: Allelopathic effect of black mustard tissues and root exudates on some crops and weeds
  publication-title: Planta Daninha
  doi: 10.1590/S0100-83582013000100002
– volume: 90
  start-page: 635
  year: 2016
  ident: 10.1016/j.rhisph.2022.100645_bib15
  article-title: Impact of plant domestication on rhizosphere microbiome assembly and functions
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-015-0337-7
– volume: 3
  start-page: 1243
  year: 2009
  ident: 10.1016/j.rhisph.2022.100645_bib6
  article-title: Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots
  publication-title: ISME J.
  doi: 10.1038/ismej.2009.68
– volume: 41
  start-page: 606
  year: 2009
  ident: 10.1016/j.rhisph.2022.100645_bib3
  article-title: Home-field advantage accelerates leaf litter decomposition in forests
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.12.022
– year: 2020
  ident: 10.1016/j.rhisph.2022.100645_bib17
– volume: 83
  start-page: 184
  year: 2015
  ident: 10.1016/j.rhisph.2022.100645_bib11
  article-title: Microbial hotspots and hot moments in soil: concept & review
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.01.025
– volume: 23
  start-page: 25
  year: 2018
  ident: 10.1016/j.rhisph.2022.100645_bib19
  article-title: Feed your friends: do plant exudates shape the root microbiome?
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.09.003
– volume: 3
  start-page: 470
  year: 2018
  ident: 10.1016/j.rhisph.2022.100645_bib21
  article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-018-0129-3
SSID ssj0001763563
Score 2.4184906
Snippet Plant roots release exudates that fuel microbial activities and can structure rhizosphere microbial communities, but how different plant species use their root...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100645
SubjectTerms bacterial growth
Brassica juncea
cabbage
corn
Lactuca sativa
lettuce
rhizosphere
Rhizosphere microbes
Root exudate
root exudates
Selection
Soil
species
Zea mays
Title Root exudate composition from different plant species influences the growth of rhizosphere bacteria
URI https://dx.doi.org/10.1016/j.rhisph.2022.100645
https://www.proquest.com/docview/3206203539
https://www.osti.gov/biblio/1905651
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvXgRRUWtygpeQ7OPbLZHEaUq9OADvC37ilakKW0K_nxn8lBEQfCaZEiY3Z1H5ptvCDljnmktpEXywTyR1qpEaxkSiMUzKYssOF8DZCdq_ChvnrKnHrnoemEQVtna_sam19a6vTJstTmcT6fDe6wZwnkDD4emNlNrZJ2LkYKtvX5-fTuefP1qqUnYsNaMIgnKdE10NdJr8TJdzrEwwTmCBhS2Nv3upPolnLsfVrt2RVdbZLONIel585nbpBdnO8TflWVF4_sKU3iKSPEWjkWxg4R2g1AqOn8DZVLssIQkmU67ISVLCqEgfYasvHqhZUEXCMZbIulApK6hdLa75PHq8uFinLQTFBIvGa8SxvPAvAJHCJlfobRPM82ssNIyG3IRslDwwnIndK4tj3BXOit1ZqXyVgcp9kh_Vs7iPqGpczKwEKNzQRbKa7DYEjJxiAhG6UiwAyI6lRnf0ovjlIs30-HIXk2jaIOKNo2iD0jyKTVv6DX-eD7vVsN82yYGPMAfkgNcPJRCdlyPMCIQg3gIQlr4-tNuTQ2cLyya2FksV0sjeKp4KjIxOvz3uwdkA6fUN9C1I9KvFqt4DLFM5U7avfoBwyPzxg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF5BONBLVVRQKbRsJa5WvE9vjgiBAgk5FJC4rfblkgrFUeJI_fmd8aMIUQmJq-2RrdndeXi--YaQUxaYMUI6JB8sMumczoyRMYNYXElZquhDA5Cd6fG9vH5QD1vkvO-FQVhlZ_tbm95Y6-7KsNPmcDmfD2-xZgjnDTwcmlqlt8kOslOpAdk5u5qMZ8-_WhoSNqw1o0iGMn0TXYP0Wj3O10ssTHCOoAGNrU3_d1KDCs7dK6vduKLLT-RjF0PSs_Yz98hWWnwm4WdV1TT92WAKTxEp3sGxKHaQ0H4QSk2XT6BMih2WkCTTeT-kZE0hFKS_ICuvH2lV0hWC8dZIOpCobymd3T65v7y4Ox9n3QSFLEjG64zxIrKgwRFC5ldqE3JlmBNOOuZiIaKKJS8d98IUxvEEd6V30igndXAmSnFABotqkb4QmnsvI4speR9lqYMBiy0hE4eIYJSPBDskoleZDR29OE65eLI9juy3bRVtUdG2VfQhyf5JLVt6jTeeL_rVsC-2iQUP8IbkES4eSiE7bkAYEYhBPAQhLXz9j35NLZwvLJq4Rao2ayt4rnkulBh9ffe7T8ju-O5maqdXs8kR-YAT61sY2zEZ1KtN-gZxTe2_d_v2L0Y29qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+exudate+composition+from+different+plant+species+influences+the+growth+of+rhizosphere+bacteria&rft.jtitle=Rhizosphere&rft.au=Dhungana%2C+Ishwora&rft.au=Kantar%2C+Michael+B.&rft.au=Nguyen%2C+Nhu+H.&rft.date=2023-03-01&rft.issn=2452-2198&rft.eissn=2452-2198&rft.volume=25&rft.spage=100645&rft_id=info:doi/10.1016%2Fj.rhisph.2022.100645&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rhisph_2022_100645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-2198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-2198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-2198&client=summon