Root exudate composition from different plant species influences the growth of rhizosphere bacteria
Plant roots release exudates that fuel microbial activities and can structure rhizosphere microbial communities, but how different plant species use their root exudate to potentially select for different soil microbes in the rhizosphere is not well understood. Here, we investigated how root exudate...
Saved in:
Published in | Rhizosphere Vol. 25; no. C; p. 100645 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier B.V
01.03.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant roots release exudates that fuel microbial activities and can structure rhizosphere microbial communities, but how different plant species use their root exudate to potentially select for different soil microbes in the rhizosphere is not well understood. Here, we investigated how root exudate from plants of three diverging lineages, Lactuca sativa (lettuce), Brassica juncea (mustard cabbage), and Zea mays (maize) influence the growth of their own rhizosphere bacteria (host) and those from other plant species (non-host) in growth bioassays. We found that on the community level, lettuce rhizosphere bacteria grew better in non-host exudate, but mustard cabbage and maize rhizosphere bacteria grew similarly well in both host and non-host exudate. However, individual bacteria taxa showed strong preferences for exudate from different plant species. The bacterial growth patterns were independent of C and N quantity, suggesting that certain exometabolic compounds may drive the growth patterns. Our results demonstrate that root exudate from a given plant species have the potential to stimulate or suppress soil bacteria and hint at a mechanism that different plant species use to select for their specific suite of rhizosphere bacteria. These findings contribute to our broader understanding of how root exudate composition could be a mechanism that plants use to select for distinct microbial communities in the rhizosphere. |
---|---|
AbstractList | Plant roots release exudates that fuel microbial activities and can structure rhizosphere microbial communities, but how different plant species use their root exudate to potentially select for different soil microbes in the rhizosphere is not well understood. Here, we investigated how root exudate from plants of three diverging lineages, Lactuca sativa (lettuce), Brassica juncea (mustard cabbage), and Zea mays (maize) influence the growth of their own rhizosphere bacteria (host) and those from other plant species (non-host) in growth bioassays. We found that on the community level, lettuce rhizosphere bacteria grew better in non-host exudate, but mustard cabbage and maize rhizosphere bacteria grew similarly well in both host and non-host exudate. However, individual bacteria taxa showed strong preferences for exudate from different plant species. The bacterial growth patterns were independent of C and N quantity, suggesting that certain exometabolic compounds may drive the growth patterns. Our results demonstrate that root exudate from a given plant species have the potential to stimulate or suppress soil bacteria and hint at a mechanism that different plant species use to select for their specific suite of rhizosphere bacteria. These findings contribute to our broader understanding of how root exudate composition could be a mechanism that plants use to select for distinct microbial communities in the rhizosphere. |
ArticleNumber | 100645 |
Author | Dhungana, Ishwora Nguyen, Nhu H. Kantar, Michael B. |
Author_xml | – sequence: 1 givenname: Ishwora orcidid: 0000-0002-8644-9428 surname: Dhungana fullname: Dhungana, Ishwora email: ishwora@hawaii.edu – sequence: 2 givenname: Michael B. surname: Kantar fullname: Kantar, Michael B. – sequence: 3 givenname: Nhu H. surname: Nguyen fullname: Nguyen, Nhu H. |
BackLink | https://www.osti.gov/biblio/1905651$$D View this record in Osti.gov |
BookMark | eNqFUU1rVDEUDVLBWvsPXARXbmaa73nThSBFbaEgiK7DneTGl-HNy2uSseqvN4_XRemibpJLcs7hnnNek5MxjUjIW87WnHFzsV_nPpapXwsmRHtiRukX5FQoLVaCb7uTR_Mrcl7KnjHGN0ZqI0-J-5ZSpfj76KEidekwpRJrTCMNOR2ojyFgxrHSaYB2lgldxELjGIYjjq6NtUf6M6f72tMUaNvlb2rbNBLdgauYI7whLwMMBc8f7jPy4_On71fXq9uvX26uPt6unOKirrjYeO6MQ-TMBNM5pjsOEhRw8BvptQ8igNjJbtOBwPardqA6Dco46LySZ-TdoptKjba4WNH1Lo0jumr5lmmjeQO9X0BTTndHLNUeYnE4NHuYjsVKwYxgUsttg14uUJdTKRmDbZIwh1MzxMFyZucG7N4uDdi5Abs00MjqCXnK8QD5z_9oHxYatqB-RcyzjzloH_Nsw6f4vMA_2J2ljw |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2025_105887 crossref_primary_10_3390_land13122076 crossref_primary_10_7717_peerj_16488 crossref_primary_10_1007_s11104_024_06516_x crossref_primary_10_1016_j_ecoenv_2024_115969 crossref_primary_10_1128_spectrum_01649_23 crossref_primary_10_1007_s41742_024_00703_5 crossref_primary_10_1016_j_rhisph_2025_101026 crossref_primary_10_3389_fmicb_2024_1473099 crossref_primary_10_1016_j_chemosphere_2023_140868 crossref_primary_10_1016_j_funbio_2024_01_001 crossref_primary_10_1016_j_jhazmat_2024_133651 crossref_primary_10_3390_microorganisms12061190 crossref_primary_10_1007_s41348_025_01073_6 crossref_primary_10_3389_fpls_2024_1325048 crossref_primary_10_1360_SST_2024_0050 crossref_primary_10_1111_ppl_14268 crossref_primary_10_1016_j_ecoenv_2023_115593 crossref_primary_10_3390_su15097284 crossref_primary_10_3389_fmicb_2025_1544641 crossref_primary_10_3390_toxics13040239 crossref_primary_10_3390_f16010045 crossref_primary_10_1007_s13205_025_04243_3 crossref_primary_10_1016_j_stress_2023_100341 crossref_primary_10_1007_s42729_023_01397_y crossref_primary_10_1111_fwb_14352 crossref_primary_10_1007_s00344_024_11297_9 crossref_primary_10_1016_j_catena_2024_108339 crossref_primary_10_1016_j_rhisph_2024_100885 crossref_primary_10_1186_s40168_024_01886_x crossref_primary_10_7717_peerj_18791 crossref_primary_10_1016_j_crmicr_2024_100285 |
Cites_doi | 10.1046/j.1439-0434.2003.00713.x 10.1016/j.scienta.2006.06.013 10.1128/AEM.66.5.2185-2191.2000 10.1007/s11104-009-9925-0 10.3389/fmicb.2014.00002 10.1038/nrmicro3109 10.1016/j.copbio.2021.05.007 10.1105/tpc.107.051672 10.3389/fmicb.2017.00975 10.7717/peerj.804 10.1111/j.1574-6941.2009.00654.x 10.1590/S0100-83582013000100002 10.1007/s11103-015-0337-7 10.1038/ismej.2009.68 10.1016/j.soilbio.2008.12.022 10.1016/j.soilbio.2015.01.025 10.1016/j.tplants.2017.09.003 10.1038/s41564-018-0129-3 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 OTOTI |
DOI | 10.1016/j.rhisph.2022.100645 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-2198 |
ExternalDocumentID | 1905651 10_1016_j_rhisph_2022_100645 S2452219822001756 |
GroupedDBID | --M 0R~ AABVA AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV AEBSH AFKWA AFTJW AFXIZ AGUBO AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM O9- OAUVE ROL SPCBC SSA SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 AALMO OTOTI |
ID | FETCH-LOGICAL-c412t-127d1c6cee106f68c0581a3a4a1ad73d5df2fa2b3878a2e0584ba485a46ca8d43 |
IEDL.DBID | AIKHN |
ISSN | 2452-2198 |
IngestDate | Fri May 19 00:44:46 EDT 2023 Wed Jul 02 03:19:53 EDT 2025 Thu Apr 24 23:11:03 EDT 2025 Tue Jul 01 03:13:00 EDT 2025 Fri Feb 23 02:37:51 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Soil Root exudate Selection Rhizosphere microbes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c412t-127d1c6cee106f68c0581a3a4a1ad73d5df2fa2b3878a2e0584ba485a46ca8d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE |
ORCID | 0000-0002-8644-9428 0000000286449428 |
OpenAccessLink | https://www.osti.gov/biblio/1905573 |
PQID | 3206203539 |
PQPubID | 24069 |
ParticipantIDs | osti_scitechconnect_1905651 proquest_miscellaneous_3206203539 crossref_citationtrail_10_1016_j_rhisph_2022_100645 crossref_primary_10_1016_j_rhisph_2022_100645 elsevier_sciencedirect_doi_10_1016_j_rhisph_2022_100645 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 20230301 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Rhizosphere |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Walters, Walker, Walker (bib20) 2003; 151 Ayres, Steltzer, Simmons, Simpson, Steinweg, Wallenstein, Mellor, Parton, Moore, Wall (bib3) 2009; 41 Jones, Nguyen, Finlay (bib9) 2009; 321 Aleklett, Leff, Fierer, Hart (bib1) 2015; 3 Pérez-Jaramillo, Mendes, Raaijmakers (bib15) 2016; 90 Al-Sherif, Hegazy, Gomaa, Hassan (bib2) 2013; 31 Bergelson, Brachi, Roux, Vailleau (bib5) 2021; 70 Kuzyakov, Blagodatskaya (bib11) 2015; 83 (bib17) 2020 Berg, Smalla (bib4) 2009; 68 Jiang, Zhang, Gan, Li, Wan, Jiang, Yang, Zhang, Xu, Wang, Shen, Wei, Dini-Andreote (bib8) 2022; 2 Lee, Lee, Lee (bib12) 2006; 110 Neumann, Bott, Ohler, Mock, Lippmann, Grosch, Smalla (bib13) 2014; 5 O'Callaghan, Stone, Hu, Griffiths, Davey, Cocking (bib14) 2000; 66 Dawson, Hör, Egert, van Kleunen, Peste (bib7) 2017; 8 Zhalnina, Louie, Hao, Mansoori, da Rocha, Shi, Cho, Karaoz, Loqué, Bowen, Firestone, Northen, Brodie (bib21) 2018; 3 Köllner, Held, Lenk, Hiltpold, Turlings, Gershenzon, Degenhardta (bib10) 2008; 20 Rehman, Shahzad, Ahsan Bajwa, Hussain, Rehman, Alam Cheema, Abbas, Ali, Shah, Adkins, Li (bib18) 2019; 38 Sasse, Martinoia, Northen (bib19) 2018; 23 Bressan, Roncato, Bellvert, Comte, Haichar, Achouak, Berge (bib6) 2009; 3 Philippot, Raaijmakers, Lemanceau, van der Putten (bib16) 2013; 11 Aleklett (10.1016/j.rhisph.2022.100645_bib1) 2015; 3 Kuzyakov (10.1016/j.rhisph.2022.100645_bib11) 2015; 83 (10.1016/j.rhisph.2022.100645_bib17) 2020 Pérez-Jaramillo (10.1016/j.rhisph.2022.100645_bib15) 2016; 90 Al-Sherif (10.1016/j.rhisph.2022.100645_bib2) 2013; 31 O'Callaghan (10.1016/j.rhisph.2022.100645_bib14) 2000; 66 Bergelson (10.1016/j.rhisph.2022.100645_bib5) 2021; 70 Ayres (10.1016/j.rhisph.2022.100645_bib3) 2009; 41 Rehman (10.1016/j.rhisph.2022.100645_bib18) 2019; 38 Philippot (10.1016/j.rhisph.2022.100645_bib16) 2013; 11 Zhalnina (10.1016/j.rhisph.2022.100645_bib21) 2018; 3 Berg (10.1016/j.rhisph.2022.100645_bib4) 2009; 68 Köllner (10.1016/j.rhisph.2022.100645_bib10) 2008; 20 Bressan (10.1016/j.rhisph.2022.100645_bib6) 2009; 3 Dawson (10.1016/j.rhisph.2022.100645_bib7) 2017; 8 Jiang (10.1016/j.rhisph.2022.100645_bib8) 2022; 2 Jones (10.1016/j.rhisph.2022.100645_bib9) 2009; 321 Sasse (10.1016/j.rhisph.2022.100645_bib19) 2018; 23 Walters (10.1016/j.rhisph.2022.100645_bib20) 2003; 151 Lee (10.1016/j.rhisph.2022.100645_bib12) 2006; 110 Neumann (10.1016/j.rhisph.2022.100645_bib13) 2014; 5 |
References_xml | – volume: 151 start-page: 228 year: 2003 end-page: 230 ident: bib20 article-title: Lauric acid exhibits antifungal activity against plant pathogenic fungi publication-title: Phytopathology – volume: 3 start-page: 470 year: 2018 end-page: 480 ident: bib21 article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly publication-title: Nat Microbiol – volume: 68 start-page: 1 year: 2009 end-page: 13 ident: bib4 article-title: Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere publication-title: FEMS Microbiol. Ecol. – volume: 321 start-page: 5 year: 2009 end-page: 33 ident: bib9 article-title: Carbon flow in the rhizosphere: carbon trading at the soil–root interface publication-title: Plant Soil – volume: 70 start-page: 167 year: 2021 end-page: 173 ident: bib5 article-title: Assessing the potential to harness the microbiome through plant genetics publication-title: Curr. Opin. Biotechnol. – volume: 20 start-page: 482 year: 2008 end-page: 494 ident: bib10 article-title: A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties publication-title: Plant Cell – volume: 8 year: 2017 ident: bib7 article-title: A small number of low-abundance bacteria dominate plant species-specific responses during rhizosphere colonization publication-title: Front. Microbiol. – volume: 66 start-page: 2185 year: 2000 end-page: 2191 ident: bib14 article-title: Effects of glucosinolates and flavonoids on colonization of the roots of Brassica napus by Azorhizobium caulinodans ORS571 publication-title: Appl. Environ. Microbiol. – volume: 110 start-page: 119 year: 2006 end-page: 128 ident: bib12 article-title: Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.) publication-title: Sci. Hortic. – volume: 3 year: 2015 ident: bib1 article-title: Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities publication-title: PeerJ – volume: 5 start-page: 2 year: 2014 ident: bib13 article-title: Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils publication-title: Front. Microbiol. – volume: 2 start-page: 1 year: 2022 end-page: 10 ident: bib8 article-title: Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation publication-title: ISME Communications – volume: 3 start-page: 1243 year: 2009 end-page: 1257 ident: bib6 article-title: Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots publication-title: ISME J. – volume: 11 start-page: 789 year: 2013 end-page: 799 ident: bib16 article-title: Going back to the roots: the microbial ecology of the rhizosphere publication-title: Nat. Rev. Microbiol. – volume: 90 start-page: 635 year: 2016 end-page: 644 ident: bib15 article-title: Impact of plant domestication on rhizosphere microbiome assembly and functions publication-title: Plant Mol. Biol. – volume: 41 start-page: 606 year: 2009 end-page: 610 ident: bib3 article-title: Home-field advantage accelerates leaf litter decomposition in forests publication-title: Soil Biol. Biochem. – volume: 38 start-page: 343 year: 2019 end-page: 356 ident: bib18 article-title: Utilizing the allelopathic potential of Brassica species for sustainable crop production publication-title: A Review – volume: 31 start-page: 11 year: 2013 end-page: 19 ident: bib2 article-title: Allelopathic effect of black mustard tissues and root exudates on some crops and weeds publication-title: Planta Daninha – volume: 83 start-page: 184 year: 2015 end-page: 199 ident: bib11 article-title: Microbial hotspots and hot moments in soil: concept & review publication-title: Soil Biol. Biochem. – year: 2020 ident: bib17 article-title: R: A Language and Environment for Statistical Computing – volume: 23 start-page: 25 year: 2018 end-page: 41 ident: bib19 article-title: Feed your friends: do plant exudates shape the root microbiome? publication-title: Trends Plant Sci. – volume: 151 start-page: 228 year: 2003 ident: 10.1016/j.rhisph.2022.100645_bib20 article-title: Lauric acid exhibits antifungal activity against plant pathogenic fungi publication-title: Phytopathology doi: 10.1046/j.1439-0434.2003.00713.x – volume: 110 start-page: 119 year: 2006 ident: 10.1016/j.rhisph.2022.100645_bib12 article-title: Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.) publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2006.06.013 – volume: 66 start-page: 2185 year: 2000 ident: 10.1016/j.rhisph.2022.100645_bib14 article-title: Effects of glucosinolates and flavonoids on colonization of the roots of Brassica napus by Azorhizobium caulinodans ORS571 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.5.2185-2191.2000 – volume: 321 start-page: 5 year: 2009 ident: 10.1016/j.rhisph.2022.100645_bib9 article-title: Carbon flow in the rhizosphere: carbon trading at the soil–root interface publication-title: Plant Soil doi: 10.1007/s11104-009-9925-0 – volume: 5 start-page: 2 year: 2014 ident: 10.1016/j.rhisph.2022.100645_bib13 article-title: Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00002 – volume: 38 start-page: 343 year: 2019 ident: 10.1016/j.rhisph.2022.100645_bib18 article-title: Utilizing the allelopathic potential of Brassica species for sustainable crop production publication-title: A Review – volume: 11 start-page: 789 issue: 11 11 year: 2013 ident: 10.1016/j.rhisph.2022.100645_bib16 article-title: Going back to the roots: the microbial ecology of the rhizosphere publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3109 – volume: 70 start-page: 167 year: 2021 ident: 10.1016/j.rhisph.2022.100645_bib5 article-title: Assessing the potential to harness the microbiome through plant genetics publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2021.05.007 – volume: 20 start-page: 482 year: 2008 ident: 10.1016/j.rhisph.2022.100645_bib10 article-title: A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties publication-title: Plant Cell doi: 10.1105/tpc.107.051672 – volume: 8 year: 2017 ident: 10.1016/j.rhisph.2022.100645_bib7 article-title: A small number of low-abundance bacteria dominate plant species-specific responses during rhizosphere colonization publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00975 – volume: 2 start-page: 1 issue: 1 2 year: 2022 ident: 10.1016/j.rhisph.2022.100645_bib8 article-title: Exploring rhizo-microbiome transplants as a tool for protective plant-microbiome manipulation publication-title: ISME Communications – volume: 3 year: 2015 ident: 10.1016/j.rhisph.2022.100645_bib1 article-title: Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities publication-title: PeerJ doi: 10.7717/peerj.804 – volume: 68 start-page: 1 year: 2009 ident: 10.1016/j.rhisph.2022.100645_bib4 article-title: Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2009.00654.x – volume: 31 start-page: 11 year: 2013 ident: 10.1016/j.rhisph.2022.100645_bib2 article-title: Allelopathic effect of black mustard tissues and root exudates on some crops and weeds publication-title: Planta Daninha doi: 10.1590/S0100-83582013000100002 – volume: 90 start-page: 635 year: 2016 ident: 10.1016/j.rhisph.2022.100645_bib15 article-title: Impact of plant domestication on rhizosphere microbiome assembly and functions publication-title: Plant Mol. Biol. doi: 10.1007/s11103-015-0337-7 – volume: 3 start-page: 1243 year: 2009 ident: 10.1016/j.rhisph.2022.100645_bib6 article-title: Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots publication-title: ISME J. doi: 10.1038/ismej.2009.68 – volume: 41 start-page: 606 year: 2009 ident: 10.1016/j.rhisph.2022.100645_bib3 article-title: Home-field advantage accelerates leaf litter decomposition in forests publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.12.022 – year: 2020 ident: 10.1016/j.rhisph.2022.100645_bib17 – volume: 83 start-page: 184 year: 2015 ident: 10.1016/j.rhisph.2022.100645_bib11 article-title: Microbial hotspots and hot moments in soil: concept & review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.01.025 – volume: 23 start-page: 25 year: 2018 ident: 10.1016/j.rhisph.2022.100645_bib19 article-title: Feed your friends: do plant exudates shape the root microbiome? publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.09.003 – volume: 3 start-page: 470 year: 2018 ident: 10.1016/j.rhisph.2022.100645_bib21 article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly publication-title: Nat Microbiol doi: 10.1038/s41564-018-0129-3 |
SSID | ssj0001763563 |
Score | 2.4184906 |
Snippet | Plant roots release exudates that fuel microbial activities and can structure rhizosphere microbial communities, but how different plant species use their root... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 100645 |
SubjectTerms | bacterial growth Brassica juncea cabbage corn Lactuca sativa lettuce rhizosphere Rhizosphere microbes Root exudate root exudates Selection Soil species Zea mays |
Title | Root exudate composition from different plant species influences the growth of rhizosphere bacteria |
URI | https://dx.doi.org/10.1016/j.rhisph.2022.100645 https://www.proquest.com/docview/3206203539 https://www.osti.gov/biblio/1905651 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvXgRRUWtygpeQ7OPbLZHEaUq9OADvC37ilakKW0K_nxn8lBEQfCaZEiY3Z1H5ptvCDljnmktpEXywTyR1qpEaxkSiMUzKYssOF8DZCdq_ChvnrKnHrnoemEQVtna_sam19a6vTJstTmcT6fDe6wZwnkDD4emNlNrZJ2LkYKtvX5-fTuefP1qqUnYsNaMIgnKdE10NdJr8TJdzrEwwTmCBhS2Nv3upPolnLsfVrt2RVdbZLONIel585nbpBdnO8TflWVF4_sKU3iKSPEWjkWxg4R2g1AqOn8DZVLssIQkmU67ISVLCqEgfYasvHqhZUEXCMZbIulApK6hdLa75PHq8uFinLQTFBIvGa8SxvPAvAJHCJlfobRPM82ssNIyG3IRslDwwnIndK4tj3BXOit1ZqXyVgcp9kh_Vs7iPqGpczKwEKNzQRbKa7DYEjJxiAhG6UiwAyI6lRnf0ovjlIs30-HIXk2jaIOKNo2iD0jyKTVv6DX-eD7vVsN82yYGPMAfkgNcPJRCdlyPMCIQg3gIQlr4-tNuTQ2cLyya2FksV0sjeKp4KjIxOvz3uwdkA6fUN9C1I9KvFqt4DLFM5U7avfoBwyPzxg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF5BONBLVVRQKbRsJa5WvE9vjgiBAgk5FJC4rfblkgrFUeJI_fmd8aMIUQmJq-2RrdndeXi--YaQUxaYMUI6JB8sMumczoyRMYNYXElZquhDA5Cd6fG9vH5QD1vkvO-FQVhlZ_tbm95Y6-7KsNPmcDmfD2-xZgjnDTwcmlqlt8kOslOpAdk5u5qMZ8-_WhoSNqw1o0iGMn0TXYP0Wj3O10ssTHCOoAGNrU3_d1KDCs7dK6vduKLLT-RjF0PSs_Yz98hWWnwm4WdV1TT92WAKTxEp3sGxKHaQ0H4QSk2XT6BMih2WkCTTeT-kZE0hFKS_ICuvH2lV0hWC8dZIOpCobymd3T65v7y4Ox9n3QSFLEjG64zxIrKgwRFC5ldqE3JlmBNOOuZiIaKKJS8d98IUxvEEd6V30igndXAmSnFABotqkb4QmnsvI4speR9lqYMBiy0hE4eIYJSPBDskoleZDR29OE65eLI9juy3bRVtUdG2VfQhyf5JLVt6jTeeL_rVsC-2iQUP8IbkES4eSiE7bkAYEYhBPAQhLXz9j35NLZwvLJq4Rao2ayt4rnkulBh9ffe7T8ju-O5maqdXs8kR-YAT61sY2zEZ1KtN-gZxTe2_d_v2L0Y29qw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+exudate+composition+from+different+plant+species+influences+the+growth+of+rhizosphere+bacteria&rft.jtitle=Rhizosphere&rft.au=Dhungana%2C+Ishwora&rft.au=Kantar%2C+Michael+B.&rft.au=Nguyen%2C+Nhu+H.&rft.date=2023-03-01&rft.issn=2452-2198&rft.eissn=2452-2198&rft.volume=25&rft.spage=100645&rft_id=info:doi/10.1016%2Fj.rhisph.2022.100645&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rhisph_2022_100645 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-2198&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-2198&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-2198&client=summon |